WorldWideScience

Sample records for biaxial nematic phases

  1. Towards the biaxial nematic phase via specific intermolecular interactions

    CERN Document Server

    Omnes, L

    2001-01-01

    The work described in this thesis has been focussed on the search of an elusive liquid crystal phase, known as the biaxial nematic phase. Indeed, despite nearly thirty years of intense research, no-one has been able to characterise unambiguously a biaxial nematic phase in a low-molar-mass thermotropic system. Our research is based on the concept of molecular biaxiality as distinct from shape biaxiality. Thus, we are seeking to design palladium complexes where specific intermolecular interactions could exist. Therefore, a few original synthetic strategies were developed to tackle the challenge of discovering the biaxial nematic phase

  2. Singular values, nematic disclinations, and emergent biaxiality

    OpenAIRE

    Dennis, Mark R.; Žumer, Slobodan; Kamien, Randall D.; Čopar, Simon

    2015-01-01

    Both uniaxial and biaxial nematic liquid crystals are defined by orientational ordering of their building blocks. While uniaxial nematics only orient the long molecular axis, biaxial order implies local order along three axes. As the natural degree of biaxiality and the associated frame that can be extracted from the tensorial description of the nematic order vanishes in the uniaxial phase, we extend the nematic director to a full biaxial frame by making use of a singular value decomposition ...

  3. The elusive thermotropic biaxial nematic phase in rigid bent-core molecules

    Indian Academy of Sciences (India)

    Bharat R Acharya; Andrew Primak; Theo J Dingemans; Edward T Samulski; Satyendra Kumar

    2003-08-01

    The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture studies of the phases exhibited by rigid bent-core molecules derived from 2,5-bis-(-hydroxyphenyl)-1,3,4-oxadiazole reveal that the biaxial nematic phase is formed by three compounds of this type. X-ray diffraction studies reveal that the nematic phase of these compounds has the achiral symmetry D2h, in which the overall long axes of the molecules are oriented parallel to each other to define the major axis of the biaxial phase. The apex of the bent-cores defines the minor axis of this phase along which the planes containing the bent-cores of neighboring molecules are oriented parallel to each other.

  4. Two-Particle Cluster Theory for Biaxial Nematic Phase Based on a Recently Proposed Interaction Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Dong; ZHANG Yan-Jun; SUN Zong-Li

    2006-01-01

    @@ Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.

  5. A twist-bend nematic to an intercalated, anticlinic, biaxial phase transition in liquid crystal bimesogens.

    Science.gov (United States)

    Mandle, Richard J; Goodby, John W

    2016-02-01

    In this article we describe for bimesogens the first observed transition from a "heliconical" twist-bend nematic liquid crystal to a novel biaxial, anticlinic, intercalated lamellar phase. The phase behaviour and structures of both polymorphs is similar to that of polymers, confirming that bimesogens can act as model systems for main chain liquid crystal polymers, and in principle are separate soft-matter branches of self-organising systems. PMID:26626825

  6. Reexamination of the mean-field phase diagram of biaxial nematic liquid crystals: Insights from Monte Carlo studies

    Science.gov (United States)

    Kamala Latha, B.; Jose, Regina; Murthy, K. P. N.; Sastry, V. S. S.

    2015-07-01

    Investigations of the phase diagram of biaxial liquid-crystal systems through analyses of general Hamiltonian models within the simplifications of mean-field theory (MFT), as well as by computer simulations based on microscopic models, are directed toward an appreciation of the role of the underlying molecular-level interactions to facilitate its spontaneous condensation into a nematic phase with biaxial symmetry. Continuing experimental challenges in realizing such a system unambiguously, despite encouraging predictions from MFT, for example, are requiring more versatile simulational methodologies capable of providing insights into possible hindering barriers within the system, typically gleaned through its free-energy dependences on relevant observables as the system is driven through the transitions. The recent paper from this group [Kamala Latha et al., Phys. Rev. E 89, 050501(R) (2014), 10.1103/PhysRevE.89.050501], summarizing the outcome of detailed Monte Carlo simulations carried out employing an entropic sampling technique, suggested a qualitative modification of the MFT phase diagram as the Hamiltonian is asymptotically driven toward the so-called partly repulsive regions. It was argued that the degree of (cross) coupling between the uniaxial and biaxial tensor components of neighboring molecules plays a crucial role in facilitating a ready condensation of the biaxial phase, suggesting that this could be a plausible factor in explaining the experimental difficulties. In this paper, we elaborate this point further, providing additional evidence from curious variations of free-energy profiles with respect to the relevant orientational order parameters, at different temperatures bracketing the phase transitions.

  7. Biaxial order and a rotation of the minor director in the nematic phase of an organo-siloxane tetrapode by the electric field

    Science.gov (United States)

    Merkel, K.; Nagaraj, M.; Kocot, A.; Kohlmeier, A.; Mehl, G. H.; Vij, J. K.

    2012-03-01

    Biaxiality in the nematic phase for a liquid crystalline tetrapode made up of organo-siloxanes mesogens is investigated using polarized infrared spectroscopy. An ordering of the minor director for the homeotropically aligned sample is found to depend on the amplitude of the in-plane electric field. On increasing the in-plane electric field, the minor director, lying initially along the rubbing direction, rotates to the direction of the applied field. The scalar order parameters of the second rank tensor are found to depend significantly on the strength of the electric field. A most significant increase is found in the nematic order parameter and in the parameter that characterizes the phase biaxiality.

  8. Twist viscosities and flow alignment of biaxial nematic liquid crystal phases of a soft ellipsoid-string fluid studied by molecular dynamics simulation.

    Science.gov (United States)

    Sarman, Sten; Laaksonen, Aatto

    2012-09-14

    We have calculated the twist viscosity and the alignment angle between the director and the stream lines in shear flow of a liquid crystal model system, which forms biaxial nematic liquid crystals, as functions of the density, from the Green-Kubo relations by equilibrium molecular dynamics simulation and by a nonequilibrium molecular dynamics algorithm, where a torque conjugate to the director angular velocity is applied to rotate the director. The model system consists of a soft ellipsoid-string fluid where the ellipsoids interact according a repulsive version of the Gay-Berne potential. Four different length-to-width-to-breadth ratios have been studied. On compression, this system forms discotic or calamitic uniaxial nematic phases depending on the dimensions of the molecules, and on further compression a biaxial nematic phase is formed. In the uniaxial nematic phase there is one twist viscosity and one alignment angle. In the biaxial nematic phase there are three twist viscosities and three alignment angles corresponding to the rotation around the various directors and the different alignments of the directors relative to the stream lines, respectively. It is found that the smallest twist viscosity arises by rotation around the director formed by the long axes, the second smallest one arises by rotation around the director formed by the normals of the broadsides, and the largest one by rotation around the remaining director. The first twist viscosity is rather independent of the density whereas the last two ones increase strongly with density. One finds that there is one stable director alignment relative to the streamlines, namely where the director formed by the long axes is almost parallel to the stream lines and where the director formed by the normals of the broadsides is almost parallel to the shear plane. The relative magnitudes of the components of the twist viscosities span a fairly wide interval so this model should be useful for parameterisation

  9. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  10. Macroscopic biaxiality and electric-field-induced rotation of the minor director in the nematic phase of a bent-core liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Merkel, K.; Vij, J. K.; Kocot, A.

    2010-09-01

    Biaxiality in the nematic phase has been investigated for the bent-core liquid-crystal para-heptylbenzoate diester, using polarised IR spectroscopy. Anisotropic fluctuations of the nematic director are discussed in terms of the self-assembly of the chiral conformers. The ordering of the minor director for the homeotropicaly aligned sample is found to depend on the rubbing of the substrates of the cell and the amplitude of in-plane electric field. On increasing the in-plane electric field, the rotation of the minor director in the plane of the substrate is observed with an angle of approximately 45°, where initially the minor director is shown to lie along the rubbing direction. It is also shown that on the average the long axis of the molecules is normal to the substrate with surface treatment, with and without rubbing. The electric in-plane field combined with rubbing is shown to induce biaxial order in the nematic phase of a material with negative dielectic anisotropy for the first time.

  11. Instability of a Biaxial Nematic Liquid Crystal Formed by Homeotropic Anchoring on Surface Grooves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Dong; XUAN Li

    2011-01-01

    A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition.Employing some approximations for the elastic constants,we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves,with a period of π/2.This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable.Our theoretical study explains why the homeotropic alignment method developed for uniaxial liquid crystals loses efficacy for biaxial nematics.In most liquid crystal devices,the liquid crystals are sandwiched between two substrates coated with alignment layers.In the absence of externally applied fields,the orientation of the liquid crystal in the cell is determined by the anchoring condition of the alignment layer.[1-3] One usually distinguishes three main types of liquid crystalline director alignment near solid walls:homeotropic,homogeneous (or planar) and tilted orientations.Here we study the first of these and consider the biaxial nematic phase,which was observed in lyotropic systems as early as 1980[4] and has been confirmed by deuterium NMR spectroscopy.%A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition. Employing some approximations for the elastic constants, we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves, with a period of π/2. This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable. Our

  12. Domain Walls and Anchoring Transitions Mimicking Nematic Biaxiality in the Oxadiazole Bent-Core Liquid Crystal C7

    OpenAIRE

    Kim, Young-Ki; Cukrov, Greta; Xiang, Jie; Shin, Sung-Tae; Lavrentovich, Oleg D.

    2015-01-01

    We investigate the origin of secondary disclinations that were recently described as a new evidence of a biaxial nematic phase in an oxadiazole bent-core thermotropic liquid crystal C7. With an assortment of optical techniques such as polarizing optical microscopy, LC PolScope, and fluorescence confocal polarizing microscopy, we demonstrate that the secondary disclinations represent non-singular domain walls formed in an uniaxial nematic during the surface anchoring transition, in which surfa...

  13. Theory of nine elastic constants of biaxial nematics

    Institute of Scientific and Technical Information of China (English)

    Liu Hong

    2008-01-01

    In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematica are derived in terms of the thermal averagewhere D(l)mn is the Wigner rotation matrix.In the lowest order terms, the elastic constants depend on coefficients г,г',λ, order parameters Q0=Q0+Q2vj'j''j(r12) and probability function fk'k'' k (r12), where r12 is the distance between two molecules, andλis proportional to temperature. Q0 and Q2 are parameters related to multiple moments of molecules. Comparing these results with those obtained from Landau-de Gennes theory, we have obtained relationships between coefficients, order parameters used in both theories. In the special case of uniaxial nematics, both results are reduced to a degenerate case where K11=K33.

  14. Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Panarin, Y. P.; Manna, U.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-01-01

    We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field.

  15. Lattice Spin Simulations of Topological Defects in Biaxial Nematic Films with Homeotropic Surface Alignment

    Science.gov (United States)

    Preeti, Gouripeddi Sai; Zannoni, Claudio; Chiccoli, Cesare; Pasini, Paolo; Sastry, Vanka S. S.

    2013-05-01

    We present a detailed Monte Carlo study of the effects of biaxiality on the textures of nematic films with specific homeotropic boundary conditions. We have used the Straley generalized Hamiltonian for a wide range of biaxial parameters and the differences obtained in the polarized microscopy images are analyzed for the various cases.

  16. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles

    NARCIS (Netherlands)

    van den Pol, E; Petukhov, A.V.; Thies-Weesie, D.M.E.; Belov, D.V.; Vroege, G.J.

    2009-01-01

    Biaxial nematic and biaxial smectic phases were found in a colloidal model system of goethite ( -FeOOH) particles with a simple boardlike shape and short-range repulsive interaction. The macroscopic domains were oriented by a magnetic field and their structure was revealed by small angle x-ray scatt

  17. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  18. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model

    Science.gov (United States)

    Berardi, Roberto; Lintuvuori, Juho S.; Wilson, Mark R.; Zannoni, Claudio

    2011-10-01

    Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics.

  19. Low symmetry tetrahedral nematic liquid crystal phases: Ambidextrous chirality and ambidextrous helicity.

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R

    2014-02-01

    We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.

  20. Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai

    2009-01-01

    Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.

  1. Diffusivity Maximum in a Reentrant Nematic Phase

    Directory of Open Access Journals (Sweden)

    Martin Schoen

    2012-06-01

    Full Text Available We report molecular dynamics simulations of confined liquid crystals using the Gay–Berne–Kihara model. Upon isobaric cooling, the standard sequence of isotropic–nematic–smectic A phase transitions is found. Upon further cooling a reentrant nematic phase occurs. We investigate the temperature dependence of the self-diffusion coefficient of the fluid in the nematic, smectic and reentrant nematic phases. We find a maximum in diffusivity upon isobaric cooling. Diffusion increases dramatically in the reentrant phase due to the high orientational molecular order. As the temperature is lowered, the diffusion coefficient follows an Arrhenius behavior. The activation energy of the reentrant phase is found in reasonable agreement with the reported experimental data. We discuss how repulsive interactions may be the underlying mechanism that could explain the occurrence of reentrant nematic behavior for polar and non-polar molecules.

  2. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  3. Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas

    Science.gov (United States)

    Chen, Guanjun; Chen, Li; Zhang, Yunbo

    2016-06-01

    We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.

  4. Holographic RG flows with nematic IR phases

    CERN Document Server

    Cremonini, Sera; Rong, Junchen; Sun, Kai

    2014-01-01

    We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.

  5. Anomalous diffusion in the nematic phase of thin disks

    NARCIS (Netherlands)

    Alavi, A.; Frenkel, D.

    1992-01-01

    We report molecular-dynamics simulations of the anisotropic diffusion of infinitely thin platelets in the nematic phase. Our simulations are used to distinguish between the predictions of two different theories. The first theory, based on a mapping of the nematic phase of ellipsoidal particles on th

  6. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: entropic sampling study.

    Science.gov (United States)

    Kamala Latha, B; Jose, Regina; Murthy, K P N; Sastry, V S S

    2014-05-01

    We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence N(B)-N(B1)-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.

  7. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: Entropic sampling study

    Science.gov (United States)

    Kamala Latha, B.; Jose, Regina; Murthy, K. P. N.; Sastry, V. S. S.

    2014-05-01

    We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence NB-NB1-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.

  8. Topological Insulators and Nematic Phases from Spontaneous Symmetry Breaking in

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2010-05-26

    We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the non-interacting level, we show that a QBCP exists and is topologically stable for a Berry flux {-+}2{pi}, if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak shortrange repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.

  9. Elementary statistical models for nematic transitions in liquid-crystalline systems

    Science.gov (United States)

    Liarte, Danilo B.; Salinas, Silvio R.

    2014-03-01

    We introduce a simple Maier-Saupe-Zwanzig (MSZ) model to describe the well-known first-order nematic-isotropic transition in liquid-crystalline systems. We then use the MSZ model, with the addition of disorder degrees of freedom, to investigate the stability of a biaxial nematic phase in a mixture of rods and disks. There is a biaxial nematic structure if we consider a fixed distribution of rods and disks. For a thermalized distribution of shapes, however, this biaxial structure becomes thermodynamically unstable. We then resort to a formalism that accounts for two sets of relaxation times, and show that a small departure from complete thermalization is enough to recover a stable biaxial structure. As another application of the MSZ model, we report an investigation of some properties of nematic elastomers. We point out the possibility of continuous nematic transitions, and reproduce a characteristic stress-strain response, with a plateau that indicates a polydomain-monodomain transition.

  10. Electronic nematic phase transition in the presence of anisotropy

    OpenAIRE

    Yamase, Hiroyuki

    2014-01-01

    We study the phase diagram of electronic nematic instability in the presence of xy anisotropy. While a second order transition cannot occur in this case, mean-field theory predicts that a first order transition occurs near van Hove filling and its phase boundary forms a wing structure, which we term a Griffiths wing, referring to his original work of He3-He4 mixtures. When crossing the wing, the anisotropy of the electronic system exhibits a discontinuous change, leading to a meta-nematic tra...

  11. Phase Matching of SHG in Arbitrary Directions of Biaxial Crystals

    Institute of Scientific and Technical Information of China (English)

    YANG Shengli; CHEN Mouzhi

    2002-01-01

    In this paper, propagation and polarization characteristics of optical waves in arbitrary directions in a biaxial crystal are analyzed, and universal relationships of refractive index dependence on their propagation directions and the principal refractive indices for two perpendicular polarization waves propagating in arbitrarily directions are derived from indicatrix equation. By using these relationships, methods of collinear phase matching (PM) of SHG are developed, and general expressions of the collinear PM angle dependent of the principal indices are given for SHG in arbitrarily directions. The expressions may be used to make optimization design of PM by computer for the SHG and to select optimum PM direction and to raise the SHG conversion efficiencies.

  12. Isotropic-nematic phase separation in suspensions of polydisperse colloidal platelets

    OpenAIRE

    Kooij, F.M. van der; Beek, David van der; Lekkerkerker, H.N.W.

    2001-01-01

    We are studying the phase behavior of a suspension of platelike colloids which has a very broad size distribution, particularly in thickness. This suspension exhibits an isotropic-nematic phase separation over a notably wide range of particle concentrations, displaying a remarkable phenomenon. In part of the coexistence region, phase separation yields a nematic upper phase in coexistence with an isotropic bottom phase. If the nematic phase is isolated and diluted, the reverse situation is obs...

  13. Thermodynamic and transport anomalies near isotropic-nematic phase transition

    OpenAIRE

    Jose, Prasanth P.; Bagchi, Biman

    2008-01-01

    A theoretical study of the variation of thermodynamic and transport properties of calamitic liquid crystals across the isotropic-nematic phase transition is carried out by calculating the {\\it wavenumber (k) and time (t)} dependent intermediate scattering function of the liquid, via computer simulations of model nematogens. The objective is to understand the experimentally observed anomalies and sharp variation in many thermodynamic and transport properties, namely specific heat $C$, sound at...

  14. Transparent nematic phase in a liquid-crystal-based microemulsion.

    Science.gov (United States)

    Yamamoto, J; Tanaka, H

    2001-01-18

    Complex fluids are usually produced by mixing together several distinct components, the interactions between which can give rise to unusual optical and rheological properties of the system as a whole. For example, the properties of microemulsions (composed of water, oil and surfactants) are determined by the microscopic structural organization of the fluid that occurs owing to phase separation of the component elements. Here we investigate the effect of introducing an additional organizing factor into such a fluid system, by replacing the oil component of a conventional water-in-oil microemulsion with an intrinsically anisotropic fluid--a nematic liquid crystal. As with the conventional case, the fluid phase-separates into an emulsion of water microdroplets (stabilized by the surfactant as inverse micelles) dispersed in the 'oil' phase. But the properties are further influenced by a significant directional coupling between the liquid-crystal molecules and the surfactant tails that emerge (essentially radially) from the micelles. The result is a modified bulk-liquid crystal that is an ordered nematic at the mesoscopic level, but which does not exhibit the strong light scattering generally associated with bulk nematic order: the bulk material here is essentially isotropic and thus transparent.

  15. Simple theory of transitions between smectic, nematic, and isotropic phases

    Science.gov (United States)

    Emelyanenko, A. V.; Khokhlov, A. R.

    2015-05-01

    The transitions between smectic, nematic, and isotropic phases are investigated in the framework of a unified molecular-statistical approach. The new translational order parameter is different from the one introduced in K. Kobayashi [Phys. Lett. A 31, 125 (1970)] and W. L. McMillan [Phys. Rev. A 4, 1238 (1971)]. The variance of the square sine of intermolecular shift angle along the director is introduced to take self-consistently into account the most probable location of the molecules with respect to each other, which is unique for every liquid crystal (LC) material and is mainly responsible for the order parameters and phase sequences. The mean molecular field was treated in terms of only two parameters specific to any intermolecular potential of elongated molecules: (1) its global minimum position with respect to the shift of two interacting molecules along the director and (2) its inhomogeneity/anisotropy ratio. A simple molecular model is also introduced, where the global minimum position is determined by the linking groups elongation Δ/d, while the inhomogeneity/anisotropy ratio Gβ/Gγ is determined by the ratio of electrostatic and dispersion contributions. All possible phase sequences, including abrupt/continuous transformation between the smectic and nematic states and the direct smectic-isotropic phase transition, are predicted. The theoretical prediction is in a good agreement with experimental data for some simple materials correlating with our molecular model, but it is expected to be valid for any LC material.

  16. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  17. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    Science.gov (United States)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  18. Phase separation and disorder in doped nematic elastomers

    KAUST Repository

    Köpf, M. H.

    2013-10-01

    We formulate and analyse a model describing the combined effect of mechanical deformation, dynamics of the nematic order parameter, and concentration inhomogeneities in an elastomeric mixture of a mesogenic and an isotropic component. The uniform nematic state may exhibit a long-wave instability corresponding to nematic-isotropic demixing. Numerical simulations starting from either a perfectly ordered nematic state or a quenched isotropic state show that coupling between the mesogen concentration and the nematic order parameter influences the shape and orientation of the domains formed during the demixing process. © EDP Sciences/ Società Italiana di Fisica/ Springer-Verlag 2013.

  19. Maier-Saupe model for a mixture of uniaxial and biaxial molecules

    Science.gov (United States)

    Nascimento, E. S.; Henriques, E. F.; Vieira, A. P.; Salinas, S. R.

    2015-12-01

    We introduce shape variations in a liquid-crystalline system by considering an elementary Maier-Saupe lattice model for a mixture of uniaxial and biaxial molecules. Shape variables are treated in the annealed (thermalized) limit. We analyze the thermodynamic properties of this system in terms of temperature T , concentration c of intrinsically biaxial molecules, and a parameter Δ associated with the degree of biaxiality of the molecules. At the mean-field level, we use standard techniques of statistical mechanics to draw global phase diagrams, which are shown to display a rich structure, including uniaxial and biaxial nematic phases, a reentrant ordered region, and many distinct multicritical points. Also, we use the formalism to write an expansion of the free energy in order to make contact with the Landau-de Gennes theory of nematic phase transitions.

  20. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    Science.gov (United States)

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. PMID:25313468

  1. Chromonic nematic phase and scalar order parameter of indanthrone derivative with ionic additives

    OpenAIRE

    Boiko O.P.; Vasyuta R.M.; Semenyshyn O.M.; Nastishin Yu.A.; Nazarenko V.G.

    2008-01-01

    We investigate influence of different ionic additives on the phase behaviour and scalar order parameter of lyotropic chromonic nematic liquid crystals formed by the molecules representing derivatives of indanthrone. KI, (NH4)2SO4 and NaCl salts increase biphasic nematic region on the temperature-concentration phase diagram, whereas the scalar orientational order parameter is hardly sensitive to their presence. We suggest that these changes are attributed to increase in the ag-gregate length a...

  2. Phase diagram of colloidal spheres in a biaxial electric or magnetic field

    NARCIS (Netherlands)

    Smallenburg, F.; Dijkstra, M.

    2010-01-01

    Colloidal particles with a dielectric constant mismatch with the surrounding solvent in an external biaxial magnetic or electric field experience an “inverted” dipolar interaction. We determine the phase behavior of such a system using Helmholtz free energy calculations in Monte Carlo simulations fo

  3. Nematic phase of the two-dimensional electron gas in a magnetic field

    OpenAIRE

    Fradkin, Eduardo; Kivelson, Steven A.; Manousakis, Efstratios; Nho, Kwangsik

    1999-01-01

    The two dimensional electron gas (2DEG) in moderate magnetic fields in ultra-clean AlAs-GaAs heterojunctions exhibits transport anomalies suggestive of a compressible, anisotropic metallic state. Using scaling arguments and Monte Carlo simulations, we develop an order parameter theory of an electron nematic phase. The observed temperature dependence of the resistivity anisotropy behaves like the orientational order parameter if the transition to the nematic state occurs at a finite temperatur...

  4. Microsecond linear optical response in the unusual nematic phase of achiral bimesogens

    Science.gov (United States)

    Panov, V. P.; Balachandran, R.; Nagaraj, M.; Vij, J. K.; Tamba, M. G.; Kohlmeier, A.; Mehl, G. H.

    2011-12-01

    Some hydrocarbon linked mesogenic dimers are known to exhibit an additional nematic phase (Nx) below a conventional uniaxial nematic (Nu) phase. Although composed of non-chiral molecules, the Nx phase is found to exhibit linear (polar) switching under applied electric field. This switching has remarkably low response time of the order of a few microseconds. Two chiral domains with opposite handedness and consequently opposite responses are found in planar cells. Uniformly lying helix, electroclinic, and flexoelectric effects are given as possible causes for this intriguing phenomenon.

  5. Lattice Boltzmann Simulation of 3D Nematic Liquid Crystal near Phase Transition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; TAO Rui-Bao

    2002-01-01

    Phase transition between nematic and isotropic liquid crystal is a very weak first order phase transition.We avoid to use the normal Landau-de Gennes's free energy that reduces a strong first order transition, and set up adata base of free energy calculated by means of Tao-Sheng Lin's extended molecular field theory that can explain theexperiments of the equilibrium properties of nematic liquid crystal very well. Then we use the free energy method oflattice Boltzmann developed by Oxford group to study the phase decomposition, pattern formation in the flow of theliquid crystal near transition temperature.

  6. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell.

    Science.gov (United States)

    Lee, Y U; Kim, J; Woo, J H; Bang, L H; Choi, E Y; Kim, E S; Wu, J W

    2014-08-25

    Electro-optic switching of refraction is experimentally demonstrated in a phase-discontinuity complementary metasurface twisted nematic cell. The phase-discontinuity complementary metasurface is fabricated by focused-ion-beam milling, and a twisted nematic cell is constructed with complementary V-shape slot antenna metasurface. By application of an external voltage, switching is achieved between ordinary refraction and extraordinary refraction satisfying the generalized Snell's law. It has a strong implication for applications in spatial light modulation and wavelength division multiplexer/demultiplexer in a near-IR spectral range. PMID:25321285

  7. Dielectric Properties of 4-methoxy-4'-cyanobiphenyl (1 OCB) in the Supercooled Isotropic and Nematic Phases

    Science.gov (United States)

    Urban, Stanisław; Gestblom, Bo; Pawlus, Sebastian

    2003-06-01

    Dielectric studies of 4-methoxy-4'-cyanobiphenyl (1 OCB) in the supercooled isotropic and nematic phases were performed with the aid of three set-ups covering the frequency range 10 kHz - 5 GHz. In the static measurements the nematic phase could be supercooled down to 25 K below the clearing point, whereas in the dynamic studies a 12 K range was covered in a single run. The relaxation times and activation enthalpies characterising the molecular rotations around the principal inertia moment axes were determined. The predictions of theories based on the assumption of the rod-like molecules are well applicable to the dielectric data obtained.

  8. Effects of added silica nanoparticles on the nematic liquid crystal phase formation in beidellite suspensions.

    Science.gov (United States)

    Landman, Jasper; Paineau, Erwan; Davidson, Patrick; Bihannic, Isabelle; Michot, Laurent J; Philippe, Adrian-Marie; Petukhov, Andrei V; Lekkerkerker, Henk N W

    2014-05-01

    In this article, we present a study of the liquid crystal phase behavior of mixed suspensions of the natural smectite clay mineral beidellite and nonadsorbing colloidal silica particles. While virtually all smectite clays dispersed in water form gels at very low concentrations, beidellite displays a first order isotropic-nematic phase transition before gel formation (J. Phys. Chem. B, 2009, 113, 15858-15869). The addition of silica nanospheres shifts the concentrations of the coexisting isotropic and nematic phases to slightly higher values while at the same time markedly accelerating the phase separation process. Furthermore, beidellite suspensions at volume fractions above the isotropic-nematic phase separation, trapped in a kinetically arrested gel state, liquefy on the addition of silica nanospheres and proceed to isotropic-nematic phase separation. Using small-angle X-ray scattering (SAXS), we probe the structural changes caused by the addition of the silica nanospheres, and we relate the modification of the phase transition kinetics to the change of the rheological properties. PMID:24758198

  9. Micellar structures in lyotropic liquid crystals and phase transitions

    Science.gov (United States)

    Saupe, A.; Xu, S. Y.; Plumley, Sulakshana; Zhu, Y. K.; Photinos, P.

    1991-05-01

    The formation of micellar nematics is discussed with emphasis on the transitions between nematic phases and nematic-smectic transitions. Phase diagrams for MTAB/l-decanol/D,O systems show a direct transition between uniaxial nematics. Electrical conductivity and birefringence measurements on a mixture of sodium decylsulfate. 1-decanol, D,O demonstrate, on the other hand, the existence of a biaxial nemantic range that separates the Uniaxial nematics. On a mixture of cesium perflouroctanoate and H 2O the electrical conductivity and rotational viscosity are used to discuss the relevant features of nematic-lamellar-smectic transitions. The formation of elongated ribbon-like micelles at the nematic-smectic transition is suggested. Transitions between different nematic phases in the MTAB system may be connected with a structural change from long micelles with a fairly circular cross section to similar micelles with a more elliptical cross section.

  10. Nematic quantum phase transition of composite Fermi liquids in half-filled Landau levels and their geometric response

    Science.gov (United States)

    You, Yizhi; Cho, Gil Young; Fradkin, Eduardo

    2016-05-01

    We present a theory of the isotropic-nematic quantum phase transition in the composite Fermi liquid arising in half-filled Landau levels. We show that the quantum phase transition between the isotropic and the nematic phase is triggered by an attractive quadrupolar interaction between electrons, as in the case of conventional Fermi liquids. We derive the theory of the nematic state and of the phase transition. This theory is based on the flux attachment procedure, which maps an electron liquid in half-filled Landau levels into the composite Fermi liquid close to a nematic transition. We show that the local fluctuations of the nematic order parameters act as an effective dynamical metric interplaying with the underlying Chern-Simons gauge fields associated with the flux attachment. Both the fluctuations of the Chern-Simons gauge field and the nematic order parameter can destroy the composite fermion quasiparticles and drive the system into a non-Fermi liquid state. The effective-field theory for the isotropic-nematic phase transition is shown to have z =3 dynamical exponent due to the Landau damping of the dense Fermi system. We show that there is a Berry-phase-type term that governs the effective dynamics of the nematic order parameter fluctuations, which can be interpreted as a nonuniversal "Hall viscosity" of the dynamical metric. We also show that the effective-field theory of this compressible fluid has a Wen-Zee-type term. Both terms originate from the time-reversal breaking fluctuation of the Chern-Simons gauge fields. We present a perturbative (one-loop) computation of the Hall viscosity and also show that this term is also obtained by a Ward identity. We show that the topological excitation of the nematic fluid, the disclination, carries an electric charge. We show that a resonance observed in radio-frequency conductivity experiments can be interpreted as a Goldstone nematic mode gapped by lattice effects.

  11. Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic and smectic-A to nematic phase transitions in octylcyanobiphenyl

    Science.gov (United States)

    Chakraborty, Anish; Chakraborty, Susanta; Das, Malay Kumar

    2015-03-01

    In the field of soft matter research, the characteristic behavior of both nematic-isotropic (N -I ) and smectic-A nematic (Sm -A N ) phase transitions has gained considerable attention due to their several attractive features. In this work, a high-resolution measurement of optical birefringence (Δ n ) has been performed to probe the critical behavior at the N -I and Sm -A N phase transitions in a binary system comprising the rodlike octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n -decyloxy-2-methyl-phenyliminomethyl)phenyl 4-n -dodecyloxycinnamate. For the investigated mixtures, the critical exponent β related to the limiting behavior of the nematic order parameter close to the N -I phase transition has come out to be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α', β', γ') characterizing the critical fluctuation near the Sm -A N phase transition have appeared to be nonuniversal in nature. With increasing hockey-stick-shaped dopant concentration, the Sm -A N phase transition demonstrates a strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering a modification of the effective intermolecular interactions and hence the related coupling between the nematic and smectic order parameters, caused by the introduction of the angular mesogenic molecules.

  12. The inherent dynamics of isotropic- and nematic-phase liquid crystals

    Science.gov (United States)

    Frechette, Layne; Stratt, Richard M.

    2016-06-01

    The geodesic (shortest) pathways through the potential energy landscape of a liquid can be thought of as defining what its dynamics would be if thermal noise were removed, revealing what we have called the "inherent dynamics" of the liquid. We show how these inherent paths can be located for a model liquid crystal former, showing, in the process, how the molecular mechanisms of translation and reorientation compare in the isotropic and nematic phases of these systems. These mechanisms turn out to favor the preservation of local orientational order even under macroscopically isotropic conditions (a finding consistent with the experimental observation of pseudonematic domains in these cases), but disfavor the maintenance of macroscopic orientational order, even in the nematic phase. While the most efficient nematic pathways that maintain nematic order are indeed shorter than those that do not, it is apparently difficult for the system to locate these paths, suggesting that molecular motion in liquid-crystal formers is dynamically frustrated, and reinforcing the sense that there are strong analogies between liquid crystals and supercooled liquids.

  13. Effects of the biaxial transverse crystal-field on the phase diagrams of a spin-1 nanowire

    Science.gov (United States)

    Magoussi, H.; Zaim, A.; Boughrara, M.; Kerouad, M.

    2016-09-01

    By using the effective field theory based on a probability distribution method, the phase diagrams and the magnetic properties of an Ising nanowire in the presence of the biaxial transverse crystal-field are investigated. The effects of the biaxial transverse crystal field, the interfacial coupling and the exchange interaction in the surface on the phase diagram, the magnetization and the internal energy are examined. Some characteristic phenomena are found such as the tricritical behavior, the critical end point and the re-entrant phenomenon.

  14. Effects of Arbitrarily Directed Field on Spin Phase Oscillations in Biaxial Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; ZHU JiaLin; LU Rong; XIONG JiaJiong

    2001-01-01

    Quantum phase interference and spin-parity effects are studied in biaxial molecular magnets in a magnetic field at an arbitrarily directed angle. The calculations of the ground-state tunnel splitting are performed on the basis of the instanton technique in the spin-coherent-state path-integral representation, and complemented by exactly numerical diagonalization. Both the Wentzel-Kramers-Brillouin exponent and the pre-exponential factor are obtained for the entire region of the direction of the field. Our results show that the tunnel splitting oscillates with the field for the small field angle, while for the large field angle the oscillation is completely suppressed. This distinct angular dependence, together with the dependence of the tunnel splitting on the field strength, provides an independent test for spin-parity effects in biaxial molecular magnets. The analytical results for the molecular Fes magnet are found to be in good agreement with the numerical simulations, which suggests that even the molecular magnet with total spin S = 10 is large enough to be treated as a giant spin system.``

  15. The Design and Investigation of the Self-Assembly of Dimers with two Nematic Phases

    OpenAIRE

    Z Ahmed; Welch, C.; Mehl, G. H.

    2015-01-01

    A series of non-symmetric dimers were synthesised containing either cyanobiphenyl or difluoroterphenyl moieties on one side and a range of long, short, bent, polar or apolar mesogens on the other side of the molecules. The dielectric anisotropy of the mesogens was varied systematically. The systems were characterised by differential scanning calorimetry (DSC), optical polarizing microscopy (OPM) and detailed X-ray diffraction (XRD) studies, both in the nematic and the Nx phase. The results ar...

  16. Order parameter and its critical exponent for some binary mixtures showing induced nematic phase

    Science.gov (United States)

    Sarkar, Sudipta Kumar; Das, Malay Kumar

    2016-09-01

    Refractive index measurements as a function of temperature have been performed for an induced nematic binary system by means of thin prism technique. The temperature dependence of the birefringence (Δn) has been assessed from the measured refractive index data. A direct extrapolation method has been employed to determine the orientational order parameter for the investigated mixtures and the order parameter so obtained has also been compared with the mean field values. The Haller type fitting expression results in a relatively lower value of the order parameter critical exponent (β) compared to the theoretically predicted values. Therefore, a four-parameter power law expression, consistent with the mean field theory as well as the first-order character of the nematic-isotropic (N-I) phase transition have been used to explore the critical behavior of the order parameter near the N-I transition.

  17. One-dimensional frustrated plaquette compass model: Nematic phase and spontaneous multimerization

    Science.gov (United States)

    Brzezicki, Wojciech; Oleś, Andrzej M.

    2016-06-01

    We introduce a one-dimensional (1D) pseudospin model on a ladder where the Ising interactions along the legs and along the rungs alternate between XiXi +1 and ZiZi +1 for even/odd bond (rung). We include also the next-nearest-neighbor Ising interactions on plaquettes' diagonals that alternate in such a way that a model where only leg interactions are switched on is equivalent to the one when only the diagonal ones are present. Thus in the absence of rung interactions the model can interpolate between two 1D compass models. The model possesses local symmetries which are the parities within each 2 ×2 cell (plaquette) of the ladder. We find that for different values of the interaction it can realize ground states that differ by the patterns formed by these local parities. By exact diagonalization we derive detailed phase diagrams for small systems of L =4 , 6, and 8 plaquettes, and use next L =12 to identify generic phases that appear in larger systems as well. Among them we find a nematic phase with macroscopic degeneracy when the leg and diagonal interactions are equal and the rung interactions are larger than a critical value. By performing a perturbative expansion around this phase we find indeed a very complex competition around the nematic phase which has to do with releasing frustration in this range of parameters. The nematic phase is similar to the one found in the two-dimensional compass model. For particular parameters the low-energy sector of the present plaquette model reduces to a 1D compass model with spins S =1 which suggests that it realizes peculiar crossovers within the class of compass models. Finally, we show that the model can realize phases with broken translation invariance which can be either dimerized, trimerized, etc., or completely disordered and highly entangled in a well identified window of the phase diagram.

  18. Studies of nematic to smectic-A phase transitions using synchrotron radiation. Experimental techniques and experiments

    International Nuclear Information System (INIS)

    High resolution X-ray diffraction on liquid crystals, with a triple-axis spectrometer, was initiated 4-5 years ago, using rotating-anode sources. The triple-axis spectrometer, built at Risoe, is permanently positioned at the DORIS storage ring. Triple-axis X-ray spectrometer work in general and especially at the synchrotron source is a new field and a description of the techniques used is given. The experiments described are studies of the nematic to smectic-A phase transition in liquid crystals. The first is a study of the monomolecular liquid crystal 8-barS5 (C8H17O-phi-COS-phi-C5H11, where phi denotes a benzene ring). The second experimental study is one of the reentrance phenomenon in the ternary mixture: 5CTsub(.09):7CBsub(.x):80CBsub(.91-x); where 5CT(C5H11-phi-phi-phi-CN) and 7CB(C7H15-phi-phi-CN) have only a nematic phase and not the smectic-A phase. The results are interpreted in terms of Landau theory. Finally, a frame is given for discussing the nature of the smectic-A phase and an experiment is proposed to explore the nature of the smectic-A phase together with detailed calculations of (001)- and (002)-lineshapes for the smectic-A phase. (Auth.)

  19. Dissipative particle dynamics study of translational diffusion of rigid-chain rodlike polymer in nematic phase

    Science.gov (United States)

    Zhao, Tongyang; Wang, Xiaogong

    2013-09-01

    In this study, dissipative particle dynamics (DPD) method was employed to investigate the translational diffusion of rodlike polymer in its nematic phase. The polymer chain was modeled by a rigid rod composed of consecutive DPD particles and solvent was represented by independent DPD particles. To fully understand the translational motion of the rods in the anisotropic phase, four diffusion coefficients, D_{||}u, D_ bot u, D_{||}n, D_ bot n were obtained from the DPD simulation. By definition, D_{||}n and D_ bot n denote the diffusion coefficients parallel and perpendicular to the nematic director, while D_{||}u and D_ bot u denote the diffusion coefficients parallel and perpendicular to the long axis of a rigid rod u. In the simulation, the velocity auto-correlation functions were used to calculate the corresponding diffusion coefficients from the simulated velocity of the rods. Simulation results show that the variation of orientational order caused by concentration and temperature changes has substantial influences on D_{||}u and D_ bot u. In the nematic phase, the changes of concentration and temperature will result in a change of local environment of rods, which directly influence D_{||}u and D_ bot u. Both D_{||}n and D_ bot n can be represented as averages of D_{||}u and D_ bot u, and the weighted factors are functions of the orientational order parameter S2. The effect of concentration and temperature on D_{||}n and D_ bot n demonstrated by the DPD simulation can be rationally interpreted by considering their influences on D_{||}u, D_ bot u and the order parameter S2.

  20. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Block, Sector 1, Kolkata-700064 (India)

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  1. Field-induced transformations in the biaxial order of non-tilted phases in a bent-core smectic liquid crystal

    Science.gov (United States)

    Panarin, Y. P.; Nagaraj, Mamatha; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-10-01

    The structural and electro-optic investigations of an achiral bent-core molecule in SmAPA phase, in which the polar directors in the neighboring layers are arranged anti-ferroelectrically, show that it undergoes transformation from one biaxial to another biaxial structure via a quasi-stable uniaxial structure on the application of the electric field. The non-continuous change in biaxiality is explained by an intermediate state in which the secondary directors in the neighboring layers are perpendicular to each other.

  2. The helical phase of chiral nematic liquid crystals as the Bianchi VII(0) group manifold

    CERN Document Server

    Gibbons, G W

    2011-01-01

    We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the Bianchi VII(0) group manifold. The Joets-Ribotta metric governing propagation of the extraordinary rays is invariant under the simply transitive action of the universal cover of the three dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant metric on this Bianchi type VII(0) group. We are able to solve by separation of variables both the wave equation and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu's equation and the later to the quadrantal pendulum equation. We further discuss Maxwell's equations for uniaxial optical materials where the configuration is invariant under a group action. The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation optics. We show that for a chiral nematic in its helical phase Maxwell's equations reduce to a generalised Mathieu equation. Ou...

  3. Dynamical numerical model for nematic order reconstruction

    Science.gov (United States)

    Lombardo, G.; Ayeb, H.; Barberi, R.

    2008-05-01

    In highly frustrated calamitic nematic liquid crystals, a strong elastic distortion can be confined on a few nanometers. The classical elastic theory fails to describe such systems and a more complete description based on the tensor order parameter Q is required. A finite element method is used to implement the Q dynamics by a variational principle and it is shown that a uniaxial nematic configuration can evolve passing through transient biaxial states. This solution, which connects two competing uniaxial nematic textures, is known as “nematic order reconstruction.”

  4. Travelling waves in electroconvection of the nematic Phase 5 A test of the weak electrolyte model

    CERN Document Server

    Treiber, M; Buka, A; Kramer, L; Treiber, Martin; Eber, Nandor; Buka, Agnes; Kramer, Lorenz

    1997-01-01

    We investigated travelling waves appearing as the primary pattern-forming instability in the nematic Phase 5 (Merck) in the planar geometry in order to test the recently developed weak electrolyte model of ac-driven electroconvection [M. Treiber and L. Kramer, Mol. Cryst. Liq. Cryst 261, 311 (1995)]. Travelling waves are observed over the full conductive range of applied frequencies for three cells of different layer thickness d. We also measured the elastic constants, the electric conductivity, and the dielectric constant. The other parameters of Phase 5 are known, apart from the (relatively unimportant) viscosity $\\alpha_1$ and the two parameters of the weak electrolyte model that are proportional to the geometric mean of the mobilities, and the recombination rate, respectively. Assuming a sufficiently small recombination rate, the predicted dependence of the frequency of the travelling waves at onset (Hopf frequency) on d and on the applied frequency agreed quantitatively with the experiments, essentially ...

  5. Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy

    Science.gov (United States)

    Cyr-Choinière, O.; Grissonnanche, G.; Badoux, S.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis

    2015-12-01

    Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order, and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2Cu3Oy to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p =0.12 . It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy—detected in both the Nernst coefficient and the resistivity—follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.

  6. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  7. The form and origin of orbital ordering in the electronic nematic phase of iron-based superconductors.

    Science.gov (United States)

    Su, Yuehua; Liao, Haijun; Li, Tao

    2015-03-18

    We investigated the form of orbital ordering in the electronic nematic phase of iron-based superconductors by applying a group theoretical analysis on a realistic five-band model. We find the orbital order can be either of the inter-orbital s-wave form or intra-orbital d-waveform. From the comparison with existing ARPES measurements of band splitting, we find the orbital ordering in the 122 system is dominated by an intra-orbital d-wave component, while that of the 111 system is dominated by an inter-orbital s-wave component. We find both forms of orbital order are strongly entangled with the nematicity in the spin correlation of the system.The condensation energy of the magnetic ordered phase is found to be significantly improved (by more than 20%) when the degeneracy between the (π, 0) and (0, π) ordering pattern is lifted by the orbital order. We argue there should be a large difference in both the scattering rate and the size of the possible pseudogap on the electron pocket around the X = (π, 0) and Y = (0, π) point in the electronic nematic phase. We propose this as a possible origin for the observed nematicity in resistivity measurements. PMID:25710728

  8. Synthesis and mesomorphic behaviour of achiral four-ring unsymmetrical bent-core liquid crystals: Nematic phases

    Science.gov (United States)

    Paul, Manoj Kumar; Kalita, Gayatri; Laskar, Atiqur Rahman; Debnath, Somen; Gude, Venkatesh; Sarkar, Dipika Debnath; Mohiuddin, Golam; Varshney, Sanjay Kumar; Nandiraju Rao, V. S.

    2013-10-01

    Achiral four ring unsymmetrical bent-core liquid crystals derived from 3-amino-2-methylbenzoic acid have been designed and synthesized with an imine, ester and photochromic azo linking moieties. These hockey-stick shape resembling bent molecules possess an alkoxy chain at one end of the molecule and methyl or methoxy group at the other end. The synthesis, phase transition temperatures and characterization of phase behaviour are discussed. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing optical microscopy. All these compounds exhibit enantiotropic nematic phase over wide temperature range. Stable supercooling of nematic phase has been observed in methoxy homologues. The density functional theory (DFT) calculations were performed to obtain the stable molecular conformation, polarizability, dipole moment, Highest occupied molecular orbital (HOMO), Lowest unoccupied molecular orbital (LUMO) energies and bending angle of the compound.

  9. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    OpenAIRE

    A Avazpour; S M Hekmatzadeh

    2014-01-01

    Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic...

  10. The Phase Transition of Nematic Liquid Crystal Cells Bounded by Surfactant-Laden Interfaces

    Institute of Scientific and Technical Information of China (English)

    ZENG Ming-Ying; CUI Wei; TAN Xiao-Qin; WU Chen-Xu

    2011-01-01

    @@ Taking into account the surface-coupling strength effect, we discuss the phase transitions of a finite thickness cell bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate and it is compared with that of a semi-infinite system.It is found that the larger the thickness, the closer the three-dimensional phase transition surfacc of the finite system to that of the semi-infinite one.The simulation also shows that when a magnetic field is applied to a nematic semi-infinite sample, an orientational phase transition first takes place close to the interface and thcn extends to the inner space as the temperature increases.%Taking into account the surface-coupling strength effect, we discuss the phase transitions of a finite thickness cell bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate and it is compared with that of a semi-infinite system. It is found that the larger the thickness, the closer the three-dimensional phase transition surface of the finite system to that of the semi-infinite one. The simulation also shows that when a magnetic field is applied to a nernatic semi-infinite sample, an orientational phase transition first takes place close to the interface and then extends to the inner space as the temperature increases.

  11. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    Energy Technology Data Exchange (ETDEWEB)

    Dan, K.; Roy, M.; Datta, A. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Saltlake, Kolkata 700064, West Bengal (India)

    2016-02-14

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV–Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the “depletion force” model for entropic screening in hexane and “screening-self-screening” model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV–Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  12. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    International Nuclear Information System (INIS)

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV–Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the “depletion force” model for entropic screening in hexane and “screening-self-screening” model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV–Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence

  13. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    Science.gov (United States)

    Dan, K.; Roy, M.; Datta, A.

    2016-02-01

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the "depletion force" model for entropic screening in hexane and "screening-self-screening" model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV-Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  14. Kinetic pathways of the nematic-isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Energy Technology Data Exchange (ETDEWEB)

    Lettinga, M Paul [IFF, Institut Weiche Materie, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kang, Kyongok [IFF, Institut Weiche Materie, Forschungszentrum Juelich, D-52425 Juelich (Germany); Imhof, Arnout [Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Derks, Didi [Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Dhont, Jan K G [IFF, Institut Weiche Materie, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2005-11-16

    We investigate the kinetics of phase separation for a mixture of rod-like viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.

  15. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  16. Acoustical and optical investigations of the size effect in nematic-isotropic phase transition in liquid crystal microemulsions

    Science.gov (United States)

    Maksimochkin, G. I.; Pasechnik, S. V.; Lukin, A. V.

    2015-07-01

    The absorption of ultrasound (at a frequency of 2.7 MHz) and the depolarized light transmission and scattering (at a wavelength of 630 nm) in liquid crystal (LC) emulsions have been studied during the nematic-isotropic (N-I) phase transition in LC droplets with radii ranging from 150 to 2300 nm. The obtained acoustical and optical data are used to determine the influence of the droplet size on characteristics of the N-I phase transition. It is shown that the acoustical and optical characteristics of LC emulsions have good prospects to be used for the investigation of phase transitions in submicron samples.

  17. Direct visualization and measurement of the extrapolation length on cooling toward the nematic-smectic-A phase transition temperature.

    Science.gov (United States)

    Choi, Yoonseuk; Rosenblatt, Charles

    2010-05-01

    A herringbone "easy axis" pattern is scribed into a polyimide alignment layer for liquid-crystal orientation using the stylus of an atomic force microscope. Owing to the liquid crystal's bend elasticity K33 , the nematic director is unable to follow the sharp turn in the scribed easy axis, but instead relaxes over an extrapolation length L=K33/W2φ, where W2φ is the quadratic azimuthal anchoring strength coefficient. By immersing a tapered optical fiber into the liquid crystal, illuminating the fiber with polarized light, and scanning the fiber close to the substrate, a visualization and direct measurement of L are obtained on approaching the nematic-smectic- A phase transition temperature T NA from above. L is found to exhibit a sharp pretransitional increase near T NA, consistent with a diverging bend elastic constant. PMID:20866248

  18. Spherical microparticles with Saturn ring defects and their self-assembly across the nematic to smectic-A phase transition

    Science.gov (United States)

    Zuhail, K. P.; Čopar, S.; Muševič, I.; Dhara, Surajit

    2015-11-01

    We report experimental studies on the Saturn ring defect associated with a spherical microparticle across the nematic (N ) to smectic-A (Sm A ) phase transition. We observe that the director distortion around the microparticle changes rapidly with temperature. The equilibrium interparticle separation and the angle between two quadrupolar particles in the N phase are larger than those of the Sm A phase. They are almost independent of the temperature in both phases, except for a discontinuous jump at the transition. We assembled a few particles using a laser tweezer to form a two-dimensional colloidal crystal in the N phase. The lattice structure of the crystal dissolves irreversibly across the N -Sm A phase transition. The results on the pretransitional behavior of the defect are supported by the Landau-de Gennes Q -tensor modeling.

  19. Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment

    International Nuclear Information System (INIS)

    Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar's reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, γ1. The main objective of this project is to study the rotational viscosities of selected micellar nematic systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine γ1 and the anisotropic magnetic susceptibility, χa. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values γ1 as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic Nc phase. The pretransitional increase in γ1 near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H2O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent ν = 1/2 for the divergence of γ1. The polymer (PEO, molecular weight = 105) dissolved in CsPFO/H2O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of γ1 is observed, which agrees with Brochard theory

  20. Molecular ordering in a biaxial smectic-A phase studied by scanning transmission X-ray microscopy (STXM).

    Science.gov (United States)

    Kaznacheev, Konstantin; Hegmann, Torsten

    2007-04-14

    Results of STXM investigations of a binary mixture (-TNF = 2 : 1; SmA(b) 140 M 180 Iso) known to form a SmA(b) phase [T. Hegmann, J. Kain, S. Diele, G. Pelzl and C. Tschierske, Angew. Chem. Int. Ed., 2001, 40, 887] are presented. Near edge X-ray absorption fine spectra (NEXAFS) of the -TNF board-like aggregates, in particular the intensity of the low energy peaks associated with aromatic ring pi* orbitals (284.5-286.5 eV), show that the molecular plane of these aggregates is very sensitive to the relative orientation of electric field vector E of linearly polarized light, which is used to determine the molecular orientation in the LC phase. The observed strong in-plane dichroic signal suggests the predominant orientation of the -TNF aggregates to be along the smectic layer normal as well as long-range ordering of the in-plane molecular orientation (biaxiality). Orientational maps derived from series of measurements at different sample rotation angles around the specimen normal clearly show a Schlieren-type texture, and permit a detailed examination of exclusive +/-(1/2) disclination theoretically predicted for the SmA(b) phase.

  1. Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system.

    Science.gov (United States)

    Ghoshal, Nababrata; Shabnam, Sabana; DasGupta, Sudeshna; Roy, Soumen Kumar

    2016-05-01

    Extensive Monte Carlo simulations are performed to investigate the critical properties of a special singular point usually known as the Landau point. The singular behavior is studied in the case when the order parameter is a tensor of rank 2. Such an order parameter is associated with a nematic-liquid-crystal phase. A three-dimensional lattice dispersion model that exhibits a direct biaxial nematic-to-isotropic phase transition at the Landau point is thus chosen for the present study. Finite-size scaling and cumulant methods are used to obtain precise values of the critical exponent ν=0.713(4), the ratio γ/ν=1.85(1), and the fourth-order critical Binder cumulant U^{*}=0.6360(1). Estimated values of the exponents are in good agreement with renormalization-group predictions.

  2. Fractional quantum Hall and nematic liquid crystal phases in a variable density two-dimensional electron system

    Science.gov (United States)

    Brandsen, S.; Pollanen, J.; Eisenstein, J. P.; Pfieffer, L. N.; West, K. W.

    2015-03-01

    At high magnetic field, Coulomb interactions in a two-dimensional electron system (2DES) lead to a wide variety of collective phases, including the fractional quantum Hall fluids and the nematic liquid crystals found at high Landau level occupancy. In order to examine the density dependence of these quantum states, we have developed a new sample architecture consisting of a highly doped, yet transparent, conducting cap layer grown atop a conventional modulation-doped heterojunction where the 2DES resides. Separate contacts to the 2DES and the cap layer allow the latter to function as a gate for tuning the 2DES density both before and after low temperature illumination. After illustrating the basic functioning of this structure, we will report results on the density dependence of various quantum Hall and nematic liquid crystal phases of the 2DES. This work was supported by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation through Grant GBMF1250.

  3. Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes.

    Science.gov (United States)

    Park, Chang-Young; Fygenson, Deborah K; Saleh, Omar A

    2016-06-21

    Rod-like particles form solutions of technological and biological importance. In particular, biofilaments such as actin and microtubules are known to form a variety of phases, both in vivo and in vitro, whose appearance can be controlled by depletion, confinement, and electrostatic interactions. Here, we utilize DNA nanotubes to undertake a comprehensive study of the effects of those interactions on two particular rod-like phases: a 2D nematic phase consisting of aligned rods pressed against a glass surface, and a 3D bundled network phase. We experimentally measure the stability of these two phases over a range of depletant concentrations and ionic strengths, finding that the 2D phase is slightly more stable than the 3D phase. We formulate a quantitative model of phase stability based on consideration of pairwise rod-rod and rod-surface interactions; notably, we include a careful accounting of solution electrostatics interactions using an effective-charge strategy. The model is relatively simple and contains no free parameters, yet predicts phase boundaries in good agreement with the experiment. Our results indicate that electrostatic interactions, rather than depletion, are largely responsible for the enhanced stability of the 2D phase. This work provides insight into the polymorphism of rod-like solutions, indicating why certain phases appear, and providing a means (and a predictive model) for controlling those phases. PMID:27126684

  4. Phase Behavior of Mixtures of Low Molecular Weight Nematic Liquid Crystals and Photochemically Crosslinked Polyacrylates

    OpenAIRE

    BEDJAOUI, Lamia; N. BERRIAH; K. BOUDRAA; Bouchaour, T.; MASCHKE, Ulrich

    2010-01-01

    The present work deals with theoretical and experimental studies to explore some physical properties of composite materials made of crosslinked poly(nbutylacrylate) networks and low molecular weight nematic liquid crystals (LCs). The chemically crosslinked polymers were obtained by exposure to UV radiation of initial solutions composed of a reactive monomer, n-butylacrylate, a small amount of a crosslinking agent, hexanedioldiacrylate, and a photoinitiator. To obtain different ...

  5. Symmetry breaking and structure of a mixture of nematic liquid crystals and anisotropic nanoparticles

    Directory of Open Access Journals (Sweden)

    Marjan Krasna

    2010-07-01

    Full Text Available Orientational ordering of a homogeneous mixture of uniaxial liquid crystalline (LC molecules and magnetic nanoparticles (NPs is studied using the Lebwohl–Lasher lattice model. We consider cases where NPs tend to be oriented perpendicularly to LC molecules due to elastic forces. We study domain-type configurations of ensembles, which are quenched from the isotropic phase. We show that for large enough concentrations of NPs the long range uniaxial nematic ordering is replaced by short range order exhibiting strong biaxiality. This suggests that the impact of NPs on orientational ordering of LCs for appropriate concentrations of NPs is reminiscent to the influence of quenched random fields which locally enforce a biaxial ordering.

  6. From the double-stranded helix to the chiral nematic phase of B-DNA: a molecular model

    CERN Document Server

    Tombolato, F

    2004-01-01

    B-DNA solutions of suitable concentration form left-handed chiral nematic phases (cholesterics). Such phases have also been observed in solutions of other stiff or semiflexible chiral polymers; magnitude and handedness of the cholesteric pitch are uniquely related to the molecular features. In this work we present a theoretical method and a numerical procedure which, starting from the structure of polyelectrolytes, lead to the prediction of the cholesteric pitch. Molecular expressions for the free energy of the system are obtained on the basis of steric and electrostatic interactions between polymers; the former are described in terms of excluded volume, while a mean field approximation is used for the latter. Calculations have been performed for 130 bp fragments of B-DNA. The theoretical predictions provide an explanation for the experimental behavior, by showing the counteracting role played by shape and charge chirality of the molecule.

  7. The (1) H NMR spectrum of pyrazole in a nematic phase.

    Science.gov (United States)

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26947581

  8. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule.

    Science.gov (United States)

    Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo

    2008-04-01

    We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.

  9. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  10. Experimental test of a fluctuation-induced first-order phase transition: The nematic-smectic-A transition

    Science.gov (United States)

    Anisimov, M. A.; Cladis, P. E.; Gorodetskii, E. E.; Huse, David A.; Podneks, V. E.; Taratuta, V. G.; van Saarloos, Wim; Voronov, V. P.

    1990-06-01

    In 1974, Halperin, Lubensky, and Ma (HLM) [Phys. Rev. Lett. 32, 292 (1974)] predicted that the nematic-smectic-A transition of pure compounds and their mixtures should be at least weakly first order. One way to obtain such a prediction is to treat the smectic order parameter as a constant and integrate out the director fluctuations. The coupling between the director fluctuations and the smectic order parameter then generates a cubic term in the effective free energy for the nematic-smectic-A(N-Sm-A) transition, which tends to drive the transition first order. So far, however, there has not been clear experimental evidence in support of this prediction: Some materials appear to exhibit a first-order transition but others a second-order transition. In this paper we introduce two new approaches to test the predictions of HLM. First, we note that if a cubic term in the effective free energy for the smectic order parameter is present, its effect is dominant near the Landau tricritical point (LTP), where the quartic term in the free energy vanishes. In a mean-field approximation, a universal scaling form of the latent heat can then be derived close to the LTP. Its form depends sensitively on the presence of the cubic term. By reanalyzing earlier calorimetric measurements near the LTP, we find that these data yield evidence for the presence of the cubic term predicted by HLM. The second new approach to experimentally determine whether a transition is weakly first order or second order is a dynamical method. This general method is based on the observation that when a transition is (weakly) first order, the dynamics of interfaces are symmetric about Tc, so that an interface can propagate into both phases, depending on whether the sample is undercooled or overheated (corresponding to ``melting'' and ``freezing''). For a weakly first-order transition, a simple scaling relation for the interface speed can be derived. In contrast, the dynamics of propagating fronts close to a

  11. The director and molecular dynamics of the field-induced alignment of a Gay-Berne nematic phase: An isothermal-isobaric nonequilibrium molecular dynamics simulation study

    Science.gov (United States)

    Luckhurst, Geoffrey R.; Satoh, Katsuhiko

    2010-05-01

    Isothermal-isobaric molecular dynamics simulations have been performed for the generic Gay-Berne (GB) mesogen, GB(4.4, 20.0, 1, 1), to investigate director and molecular rotational motion during the field-induced alignment of a nematic. The alignment process for the director is discussed within the context of a hydrodynamic analysis based on the Ericksen-Leslie theory and this is found to predict the simulated behavior well. The dependence of the relaxation time for the alignment on the field strength is also in good accord with the theory. The rotational viscosity coefficient estimated from the simulation is smaller than that typically observed for real nematics and the possible reasons for this are discussed. However, the simulation results are found to follow not only the theory but also the experiments, at least qualitatively. No significant variation in the local and long-range structure of the nematic phase is found during the field-induced alignment process. In addition, we have explored the molecular dynamics in the nematic phase in the presence of the field using the first- and second-rank time autocorrelation functions. More importantly we are able to show that the director relaxation time is longer than that for molecular rotation. It is also possible to use the two orientational correlation times to explore the relationship between the rotational viscosity coefficient and the rotational diffusion constant. The diffusion constants determined from the orientational correlation times, based on the short-time expansion of the autocorrelation functions, are found to be significantly different. In consequence it is not possible to test, unambiguously, the relationship between the rotational viscosity coefficient and the rotational diffusion constant. However, it would seem that the second-rank rotational correlation time provides the most reliable route to the rotational viscosity coefficient.

  12. A new insight into the isotropic-nematic phase transition in lyotropic solutions of semiflexible polymers: density-functional theory tested by molecular dynamics.

    Science.gov (United States)

    Egorov, Sergei A; Milchev, Andrey; Virnau, Peter; Binder, Kurt

    2016-06-14

    Semiflexible polymers in solution are studied for a wide range of both contour length L and persistence length lp as a function of monomer concentration under good solvent conditions. Both density-functional theory (DFT) and molecular dynamics (MD) simulation methods are used, and a very good agreement between both techniques is observed for rather stiff polymers. Evidence for a new mechanism of order parameter fluctuations in the nematic phase is presented, namely collective deformations of bundles of wormlike chains twisted around each other, and the typical wavelengths and amplitudes of these modes are estimated. These long wavelength fluctuations cause a reduction of the order parameter in comparison with the DFT prediction. It is also found that DFT becomes unreliable for rather flexible polymers in predicting that the transition from the isotropic (I)-phase to the nematic (N)-phase still exists at very high monomer concentrations (which in reality does not occur). However, under conditions when DFT is accurate, it provides reliable predictions also for the width of the I-N two-phase coexistence region, which are difficult to obtain from MD in spite of the use of very large systems (up to 500 000 monomers) by means of graphics processing units (GPU). For short and not very stiff chains, a pre-transitional chain stretching is found in the isotropic phase near the I-N-transition, not predicted by theories. A comparison with theoretical predictions by Khokhlov-Semenov, Odijk, and Chen reveals that the scaled transition densities are not simply functions of L/lp only, as these theories predict, but depend on d/lp (where d is the chain diameter) as well. Chain properties in the nematically ordered phase are compared to those of chains confined in tubes, and the deflection length concept is tested. Eventually, some consequences for the interpretation of experiments are spelled out. PMID:27249320

  13. Effects of added silica nanoparticles on the nematic liquid crystal phase formation in beidellite suspensions

    NARCIS (Netherlands)

    Landman, Jasper; Paineau, Erwan; Davidson, Patrick; Bihannic, Isabelle; Michot, Laurent J.; Philippe, Adrian Marie; Petukhov, Andrei V.; Lekkerkerker, Henk N W

    2014-01-01

    In this article, we present a study of the liquid crystal phase behavior of mixed suspensions of the natural smectite clay mineral beidellite and nonadsorbing colloidal silica particles. While virtually all smectite clays dispersed in water form gels at very low concentrations, beidellite displays a

  14. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    Science.gov (United States)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  15. Macroscopic dynamics of polar nematic liquid crystals.

    Science.gov (United States)

    Brand, Helmut R; Pleiner, Harald; Ziebert, Falko

    2006-08-01

    We present the macroscopic equations for polar nematic liquid crystals. We consider the case where one has both, the usual nematic director, n[over ] , characterizing quadrupolar order as well as the macroscopic polarization, P , representing polar order, but where their directions coincide and are rigidly coupled. In this case one has to choose P as the independent macroscopic variable. Such equations are expected to be relevant in connection with nematic phases with unusual properties found recently in compounds composed of banana-shaped molecules. Among the effects predicted, which are absent in conventional nematic liquid crystals showing only quadrupolar order, are pyro-electricity and its analogs for density and for concentration in mixtures as well as a flow alignment behavior, which is more complex than in usual low molecular weight nematics. We also discuss the formation of defect structures expected in such systems. PMID:17025458

  16. Observation of blue phase in chiral nematic liquid crystal and its stabilization by silica nanoparticles

    Science.gov (United States)

    Singh, Arshdeep; Malik, Praveen; Jayoti, Divya

    2016-01-01

    In the present work, we report the blue phase (BP) in a binary mixture of cholesteryl nonanoate (CN) and N-(4-ethoxybenzylidene)-4-butylaniline (EBBA). The mixture exhibits BP over a temperature range of 2.3 K at optimum composition (50:50) of liquid crystals (LCs). The effect of silica nanoparticles (SNPs) doping on thermal stability of BPs has also been demonstrated and nearly 6 K wide BP temperature range was achieved at 0.5 wt.% of SNPs. A porous type texture was also observed during the BP formation process in the doped samples.

  17. Electrodynamic response in the electronic nematic phase of BaFe2As2

    Science.gov (United States)

    Mirri, C.; Dusza, A.; Bastelberger, S.; Chinotti, M.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.; Degiorgi, L.

    2016-02-01

    We perform, as a function of uniaxial stress, a temperature-dependent optical-reflectivity investigation of the parent Fe-arsenide compound BaFe2As2 over a broad spectral range, from the far infrared up to the ultraviolet, across the coincident structural tetragonal-to-orthorhombic and spin-density-wave (SDW) phase transitions at Ts ,N=135 K. Our results provide knowledge to the complete electrodynamic response of the title compound over a wide energy range as a function of both tunable variables. For temperatures below Ts ,N, varying the uniaxial stress in situ affects the twin domain population and yields hysteretic behavior of the optical properties as the stress is first increased and then decreased, whereas for temperatures above Ts ,N the stress-induced optical anisotropy is reversible, as anticipated. In particular, by analyzing the low-frequency infrared response, we obtain detailed insight to the effects determining the intrinsic anisotropy of the (metallic) charge dynamics in the orthorhombic state, and similarly the induced one due to applied uniaxial stress at higher temperatures in the tetragonal phase. The low-frequency optical conductivity thus allows establishing a link to the d c transport properties and reveals that they are determined almost exclusively by changes in the Drude weight, therefore by the anisotropy in the Fermi surface parameters. Finally, we show that the spectral weight distribution in the SDW state occurs for energies below approximately 1 eV, and therefore points towards a correlation mechanism due to Hund's coupling rather than on-site Coulomb interactions.

  18. Calculation of the nematic entropy using digital images.

    Science.gov (United States)

    Freire, F M C; Kimura, N M; Luders, D D; Palangana, A J; Simões, M

    2013-12-01

    In this work we will use digital images to compute the entropy dependence on temperature of a nematic lyotropic sample. The set of images comprehend the entire temperature range between a reentrant nematic isotropic phase transition, at a low temperature, and a usual nematic isotropic phase transition at a higher temperature. We will show that, inside the nematic phase, the image entropy profile agrees accurately with the entropy given by the Maier-Saupe model. As far as we know, this is the first time that the entropy of a lyotropic nematic phase is evaluated by this method, which introduces a way to measure their macroscopic variables. Namely, being that the entropy is a thermodynamical potential, this result implies that digital images can be used to compute mean values of nematic random variables. PMID:24483590

  19. Annealing induced coherent evolutions of biaxial strain and antiferromagnetic-insulator phase in La0.625Ca0.375MnO3 films

    Science.gov (United States)

    Han, Yunxin; Wu, Wenbin; Jiang, Guoshun; Zhu, Changfei

    2012-09-01

    La0.625Ca0.375MnO3 (LCMO) films with thicknesses between 7 and 54 nm were epitaxially grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) [LSAT (001)] substrates by using pulsed laser deposition. For this epitaxial system, antiferromagnetic-insulator (AFI) state can be controlled by changing the film thickness and annealing time with various epitaxial strain states, although this phenomenon is absent in the relatively thick films or bulk samples. The consistency between magnetization and resistivity data suggests all these interesting transport behaviors are attributed to the fluctuation of AFI volume fractions and their instability. Especially, there are huge low-field magnetoresistance over -54% (32 nm) at 0.1 T and enhanced magnetoresistance over a broad temperature range. Based on these above results, annealing induced coherent evolutions of biaxial strain and AFI phase in LCMO epitaxial films is a consequence of the strain-driven orbital ordered state, and this may make an approach for a possible application of strongly correlated electron devices.

  20. Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe2 As2 Revealed by Optical Spectroscopy

    Science.gov (United States)

    Mirri, C.; Dusza, A.; Bastelberger, S.; Chinotti, M.; Degiorgi, L.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.

    2015-09-01

    We perform, as a function of uniaxial stress, an optical-reflectivity investigation of the representative "parent" ferropnictide BaFe2 As2 in a broad spectral range, across the tetragonal-to-orthorhombic phase transition and the onset of the long-range antiferromagnetic (AFM) order. The infrared response reveals that the dc transport anisotropy in the orthorhombic AFM state is determined by the interplay between the Drude spectral weight and the scattering rate, but that the dominant effect is clearly associated with the metallic spectral weight. In the paramagnetic tetragonal phase, though, the dc resistivity anisotropy of strained samples is almost exclusively due to stress-induced changes in the Drude weight rather than in the scattering rate, definitively establishing the anisotropy of the Fermi surface parameters as the primary effect driving the dc transport properties in the electronic nematic state.

  1. Structure of the proton skeleton of nitrobenzene, determined by /sup 1/H NMR in the nematic phase

    Energy Technology Data Exchange (ETDEWEB)

    Shakhatuni, A.G.; Panosyan, G.A.; Chertkov, V.A.; Sergeev, N.M.

    1987-09-01

    As a structural method NMR spectroscopy in LC solvents in primarily intended for determination of the geometry of the proton skeleton of the molecule and makes it possible to refine the data from other structural methods by the introduction of information on the proton coordinates. The authors determined the structure of the proton skeleton of nitrobenzene in two thermotropic nematic liquid crystals. These data, together with published data, make it possible to take account of the effect of the solvent and to calculate the supposed geometry of the proton skeleton of nitrobenzene in a hypothetical solvent.

  2. Deuteron and proton NMR study of D2, p-dichlorobenzene and 1,3,5-trichlorobenzene in bimesogenic liquid crystals with two nematic phases

    Science.gov (United States)

    Burnell, E. E.; Ahmed, Z.; Welch, C.; Mehl, G. H.; Dong, R. Y.

    2016-08-01

    The solutes dideuterium, 1,3,5-trichlorobenzene and p-dichlorobenzene (pdcb) are co-dissolved in a 61/39 wt% mixture of CBC9CB/5CB, a bimesogenic liquid crystal with two nematic phases. NMR spectra are collected for each solute. The local electric field gradient (FZZ) is obtained from the dideuterium spectrum. A double Maier-Saupe potential (MSMS) is used to rationalize the order parameters of pdcb. The liquid-crystal fields G1 and G2 are taken to be due to size and shape interactions and interactions between the solute molecular quadrupole and the mean FZZ of the medium. The FZZ 's obtained from D2 and G2 (from pdcb) are compared and discussed.

  3. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

    KAUST Repository

    Majumdar, Apala

    2009-07-07

    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W1,2, to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions. © Springer-Verlag (2009).

  4. Equilibrium of nematic vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, Gaetano [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, via per Monteroni, Edificio ' Corpo O' , 73100 Lecce (Italy); Vergori, Luigi, E-mail: gaetano.napoli@unisalento.i, E-mail: luigi.vergori@unisalento.i [Dipartimento di Matematica, Universita del Salento, Strada Prov. Lecce-Arnesano, 73100 Lecce (Italy)

    2010-11-05

    A variational scheme is proposed which allows the derivation of a concise and elegant formulation of the equilibrium equations for closed fluid membranes, endowed with a nematic microstructure. The nematic order is described by an in-plane nematic director and a degree of orientation, as customary in the theory of uniaxial nematics. The only constitutive ingredient in this scheme is a free-energy density which depends on the vesicle geometry and order parameters. The stress and the couple stress tensors related to this free-energy density are provided. As an application of the proposed scheme, a certain number of special theories are deduced: soap bubbles, lipid vesicles, chiral and achiral nematic membranes, and nematics on curved substrates.

  5. Large epitaxial bi-axial strain induces a Mott-like phase transition in VO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kittiwatanakul, Salinporn [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei, E-mail: jl5tk@virginia.edu [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-08-18

    The metal insulator transition (MIT) in vanadium dioxide (VO{sub 2}) has been an important topic for recent years. It has been generally agreed upon that the mechanism of the MIT in bulk VO{sub 2} is considered to be a collaborative Mott-Peierls transition, however, the effect of strain on the phase transition is much more complicated. In this study, the effect of the large strain on the properties of VO{sub 2} films was investigated. One remarkable result is that highly strained epitaxial VO{sub 2} thin films were rutile in the insulating state as well as in the metallic state. These highly strained VO{sub 2} films underwent an electronic phase transition without the concomitant Peierls transition. Our results also show that a very large tensile strain along the c-axis of rutile VO{sub 2} resulted in a phase transition temperature of ∼433 K, much higher than in any previous report. Our findings elicit that the metal insulator transition in VO{sub 2} can be driven by an electronic transition alone, rather the typical coupled electronic-structural transition.

  6. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  7. Correlation between hydrophobic and molecular shape descriptors and retention data of polycyclic aromatic hydrocarbons in reversed-phase chromatography on non-liquid-crystalline, nematic, and smectic stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Gritti, F. [E.N.S.C.P.B. Universite Bordeaux, Pessac (France); C.R.P.P., CNRS, Universite Bordeaux, Pessac (France); Sourigues, S.; Felix, G. [E.N.S.C.P.B. Universite Bordeaux, Pessac (France); Achard, M.F.; Hardouin, F. [C.R.P.P., CNRS, Universite Bordeaux, Pessac (France)

    2002-07-01

    The local anisotropic ordering of side-chain liquid-crystalline polymer (SCLCP) stationary phases has been revealed statistically. For this purpose the RP HPLC separation of polycyclic aromatic hydrocarbons (PAH) on silica coated with three classes (non-liquid-crystalline, nematic, and smectic) of side-chain polymer (SCP) has been compared. The logarithm of the capacity factor (log k) was correlated with three PAH descriptors - the connectivity index ({chi}) or the hydrophobic fragmental constant (log P), the length-to-breadth ratio (L/B), and a non-planarity term (N{sub p}). Statistical results revealed good correlation between the model and experimental data, enabling the different stationary phases to be compared. Recognition of solute size seems similar for each class of polymer but solute non-planarity recognition grows continuously as ordering of the liquid-crystal polymer increases. Recognition of solute lengthening is non-existent for non-liquid-crystalline polymers and suddenly appears with liquid crystalline polymers. Shape recognition is better for smectic than for nematic SCP. The predictive ability of this model was tested on highly condensed aromatic compounds. The connectivity index {chi} did not seem appropriate for such systems. Its replacement by Rekker's hydrophobic fragmental constant, log P, was necessary for fitting the retention of these solutes on liquid-crystalline stationary phases. (orig.)

  8. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  10. Carbon Nanotube Liquid Crystals: Nematic Droplets and Coarsening Dynamics

    Science.gov (United States)

    Behabtu, Natnael; Senyuk, Bohdan; Smalyukh, Ivan; Pasquali, Matteo

    2012-02-01

    On a fundamental basis, carbon nanotubes (CNTs) offer a new model molecule to explore the dynamics and phases of rigid rods and test theories. Their large aspect ratio (100 to 100,000) and persistence length (˜ 100 microns) allow exploring the physics of nematic phases with high Frank elastic constant. Moreover, understanding of CNT liquid crystals is key to their rational processing into ordered materials such as fibers. Here we report the formation of elongated nematic droplets of CNTs in chlorosulfonic acid. In nematic droplets, a continuous transition from a homogeneous to bipolar nematic director field is expected theoretically, as a function of droplet volume; yet, experimental determination of such transition has been elusive. We show that CNT nematic droplets display such transition. We study the coarsening dynamics of positive and negative nematic droplets and observe that two or more droplets merge by matching their nematic director. Merging scenarios that lead to defect formation are not observed. Negative tactoids (isotropic phase in liquid crystalline continuum) merge through attractive forces induced by the nematic director distortion with quadrupolar symmetry.

  11. Brownian motion of particles in nematic fluids

    Science.gov (United States)

    Yao, Xuxia; Nayani, Karthik; Park, Jung; Srinivasarao, Mohan

    2011-03-01

    We studied the brownian motion of both charged and neutral polystyrene particles in two nematic fluids, a thermotropic liquid crystal, E7, and a lyotropic chromonic liquid crystal, Sunset Yellow FCF (SSY). Homogeneous planar alignment of E7 was easliy achieved by using rubbed polyimide film coated on the glass. For SSY planar mondomain, we used the capillary method recently developed in our lab. By tracking a single particle, the direction dependent diffussion coefficients and Stokes drag were measured in the nematic phase and isotropic phase for both systems.

  12. Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl)hexane (CB6OCB) and comparison with CB7CB.

    Science.gov (United States)

    Paterson, Daniel A; Gao, Min; Kim, Young-Ki; Jamali, Afsoon; Finley, Kirsten L; Robles-Hernández, Beatriz; Diez-Berart, Sergio; Salud, Josep; de la Fuente, M Rosario; Timimi, Bakir A; Zimmermann, Herbert; Greco, Cristina; Ferrarini, Alberta; Storey, John M D; López, David O; Lavrentovich, Oleg D; Luckhurst, Geoffrey R; Imrie, Corrie T

    2016-08-10

    The synthesis and characterisation of the nonsymmetric liquid crystal dimer, 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl)hexane (CB6OCB) is reported. An enantiotropic nematic (N)-twist-bend nematic (NTB) phase transition is observed at 109 °C and a nematic-isotropic phase transition at 153 °C. The NTB phase assignment has been confirmed using polarised light microscopy, freeze fracture transmission electron microscopy (FFTEM), (2)H-NMR spectroscopy, and X-ray diffraction. The effective molecular length in both the NTB and N phases indicates a locally intercalated arrangement of the molecules, and the helicoidal pitch length in the NTB phase is estimated to be 8.9 nm. The surface anchoring properties of CB6OCB on a number of aligning layers is reported. A Landau model is applied to describe high-resolution heat capacity measurements in the vicinity of the NTB-N phase transition. Both the theory and heat capacity measurements agree with a very weak first-order phase transition. A complementary extended molecular field theory was found to be in suggestive accord with the (2)H-NMR studies of CB6OCB-d2, and those already known for CB7CB-d4. These include the reduced transition temperature, TNTBN/TNI, the order parameter of the mesogenic arms in the N phase close to the NTB-N transition, and the order parameter with respect to the helix axis which is related to the conical angle for the NTB phase. PMID:27447288

  13. Isotropic-nematic transition and dynamics of rigid charged molecules

    Science.gov (United States)

    Karatrantos, Argyrios

    2016-03-01

    Using molecular dynamics, an isotropic-nematic transition was found in bulk salt-free solutions of charged rods with their counterions in the semidilute regime. This phase transition is driven primarily by electrostatics, rather than by excluded volume. The counterion condensation effect, which is controlled by the Manning parameter, leads to liquid crystalline phases of rods. For elevated values of the Manning parameter, an attraction is obtained between the rods, and the nematic phase appears. For small values of the Manning parameter the counterions de-condense, and the nematic phase disappears. Instead, in a neutral system of rods and spheres there is no appearance of nematic phase. The diffusivity of both rods and counterions is reduced with the Manning parameter.

  14. Molecular engineering of discotic nematic liquid crystals

    Indian Academy of Sciences (India)

    Sandeep Kumar

    2003-08-01

    Connecting two columnar phase forming discotic mesogens via a short rigid spacer leads to the formation of a -conjugated discotic dimer showing discotic nematic (D) phase. Attaching branched-alkyl chains directly to the core in hexaalkynylbenzene resulted in the stabilisation of D phase at ambient temperature. Pentalkynylbenzene derivatives possessing a combination of normal-and branched-alkoxy chains display a very broad D phase which is stable well below and above the room temperature.

  15. Nematic liquid crystal bridges

    Science.gov (United States)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  16. Theory of solvation in polar nematics

    CERN Document Server

    Kapko, V; Kapko, Vitaly; Matyushov, Dmitry V.

    2005-01-01

    We develop a linear response theory of solvation of ionic and dipolar solutes in anisotropic, axially symmetric polar solvents. The theory is applied to solvation in polar nematic liquid crystals. The formal theory constructs the solvation response function from projections of the solvent dipolar susceptibility on rotational invariants. These projections are obtained from Monte Carlo simulations of a fluid of dipolar spherocylinders which can exist both in the isotropic and nematic phase. Based on the properties of the solvent susceptibility from simulations and the formal solution, we have obtained a formula for the solvation free energy which incorporates experimentally available properties of nematics and the length of correlation between the dipoles in the liquid crystal. Illustrative calculations are presented for the Stokes shift and Stokes shift correlation function of coumarin-153 in 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4,4-n-heptyl-cyanopiphenyl (7CB) solvents as a function of temperature in both th...

  17. Evidence for a jacketed nematic polymer

    OpenAIRE

    Hardouin, F.; Mery, S.; Achard, M.; Noirez, L.; Keller, P.

    1991-01-01

    The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer.

  18. Fragmentation in Biaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G H; Archbold, G C; Hurricane, O A; Miller, P L

    2006-06-13

    We have carried out an experiment that places a ductile stainless steel in a state of biaxial tension at a high rate of strain. The loading of the ductile metal spherical cap is performed by the detonation of a high explosive layer with a conforming geometry to expand the metal radially outwards. Simulations of the loading and expansion of the metal predict strain rates that compare well with experimental observations. A high percentage of the HE loaded material was recovered through a soft capture process and characterization of the recovered fragments provided high quality data, including uniform strain prior to failure and fragment size. These data were used with a modified fragmentation model to determine a fragmentation energy.

  19. Multi-particle collision dynamics algorithm for nematic fluids.

    Science.gov (United States)

    Shendruk, Tyler N; Yeomans, Julia M

    2015-07-01

    Research on transport, self-assembly and defect dynamics within confined, flowing liquid crystals requires versatile and computationally efficient mesoscopic algorithms to account for fluctuating nematohydrodynamic interactions. We present a multi-particle collision dynamics (MPCD) based algorithm to simulate liquid-crystal hydrodynamic and director fields in two and three dimensions. The nematic-MPCD method is shown to successfully reproduce the features of a nematic liquid crystal, including a nematic-isotropic phase transition with hysteresis in 3D, defect dynamics, isotropic Frank elastic coefficients, tumbling and shear alignment regimes and boundary condition-dependent order parameter fields. PMID:26035731

  20. Surface Modification of Plate-Like Nanoparticles and Their Assembly into Nematic Organogels

    Science.gov (United States)

    Cipriano, Bani; Raghavan, Srinivasa

    2006-03-01

    Plate-like clay nanoparticles (e.g., laponite) form gels in water at sufficiently high concentration. A remarkable feature of these gels is the appearance of birefringent textures characteristic of nematic liquid crystals. Here we report the counterpart of this phenomenon in organic solvents, i.e., the formation of nematic textures by adding organically modified clay nanoparticles into non-polar liquids such as toluene and chloroform. We present the phase diagram (isotropic/nematic phases) for these gels. The viscoleastic properties of the resulting gels are characterized by use of rheological methods. The quality of the dispersions and the birefringent textures are evaluated using optical microscopy and x-ray scattering techniques. The finding that organoclays self assemble into a nematic phase in non-polar mediums may well provide a route for in-situ formation of nematic polymer nanocomposites. We also describe preliminary efforts towards achieving nematic ordering of particles in polymers.

  1. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  2. Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly.

    Science.gov (United States)

    Tjipto, Elvira; Cadwell, Katie D; Quinn, John F; Johnston, Angus P R; Abbott, Nicholas L; Caruso, Frank

    2006-10-01

    We report the assembly of polyelectrolyte multilayer (PEM) films at the interfaces of thermotropic liquid crystal (LC) droplets dispersed in an aqueous phase. Exposure of PEM-coated droplets to surfactant slowed the bipolar-to-radial ordering transition of the LCs by 2 orders of magnitude relative to naked droplets. This shows that PEMs can be used to influence the interactions of analytes with the LC cores of the droplets, allowing tuning of the LC emulsion sensing properties.

  3. Relevance of saddle-splay elasticity in complex nematic geometries.

    Science.gov (United States)

    Kos, Žiga; Ravnik, Miha

    2016-01-28

    We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context of complex surface anchoring conditions and the complex geometrical confinement. Specifically, nematic cells with patterns of surface anchoring and colloidal knots are shown as examples where saddle-splay free energy contribution can have a notable role which originates from nonhomogeneous surface anchoring and the varying surface curvature. Patterned nematic cells are shown to exhibit various (meta)stable configurations of nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high enough values of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally indicating that the saddle-splay can reverse or change the (meta)stability of various nematic structures affecting their phase diagrams. Furthermore, we investigate saddle-splay elasticity in the geometry of highly curved boundaries - the colloidal particle knots in nematic - where the local curvature of the particles induces complex spatial variations of the saddle-splay contributions. Finally, a nematic order parameter tensor based saddle-splay invariant is shown, which allows for the direct calculation of saddle-splay free energy from the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches, such as Landau-de Gennes free energy modelling.

  4. Biaxial fatigue behavior of a powder metallurgical TRIP steel

    Directory of Open Access Journals (Sweden)

    S. Ackermann

    2015-10-01

    Full Text Available Multiaxial fatigue behavior is an important topic in critical structural components. In the present study the biaxial-planar fatigue behavior of a powder metallurgical TRIP steel (Transformation Induced Plasticity was studied by taking into account martensitic phase transformation and crack growth behavior. Biaxial cyclic deformation tests were carried out on a servo hydraulic biaxial tension-compression test rig using cruciform specimens. Different states of strain were studied by varying the strain ratio between the axial strain amplitudes in the range of -1 (shear loading to 1 (equibiaxial loading. The investigated loading conditions were proportional due to fixed directions of principal strains. The studied TRIP steel exhibits martensitic phase transformation from -austenite via ε-martensite into α‘- martensite which causes pronounced cyclic hardening. The α‘-martensite formation increased with increasing plastic strain amplitude. Shear loading promoted martensite formation and caused the highest α‘-martensite volume fractions at fatigue failure in comparison to uniaxial and other biaxial states of strain. Moreover, the fatigue lives of shear tests were higher than those of uniaxial and other biaxial tests. The von Mises equivalent strain hypothesis was found to be appropriate for uniaxial and biaxial fatigue, but too conservative for shear fatigue, according to literature for torsional fatigue. The COD strain amplitude which is based on crack opening displacement gave a better correlation of the investigated fatigue lives, especially those for shear loading. Different types of major cracks were observed on the sample surfaces after biaxial cyclic deformation by using electron monitoring in an electron beam universal system and scanning electron microscopy (SEM. Specimens with strain ratios of 1, 0.5, -0.1 and -0.5 showed mode I major cracks (perpendicular to the axis of maximum principal strain. Major cracks after shear fatigue

  5. Elastic Properties of Nematic Liquid Crystals Formed by Living and Migrating Cells

    CERN Document Server

    Kemkemer, R; Kaufmann, D; Gruler, H; Kemkemer, Ralf; Kling, Dieter; Kaufmann, Dieter; Gruler, Hans

    1998-01-01

    In culture migrating and interacting amoeboid cells can form nematic liquid crystal phases. A polar nematic liquid crystal is formed if the interaction has a polar symmetry. One type of white blood cells (granulocytes) form clusters where the cells are oriented towards the center. The core of such an orientational defect (disclination) is either a granulocyte forced to be in an isotropic state or another cell type like a monocyte. An apolar nematic liquid crystal is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (= fat cells) etc., form an apolar nematic liquid crystal. The orientational elastic energy is derived and the orientational defects (disclination) of nematic liquid crystals are investigated. The existence of half-numbered disclinations show that the nematic phase has an apolar symmetry. The density- and order parameter dependence...

  6. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.;

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  7. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  8. Modulated nematic structures induced by chirality and steric polarization

    Science.gov (United States)

    Longa, Lech; PajÄ k, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases. Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.

  9. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    Science.gov (United States)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  10. Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria

    CERN Document Server

    Nishiguchi, Daiki; Chaté, Hugues; Sano, Masaki

    2016-01-01

    We study the collective dynamics of long, filamentous, non-tumbling bacteria swimming in a very thin fluid layer. The strong confinement induces nematic alignment upon collision, which, for large enough density of cells, gives rise to global nematic order. We show that this homogeneous but fluctuating phase, observed on the largest experimentally-accessible scale of millimeters, exhibits the same properties as the Vicsek-style model of polar particles with nematic alignment: true long-range nematic order and non-trivial giant number fluctuations

  11. Extendability of Equilibria of Nematic Polymers

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    2008-01-01

    Full Text Available The purpose of this paper is to study the extendability of equilibrium states of rodlike nematic polymers with the Maier-Saupe intermolecular potential. We formulate equilibrium states as solutions of a nonlinear system and calculate the determinant of the Jacobian matrix of the nonlinear system. It is found that the Jacobian matrix is nonsingular everywhere except at two equilibrium states. These two special equilibrium states correspond to two points in the phase diagram. One point is the folding point where the stable prolate branch folds into the unstable prolate branch; the other point is the intersection point of the nematic branch and the isotropic branch where the unstable prolate state becomes the unstable oblate state. Our result establishes the existence and uniqueness of equilibrium states in the presence of small perturbations away from these two special equilibrium states.

  12. Spontaneous Periodic Deformations in Nonchiral Planar-Aligned Bimesogens with a Nematic-Nematic Transition and a Negative Elastic Constant

    Science.gov (United States)

    Panov, V. P.; Nagaraj, M.; Vij, J. K.; Panarin, Yu. P.; Kohlmeier, A.; Tamba, M. G.; Lewis, R. A.; Mehl, G. H.

    2010-10-01

    Hydrocarbon linked mesogenic dimers are found to exhibit an additional nematic phase below the conventional uniaxial nematic phase as confirmed by x-ray diffraction. The phase produces unusual periodic stripe domains in planar cells. The stripes are found to be parallel to the rubbing direction (in rubbed cells) with a well-defined period equal to double the cell gap. The stripes appear without external electromagnetic field, temperature or thickness gradients, rubbing or hybrid alignment treatments. Simple modeling proposes a negative sign for at least one of the two elastic constants: splay and twist, as a necessary condition for the observed pattern.

  13. Biaxially oriented film on flexible polymeric substrate

    Science.gov (United States)

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  14. Nematic Ordering of Rigid Rods in a Gravitational Field

    CERN Document Server

    Baulin, V A; Baulin, Vladimir A.; Khokhlov, Alexei R.

    1999-01-01

    The isotropic-to-nematic transition in an athermal solution of long rigid rods subject to a gravitational (or centrifugal) field is theoretically considered in the Onsager approximation. The new feature emerging in the presence of gravity is a concentration gradient which coupled with the nematic ordering. For rodlike molecules this effect becomes noticeable at centrifugal acceleration g ~ 10^3--10^4 m/s^2, while for biological rodlike objects, such as tobacco mosaic virus, TMV, the effect is important even for normal gravitational acceleration conditions. Rods are concentrated near the bottom of the vessel which sometimes leads to gravity induced nematic ordering. The concentration range corresponding to phase separation increases with increasing g. In the region of phase separation the local rod concentration, as well as the order parameter, follow a step function with height.

  15. Fatigue of Clip connectors for offshore drilling risers under biaxial tension

    Directory of Open Access Journals (Sweden)

    Gaur Vidit

    2014-06-01

    Full Text Available Drilling riser connectors designed by IFPEN undergo cyclic in-phase biaxial tension in their critical area. This type of loading was reproduced on steel tubular specimens loaded in cyclic tension and internal pressure. The fatigue lives were substantially reduced when the load biaxiality was increased from 0 to 0.4 and then further to 1, which was not captured by existing fatigue criteria. A deeper investigation is thus in progress. Emphasis is laid on the separate evaluation of mean stress and biaxiality effects, often treated in the same way in existing criteria. The influence of load biaxiality on the resistance of the steel to fatigue-corrosion in seawater will also be investigated.

  16. Quaternions and hybrid nematic disclinations

    OpenAIRE

    Čopar, Simon; Žumer, Slobodan

    2012-01-01

    Disclination lines in nematic liquid crystals can exist in different geometric conformations, characterized by their director profile. In certain confined colloidal suspensions and even more prominently in chiral nematics, the director profile may vary along the disclination line. We construct a robust geometric decomposition of director profile in closed disclination loops and use it to apply topological classification to linked loops with arbitrary variation of the profile, generalizing the...

  17. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    International Nuclear Information System (INIS)

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined

  18. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    Energy Technology Data Exchange (ETDEWEB)

    Dobrun, L. A., E-mail: l.dobrun@spbu.ru; Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P. [St. Petersburg State University (Russian Federation); Knyazev, A. A.; Galyametdinov, Yu. G. [Kazan National Research Technological University (Russian Federation)

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  19. Charge transfer reactions in nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wiederrecht, G.P. [Argonne National Lab., IL (United States). Chemistry Div.; Wasielewski, M.R. [Argonne National Lab., IL (United States). Chemistry Div.]|[Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Galili, T.; Levanon, H. [Hebrew Univ. of Jerusalem (Israel). Dept. of Physical Chemistry

    1998-07-01

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  20. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  1. Director Field in a Bipolar Configured Nematic Droplet

    Institute of Scientific and Technical Information of China (English)

    HUANG Zi-qiang; YANG Wen-jun; ZHOU Xiao-jun

    2004-01-01

    Director field in a bipolar configured nematic droplet is analyzed numerically. Results of the calculation are expressed as the tilted angle of the director in the droplet, which balance between torque by elastic energy and the torque by external electrical field. The tilted angle is expressed as the function depending on latitude angle and relative radius r / R in the spherical droplet. The result shows that the maximum difference of the tilted angle happens at 0.87R, where the tilted angle varies 12℃before applying external field (0 V/μm.) and after applying electrical field (0.62 V/μm). If nematic droplet would be applied as a micro lens, its focus would vary because the refractive index changes due to the change of tilted angle. According to the calculation, maximum modification of refractive index is 0.036, if E7 would be adapted as the nematic phase in the droplet.

  2. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  3. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient of p-type silicon with grown-in biaxial strain using a 66 k·p method. We find a significant increase in the value of the shear piezocoefficient for compressive grown-in biaxial strain, while tensile strain decreases the piezocoefficient. The dependence...... of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  4. Dynamic-Mechanical Analysis of Monodomain Nematic Liquid Crystalline Elastomers

    Science.gov (United States)

    Hotta, Atsushi; Terentjev, Eugene

    2003-03-01

    Dynamic-mechanical analysis was performed in the glassy, nematic and isotropic states of several monodomain nematic liquid crystalline elastomers (LCE) which differ in their degrees of anisotropy and internal microstructure. It was found that the type of network crosslinker makes a significant difference in the equilibrium properties of these elastomers, in particular, in their effective anisotropy. In spite of these differences, the observed dynamic-mechanical behaviour was very similar. The fact that there is a consistently high and wide loss over the whole nematic region, where storage modulus G' behaves non-monotonically, is most likely an indicator of the fact that the dynamic-mechanical response is not linear. Master curves have been built between the glassy state and the nematic-isotropic phase transition, where the modulus reaches a low-level soft plateau. Above the nematic-isotropic transition temperature Tni, the modulus rises substantially, since internal relaxation is no longer able to reduce the elastic response - and further time-temperature superposition fails. The dynamics of these elastomers are dominated by power laws, which was confirmed by the successful procedure of the master curve inversion (time-frequency inversion) to describe the static stress relaxation. Interestingly, it was found that mechanical properties characterized by power laws (in time) of stress relaxation match very well with the dynamic properties, where power laws (in frequency) were also observed in the dynamic modulus in the appropriate range of temperatures. The work demonstrates the potential for the use of nematic liquid crystalline elastomers in many acoustic and vibration damping applications.

  5. Biaxial ferromagnetic liquid crystal colloids.

    Science.gov (United States)

    Liu, Qingkun; Ackerman, Paul J; Lubensky, Tom C; Smalyukh, Ivan I

    2016-09-20

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed "director," whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  6. Field-driven dynamics of nematic microcapillaries

    Science.gov (United States)

    Khayyatzadeh, Pouya; Fu, Fred; Abukhdeir, Nasser Mohieddin

    2015-12-01

    Polymer-dispersed liquid-crystal (PDLC) composites long have been a focus of study for their unique electro-optical properties which have resulted in various applications such as switchable (transparent or translucent) windows. These composites are manufactured using desirable "bottom-up" techniques, such as phase separation of a liquid-crystal-polymer mixture, which enable production of PDLC films at very large scales. LC domains within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially different behavior in the presence of an external field. The fundamental difference between spheroidal and rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in LC order while the latter does not. Progress in the development and optimization of PDLC electro-optical properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum simulations are performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and external field strength are studied through the use of the Landau-de Gennes model of the nematic LC phase.

  7. Field-driven dynamics of nematic microcapillaries.

    Science.gov (United States)

    Khayyatzadeh, Pouya; Fu, Fred; Abukhdeir, Nasser Mohieddin

    2015-12-01

    Polymer-dispersed liquid-crystal (PDLC) composites long have been a focus of study for their unique electro-optical properties which have resulted in various applications such as switchable (transparent or translucent) windows. These composites are manufactured using desirable "bottom-up" techniques, such as phase separation of a liquid-crystal-polymer mixture, which enable production of PDLC films at very large scales. LC domains within PDLCs are typically spheroidal, as opposed to rectangular for an LCD panel, and thus exhibit substantially different behavior in the presence of an external field. The fundamental difference between spheroidal and rectangular nematic domains is that the former results in the presence of nanoscale orientational defects in LC order while the latter does not. Progress in the development and optimization of PDLC electro-optical properties has progressed at a relatively slow pace due to this increased complexity. In this work, continuum simulations are performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. Using a simplified elliptic cylinder (microcapillary) geometry as an approximation of spheroidal PDLC domains, the effects of geometry (aspect ratio), surface anchoring, and external field strength are studied through the use of the Landau-de Gennes model of the nematic LC phase. PMID:26764713

  8. Rheology of a Twist-bend Nematic Liquid Crystal

    Science.gov (United States)

    Salili, Seyyed Muhammad; Kim, Chanjoong; Sprunt, Samuel; Gleeson, James; Parri, Owain; Jakli, Antal; Kim Lab Team; Merck Lab Team

    2015-03-01

    First detailed flow shear alignment studies and rheological measurements in the twist-bend nematic (Ntb) liquid crystalline phase of odd numbered flexible dimer molecules is presented. It is found that the Ntb phase is strongly shear-thinning. At shear stresses below 1 Pa the apparent viscosity of the Ntb phase is 1000 times larger than in the nematic phase. At stresses above 10 Pa the Ntb viscosity drops by two orders of magnitude and the material exhibits Newtonian fluid behavior. The results are consistent with the behavior of a system with pseudo-layer structure with layer spacing determined by the heliconical pitch. From the measurements of dynamic modulus we estimate the compression modulus of the pseudo-layers to be B ~ 2 kPa this value is discussed within the context of a simple theoretical model based upon a coarse-grained elastic free energy. www.jakligroup.com.

  9. Biaxial phases in mineral liquid crystals

    NARCIS (Netherlands)

    Vroege, G.J.

    2013-01-01

    A review is given of liquid crystals formed in colloidal dispersions, in particular those consisting of mineral particles. Starting with the historical development and early theory, the characteristic properties related to the colloidal nature of this type of liquid crystals are discussed. The possi

  10. Liquid crystal display modes in a nontilted bent-core biaxial smectic liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Panarin, Y. P.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-11-01

    Liquid crystal display (LCD) modes associated with the rotation of the secondary director in nontilted, biaxial smectic phase of an achiral bent-core compound are demonstrated. For LCDs, we find that at least four display modes are possible using SmAPA phase of the studied material, in which the minor directors in adjacent layers are aligned antiferroelectrically. The advantages of these modes include low driving field (1-2 V/μm), high contrast ratio 1000:1, relatively fast switching time of 0.5 ms and continuous gray scale. The molecular short axis or the polar axis in a negative dielectric, biaxial material is oriented by the in-plane electric field by a combination dielectric biaxiality and polarity at low electric fields and polarity at higher fields.

  11. Failure Investigation for QP Steel Sheets under uniaxial and Equal-Biaxial Tension Conditions

    Science.gov (United States)

    Zou, Danqing; Li, Shuhui; He, Ji; Cui, Ronggao

    2016-08-01

    The Quenching and Partitioning (QP) steel sheet is new generation material to induce phase transformation for plasticity in forming vehicle parts. The phase transformation is strongly stress state dependent behavior in experiments, which should affect the failure timing and limit strain in forming processes. In this paper, Nakajima test with QP980 and DP1000 steel sheets under equal-biaxial loading condition is performed for failure behavior. X-ray diffraction (XRD) is adopted to obtain the volume fraction of retained austenite (fA). Digital Image Correlation (DIC) is used to record the surface strain field and its evolution during equal-biaxial tension deformation. The same level Dual Phase (DP) steel is also employed for the purpose of comparison. The results show that phase transformation in QP steel gives small impact on failure strain under equal biaxial tension condition which is contradicted with our understanding. It suggests that failure behavior under uniaxial tension of QP980 is strongly phase transformation dependent. But it shows almost independent under equal biaxial tension condition.

  12. Vertically aligned biaxially textured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  13. Interfacial motion in flexo- and order-electric switching between nematic filled states

    International Nuclear Information System (INIS)

    We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterized by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic–isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally-applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wetted by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic–isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition. (paper)

  14. Self-assembled structures of Gaussian nematic particles

    Energy Technology Data Exchange (ETDEWEB)

    Nikoubashman, Arash; Likos, Christos N [Institute of Theoretical Physics, Heinrich Heine University of Duesseldorf, Universitaetsstrasse 1, D-40225 Duesseldorf (Germany)

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.

  15. On some liquid crystalline phases exhibited by compounds made of bent-core molecules and their mixtures with rod-like molecules

    Indian Academy of Sciences (India)

    R Pratibha; N V Madhusudana; B K Sadashiva

    2003-08-01

    In most homologous series of compounds made of bent-core (BC) molecules, the B2, B1 and B6 phases occur as the chain length decreases. We have studied binary mixtures of the compound 1,3-phenylene bis[4-(3-methylbenzoyloxy)]4'--dodecylbiphenyl 4'-carboxylate (BC12) which exhibits the B2 phase with the compound 4-biphenylyl 4''--undecyloxybenzoate (BO11) made of rod-like (R) molecules. We find the above sequence of occurrence of the B phases with increasing concentration of BO11. In this paper we describe the physical origin for the formation of these phases in both pure compounds and in the mixtures. We have also found the occurrence of the biaxial smectic A phase when the BO11 concentration is increased to 87–95.5 mol%. We also report on another binary system composed of BC12 and 4--octyloxy 4'- cyanobiphenyl (8OCB) made of R molecules. This system exhibits the biaxial smectic A phase down to 30°C. Using polarized infrared spectroscopy we find that the mutual orientation of the R and BC molecules in the SmAdb liquid crystal is such that the arrow axes of the BC molecules are along the layer normal of the partial bilayer smectic structure formed by the rods. We also describe unusual growth patterns obtained when the nematic phase transforms to the SmAdb phase in a mixture with 24 mol% of BC12.

  16. Ultrasonic fatigue testing device under biaxial bending

    Directory of Open Access Journals (Sweden)

    C. Brugger

    2016-07-01

    Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.

  17. Biaxial tension on polymer in thermoforming range

    Directory of Open Access Journals (Sweden)

    Billon N.

    2010-06-01

    Full Text Available This paper presents an experimental characterization of mechanical properties of a polyethylene terephtalate (PET resin classically used in stretch blow moulding process. We have applied on such a material a well established experimental protocol at CEMEF, including new and relevant biaxial tensile tests. The experimental set-up relative to biaxial tension will be presented and described in a first part of the paper. Furthermore, we will focus on the experimental DMTA preliminary tests which are required to estimate the resin sensibility to temperature and strain rate in linear viscoelasticity domain. Finally, we will be interested in the material large strain behaviour: biaxial tensile results are presented and discussed. Finally, such an experimental approach should allow a relevant modelling of polymer physics and mechanics; this point will not be discussed here because of a lack of time.

  18. Biaxial tension on polymer in thermoforming range

    Science.gov (United States)

    Becker, S.; Combeaud, C.; Fournier, F.; Rodriguez, J.; Billon, N.

    2010-06-01

    This paper presents an experimental characterization of mechanical properties of a polyethylene terephtalate (PET) resin classically used in stretch blow moulding process. We have applied on such a material a well established experimental protocol at CEMEF, including new and relevant biaxial tensile tests. The experimental set-up relative to biaxial tension will be presented and described in a first part of the paper. Furthermore, we will focus on the experimental DMTA preliminary tests which are required to estimate the resin sensibility to temperature and strain rate in linear viscoelasticity domain. Finally, we will be interested in the material large strain behaviour: biaxial tensile results are presented and discussed. Finally, such an experimental approach should allow a relevant modelling of polymer physics and mechanics; this point will not be discussed here because of a lack of time.

  19. Two-Dimensional Skyrmion Lattice Formation in a Nematic Liquid Crystal Consisting of Highly Bent Banana Molecules.

    Science.gov (United States)

    Kang, Sungmin; Lee, Eun-Woo; Li, Tianqi; Liang, Xiaobin; Tokita, Masatoshi; Nakajima, Ken; Watanabe, Junji

    2016-09-12

    We synthesized a novel banana-shaped molecule based on a 1,7-naphthalene central core that exhibits a distinct mesomorphism of the nematic-to-nematic phase transition. Both the X-ray profile and direct imaging of atomic force microscopy (AFM) investigations clearly indicates the formation of an anomalous nematic phase possessing a two-dimensional (2D) tetragonal lattice with a large edge (ca. 59 Å) directed perpendicular to the director in the low-temperature nematic phase. One plausible model is proposed by an analogy of skyrmion lattice in which two types of cylinders formed from left- and right-handed twist-bend helices stack into a 2D tetragonal lattice, diminishing the inversion domain wall. PMID:27511324

  20. Rheological properties of a reentrant nematic liquid crystal.

    Science.gov (United States)

    Ananthaiah, J; Rajeswari, M; Sastry, V S S; Dabrowski, R; Dhara, Surajit

    2012-07-01

    We report experimental studies on small angle light scattering (SALS), and rheodielectric and electrorheological properties of a binary mixture of octyloxy cyanobiphenyl and hexyloxy cyanobiphenyl liquid crystals. The mixture exhibits nematic (N) to smectic-A (SmA) phase transitions, and then again to a reentrant nematic (N(R)) phase transition. Rapid shear thinning in the quenched samples in the low shear rate region in the N and SmA phases observed from SALS experiments is attributed to the realignment of the director within the domains. The domains are elongated along the shear direction at higher shear rates. The temperature variation of the effective viscosity and static dielectric constant reveals the changes in the director orientation across N-SmA-N(R) phase transitions. At a steady shear rate the effective viscosity increases with the electric field in all the phases and saturates at much higher fields. It also exhibits two anomalous peaks across N-SmA-N(R) phase transitions beyond a particular field. The shear modulus of the SmA phase in an intermediate field is significantly larger than that measured at both low and high fields. This enhanced viscoelasticity of the SmA phase is argued to originate from the increased dislocation density. PMID:23005440

  1. Rheological properties of a reentrant nematic liquid crystal

    Science.gov (United States)

    Ananthaiah, J.; Rajeswari, M.; Sastry, V. S. S.; Dabrowski, R.; Dhara, Surajit

    2012-07-01

    We report experimental studies on small angle light scattering (SALS), and rheodielectric and electrorheological properties of a binary mixture of octyloxy cyanobiphenyl and hexyloxy cyanobiphenyl liquid crystals. The mixture exhibits nematic (N) to smectic-A (SmA) phase transitions, and then again to a reentrant nematic (NR) phase transition. Rapid shear thinning in the quenched samples in the low shear rate region in the N and SmA phases observed from SALS experiments is attributed to the realignment of the director within the domains. The domains are elongated along the shear direction at higher shear rates. The temperature variation of the effective viscosity and static dielectric constant reveals the changes in the director orientation across N-SmA-NR phase transitions. At a steady shear rate the effective viscosity increases with the electric field in all the phases and saturates at much higher fields. It also exhibits two anomalous peaks across N-SmA-NR phase transitions beyond a particular field. The shear modulus of the SmA phase in an intermediate field is significantly larger than that measured at both low and high fields. This enhanced viscoelasticity of the SmA phase is argued to originate from the increased dislocation density.

  2. Report on twisted nematic and supertwisted nematic device characterization program

    Science.gov (United States)

    1995-01-01

    In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.

  3. Dispersive shock waves in nematic liquid crystals

    Science.gov (United States)

    Smyth, Noel F.

    2016-10-01

    The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In the experimental parameter regime for which the nematic response is highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between full numerical solutions of the governing nematicon equations and these analytical solutions is found.

  4. Regular and chaotic states in a local map description of sheared nematic liquid crystals.

    Science.gov (United States)

    Kamil, S M; Sinha, Sudeshna; Menon, Gautam I

    2008-07-01

    We propose and study a local map capable of describing the full variety of dynamical states, ranging from regular to chaotic, obtained when a nematic liquid crystal is subjected to a steady shear flow. The map is formulated in terms of a quaternion parametrization of rotations of the local frame described by the axes of the nematic director, subdirector, and the joint normal to these, with two additional scalars describing the strength of ordering. Our model yields kayaking, wagging, tumbling, aligned, and coexistence states, accommodated in a phase diagram which closely resembles phase diagrams obtained using representations of the dynamics which are based on ordinary differential equations. We also study the behavior of the map under periodic perturbations of the shear rate. Such a map can serve as a building block for the construction of lattice models of the complex spatiotemporal states predicted for sheared nematics. PMID:18763972

  5. Fast switching from isotropic liquids to nematic liquid crystals: rotaxanes as smart fluids.

    Science.gov (United States)

    He, Hao; Sevick, Edith M; Williams, David R M

    2015-11-28

    We examine a solution of rod-like piston-rotaxanes, which can switch their length by external excitation (for example optically) from a short state of length L to a long state of length qL. We show that this solution can exhibit a number of different behaviours. In particular it can rapidly switch from an isotropic to a nematic liquid crystalline state. There is a minimum ratio q* = 1.13 for which transitions from a pure isotropic state to a pure nematic state are possible. We present a phase-switching diagram, which gives the six possible behaviours for this system. It turns out that a large fraction of the phase switching diagram is occupied by the transition from a pure isotropic to a pure nematic state. PMID:26419821

  6. Electro-osmosis in nematic liquid crystals

    Science.gov (United States)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  7. Evidence for a jacketed nematic polymer

    Science.gov (United States)

    Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.

    1991-05-01

    The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.

  8. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  9. Ferromagnetic nanoparticles suspensions in twisted nematic

    Science.gov (United States)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  10. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  11. Patterns and Defects in Nematic Elastomers

    Science.gov (United States)

    Ye, Fangfu; Lubensky, Tom

    2006-03-01

    Nematic elastomers are materials that combine the orientational properties of nematic liquid crystals with the elastic properties of rubber. Ideal nematic elastomers, formed via a spontaneous symmetry breaking transition from the isotropic rubber state, exhibit soft elasticity in which one of the five elastic moduli of a uniaxial elastic medium vanishes. Monodomain samples crosslinked under imposed strain exhibit semi-soft elasticity in which that elastic modulus is small but nonzero. Applying linear stability analysis to the semi-soft elastic energy, we investigate two phenomena observed in experiments on nematic elastomers: (1) the formation, in experiments by Bob Meyer at Brandeis, of periodic modulations of the nematic director and elastic displacement (stripes) in cells subjected to a normal electric field in which the direction of stripe normals is at an oblique angle to the original nematic director and (2) the formation of +1 disclination defects at the surface of nanotube gel films [Islam, M. F., Nobili, M., Ye, Fangfu , Lubensky, T. C. and Yodh, A. G. , Phys. Rev. Lett . 95, 148301/1-4 (2005)].

  12. Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material

    Science.gov (United States)

    Vimal, T.; Singh, D. P.; Gupta, S. K.; Pandey, S.; Agrahari, K.; Manohar, R.

    2016-06-01

    We report the thermal and spectroscopic analysis of the carbon nanotubes (CNTs)-doped nematic liquid crystal (NLC) material. The CNTs have been oriented in the p-ethoxybenzylidene p-butylaniline NLC. The thermal study of the CNTs doped nematic mixtures shows a significant decrease in the isotropic to nematic phase transition temperature. However higher doping concentration of CNTs has led to the further increase in transition temperature. The UV-Visible spectroscopy has been attempted on the CNTs/NLC mixtures at room temperature. The investigated NLC present one absorption band corresponding to π-π* electronic transition. A red shift of λmax with the increasing concentration of CNTs in the mixture has been observed. The band gap of NLC has been found to decrease after the doping of CNTs. The absorbance was measured for the UV light, polarized parallel and perpendicular to the LC director in the planar aligned cell.

  13. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces.

    Science.gov (United States)

    Wei, Wei-Shao; Gharbi, Mohamed Amine; Lohr, Matthew A; Still, Tim; Gratale, Matthew D; Lubensky, T C; Stebe, Kathleen J; Yodh, A G

    2016-05-25

    We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition. PMID:27109759

  14. Structural stability and theoretical strength of Cu crystal under equal biaxial loading

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhong-Liang Lin; Yan Zhang; Vincent Ji

    2010-02-01

    Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.

  15. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  16. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  17. Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    Science.gov (United States)

    Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M.; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.

    2007-09-01

    The α-β magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an α-β phase coexistence and, more importantly, for the stabilization of the ferromagnetic α phase at a higher temperature than in the bulk. We explain the premature appearance of the β phase at 275 K and the persistence of the ferromagnetic α phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.

  18. Origin of Electronic Nematicity in the Iron Pnictide NaFe1-xCoxAs Superconductor

    Science.gov (United States)

    Thorsmolle, Verner; Zhang, Wei-Lu; Zhang, Chenglin; Carr, Scott; Dai, Pengcheng; Blumberg, Girsh

    2014-03-01

    Doped iron pnictides present a complex phase diagram with superconductivity in close proximity to antiferromagnetic and structural transitions (ST). In addition to these phases, an electronic nematic phase has been suggested to be associated with the tetragonal-to-orthorhombic transition at TS. Electronic nematicity breaks C4 rotational symmetry and is believed to be the driving force behind the ST. However, at present, the main interaction behind electronic nematicity and nematic fluctuations remain unexplained. Using electronic Raman spectroscopy we show nematic charge fluctuations in the XY symmetry channel to follow a Curie-Weiss-like temperature dependence extending over a ~200 K range above TS and in the entire phase diagram including the superconducting phase in NaFe1-xCoxAs (0 law two-level system corresponding to the dxz and dyz Fe-orbitals. VKT and GB acknowledge support by NSF DMR-1104884 and by U.S. DOE, BES, Award DE-SC0005463. CZ, SVC and PD acknowledge support by U.S. DOE, BES, Contract DE-FG02-05ER46202.

  19. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard;

    2016-01-01

    . Through further WAXS analysis it was found that the SEQ biaxial strain yields larger interplanar spacing and distorted crystals and looser packing of chains. However, this does not influence the mechanical properties negatively. A loss of orientation in SEQ biaxial strained samples at high degrees...

  20. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.;

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  4. Orbital nematic order and interplay with magnetism in the two-orbital Hubbard model

    International Nuclear Information System (INIS)

    Motivated by the recent angle-resolved photoemission spectroscopy (ARPES) on FeSe and iron pnictide families of iron-based superconductors, we have studied the orbital nematic order and its interplay with antiferromagnetism within the two-orbital Hubbard model. We used random phase approximation (RPA) to calculate the dependence of the orbital and magnetic susceptibilities on the strength of interactions and electron density (doping). To account for strong electron correlations not captured by RPA, we further employed non-perturbative variational cluster approximation (VCA) capable of capturing symmetry broken magnetic and orbitally ordered phases. Both approaches show that the electron and hole doping affect the two orders differently. While hole doping tends to suppress both magnetism and orbital ordering, the electron doping suppresses magnetism faster. Crucially, we find a realistic parameter regime for moderate electron doping that stabilizes orbital nematicity in the absence of long-range antiferromagnetic order. This is reminiscent of the non-magnetic orbital nematic phase observed recently in FeSe and a number of iron pnictide materials and raises the possibility that at least in some cases, the observed electronic nematicity may be primarily due to orbital rather than magnetic fluctuations. (paper)

  5. Simulation of electrically controlled nematic liquid crystal Rochon prism

    Science.gov (United States)

    Buczkowska, M.; Derfel, G.

    2016-09-01

    Operation of an electrically controlled beam steering device based on Rochon prism made by use of nematic liquid crystal is modelled numerically. Deflection angles and angular distribution of light intensity in the deflected beam are calculated. Dynamics of the device is studied. Advantage of application of dual frequency nematic liquid crystal is demonstrated. Role of flexoelectric properties of the nematic is analyzed.

  6. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles.

    Science.gov (United States)

    Qi, Hao; Hegmann, Torsten

    2009-08-01

    The ability of alkylthiol capped gold nanoparticles (Au NPs) to tune, alter, and reverse the alignment of nematic liquid crystals (LCs) has been investigated in detail. Adjusting the concentration of the suspended Au NPs in the nematic LC host, optimizing the sample preparation protocol, or providing different sample substrates (untreated glass slides, rubbed polyimide-coated LC test cell, or ITO-coated glass slides) results in several LC alignment scenarios (modes) including vertical alignment, planar alignment, and a thermally controlled alignment switch between these two alignment modes. The latter thermal switch between planar and homeotropic alignment was observed particularly for lower concentrations (i.e., around 1 to 2 wt %) of suspended NPs in the size regime of 1.5-2 nm and was found to be concentration-dependent and thermally reversible. Different scenarios are discussed that could explain these induced alignment modes. In one scenario, the NP-induced alignment is related to the temperature-dependent change of the order parameter, S, of the nematic phase (ordering in the bulk). In the second scenario, a change of the ordering of the nematic molecules around the NPs that reside at the interfaces is described. We also started to test spin coating as an alternative way of preparing nematic thin films with well-separated Au NPs on the substrate and found this to be a possible method for manufacturing of future NP-doped LC devices, as this method produced evenly distributed NPs on glass substrates. Together the presented findings continue to pave the way for LC display-related applications of Au NP-doped nematic LCs and provide insights for N-LC sensor applications. PMID:20355789

  7. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  8. Nematic antiferromagnetic states in bulk FeSe

    Science.gov (United States)

    Liu, Kai; Lu, Zhong-Yi; Xiang, Tao

    2016-05-01

    The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.

  9. Geodesic defect anchoring on nematic shells.

    Science.gov (United States)

    Mirantsev, Leonid V; Sonnet, André M; Virga, Epifanio G

    2012-08-01

    Nematic shells are colloidal particles coated with nematic liquid crystal molecules, which may freely glide and rotate on the colloid's surface while keeping their long axis on the local tangent plane. Molecular dynamics simulations on a nanoscopic spherical shell indicate that under appropriate adhesion conditions for the molecules on the equator, the equilibrium nematic texture exhibits at each pole a pair of +1/2 defects so close to one another to be treated as one +1 defect. Spirals connect the polar defects, though the continuum limit of the interaction potential would not feature any elastic anisotropy. A molecular averaging justifies an anchoring defect energy that feels the geodesics emanating from the defect. All our observations are explained by such a geodesic anchoring, which vanishes on flat manifolds. PMID:23005713

  10. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  11. Quasiparticle scattering interference in iron pnictides: A probe of the origin of nematicity

    Science.gov (United States)

    Zhang, Hai-Yang; Li, Jian-Xin

    2016-08-01

    In this paper, we investigate the quasiparticle scattering interference (QPI) in the nematic phase of iron pnictides, based on the magnetic and orbital scenarios of nematicity, respectively. In the spin density wave (SDW) state, the QPI pattern exhibits a dimer structure in the energy region of the SDW gap, with its orientation along the ferromagnetic direction of the SDW order. When the energy is increased to be near the Fermi level, it exhibits two sets of dimers along the same direction. The dimer structure of the QPI patterns persists in the magnetically driven nematic phase, although the two dimers tend to merge together with energies closing to the Fermi level. While in the orbital scenario, the QPI patterns exhibit a dimer structure in a wide energy region. It undergoes a π /2 rotation with the increasing of energy, which is associated with the inequivalent energies of the two Dirac nodes induced by the orbital order. These distinct features may be used to probe or distinguish two kinds of scenarios of the nematicity.

  12. Direct and inverted nematic dispersions for soft matter photonics.

    Science.gov (United States)

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  13. Direct and inverted nematic dispersions for soft matter photonics

    Energy Technology Data Exchange (ETDEWEB)

    Musevic, I; Skarabot, M; Humar, M, E-mail: igor.musevic@ijs.si [Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana (Slovenia)

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed. (topical review)

  14. Tensile Property of Bi-axial Warp Knitted Structure

    Institute of Scientific and Technical Information of China (English)

    沈为

    2003-01-01

    The tensile property of bi-axial warp knitted fabrics is tested and compared with that of the plain weave fabric. The results show that there are obvious differences between the tensile property of a bi-axial warp knitted fabric and that of a plain weave fabric.The former can give fuller play to the property of a high modulus yarn than the latter. The tensile strength of a bi-axial warp knitted fabric is linear with the number of yarns in the direction of force.

  15. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  16. Nematic world crystal model of gravity explaining absence of torsion in spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, H.; Zaanen, J

    2004-04-26

    We attribute the gravitational interaction between sources of curvature to the world being a crystal which has undergone a quantum phase transition to a nematic phase by a condensation of dislocations. The model explains why spacetime has no observable torsion and predicts the existence of curvature sources in the form of world sheets, albeit with different high-energy properties than those of string models.

  17. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  18. New theories for smectic and nematic liquid crystalline polymers

    International Nuclear Information System (INIS)

    A summary of results from new statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with LCPs is presented. Thermodynamic and molecular ordering properties (including odd-even effects) have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories have been used to design new LCPs and new solvents and to predict and explain properties

  19. Structure and properties of "nematically ordered" aerogels

    Science.gov (United States)

    Asadchikov, V. E.; Askhadullin, R. Sh.; Volkov, V. V.; Dmitriev, V. V.; Kitaeva, N. K.; Martynov, P. N.; Osipov, A. A.; Senin, A. A.; Soldatov, A. A.; Chekrygina, D. I.; Yudin, A. N.

    2015-04-01

    The microstructure, specific area, and mechanical properties of various samples of "nematically ordered" aerogels whose strands are almost parallel to each other at macroscopic distances have been studied. The strong anisotropy of such aerogels distinguishes them from standard aerogels, which are synthesized by solgel technology, and opens new possibilities for physical experiments.

  20. Topology and geometry of nematic braids

    Energy Technology Data Exchange (ETDEWEB)

    Čopar, Simon, E-mail: simon.copar@fmf.uni-lj.si

    2014-05-01

    Topological analysis of disclinations in nematic liquid crystals is an interesting and diverse topic that goes from strict mathematical theorems to applications in elaborate systems found in experiments and numerical simulations. The theory of nematic disclinations is shown from both the geometric and topological perspectives. Entangled disclination line networks are analyzed based on their shape and the behavior of their cross section. Methods of differential geometry are applied to derive topological results from reduced geometric information. For nematic braids, systems of −1/2 disclination loops, created by inclusion of homeotropic colloidal particles, a formalism of rewiring is constructed, allowing comparison and construction of an entire set of different conformations. The disclination lines are described as ribbons and a new topological invariant, the self-linking number, is introduced. The analysis is generalized from a constant −1/2 profile to general profile variations, while retaining the geometric treatment. The workings of presented topological statements are demonstrated on simple models of entangled nematic colloids, estimating the margins of theoretical assumptions made in the formal derivations, and reviewing the behavior of the disclinations not only under topological, but also under free-energy driven constraints.

  1. Near-infrared dichroism of a mesogenic transition metal complex and its solubility in nematic hosts

    International Nuclear Information System (INIS)

    A transition metal complex possessing the nematic phase, bis (p-n-butylstyryl-1, 2-dithiolato) nickel, was synthesized and its optical properties and solubility in the nematic hosts K15 and MBBA were investigated. The metal complex displayed a high solubility in both host materials (up to 10% wt/wt) and a strong near-infrared absorption band centered at 860 nm. A blocking extinction of greater than OD = 3 was obtained with a 100 micron pathlength of a 0.5% wt/wt mixture of the nematic metal complex in K15, suggesting its usefulness for passive blocking of near infrared radiation. A 24 micron thick, homogeneously aligned guest-host cell containing a 1% wt/wt mixture of the metal complex in K15 possessed a contrast ratio of nearly 5:1 and a blocking extinction of OD = 3.5 at 860 nm, demonstrating for the first time the existence of near-infrared dichroism in this class of materials. The solubility and blocking extinction of the mesogenic metal complex in K15 was considerably superior to the non-mesogenic near ir laser dye bis(dimethylaminodithiobenzil) nickel in the same host. An interaction of the nematic metal complex in mixtures with MBBA which resulted in the creation of a new absorption band at 1050 nm was also observed. 21 refs., 9 figs

  2. Molecular theory of nematic liquid crystals viewed as effect of collective excitation in ferromagnetic systems

    Institute of Scientific and Technical Information of China (English)

    Liu Jian-Jun; Shen Man; Liu Xiao-Jing; Yang Guo-Chen

    2006-01-01

    We develop a microscopic theory of the nematic phase with consideration of the effect of the collective excitation on properties of nematic liquid crystals. The model is based on the Heisenberg's exchange model of the ferromagnetic materials. Since the orientation of the molecular long axis and the angular momentum of the molecule rotating around its long axis have the same direction, operators can be introduced to research the nematic liquid crystals. Using the lattice model and the Holstein-Primakoff transformation, the Hamiltonian of the system can be obtained, which has the same form as that of the ferromagnetic substance. The relation between the order parameter and reduced temperature can be gotten. It is in good agreement with the experimental results in the low temperature region, the accordance is better than that of the molecular field theory and the computer simulation. In high temperature region close to the transition point, by considering the effect of the higher-order terms in the Hamiltonian, theoretical prediction is in better agreement with the experiment. That indicates the many-body effect is important to nematic liquid crystals.

  3. Reverse loading tests of steel tube under biaxial stress states

    OpenAIRE

    Yanaga, Daisaku; Kuroda, Kouichi; Yaita, Satoshi; Kuwabara, Toshihiko

    2015-01-01

    Biaxial loading and reverse loading tests were performed using seamless carbon steel tubes. Biaxial stress components in the axial and circumferential directions were applied to the tubular specimens using a servo-controlled multiaxial tube expansion testing machine developed by Kuwabara and Sugawara (2013). The tubular specimens were loaded under linear tensile stress paths. Contours of plastic work were measured in the principal stress space, and the differential hardening (DH) behavior was...

  4. Pseudo-molecular approach for the elastic constants of nematic liquid crystals interacting via anisotropic dispersion forces

    Energy Technology Data Exchange (ETDEWEB)

    Simonário, P.S., E-mail: simonario@gmail.com [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Freire, F.C.M.; Evangelista, L.R. [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Teixeira-Souza, R.T. [Universidade Tecnológica Federal do Paraná – Câmpus Apucarana, Rua Marcílio Dias, 635, 86812-460 Apucarana, Paraná (Brazil)

    2014-01-17

    The bulk and the surface-like elastic constants of a nematic liquid crystal are calculated for an ensemble of particles interacting via anisotropic dispersion forces using the pseudo-molecular method. The geometrical anisotropy of the molecules is also taken into account in the calculations by choosing a molecular volume of ellipsoidal shape. Analytical expressions for the elastic constants are obtained as a function of the eccentricity in the molecular volume shape. The method allows one to explore the dependence on the molecular orientation with respect to the intermolecular vector by analyzing the magnitude and the behaviour of macroscopic elastic parameters defining the nematic phase.

  5. Vortex and disclination structures in a nematic-superconductor state

    OpenAIRE

    Barci, Daniel G.; Clarim, Rafael V.; Júnior, Nei L. Silva

    2016-01-01

    The nematic-superconductor state, an example of a quantum liquid crystal that breaks gauge as well as rotation invariance, was conjecture to exist in the pseudogap regime of the cuprates high $T_c$ superconductors. We present a detailed study of the structure of topological defects supported by the nematic-superconductor state. By means of a Ginzburg-Landau approach, we study the main relevant imprints on the superconductor order parameter caused by nematicity. Due to a geometrical coupling, ...

  6. Graphene flakes under controlled biaxial deformation

    Science.gov (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Parthenios, John; Kalosakas, George; Papagelis, Konstantinos; Galiotis, Costas

    2015-12-01

    Thin membranes, such as monolayer graphene of monoatomic thickness, are bound to exhibit lateral buckling under uniaxial tensile loading that impairs its mechanical behaviour. In this work, we have developed an experimental device to subject 2D materials to controlled equibiaxial strain on supported beams that can be flexed up or down to subject the material to either compression or tension, respectively. Using strain gauges in tandem with Raman spectroscopy measurements, we monitor the G and 2D phonon properties of graphene under biaxial strain and thus extract important information about the uptake of stress under these conditions. The experimental shift over strain for the G and 2D Raman peaks were found to be in the range of 62.3 ± 5 cm-1/%, and 148.2 ± 6 cm-1/%, respectively, for monolayer but also bilayer graphenes. The corresponding Grüneisen parameters for the G and 2D peaks were found to be between 1.97 ± 0.15 and 2.86 ± 0.12, respectively. These values agree reasonably well with those obtained from small-strain bubble-type experiments. The results presented are also backed up by classical and ab initio molecular dynamics simulations and excellent agreement of Γ-E2g shifts with strains and the Grüneisen parameter was observed.

  7. 用液晶与聚合物混合材料的各向异性相分离制备快速响应液晶盒%Fast Switching Nematic Liquid Crystal Cell Fabricated by Anisotropic Phase-separation From a Liquid Crystal and Polymer Composite Material

    Institute of Scientific and Technical Information of China (English)

    王庆兵

    2004-01-01

    展示一种新型含有超薄液晶层( 小于1 μm) 的快速响应液晶盒, 总的响应时间( τon+τoff) 可以达到1.3 ms.这种液晶器件可以通过对一种液晶和聚合物混合材料的各向异性相分离制备获得. 偏光显微镜和扫描电子显微镜的观测结果确认了一种液晶/聚合物的双层膜机构的形成. 实验结果表明液晶层的厚度可以简单地通过改变液晶在混合材料中的含量来精确调节.这种制备方法可以用来制作含有超薄液晶层的快速显示液晶器件用于视频显示方面的应用.%It is demonstrated that a nematic liquid crystal (LC) cell containing a very thin (《1 μm) LC film can perform very fast switching, with a total response time as fast as 1.3 ms. Such type of LC devices can be prepared by a photo-induced anisotropic phase-separation from a nematic LC and polymer composite material. The formation of the LC/polymer bi-layer structure in the cell after the anisotropic phase-separation was confirmed by employing polarized light microscope and scanning electron microscope. It is also found that LC layer thickness can be fine tuned by adjusting the LC concentration in the composite mixture. Such a technique can be used to fabricate LC devices containing very thin LC film and performing fast switching for TV and Video applications where fast response time is required.

  8. Hard Spherocylinders of Two Different Lengths as a Model System of a Nematic Liquid Crystal on an Anisotropic Substrate

    Science.gov (United States)

    Koda, Tomonori; Hyodo, Yosuke; Momoi, Yuichi; Kwak, Musun; Kang, Dongwoo; Choi, Youngseok; Nishioka, Akihiro; Haba, Osamu; Yonetake, Koichiro

    2016-02-01

    In this article, we describe the effects of an anisotropic substrate on the alignment of a nematic liquid crystal. We examine how the substrate affects the alignment of a nematic liquid crystal by Monte Carlo simulation. The liquid crystal on a substrate was described by the phase separation of liquid crystal molecules and substrate molecules, both of which were modeled by hard particles. We used hard rods to represent both the liquid crystal and the substrate. The length of the hard rods representing the substrate was adjusted to represent the degree of substrate anisotropy. The results show that the nematic alignment could either be reinforced or weakened, depending on the length of the substrate rods. Mean field theory is used to analyze the simulation results. We confirmed that the distance over which the substrate affects the bulk liquid crystal is about 3 nm for the present hard-rod-based model.

  9. Nematic-like organization of magnetic mesogen-hybridized nanoparticles.

    Science.gov (United States)

    Demortière, Arnaud; Buathong, Saïwan; Pichon, Benoît P; Panissod, Pierre; Guillon, Daniel; Bégin-Colin, Sylvie; Donnio, Bertrand

    2010-06-21

    A fluid nematic-like phase is induced in monodisperse iron oxide nanoparticles with a diameter of 3.3 nm. This supramolecular arrangement is governed by the covalent functionalization of the nanoparticle surface with cyanobiphenyl-based ligands as mesogenic promoters. The design and synthesis of these hybrid materials and the study of their mesogenic properties are reported. In addition, the modifications of the magnetic properties of the hybridized nanoparticles are investigated as a function of the different grafted ligands. Owing to the rather large interparticular distances (about 7 nm), the dipolar interaction between nanoparticles is shown to play only a minor role. Conversely, the surface magnetic anisotropy of the particles is significantly affected by the surface derivatization. PMID:20486228

  10. Nematic order by elastic interactions and cellular rigidity sensing

    Science.gov (United States)

    Friedrich, B. M.; Safran, S. A.

    2011-01-01

    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early nematic alignment of short stress fibers in non-motile, adhered cells. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which orientational, nematic order of stress fibers depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.

  11. Phenomenological Theory of Isotropic-Genesis Nematic Elastomers

    Science.gov (United States)

    Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.

    2012-06-01

    We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.

  12. Transmittance Fluctuation from Nearly Extinct Nematic Cells

    Science.gov (United States)

    Sumiyoshi, Ken

    2010-04-01

    By introducing geometrical optics approximation (GOA) solutions to a nearly extinct homogeneous nematic director, the effects of assembly misalignment and director fluctuation on light leakage transmittance are studied. Transmittance expressions including fluctuation swing are obtained for three misoriented cases: misaligned homogeneous case, misaligned analyzer case, and mistwisted nematic case. Except for the misaligned homogeneous case with second-order fluctuation, all the other expressions have a linear contribution caused by their own misorientation. From these results, the transmittance variance from fluctuation at a misaligned situation is more enhanced than that in the extinction situation. After introducing thermal average statistics, expressions for the average and variance of transmittance with fluctuation are given. A numerical estimation for these expressions shows that in the misaligned homogeneous case by 1°, the standard deviation of transmittance is 20% of its average.

  13. Electrically controlled dispersion in a nematic cell

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Carlos I. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-360, 04510 Mexico, D.F. (Mexico)]. E-mail: cmendoza@iim.unam.mx; Olivares, J.A. [Centro de Investigacion en Polimeros, COMEX, Blvd. M. Avila Camacho 138, PH1 y 2, Lomas de Chapultepec 11560, Mexico, D.F. (Mexico); Reyes, J.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico, D.F. (Mexico)

    2007-01-01

    In this work, we show theoretically how the trajectories of a propagating optical beam traveling in a planar-homeotropic hybrid nematic crystal cell depend on the wavelength of the optical beam. We apply a uniform electric field perpendicular to the cell to modify these trajectories. The influence of both, the electric field intensity and the refraction index dependence on the wavelength, give rise to an electrically tuned dispersion that may be useful for practical applications.

  14. Free surface dynamics of nematic liquid crystal

    Science.gov (United States)

    Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng

    2014-11-01

    Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.

  15. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t1/10-an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼tα with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  16. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/f1=-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  17. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    OpenAIRE

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as ...

  18. Director tumbling of nematic wormlike micelles under shear: time-resolved rheo-NMR experiments

    International Nuclear Information System (INIS)

    Nematic liquid crystals show a complex flow behavior due to the coupling between orientation and flow. Some materials show a stable director orientation in steady shear flow (flow aligning), while for others no stable director orientation exists (tumbling). Director tumbling gives rise to oscillations of shear and normal stresses in rheological experiments and can be detected by optical methods, for example by microscopy or birefringence measurements. We have used deuterium NMR spectroscopy to observe shear-induced director orientations. In the lyotropic system cetylpyridinium chloride/hexanol/brine, which forms a nematic phase of wormlike micelles, time-resolved observations of the director orientation by means of deuterium NMR spectroscopy of D2O have been possible for the first time. The time-dependence of the director orientations in both shear start-up and flow-reversal experiments will be presented. (orig.)

  19. Regular and Chaotic Flow Behavior and Orientational Dynamics of Tumbling Nematics

    Science.gov (United States)

    Hess, S.; Heidenreich, S.; Ilg, P.; Kröger, M.

    2006-05-01

    We consider liquid crystalline polymers under plane Couette flow and investigate the influence of fluctuating shear rates on the orientational dynamics. With help of phase portraits and time evolution diagrams of the alignment tensor components, we discuss the effect of fluctuations on the flow-aligned, isotropic and periodic solutions. To explore the effect of fluctuations on the chaotic behavior we calculated the greatest Lyapunov exponent for different fluctuation strengths. We found that fluctuations of the shear rate in general have little effect on the dynamics of tumbling nematics. Further we present a new amended potential modeling the isotropic-to-nematic transition. In contrast to the Landau-de Gennes potential our potential has the advantage to restrict the order parameter to physically admissible values. In the end we present some results of the orientational dynamics for a spatially inhomogeneous system.

  20. ARTICLES: Orientation in Nematic Liquid Crystals Doped with Orange Dyes and Effect of Carbon Nanoparticles

    Science.gov (United States)

    Alicilar, Ahmet; Akkurt, Fatih; Kaya, Nihan

    2010-06-01

    Some properties of nematic liquid crystal E7 doped with two disperse orange dyes used together and effect of addition of carbon nanoparticles (single walled carbon nanotube or fullerene C60) on them were studied. Two dyes (disperse orange 11 and 13) having high solubility and order parameter were used as co-dopants. A notable increase in order parameter was obtained comparing to that of liquid crystal doped with single dye. When carbon nanoparticles were used as dopant, a decrease in order parameter was observed at low temperatures while it increased at high temperatures. When applied voltage changed, the order parameter abruptly increased in its threshold value and saturated in higher voltages as expected. An appreciable change in textures was not observed with addition of dopants. This addition gave rise to an increase in nematic-isotropic phase transition temperatures compared with that of pure liquid crystal.

  1. Nematic-field-driven positioning of particles in liquid crystal droplets.

    Science.gov (United States)

    Whitmer, Jonathan K; Wang, Xiaoguang; Mondiot, Frederic; Miller, Daniel S; Abbott, Nicholas L; de Pablo, Juan J

    2013-11-27

    Common nematic oils, such as 5CB, experience planar anchoring at aqueous interfaces. When these oils are emulsified, this anchoring preference and the resulting topological constraints lead to the formation of droplets that exhibit one or two point defects within the nematic phase. Here, we explore the interactions of adsorbed particles at the aqueous interface through a combination of experiments and coarse-grained modeling, and demonstrate that surface-active particles, driven by elastic forces in the droplet, readily localize to these defect regions in a programmable manner. When droplets include two nanoparticles, these preferentially segregate to the two poles, thereby forming highly regular dipolar structures that could serve for hierarchical assembly of functional structures. Addition of sufficient concentrations of surfactant changes the interior morphology of the droplet, but pins defects to the interface, resulting in aggregation of the two particles.

  2. Light-scattering study of a polymer nematic liquid crystal

    Science.gov (United States)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  3. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  4. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  5. A shear stabilized biaxial texture in a lamellar block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Polis, D.L.; Pinheiro, B.S.; Winey, K.I.; Lakis, R.E. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-12-31

    Block copolymers spontaneously self-assemble into a variety of morphologies. Recent studies have produced a biaxial texture in poly(styrene-b-ethylene propylene), SEP, diblock copolymers by applying oscillatory shear. This biaxial texture consists of {open_quotes}parallel{close_quotes} lamellae (normal to lamellae aligned perpendicular to shearing surfaces) and {open_quotes}transverse{close_quotes} lamellae (normal to lamellae aligned parallel to shearing direction) according to small-angle X-ray scattering, SAXS. The present study has determined how these two populations of lamellae are arranged and how they relax upon quiescent annealing by examining the superstructure via FE-SEM.

  6. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Science.gov (United States)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  7. Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    OpenAIRE

    Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.

    2007-01-01

    The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We ...

  8. Biaxial stresses, surface roughness and microstructure in evaporated TiO2 films with different deposition geometries

    International Nuclear Information System (INIS)

    The residual stresses, surface roughness and microstructure in titanium oxide films prepared by electron-beam evaporation and deposited with different geometries were investigated, with particular focus on the in-plane anisotropy of the biaxial stresses and microstructures. Thin films were deposited with various deposition angles on B270 glass substrates and silicon wafers. Two different types of deposition geometries were studied. The residual stress in the thin films was examined by a phase-shifting Twyman-Green interferometer. The optical constants, biaxial stress and surface roughness were found to be related to the evolution of the anisotropic microstructures in the films. The results revealed that the anisotropic stresses that developed in the evaporated titanium oxide films were dependent upon the deposition geometry and microstructure of the films.

  9. Thermal diode made by nematic liquid crystal

    Science.gov (United States)

    Melo, Djair; Fernandes, Ivna; Moraes, Fernando; Fumeron, Sébastien; Pereira, Erms

    2016-09-01

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.

  10. Carbon Nanoparticles in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    S.Eren San; Mustafa Okutan; O(g)uz K(o)ysal; Yusuf Yer-li

    2008-01-01

    Fullerene G60,C70,single-walled and multi-walled carbon nanotubes and graphene sheets are doped to nematic liquid crystal(LC)host in the same percentage.Planar samples of these mixtures are prepared and our measurements constitute an optimization basis for possible applications.Fullerene balls are found to be the best compatible material for optical aims and reorientation of LC molecules,while the carbon nanotubes experience some reorientation possibility in LC media and graphene layers are good barriers to preserve reorientation.

  11. The effects of biaxial loading on the fracture characteristics of several engineering materials

    Science.gov (United States)

    Jones, D. L.; Poulose, P. K.; Liebowitz, H.

    1986-01-01

    Using the George Washington University biaxial test system, a static fracture toughness study of two polymers (PMMA and PVC) and three aluminum alloys was performed for several variations in specimen geometry. Photoelastic experiments indicate that the applied load biaxiality has a very strong influence on the size and shape of the crack-tip stress field, and fracture toughness values for both polymers were seen to decrease with increasing load biaxiality. The load biaxiality was also found to have a strong influence on the crack growth direction in PMMA and a negligible influence on the PVC. The 7075-T6 aluminum toughness values increased with biaxiality, while intermediate peak toughness values were noted at a 0.5 biaxiality ratio for the more ductile 2024-T3 and 6061-T4 alloys. Fracture toughnesses at the highest biaxiality ratios were found to be equal to the uniaxial results.

  12. Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics

    Science.gov (United States)

    Skaldin, O. A.; Delev, V. A.; Shikhovtseva, E. S.; Lebedev, Yu. A.; Batyrshin, E. S.

    2015-12-01

    The dynamics of the nonsingular defects in the periodic structures of the rolls that appear in π/2-twisted nematic liquid crystals during electroconvection is studied experimentally and theoretically. The roll structures in twisted nematics are characterized by the presence of an axial component of the hydrodynamic flow velocity with opposite directions in neighboring rolls. The critical oscillation frequency of structural defects is quantitatively estimated using a nonlinear equation of motion for roll displacements. It is found that a pair of edge dislocations with topological charges of +1 and-1 nucleates and annihilates periodically during the oscillations of a defect with a nonsingular core. Oscillating defects with a zero topological charge is shown to correspond to the solution of the sine-Gordon equation in the form of standing breathers. Asymmetry is detected in the full oscillation cycle of a breather defect, and it is related to the twist symmetry of a twist nematic. This asymmetry is taken into account as effective anisotropic friction. The behavior of a breather on a trap, namely, a classical defect (dislocation), is investigated. Dislocation motion is shown to be anisotropic in the oscillation cycle: in one direction, a dislocation moves regularly; in the second phase, the transition into the initial state proceeds via the decay of the breather into a dipole pair of dislocations of opposite signs followed by their annihilation.

  13. Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics

    International Nuclear Information System (INIS)

    The dynamics of the nonsingular defects in the periodic structures of the rolls that appear in π/2-twisted nematic liquid crystals during electroconvection is studied experimentally and theoretically. The roll structures in twisted nematics are characterized by the presence of an axial component of the hydrodynamic flow velocity with opposite directions in neighboring rolls. The critical oscillation frequency of structural defects is quantitatively estimated using a nonlinear equation of motion for roll displacements. It is found that a pair of edge dislocations with topological charges of +1 and–1 nucleates and annihilates periodically during the oscillations of a defect with a nonsingular core. Oscillating defects with a zero topological charge is shown to correspond to the solution of the sine-Gordon equation in the form of standing breathers. Asymmetry is detected in the full oscillation cycle of a breather defect, and it is related to the twist symmetry of a twist nematic. This asymmetry is taken into account as effective anisotropic friction. The behavior of a breather on a trap, namely, a classical defect (dislocation), is investigated. Dislocation motion is shown to be anisotropic in the oscillation cycle: in one direction, a dislocation moves regularly; in the second phase, the transition into the initial state proceeds via the decay of the breather into a dipole pair of dislocations of opposite signs followed by their annihilation

  14. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    Science.gov (United States)

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results. PMID:16906852

  15. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals

    International Nuclear Information System (INIS)

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results

  16. Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics

    Energy Technology Data Exchange (ETDEWEB)

    Skaldin, O. A.; Delev, V. A., E-mail: delev@anrb.ru; Shikhovtseva, E. S.; Lebedev, Yu. A.; Batyrshin, E. S. [Russian Academy of Sciences, Institute of Molecular and Crystal Physics, Ufa Research Center (Russian Federation)

    2015-12-15

    The dynamics of the nonsingular defects in the periodic structures of the rolls that appear in π/2-twisted nematic liquid crystals during electroconvection is studied experimentally and theoretically. The roll structures in twisted nematics are characterized by the presence of an axial component of the hydrodynamic flow velocity with opposite directions in neighboring rolls. The critical oscillation frequency of structural defects is quantitatively estimated using a nonlinear equation of motion for roll displacements. It is found that a pair of edge dislocations with topological charges of +1 and–1 nucleates and annihilates periodically during the oscillations of a defect with a nonsingular core. Oscillating defects with a zero topological charge is shown to correspond to the solution of the sine-Gordon equation in the form of standing breathers. Asymmetry is detected in the full oscillation cycle of a breather defect, and it is related to the twist symmetry of a twist nematic. This asymmetry is taken into account as effective anisotropic friction. The behavior of a breather on a trap, namely, a classical defect (dislocation), is investigated. Dislocation motion is shown to be anisotropic in the oscillation cycle: in one direction, a dislocation moves regularly; in the second phase, the transition into the initial state proceeds via the decay of the breather into a dipole pair of dislocations of opposite signs followed by their annihilation.

  17. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Science.gov (United States)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  18. A nematic gap in mixtures of smectics A1 and Ad

    OpenAIRE

    Czupryński, K.; Dabrowski, R.; J. Baran; Żywociński, A.; Przedmojski, J.

    1986-01-01

    The effect is tested of the smectic layer spacing ratio, r, on the phase diagram for the binary systems consisting of 80CB (smectic Ad) and one of the twelve compounds of the 5-n-alkyl-2-(4'-isothiocyanatophenyl) dioxane-1,3 homologous series (DBT compounds-smectics A1) has been studied The stability of the smectic phase in the mixture decreases with increasing r, and for r >> 1.4 a nematic gap separating the smectics A1 and Ad is observed The density, viscosity and scattering of X-rays as a ...

  19. Distortion and flow of nematics simulated by dissipative particle dynamics

    Science.gov (United States)

    Zhao, Tongyang; Wang, Xiaogong

    2014-05-01

    In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics.

  20. Particles and curvatures in nematic liquid crystals

    Science.gov (United States)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  1. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter.

    Science.gov (United States)

    Nastishin, Yu A; Liu, H; Schneider, T; Nazarenko, V; Vasyuta, R; Shiyanovskii, S V; Lavrentovich, O D

    2005-10-01

    We report on the optical properties of the nematic (N) phase formed by lyotropic chromonic liquid crystals (LCLCs) in well aligned planar samples. LCLCs belong to a broad class of materials formed by one-dimensional molecular self-assembly and are similar to other systems such as "living polymers" and "wormlike micelles." We study three water soluble LCLC forming materials: disodium chromoglycate, a derivative of indanthrone called Blue 27, and a derivative of perylene called Violet 20. The individual molecules have a planklike shape and assemble into rodlike aggregates that form the phase once the concentration exceeds about 0.1 M. The uniform surface alignment of the N phase is achieved by buffed polyimide layers. According to the light absorption anisotropy data, the molecular planes are on average perpendicular to the aggregate axes and thus to the nematic director. We determined the birefringence of these materials in the N and biphasic N-isotropic (I) regions and found it to be negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic low-molecular-weight nematic materials. In the absorbing materials Blue 27 and Violet 20, the wavelength dependence of birefringence is nonmonotonic because of the effect of anomalous dispersion near the absorption bands. We describe positive and negative tactoids formed as the nuclei of the new phase in the biphasic N-I region (which is wide in all three materials studied). Finally, we determined the scalar order parameter of the phase of Blue 27 and found it to be relatively high, in the range 0.72-0.79, which puts the finding into the domain of general validity of the Onsager model. However, the observed temperature dependence of the scalar order parameter points to the importance of factors not accounted for in the athermal Onsager model, such as interaggregate interactions and the temperature dependence of the aggregate length.

  2. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  3. The fine structure of the vortex-beams in the biaxial and biaxially-induced birefringent media caused by the conical diffraction

    CERN Document Server

    Fadeyeva, Tatyana; Anischenko, Pavel; Volyar, Alexander

    2011-01-01

    We consider the paraxial propagation of nondiffracting singular beams inside natural biaxial and biaxially-induced birefringent media in vicinity of one of the optical axes in terms of eigenmode vortex-beams, whose angular momentum does not change upon propagation. We have predicted a series of new optical effects in the natural biaxial crystals such as the stable propagation of vector singular beams bearing the coupled optical vortices with fractional topological charges, the conversion of the zero-order Bessel beam with a uniformly distributed linear polarization into the radially-, azimuthally- and spirally-polarized beams and the conversion of the space-variant linear polarization in the combined beam with coupled vortices. We have revealed that the field structure of the vortex-beams in the biaxially-induced crystals resembles that in the natural biaxial crystals and form the vector structure inherent in the conical diffraction. However, the mode beams in this case do not change the propagation direction...

  4. Apparent Viscosity of Active Nematics in Poiseuille Flow

    Science.gov (United States)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  5. Multi-Particle Collision Dynamics Algorithm for Nematic Fluids

    OpenAIRE

    Shendruk, Tyler N.; Yeomans, Julia M.

    2015-01-01

    Research on transport, self-assembly and defect dynamics within confined, flowing liquid crystals requires versatile and computationally efficient mesoscopic algorithms to account for fluctuating nematohydrodynamic interactions. We present a multi-particle collision dynamics (MPCD) based algorithm to simulate liquid-crystal hydrodynamic and director fields in two and three dimensions. The nematic-MPCD method is shown to successfully reproduce the features of a nematic liquid crystal, includin...

  6. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  7. Identification du comportement de composites en fatigue bi-axiale

    OpenAIRE

    Busca, Damien

    2014-01-01

    La connaissance du comportement de composites sous un état de contraintes multi-axial reste un enjeu majeur pour l’optimisation du dimensionnement des structures. La machine de fatigue bi-axiale présente au LGP permet de générer un état de contrainte bi-axial par l’utilisation d’éprouvettes cruciformes. La conception des éprouvettes reste un enjeu majeur pour les chercheurs pour répondre aux problèmes spécifiques liés aux matériaux composites. Un nouveau type d’éprouvette cruciforme en compos...

  8. Flexural rigidity of biaxially loaded reinforced concrete rectangular column sections

    Science.gov (United States)

    Resheidat, M.; Ghanma, M.; Sutton, C.; Chen, Wai-Fah

    1995-05-01

    An exact analysis is carried out utilizing the parabola-rectangle stress-strain curve for concrete and a typical idealized stress-strain curve for steel to develop the moment-curvature relationship for biaxially loaded reinforced concrete rectangular column sections. Based on that, the flexural rigidity EI of the section is determined at the yield curvature. A computer program is written by FORTRAN 77 to handle the required computations. The influence of material properties, the effect of steel ratios, and the impact of axial loads on the EI estimation were investigated. This study leads to the development of a new equation to estimate the flexural rigidity EI of reinforced concrete biaxially loaded rectangular columns in which these factors were considered. It is shown that the new equation stems from the actual behavior of the column. Therefore, it is recommended for general use in the design of slender columns.

  9. Analysis of Deformation Mechanisms Associated with Biaxially Oriented Polypropylene Films

    Science.gov (United States)

    Wang, Yong; Hsu, Shaw Ling

    1998-03-01

    Biaxially oriented samples can be prepared either by simultaneous or sequential deformation along two orthogonal directions. Generally speaking the orientation achieved in the plane of the film is independent of the method. In this study, we demonstrate that for sequential deformation, the degree of orientation achieved in the two orthogonal directions is dependent on initial sample morphology and deformation parameters. The achievable orientation is strongly dependent on the degree of crystallinity and initial crystallite dimensions. Samples containing small crystallites can achieve significantly higher orientation in the transverse direction (restretching step). The ultimate morphology is dictated by the temperature at which second drawing occurs. At lower deformation temperature, rotation of stacked crystalline lamellae can be accomplished to form biaxially oriented films. At higher temperatures, the dominant mechanism is unfolding of crystalline chain segments followed by recrystallization into units aligned with the restretching direction. X-ray diffraction, polarized infrared and Raman spectroscopy, and calorimetric techniques were employed to analyze these structural transformations.

  10. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications. PMID:27163929

  11. Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer Beanspruchung

    OpenAIRE

    Beyer, Frank R.; Zastrau, Bernd W.

    2011-01-01

    Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. For design and simulation...

  12. Design of a biaxial mechanical loading bioreactor for tissue engineering.

    Science.gov (United States)

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K

    2013-04-25

    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  13. Identification of material parameters using bi-axial machine

    OpenAIRE

    Flores, Paulo; de Montleau, P.; Mathonet, V.; Moureaux, P. (collab.); Habraken, Anne

    2004-01-01

    Experimental testing equipment is built in order to identify material parameters of complex phenomenological constitutive laws. This equipment consists in a bi-axial test machine able to perform plane strain and simple shear tests separately or simultaneously and a Miyauchi simple shear test device; an optical extensometer is used to identify the strain field. The article focus on the validation of the results of this new equipment by comparing with results obtained by standard machines and/o...

  14. STUDY ON THE PHASE TRANSITION KINETICS OF THERMOTROPIC LIQUID CRYSTALLINE AROMATIC-ALIPHATIC COPOLYESTER

    Institute of Scientific and Technical Information of China (English)

    LI Minhui; WANG Xiaogong; LIU Deshan; ZHOU Qixiang

    1991-01-01

    The phase transition kinetics of thermotropic liquid crystalline aromatic-aliphatic regular copolyester:(X) were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.

  15. Three-phase coexistence in colloidal rod-plate mixtures

    OpenAIRE

    Woolston, Phillip; Van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a ...

  16. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  17. Polarization converting textures of nematic liquid crystal in glass cavities

    Science.gov (United States)

    Wang, Xiahui; Xu, Miao; Ren, Hongwen

    2014-01-01

    When a nematic liquid crystal (LC) is filled in a glass cavity, the LC molecules present azimuthal orientations in the cavity. If the surface of the cavity is coated with a homeotropic polyimide, then the LC molecules exhibit radial orientations. By treating the LC on one side of the cavity with homogeneous alignment, the former orientations change to a twisted-azimuthal texture, while the latter orientations change to a twisted-radial texture. Both textures are verified experimentally, and they can convert a linearly polarization light to an azimuthal and/or radial polarization light, depending on the polarization direction of the incident light. In contrast to previous approaches, various LC textures can be easily formed in a cavity, and the fabrication procedure is simple. Since the LC texture is confined in a cavity, an array pattern of the texture can be obtained, if the employed substrate has multiple cavities. A LC with twisted-azimuthal and/or twisted-radial textures in a cavity array has potential applications in phase modulation, polarization compensating, sharp focus, and material processing.

  18. Anomalous swimming behavior of bacteria in nematic liquid crystals

    Science.gov (United States)

    Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg; Aranson, Igor

    2015-03-01

    Flagellated bacteria stop swimming in isotropic media of viscosity higher than 0.06kgm-1s-1. However, Bacillus Subtilis slows down by only about 30% in a nematic chromonic liquid crystal (CLC, 14wt% DSCG in water), where the anisotropic viscosity can be as high as 6kgm-1s-1. The bacteria velocity (Vb) is linear with the flagella rotation frequency. The phase velocity of the flagella Vf ~ 2Vb in LC, as compared to Vf ~ 10Vb in water. The flow generated by the bacteria is localized along the bacterial body axis, decaying slowly over tens of micrometers along, but rapidly over a few micrometers across this axis. The concentrated flow grants the bacteria new ability to carry cargo particles in LC, ability not seen in their habitat isotropic media. We attribute these anomalous features to the anisotropy of viscosity of the CLC, namely, the viscosities of splay and twist is hundreds times higher than that of bend deformation, which provides extra boost of swimming efficiency and enables the bacteria swim at considerable speed in a viscous medium. Our findings can potentially lead to applications such as particle transportation in microfluidic devices. A.S and I.A are supported by the US DOE, Office of Science, BES, Materials Science and Engineering Division. S.Z. and O.D.L are supported by NSF DMR 1104850, DMS-1434185.

  19. Directional Differences in the Biaxial Material Properties of Fascia Lata and the Implications for Fascia Function

    OpenAIRE

    Eng, Carolyn M.; Pancheri, Francesco Q.; Lieberman, Daniel E.; Biewener, Andrew Austin; Dorfmann, Luis

    2014-01-01

    Fascia is a highly organized collagenous tissue that is ubiquitous in the body, but whose function is not well understood. Because fascia has a sheet-like structure attaching to muscles and bones at multiple sites, it is exposed to different states of multi- or biaxial strain. In order to measure how biaxial strain affects fascia material behavior, planar biaxial tests with strain control were performed on longitudinal and transversely oriented samples of goat fascia lata (FL). Cruciform samp...

  20. Thermodynamic and mesoscopic modeling of tumbling nematics, of shear-thickening fluids and of stick-slip-like flow behavior

    OpenAIRE

    Heidenreich, Sebastian; Hess, Siegfried

    2008-01-01

    Shear thickening, i.e. the increase of the viscosity with increasing shear rate as it occurs in dense colloidal dispersions and polymeric fluids is an intriguing phenomenon with a considerable potential for technical applications. The theoretical description of this phenomenon is patterned after the thermodynamic and mesoscopic modeling of the orientational dynamics and the flow behavior of liquid crystals in the isotropic and nematic phases, where the theoretical basis is well-established. E...

  1. The Landau-de Gennes free energy expansion of a melt of V-shaped polymer molecules.

    Science.gov (United States)

    Aliev, M A; Ugolkova, E A; Kuzminyh, N Yu

    2016-08-28

    The phase behavior of a monodisperse melt of polymer molecules consisting of two rod-like segments joined at an angle α has been inspected within the Landau theory of phase transitions. The interactions between monomer units were assumed to be of the Maier-Saupe form. The Landau-de Gennes expansion of the free energy of the melt has been obtained up to the sixth order in powers of the nematic order parameter, the coefficients of this expansion have been calculated from the microscopic model of polymer molecule. The phase diagram contains the regions of stability of isotropic, prolate uniaxial, oblate uniaxial, and biaxial nematic phases. The isotropic-uniaxial nematic and uniaxial-biaxial nematic transitions are of the first and second order, respectively. We found two Landau points in the phase diagram at which continuous transition from biaxial nematic state to isotropic phase occurs.

  2. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  3. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  4. Defect modeling in spreading nematic droplets.

    Science.gov (United States)

    Lin, T-S; Kondic, L; Cummings, L J

    2012-01-01

    Experiments by Poulard and Cazabat [Langmuir 21, 6270 (2005)] on spreading droplets of nematic liquid crystal (NLC) reveal a surprisingly rich variety of behavior, including at least two different emerging length scales resulting from a contact line instability. In earlier work [Cummings, Lin, and Kondic, Phys. Fluids 23, 043102 (2011)] we modified a lubrication model for NLCs due to Ben Amar and Cummings [Phys. Fluids 13, 1160 (2001)] and showed that, in a qualitative sense, it can account for two-dimensional (2D) versions of the observed behavior. In the present work we propose a different approach that allows us to explore the effect of anchoring variations on the substrate, again in a 2D geometry. This in turn gives a simple way to model the presence of defects, which are nearly always present in such flows. The present model leads to additional terms in the governing equation. We explore the influence of these additional terms for some simple flow scenarios to gain insight into their influence. PMID:22400607

  5. Twist transition of nematic hyperbolic hedgehogs

    Science.gov (United States)

    James, Richard; Fukuda, Jun-ichi

    2014-04-01

    Stability of an idealized hyperbolic hedgehog in a nematic liquid crystal against a twist transition is investigated by extending the methodology of Rüdinger and Stark [Liq. Cryst. 26, 753 (1999), 10.1080/026782999204840], where the hedgehog is confined between two concentric spheres. In the ideal hyperbolic-hedgehog the molecular orientation is assumed to rotate proportionally with respect to the inclination angle, θ (and in the opposite sense). However, when splay, k11, and bend, k33, moduli differ this proportionality is lost and the liquid crystal deforms relative to the ideal with bend and splay. Although slight, these deformations are shown to significantly shift the transition if k11/k33 is small. By increasing the degree of confinement the twist transition can be inhibited, a characteristic both hyperbolic and radial hedgehogs have in common. The twist transition of a hyperbolic defect that accompanies a particle is found to be well predicted by the earlier stability analysis of a thick shell.

  6. Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectric Sm- C* liquid crystals

    OpenAIRE

    Fukuda, Atsuo; VIJ, JAGDISH KUMAR

    2007-01-01

    PUBLISHED Article number 011709 We have studied various ferroelectric liquid crystals to find the average molecular direction of the shortest axis in the perfectly unwound state by using tilted conoscopic measurements. We find that there exist two types of temperature dependencies of the biaxiality. Some materials exhibit increasing biaxiality while others show decreasing biaxiality with increasing temperature. The former shows a temperature-induced sign reversal of biaxiality. Three di...

  7. Material Identification Using a Bi-Axial Test Machine

    OpenAIRE

    Flores, Paulo; Moureaux, Pierre; Habraken, Anne

    2005-01-01

    This paper shows the identification of material parameters for a DC06 IF steel sheet of 0.8 mm by mechanical tests. The experimental equipment used consists of a tensile test machine, a bi-axial test machine able to perform plane-strain and simple shear tests separately or simultaneously and an optical strain gauge. Tensile, plane-strain and simple shear tests were performed at 0°, 45° and 90° from the sheet rolling direction in order to identify Hill 1948 and Hosford 1979 yield criteria. ...

  8. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  9. Flow of a viscous nematic fluid around a sphere

    CERN Document Server

    Gómez-González, Manuel

    2013-01-01

    We analyze the creeping flow generated by a spherical particle moving through a viscous fluid with nematic directional order, in which momentum diffusivity is anisotropic and which opposes resistance to bending. Specifically, we provide closed-form analytical expressions for the response function, i.e. the equivalent to Stokes's drag formula for nematic fluids. Particular attention is given to the rotationally pseudo-isotropic condition defined by zero resistance to bending, and to the strain pseudo-isotropic condition defined by isotropic momentum diffusivity. We find the former to be consistent with the rheology of biopolymer networks and the latter to be closer to the rheology of nematic liquid crystals. These "pure" anisotropic conditions are used to benchmark existing particle tracking microrheology methods that provide effective directional viscosities by applying Stokes's drag law separately in different directions. We find that the effective viscosity approach is phenomenologically justified in rotati...

  10. Defect Dynamics in Active 2D Nematic Liquid Crystals

    Science.gov (United States)

    Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir

    2014-03-01

    Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.

  11. Electroosmotically enabled Electrorheological Effects in a Planar Nematic Crystal Flow

    CERN Document Server

    Dhar, Jayabrata; Chakraborty, Suman

    2016-01-01

    Study of electrokinetics of nematic liquid crystals (LCs) with dissolved impurities hold utmost importance in understanding director distribution characteristics and modified flow rheology. However, no concrete theory for the non-uniform potential and ionic species distribution, due to an induced electrical double layer (EDL) at the LC-substrate interface, derived from fundamental principles have been put forward in this regard. In this work, we have developed coupled governing equations from fundamental free energy considerations for the potential distribution and the director configuration of the nematic LC within the induced electrical double layer which is generated due to certain physico-chemical interactions at the LC-substrate interface. With these considerations, an electroosmotically-enabled nematodynamics for a particular LC, namely, MBBA, with strong planar anchoring at the boundaries is studied. We obtained multiple solution for director configuration, which is an integral characteristics of nemat...

  12. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  13. Cold-spots and glassy nematicity in underdoped cuprates

    Science.gov (United States)

    Lee, Kyungmin; Kivelson, Steven A.; Kim, Eun-Ah

    2016-07-01

    There is now copious direct experimental evidence of various forms of (short-range) charge order in underdoped cuprate high temperature superconductors, and spectroscopic signatures of a nodal-antinodal dichotomy in the structure of the single-particle spectral functions. In this context we analyze the Bogoliubov quasiparticle spectrum in a superconducting nematic glass. The coincidence of the superconducting "nodal points" and the nematic "cold-spots" on the Fermi surface naturally accounts for many of the most salient features of the measured spectral functions (from angle-resolved photoemission) and the local density of states (from scanning tunneling microscopy).

  14. STATISTICAL MODELS FOR SEMI-RIGID NEMATIC POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WANG Xinjiu

    1995-01-01

    Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model.The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.

  15. Anisotropic mechanical properties of a polymer nematic liquid crystal

    Science.gov (United States)

    Taratuta, Victor G.; Lonberg, Franklin; Meyer, Robert B.

    1988-03-01

    A concentration dependence of elastic and viscous properties of nematic poly-γ-benzyl glutamate (PBG) was studied experimentally. The splay and bend constants are similar in magnitude, both linear in concentration. The twist constant is much smaller and constant. Viscosities exhibit large anisotropies. γ1 and ηc are roughly quadratic in concentration, ηa is linear, while ηb is constant. The data are self-consistently interpreted in terms of the theoretical models for nematics of semi flexible chains rather than those of rigid rods.

  16. Dynamic biaxial tissue properties of the human cadaver aorta.

    Science.gov (United States)

    Shah, Chirag S; Hardy, Warren N; Mason, Matthew J; Yang, King H; Van Ee, Chris A; Morgan, Richard; Digges, Kennerly

    2006-11-01

    This study focuses on the biaxial mechanical properties of planar aorta tissue at strain rates likely to be experienced during automotive crashes. It also examines the structural response of the whole aorta to longitudinal tension. Twenty-six tissue-level tests were conducted using twelve thoracic aortas harvested from human cadavers. Cruciate samples were excised from the ascending, peri-isthmic, and descending regions. The samples were subjected to equibiaxial stretch at two nominal speed levels using a new biaxial tissue-testing device. Inertia-compensated loads were measured to facilitate calculation of true stress. High-speed videography and regional correlation analysis were used to track ink dots marked on the center of each sample to obtain strain. In a series of component-level tests, the response of the intact thoracic aorta to longitudinal stretch was obtained using seven aorta specimens. The aorta fails within the peri-isthmic region. The aorta fails in the transverse direction, and the intima fails before the media or adventitia. The aorta tissue exhibits nonlinear behavior. The aorta as complete structure can transect completely from 92 N axial load and 0.221 axial strain. Complete transection can be accompanied by intimal tears. These results have application to finite element modeling and the better understanding of traumatic rupture of the aorta. PMID:17311166

  17. Biaxial tensile tests of the porcine ascending aorta.

    Science.gov (United States)

    Deplano, Valérie; Boufi, Mourad; Boiron, Olivier; Guivier-Curien, Carine; Alimi, Yves; Bertrand, Eric

    2016-07-01

    One of the aims of this work is to develop an original custom built biaxial set-up to assess mechanical behavior of soft tissues. Stretch controlled biaxial tensile tests are performed and stereoscopic digital image correlation (SDIC) is implemented to measure the 3D components of the generated displacements. Using this experimental device, the main goal is to investigate the mechanical behavior of porcine ascending aorta in the more general context of human ascending aorta pathologies. The results highlight that (i) SDIC arrangement allows accurate assessment of displacements and so stress strain curves, (ii) porcine ascending aorta has a nearly linear and anisotropic mechanical behavior until 30% of strain, (iii) porcine ascending aorta is stiffer in the circumferential direction than in the longitudinal one, (iv) the material coefficient representing the interaction between the two loading directions is thickness dependent, (v) taking into account the variability of the samples the stress values are independent of the stretch rate in the range of values from 10(-3) to 10(-1)s(-1) and finally, (vi) unlike other segments of the aorta, 4-month-old pigs ascending aorta is definitely not a relevant model to investigate the mechanical behavior of the human ascending aorta. PMID:27211783

  18. Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning

    Science.gov (United States)

    Hofmann, U.; Aikio, M.; Janes, J.; Senger, F.; Stenchly, V.; Weiss, M.; Quenzer, H.-J.; Wagner, B.; Benecke, W.

    2013-03-01

    Low-cost automotive laser scanners for environment perception are needed to enable the integration of advanced driver assistant systems (ADAS) into all automotive vehicle segments, a key to reducing the number of traffic accidents on roads. An omnidirectional 360 degree laser scanning concept has been developed based on combination of an omnidirectional lens and a biaxial large aperture MEMS mirror. This omnidirectional scanning concept is the core of a small sized low-cost time-of-flight based range sensor development. This paper describes concept, design, fabrication and first measurement results of a resonant biaxial 7mm gimbal-less MEMS mirror that is electrostatically actuated by stacked vertical comb drives. Identical frequencies of the two resonant axes are necessary to enable the required circle scanning capability. A tripod suspension was chosen since it allows minimizing the frequency splitting of the two resonant axes. Low mirror curvature is achieved by a thickness of the mirror of more than 500 μm. Hermetic wafer level vacuum packaging of such large mirrors based on multiple wafer bonding has been developed to enable to achieve a large mechanical tilt angle of +/- 6.5 degrees in each axis. The 7mm-MEMS mirror demonstrates large angle circular scanning at 1.5kHz.

  19. Thermodynamic and mesoscopic modeling of tumbling nematics, of shear-thickening fluids and of stick-slip-like flow behavior

    Directory of Open Access Journals (Sweden)

    Heidenreich, Sebastian

    2008-02-01

    Full Text Available Shear thickening, i.e. the increase of the viscosity with increasing shear rate as it occurs in dense colloidal dispersions and polymeric fluids is an intriguing phenomenon with a considerable potential for technical applications. The theoretical description of this phenomenon is patterned after the thermodynamic and mesoscopic modeling of the orientational dynamics and the flow behavior of liquid crystals in the isotropic and nematic phases, where the theoretical basis is well-established. Even there the solutions of the relevant equations recently yielded surprises: not only stable flow alignment and a periodic behavior (tumbling are found as response to an imposed stationary shear flow but also irregular and chaotic dynamics occurs for certain parameter ranges. To treat shear-thickening fluids, a non-linear Maxwell model equation for the symmetric traceless part of the stress tensor has been proposed in analogy to the equations obeyed by the alignment tensor of nematics. The fluid-solid transition is formally analogous to the isotropic-nematic transition. In addition to shear-thickening and shear-thinning fluids, substances with yield stress can be modeled. Furthermore, periodic stick-slip-like motions and also chaotic behavior are found. In the latter cases, the instantaneous entropy production is not always positive. Yet it is comforting that its long-time average is in accord with the second law.

  20. A new family of four-ring bent-core nematic liquid crystals with highly polar transverse and end groups

    Directory of Open Access Journals (Sweden)

    Kalpana Upadhyaya

    2013-01-01

    Full Text Available Non-symmetrically substituted four-ring achiral bent-core compounds with polar substituents, i.e.., chloro in the bent or transverse direction in the central core and cyano in the lateral direction at one terminal end of the molecule, are designed and synthesized. These molecules possess an alkoxy chain attached at only one end of the bent-core molecule. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing microscopy. All the compounds exhibit a wide-ranging monotropic nematic phase.

  1. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Derek G. Gray

    2015-11-01

    Full Text Available Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM. An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure.

  2. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations. PMID:25369931

  3. Distortional Lifshitz Vectors and Helicity in Nematic Free Energy Density

    OpenAIRE

    Sparavigna, Amelia Carolina

    2013-01-01

    Here we discuss the free energy of nematic liquid crystals using two vectors and the helicity, with the aim of having a compact form of its density. The two vectors are due to the splay and bend distortions of the director field. They have a polar nature, whereas the helicity is a pseudoscalar.

  4. Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: an x-ray reflectivity study.

    Science.gov (United States)

    Fukuto, Masafumi; Gang, Oleg; Alvine, Kyle J; Ocko, Benjamin M; Pershan, Peter S

    2008-03-01

    We report the results of a synchrotron x-ray reflectivity study of bulk liquid-crystal surfaces that are coated by thin wetting films of an immiscible liquid. The liquid-crystal subphase consisted of the nematic or isotropic phase of 4-octyl- 4;{'} -cyanobiphenyl (8CB), and the wetting film was formed by the fluorocarbon perfluoromethylcyclohexane (PFMC), a volatile liquid. The thickness of the wetting film was controlled by the temperature difference DeltaT(micro) between the sample and a reservoir of bulk PFMC, contained within the sealed sample cell. Phase information on the interfacial electron density profiles has been extracted from the interference between the scattering from the PFMC-vapor interface and the surface-induced smectic order of the 8CB subphase. The liquid-crystal side of the nematic-liquid (8CB-PFMC) interface is characterized by a density oscillation whose period corresponds to the smectic layer spacing and whose amplitude decays exponentially toward the underlying nematic subphase. The decay length xi of the smectic amplitude is independent of the PFMC film thickness but increases as the nematic-smectic- A transition temperature T(NA) is approached, in agreement with the longitudinal correlation length xi(parallel) proportional, variant(T-T(NA))(-0.7} for the smectic fluctuations in the bulk nematic. The results indicate that the homeotropic orientation of the 8CB molecules is preferred at the 8CB-PFMC interface and that the observed temperature dependence of the smectic layer growth is consistent with the critical adsorption mechanism. The observed DeltaT(micro) dependence of the PFMC film thickness, L proportional, variant(DeltaT(micro))(-1/3) , implies that PFMC completely wets the 8CB surface and is dominated by the nonretarded dispersion interactions between hydro- and fluorocarbons. The complete wetting behavior of PFMC is nearly independent of the degree of interfacial smectic order in the subphase. PMID:18517395

  5. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels.

    Science.gov (United States)

    Huang, Angela Hai; Lee, Yong-Ung; Calle, Elizabeth A; Boyle, Michael; Starcher, Barry C; Humphrey, Jay D; Niklason, Laura E

    2015-08-01

    Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the

  6. Numerical and experimental study of cruciform specimens subjected to biaxial tensile test

    Science.gov (United States)

    Andrusca, L.; Goanta, V.; Barsanescu, P. D.; Steigmann, R.

    2016-08-01

    Multiaxial stress states are very common in engineering applications. To obtain a plane stress state in a material are used different experimental procedures. Biaxial tensile tests of cruciform specimens represent one of the most versatile techniques with accurate results for a wide range of materials. Specimen geometry and size must be adapted to biaxial experiments that use devices attached to universal testing machine. Biaxial tensile tests are performed using cruciform specimens optimized by a numerical study through finite element analysis and a custom built attachable device developed. The results obtained show that the method proposed in this paper can be used with good results to characterize the behaviour of ductile materials.

  7. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  8. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications.

    Science.gov (United States)

    Agishev, Ravil R; Comeron, Adolfo

    2002-12-20

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed. PMID:12510915

  9. Electromagnetic biaxial vector scanner using radial magnetic field.

    Science.gov (United States)

    Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon

    2016-07-11

    We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851

  10. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media

    Institute of Scientific and Technical Information of China (English)

    PAN Wei-Tao; LIU Song-Hua; QIU Zhi-Liang

    2012-01-01

    Propagation characteristics of electromagnetic waves at the interface between an isotropic regular medium and a biaxially anisotropic gyrotropic medium are investigated.The results indicate that the reflection and refract ionproperties of electromagnetic waves are closely dependent on the dispersion relation of the gyrotropic media,and that anomalous total reflection and negative refraction may occur.The existence conditions of total transmission are also considered.It is found that total transmission arises when the TE-polarized incident waves are normal to the interface and the physical parameters of the two media are chosen properly,which are quite different from the existence conditions of total transmission at the anisotropic left-handed material interface.Numerical resul tsare given to validate our theoretical analysis.

  11. Conductive layer for biaxially oriented semiconductor film growth

    Science.gov (United States)

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  12. Surface polaritons in symmetry planes of biaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Furs, A N; Galynsky, V M; Barkovsky, L M [Department of Theoretical Physics, Belarussian State University, Fr. Skarina Ave. 4, Minsk 220050 (Belarus)

    2005-09-16

    The problem of the surface polariton existence in symmetry planes of non-magnetic biaxial crystals is studied theoretically. The plane interface of such a crystal and a semi-infinite isotropic medium is considered. With the use of the integral formalism formulated in our earlier work, the dispersion equation is derived for the polaritons under consideration. The existence conditions for the dispersion equation solutions are obtained in the form of algebraic inequalities for principal values of inverse dielectric permittivity tensors. If these conditions are satisfied, then excitation of surface waves is possible along the allowed propagation directions, which constitute sectors in the interface plane. Exact expressions are obtained that determine location of these sectors with respect to the symmetry axes of the crystal.

  13. Influence of uniaxial, biaxial and plane strain pre-straining on the dynamic tensile properties of high strength sheet steels

    Science.gov (United States)

    Larour, P.; Verleysen, P.; Bleck, W.

    2006-08-01

    The influence of pre-straining and microstructure on the dynamic properties of car body high strength steels has been investigated at room temperature. The mechanical properties of a dual phase steel DP600, a TRIP steel TRIP700 and an austenitic steel AISI 301LN2B (1.4318) have been determined performing high speed servohydraulic and split-Hopkinson bar tensile tests in the strain rate range from 0.005s-1 up to 950s-1. The pre-straining modes and levels, respectively 10% uniaxial, 10% plane strain and 5% biaxial pre-straining, have been chosen in this investigation according to industrial use. 10% plane strain pre-straining brings the highest increase of yield and tensile strength values. 5% biaxial and 10% uniaxial pre-straining have similar effect on strength properties. The austenitic steel presents a pronounced minimum for tensile strength values at around 1/s. A combination of adiabatic heating and exothermic γ to α' transformation produces some significant softening effects in the austenitic steel grade.

  14. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  15. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND...

  16. On the sensitivity of directions which support Voigt wave propagation in infiltrated biaxial dielectric materials

    CERN Document Server

    Mackay, Tom G

    2013-01-01

    Voigt wave propagation (VWP) was considered in a porous biaxial dielectric material which was infiltrated with a material of refractive index $n_a$. The infiltrated material was regarded as a homogenized composite material in the long-wavelength regime and its constitutive parameters were estimated using the extended Bruggeman homogenization formalism. In our numerical studies, the directions which support VWP were found to vary by as much as $300^\\circ$ per RIU as the refractive index $n_a$ was varied. The sensitivities achieved were acutely dependent upon the refractive index $n_a$ and the degrees of anisotropy and dissipation of the porous biaxial material. The orientations, shapes and sizes of the particles which constitute the infiltrating material and the porous biaxial material exerted only a secondary influence on the maximum sensitivities achieved. Also, for the parameter ranges considered, the degree of porosity of the biaxial material had little effect on the maximum sensitivities achieved. These n...

  17. Suspended germanium cross-shaped microstructures for enhancing biaxial tensile strain

    Science.gov (United States)

    Ishida, Satomi; Kako, Satoshi; Oda, Katsuya; Ido, Tatemi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-01

    We fabricate a suspended germanium cross-shaped microstructure to biaxially enhance residual tensile strain using a germanium epilayer directly grown on a silicon-on-insulator substrate. Such a suspended germanium system with enhanced biaxial tensile strain will be a promising platform for incorporating optical cavities toward the realization of germanium lasers. We demonstrate systematic control over biaxial tensile strain and photoluminescence peaks by changing structural geometry. The photoluminescence peaks corresponding to the direct recombination between the conduction Γ valley and two strain-induced separated valence bands have been clearly assigned. A maximum biaxial strain of 0.8% has been achieved, which is almost half of that required to transform germanium into a direct band-gap semiconductor.

  18. Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns

    OpenAIRE

    Hugo Rodrigues; Humberto Varum; Antonio Arede; Anibal Costa

    2012-01-01

    The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The ...

  19. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  20. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    Science.gov (United States)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  1. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    OpenAIRE

    Tsung Chieh Cheng; Chao Kai Yang; Lin, I.

    2016-01-01

    In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately main...

  2. Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device

    OpenAIRE

    Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; Fletcher, Bretton J.; Carter, Lester G.; MATSUI, Tsutomu; Weiss, Thomas M.; Han, Jun; Li, Youli; Olsson, Ulf; Safinya, Cyrus R.

    2014-01-01

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane...

  3. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com [School of Physics and Materials Science, Thapar University, Patiala-147004 (India)

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  4. An experimental study on the biaxial strength of the plain concrete for containment structures

    International Nuclear Information System (INIS)

    In this paper, an experimental study into the biaxial strength of plain concrete for containment structures is represented and technical difficulties encountered in the development of a suitable test setup are discussed. Prior to testing for a 1/8 model of cylindrical specimen(φ150x300) and four 1/4 models of plate specimens(200x200xT(=30, 50, 60, 70)mm) under uniaxial compression, the strength ratios between both specimens with different geometry shapes were found by nonlinear finite element analyses using ABAQUS. From the results three suitable type of considered plate specimens were selected for failure testing under biaxial stress. As initial approach to develop biaxial strength criteria of plain concrete, the various test data were obtained under uniaxial compression, uniaxial tension and biaxial compression. The test data indicate that the strength of concrete under biaxial compression, f1=f2, is 14.7 percent larger than under uniaxial compression and the Poisson's ratio of concrete is 0.155. Teflon employed to eliminate friction between test specimen and loading platens showed and excellent effect under biaxial compression, f1=f2

  5. Quartic coupling and its effect on wetting behaviors in nematic liquid crystals

    Institute of Scientific and Technical Information of China (English)

    曾明颖; Holger Merlitz; 吴晨旭

    2015-01-01

    Based on the fact that patterns of rubbed groove also affect anchoring of liquid crystals at substrates, a quartic coupling is included in constructing the surface energy for a liquid crystal cell. The phase diagram and the wetting behaviors of liquid crystal cell, bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account. The nematic order increases at the surface while decreases in the bulk as a result of the introduction of quartic substrate–liquid crystal coupling, indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it. This causes a different wetting behavior: complete wetting.

  6. Tritium nuclear magnetic resonance study of T2, HT, and DT dissolved in nematic solvents

    International Nuclear Information System (INIS)

    A tritium nuclear magnetic resonance study is carried out on the T2, HT, and DT isotopomers of dihydrogen dissolved in various nematic phases, including a zero-electric-field-gradient mixture. Ab initio calculations are performed to reproduce the observed dipolar couplings. Within the framework of the open-quotes mean-fieldclose quotes approximation, the results provide support for a picture in which two independent contributions to the solute orientation can be distinguished. One contribution involves a liquid-crystal-dependent interaction between the mean solvent electric-field gradient and the solute molecular quadrupole moment. The other contribution is of unknown origin; however, it is essentially identical in all liquid crystals and it can be modeled adequately with a phenomenological mean-field interaction. A remarkable feature of this second interaction is that it causes the average orientation of the asymmetrical isotopomers, and especially of HT, to behave differently from the symmetrical species. copyright 1997 The American Physical Society

  7. Smectic-A Order at the Surface of a Nematic Liquid Crystal: Synchrotron X-Ray Diffraction

    OpenAIRE

    Als-Nielsen, J.; Christensen, F.; Pershan, Peter S.

    1982-01-01

    A novel geometry in which it is possible to do x-ray diffraction from a horizontal surface of fluids is applied to liquid crystals. A large-diameter drop of octyloxycyanobiphenyl (8OCB) on a glass plate treated for homeotropic alignment yields perfect alignment of the smectic-A layers at the top surface over an area of several square millimeters. The surface in the bulk nematic as well as in the isotropic phase was found to consist of smectic-A layers with a penetration depth equal to the lon...

  8. Relativistic Lagrangian model of a nematic liquid crystal

    CERN Document Server

    Obukhov, Yuri N; Rubilar, Guillermo F

    2012-01-01

    We develop a relativistic variational model for a nematic liquid crystal interacting with the electromagnetic field. The constitutive relation for an anisotropic uniaxial diamagnetic and dielectric medium is analyzed. We discuss light wave propagation in this moving uniaxial medium, for which the corresponding optical metrics are identified explicitly. A Lagrangian for the coupled system of a nematic liquid crystal and the electromagnetic field is constructed. We derive a complete set of equations of motion for the system. The canonical energy-momentum and spin tensors are systematically obtained. We compare our results with those within the non-relativistic models. As an application of our general formalism, we discuss the so-called Abraham-Minkowski controversy on the momentum of light in a medium.

  9. Sensing and tuning microfiber chirality with nematic chirogyral effect

    Science.gov (United States)

    Čopar, Simon; Seč, David; Aguirre, Luis E.; Almeida, Pedro L.; Dazza, Mallory; Ravnik, Miha; Godinho, Maria H.; Pieranski, Pawel; Žumer, Slobodan

    2016-03-01

    Microfibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium. We provide an analytical explanation of the chirogyral effect supported with numerical simulations and perform an experiment to test the effect of the cell confinement and fiber size. We controllably twist the microfibers and demonstrate the response of the nematic medium. More generally the demonstrated study provides means for experimental discrimination of surface properties and allows mechanical control over the shape of disclination rings.

  10. Generalized conservation law for main-chain polymer nematics

    Science.gov (United States)

    Svenšek, Daniel; Podgornik, Rudolf

    2016-05-01

    We explore the implications of the conservation law(s) and the corresponding so-called continuity equation(s), resulting from the coupling between the positional and the orientational order in main-chain polymer nematics, by showing that the vectorial and tensorial forms of these equations are in general not equivalent and cannot be reduced to one another, but neither are they disjoint alternatives. We analyze the relation between them and elucidate the fundamental role that the chain backfolding plays in the determination of their relative strength and importance. Finally, we show that the correct penalty potential in the effective free energy, implementing these conservation laws, should actually connect both the tensorial and the vectorial constraints. We show that the consequences of the polymer chains' connectivity for their consistent mesoscopic description are thus not only highly nontrivial but that its proper implementation is absolutely crucial for a consistent coarse-grained description of the main-chain polymer nematics.

  11. Spatially modulated structures in nematic colloids: Statistical thermodynamics and kinetics.

    Science.gov (United States)

    Kleshchonok, A V; Reshetnyak, V Yu; Tatarenko, V A

    2011-03-01

    We examine the spatial distribution of rigid-sphere-like particles in a nematic host. Using a continuum model we analyse the conditions necessary for the appearance of a modulated lamellar structure. There is a long-range effective interaction between the particles, which can lead to the formation of superstructures. In general, this interaction includes several contributions: van der Waals-type direct interaction and indirect interaction via the director field distortions. The latter depends on the temperature of the sample, the coupling energy between a colloidal particle and a nematic host, and the particle concentration. This effective interaction controls the spatial structure and the kinetic properties of the system. We obtained the analytical expression for the temperature when the system loses the stability with respect to the modulated structure formation. Typical contours of the diffuse light scattering are presented.

  12. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    Science.gov (United States)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  13. Photo-triggered wrinkling of glassy nematic films

    International Nuclear Information System (INIS)

    A linear analysis is performed to explore the stability of an azobenzene-containing glassy nematic film on a soft elastic foundation under uniform illumination by UV light. It is found that the film can buckle to form wrinkles when the light intensity and the geometric and material parameters of the system are properly chosen. The results may help in the fabrication of photo-triggered wrinkled surfaces which are particularly attractive for applications where remote addressing is desired. (paper)

  14. General elastic interaction in nematic liquid crystals colloids

    OpenAIRE

    Chernyshuk, S. B.; Lev, B. I.

    2009-01-01

    The new free energy functional that describes general elastic interaction between colloidal particles and nematic liquid crystal has been proposed. It generalizes results of the paper \\cite{lupe} on the case of arbitrary orientation of colloidal particles and is valid for arbitrary surface anchoring strength. Formal analogies and differences between electric particles and colloidal particles in LC are found. It is first time shown that spur of the quadrupole moment tensor is different from ze...

  15. Spinodal dewetting of a nematic liquid crystal film

    Science.gov (United States)

    Braun; Yokoyama

    2000-08-01

    We discuss spinodal dewetting of a nematic film destabilized by Van der Waals forces, focusing on the case of non-antagonistic anchoring conditions. Using physical parameters pertinent to low-molecular-weight thermotropic liquid crystals, we predict a small damping effect. In the presence of an antagonistic applied magnetic field, the anchoring conditions become more significant, and can influence the shape and dynamics of the unstable modes. PMID:11088786

  16. Point-Defect Haloing in Curved Nematic Films

    Science.gov (United States)

    Isaku Hasegawa,; Hiroyuki Shima,

    2010-07-01

    We investigate a correlation between the point disclination energies and the surface curvature modulation of nematic liquid crystal membranes with a Gaussian bump geometry. The correlation causes point disclinations to feel an attractive force that confines them to an annulus region, resulting in a halo distribution around the top of the bump. The halo formation is a direct consequence of the nonzero Gaussian curvature of the bump that affects preferable configurations of liquid crystal molecules around the disclination core.

  17. Quantum Spin Nematic States in Bose-Einstein Condensates

    OpenAIRE

    Zhou, Fei

    2001-01-01

    We review some recent results on discrete symmetries and topological order in spinor Bose-Einstein condensates (BECs) of $^{23}Na$. For spin one bosons with two-body scatterings dominated by a total spin equal to two channel, the BECs are in quantum spin nematic states at a low density limit. We study spin correlations in condensates at different limits and analyze hidde$ symmetries using a non-perturbative approach developed recently. We further more investigate the influence of hidden $Z_2$...

  18. Surface induced structures in nematic liquid crystal colloids

    OpenAIRE

    Chernyshuk, S. B.; Tovkach, O. M.; Lev, B. I.

    2014-01-01

    We predict theoretically the existence of a class of colloidal structures in nematic liquid crystal (NLC) cells, which are induced by surface patterns on the plates of the cell (like cells with UV-irradiated polyimide surfaces using micron size masks). These bulk structures arise from non-zero boundary conditions for the director distortions at the confining surfaces. In particular, we demonstrate that quadrupole spherical particles (like spheres with boojums or Saturn-ring director configura...

  19. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHONG Wei-Ping; YANG Zheng-Ping; XIE Rui-Hua; Milivoj Be-lie; Goong Chen

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method.Analytical solutions in the form of self-similar solitons are obtained exactly.We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipoIe solitons, and soliton vortices.

  20. Richness of Side-Chain Liquid-Crystal Polymers: From Isotropic Phase towards the Identification of Neglected Solid-Like Properties in Liquids

    OpenAIRE

    Wendorff, Joachim H; Patrick Baroni; Hakima Mendil-Jakani; Laurence Noirez

    2012-01-01

    Very few studies concern the isotropic phase of Side-Chain Liquid-Crystalline Polymers (SCLCPs). However, the interest for the isotropic phase appears particularly obvious in flow experiments. Unforeseen shear-induced nematic phases are revealed away from the N-I transition temperature. The non-equilibrium nematic phase in the isotropic phase of SCLCP melts challenges the conventional timescales described in theoretical approaches and reveal very long timescales, neglected until now. This spe...

  1. Growth of inclined fatigue cracks using the biaxial CJP model

    Directory of Open Access Journals (Sweden)

    G. Laboviciute

    2015-07-01

    Full Text Available The CJP model of crack tip stresses is a modified version of the Williams crack tip stress field which takes account of simplified stress distributions that arise from the presence of a zone of plastic deformation associated with the crack flanks and crack tip, and that act on the elastic field responsible for driving crack growth. The elastic stress field responsible for crack growth is therefore controlled by the applied loading and by the induced boundary stresses at the interface with the plastic zone. This meso-scale model of crack tip stresses leads to a modified set of crack tip stress intensity factors that include the resultant influence of plastic wake-induced crack tip shielding, and which therefore have the potential to help resolve some longstanding controversies associated with plasticity-induced closure. A full-field approach has now been developed for stress using photoelasticity and also for displacement using digital image correlation. This paper considers the characterisation of crack growth rate data with the biaxial CJP model, using compact tension specimens that contain inclined cracks at the notch tip with initial angles of 30°, 45° and 60° to the horizontal axis. Significant experimental difficulties are experienced in growing cracks in a biaxial field under uniaxial tensile loading, as the natural tendency of the crack is to turn so that it becomes perpendicular to the maximum principal stress direction. However, crack angle is not an issue in the CJP model which calculates the stress field parallel with, and perpendicular to, the crack plane. These stress components can be rotated into directions comparable with the usual KI and KII directions and used to calculate stress intensity parameters that should be directly comparable with the standard stress intensity formulations. Another difficulty arises, however, in finding published expressions for KI and KII for CT specimens with curved or kinked cracks. The CJP model

  2. Photorefractivity in polymer-stabilized nematic liquid crystals

    Science.gov (United States)

    Wiederrecht, Gary P.; Wasielewski, Michael R.

    1998-10-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  3. Light scattering study of the "pseudo-layer" compression elastic constant in a twist-bend nematic liquid crystal

    CERN Document Server

    Parsouzi, Z; Welch, C; Ahmed, Z; Mehl, G H; Baldwin, A R; Gleeson, J T; Lavrentovich, O D; Allender, D W; Selinger, J V; Jakli, A; Sprunt, S

    2016-01-01

    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $\\sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic l...

  4. Atomic force microscopy study of biaxially oriented polypropylene films

    Science.gov (United States)

    Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.

    2004-08-01

    Atomic force microscopy (AFM) uses a very sharp pointed mechanical probe to collect real-space morphological information of solid surfaces. AFM was used in this study to image the surface morphology of a biaxially oriented polypropylene film. The polymer film is characterized by a nanometer-scale, fiberlike network structure, which reflects the drawing process used during the fabrication of the film. AFM was used to study polymer-surface treatment to improve wettability by exposing the polymer to ozone with or without ultraviolet (UV) irradiation. Surface-morphology changes observed by AFM are the result of the surface oxidation induced by the treatment. Due to the topographic features of the polymer film, the fiberlike structure has been used to check the performance of the AFM tip. An AFM image is a mixture of the surface morphology and the shape of the AFM tip. Therefore, it is important to check the performance of a tip to ensure that the AFM image collected reflects the true surface features of the sample, rather than contamination on the AFM tip.

  5. Electret properties of biaxially stretched polypropylene films containing various additives

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, J [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany); Behrendt, N [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Altstaedt, V [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Schmidt, H-W [Macromolecular Chemistry I, University of Bayreuth, 95447 Bayreuth (Germany); Sessler, G M [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany)

    2006-02-07

    Isotactic polypropylene (i-PP) films containing additives such as the commercial {alpha} -nucleation agent NA11 and the anorganic filler particles CaCO{sub 3} and Al{sub 2}O{sub 3} were biaxially stretched. As a result, the films assume a cellular morphology with oblong cavities extending in the direction of the film elongation. In the present study, stretched films of 50 {mu}m thickness with additive concentrations of 0.05-10 mass per cent were charged with a corona method to potentials of 400 or 500 V. The stability of the charges was tested isothermally at temperatures of 90 and 120 deg. C and by means of thermally stimulated discharge (TSD) experiments. The isothermal measurements show, for the above additives with concentrations higher than about 0.3%, a reduction of the charge decay with increasing additive concentrations. Compared with reference films of pure PP, the potential decay of the films containing additive concentrations of 10% is significantly reduced. Correspondingly, the TSD measurements indicate a shift of the main discharge peak to higher temperatures up to the melting temperature. Generally, the voiding and thus the stability also increases with the stretching ratio. These improvements of the charge stability are attributed to the barrier effect of the cavities. The results are of interest with respect to the various applications of PP electrets, such as ferroelectret devices and air filters.

  6. Electret properties of biaxially stretched polypropylene films containing various additives

    Science.gov (United States)

    Hillenbrand, J.; Behrendt, N.; Altstädt, V.; Schmidt, H.-W.; Sessler, G. M.

    2006-02-01

    Isotactic polypropylene (i-PP) films containing additives such as the commercial α -nucleation agent NA11 and the anorganic filler particles CaCO3 and Al2O3 were biaxially stretched. As a result, the films assume a cellular morphology with oblong cavities extending in the direction of the film elongation. In the present study, stretched films of 50 µm thickness with additive concentrations of 0.05-10 mass per cent were charged with a corona method to potentials of 400 or 500 V. The stability of the charges was tested isothermally at temperatures of 90 and 120 °C and by means of thermally stimulated discharge (TSD) experiments. The isothermal measurements show, for the above additives with concentrations higher than about 0.3%, a reduction of the charge decay with increasing additive concentrations. Compared with reference films of pure PP, the potential decay of the films containing additive concentrations of 10% is significantly reduced. Correspondingly, the TSD measurements indicate a shift of the main discharge peak to higher temperatures up to the melting temperature. Generally, the voiding and thus the stability also increases with the stretching ratio. These improvements of the charge stability are attributed to the barrier effect of the cavities. The results are of interest with respect to the various applications of PP electrets, such as ferroelectret devices and air filters.

  7. Fourier space method for calculating the propagation of laser radiation in biaxial crystals taking into account the angle between the eigenpolarisations

    International Nuclear Information System (INIS)

    We have proposed a technique for calculating the propagation of laser radiation in biaxial optical crystals in arbitrary directions. The technique is based on the use of the Fourier space method and takes into account both diffraction and angle beween the eigenpolarisations of the spatial spectrum components, phase shift differences for them with account for all orders of the spatial dispersion and also the features of the boundary conditions at the input and output facets. Using internal conical refraction as an example, we have compared the results of calculations with experimental data. (nonlinear optical phenomena)

  8. Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules.

    Science.gov (United States)

    Sathyanarayana, P; Jampani, V S R; Skarabot, M; Musevic, I; Le, K V; Takezoe, H; Dhara, S

    2012-01-01

    We report measurements of the temperature variations of physical parameters in ambient-temperature nematic liquid crystal mixtures of bent-core (BC) and rodlike molecules (5CB): birefringence Δn; static dielectric constants ε(||) and ε(⊥); splay K(11) and bend K(33) elastic constants; rotational viscosity γ(1); and diffusion coefficients D(||) and D(⊥) of a microsphere. Both Δn and ε(||) decreases rapidly with increasing BC concentration, whereas ε(⊥) remains almost constant. At a shifted temperature (e.g., T-T(NI)=-10 °C), K(11) increases by ~50% and K(33) decreases by ~80% compared to pure 5CB when the BC concentration is increased to ~43 mol % in the mixture. Viscosities parallel and perpendicular to the director, η(||), η(⊥), which are nearly equal to the Miesowicz viscosities η(2) and η(3), respectively, were obtained by D(||) and D(⊥) using the Stokes-Einstein relation. Both the viscosities at room temperature increase by 60 and 50 times, respectively, whereas γ(1) increases by 180 times (at ~43 mol %) compared to the corresponding values of pure 5CB. The stiffening of K(11) and exorbitantly large enhancement in all the viscosities at a higher mol % of BC indicate that the viscoelastic properties are highly impacted by the presence of smectic clusters of BC molecules that results from the restricted free rotation of the molecules along the bow axis in the nematic phase. A possible attachment model of smectic type clusters of BC molecules surrounding the microparticle is presented. PMID:22400578

  9. Viscoelasticity of ambient-temperature nematic binary mixtures of bent-core and rodlike molecules

    Science.gov (United States)

    Sathyanarayana, P.; Jampani, V. S. R.; Skarabot, M.; Musevic, I.; Le, K. V.; Takezoe, H.; Dhara, S.

    2012-01-01

    We report measurements of the temperature variations of physical parameters in ambient-temperature nematic liquid crystal mixtures of bent-core (BC) and rodlike molecules (5CB): birefringence Δn; static dielectric constants ɛ|| and ɛ⊥; splay K11 and bend K33 elastic constants; rotational viscosity γ1; and diffusion coefficients D|| and D⊥ of a microsphere. Both Δn and ɛ|| decreases rapidly with increasing BC concentration, whereas ɛ⊥ remains almost constant. At a shifted temperature (e.g., T-TNI=-10∘C), K11 increases by ˜50% and K33 decreases by ˜80% compared to pure 5CB when the BC concentration is increased to ˜43 mol % in the mixture. Viscosities parallel and perpendicular to the director, η||, η⊥, which are nearly equal to the Miesowicz viscosities η2 and η3, respectively, were obtained by D|| and D⊥ using the Stokes-Einstein relation. Both the viscosities at room temperature increase by 60 and 50 times, respectively, whereas γ1 increases by 180 times (at ˜43 mol %) compared to the corresponding values of pure 5CB. The stiffening of K11 and exorbitantly large enhancement in all the viscosities at a higher mol % of BC indicate that the viscoelastic properties are highly impacted by the presence of smectic clusters of BC molecules that results from the restricted free rotation of the molecules along the bow axis in the nematic phase. A possible attachment model of smectic type clusters of BC molecules surrounding the microparticle is presented.

  10. Development of pressurized disc type fatigue testing system for equi-biaxial fatigue

    International Nuclear Information System (INIS)

    A testing method for investigating fatigue strength under equi-biaxial stress/strain condition was developed. In this method, the equi-biaxial stress condition was achieved by applying pressure on the surfaces of a disc-type specimen, for which the disc edge was constrained by supporting jigs. Air pressure was used to apply the cyclic loading and the failure of the specimen was determined by detecting the crack penetration of the specimen thickness. This method allows application of the cyclic equi-biaxial stress without a complex testing apparatus or a complex controlling system such as the testing system using the cruciform or tubular specimens, conventionally used for the fatigue test under the equi-biaxial stress condition. After developing the testing system, the configuration of the disc-type specimen was designed by finite element analysis so that a crack would be initiated at the center of the specimen. Then, carbon steel (SS400 in JIS) specimens were subjected to the fatigue test. The developed system was demonstrated to be able to initiate a fatigue crack at the center of the specimen and to detect the specimen failure successfully. The test results showed that the fatigue lifetime under equi-biaxial stress was longer than that under uniaxial stress for the same Von Mises equivalent strain range. (author)

  11. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  12. Stable smectic phase in suspensions of polydisperse colloidal platelets with identical thickness

    OpenAIRE

    Sun, Dazhi; Sue, Hung-Jue; Cheng, Zhengdong; Martínez-Ratón, Yuri; Velasco, Enrique

    2009-01-01

    We report the nematic and smectic ordering in an aqueous suspension of monolayer α-Zirconium phosphate platelets possessing a high polydispersity in diameter but uniform thickness. We observe an isotropic-nematic transition as the platelet volume fraction increases, followed by the formation of a smectic, an elusive phase that has been rarely seen in discotic liquid crystals. The smectic phase is characterized by x-ray diffraction high-resolution transmission electron microscopy, and optical ...

  13. Static and dynamic properties of magnetic nanowires in nematic fluids (invited)

    Science.gov (United States)

    Lapointe, C.; Cappallo, N.; Reich, D. H.; Leheny, R. L.

    2005-05-01

    Microscopy experiments are employed to characterize the elastic interactions of magnetic nickel nanowires suspended in a nematic liquid crystal. The nematic imposes a torque on an isolated wire that increases linearly with the angle between the wire and the nematic director in a manner quantitatively consistent with predictions based on an analogy between the nematic elasticity and electrostatics. An extension of this analogy also explains a measured orientation-dependent repulsive force between a wire and a wall. The angular relaxation of a wire in response to the elastic torque displays a nonexponential time dependence from which effective viscosities for the fluid are determined. The behavior of a wire in a twisted nematic cell further demonstrates how spatial variations in the director can convert the torque to a controlled translational force that levitates a wire to a specified height.

  14. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  15. Modeling of biaxial gimbal-less MEMS scanning mirrors

    Science.gov (United States)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  16. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-01

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  17. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal–submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa–submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered

  18. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry.

    Science.gov (United States)

    Aho, Johnathon M; Qiang, Bo; Wigle, Dennis A; Tschumperlin, Daniel J; Urban, Matthew W

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  19. $^3P_2$ Superfluids Are Topological

    CERN Document Server

    Mizushima, Takeshi

    2016-01-01

    We clarify the topology of the $^3P_2$ superfluidity which is expected to be realized in the cores of neutron stars and cubic odd-parity superconductors. The phase diagram includes the unitary uniaxial/biaxial nematic phases and nonunitary ferromagnetic and cyclic phases. We here show that the low-energy structures of all the phases are governed by different types of topologically protected gapless fermionic excitations: Surface Majorana fermions in nematic phases, single itinerant Majorana fermion in the ferromagnetic phase, and a quartet of itinerant Majorana fermions in the cyclic phase. Using the superfluid Fermi liquid theory, we also demonstrate that dihedral-two and -four biaxial nematic phases are thermodynamically favored in the weak coupling limit under a magnetic field. The mass acquisition of surface Majorana fermions in nematic phases is subject to symmetry.

  20. Formability and cavitation behavior of superplastic AA5083 aluminum alloy under biaxial tension

    Institute of Scientific and Technical Information of China (English)

    LUO Ying-bing; LI Da-yong; PENG Ying-hong

    2006-01-01

    The superplastic forming potential of two fine-grained 5083 aluminum alloys were studied under biaxial tension using a pneumatic bulge test. Experiments were performed at temperatures ranging from 475 to 525 ℃ with three different strain paths ranging from equi-biaxial to approaching plane strain. The shape of the forming limited diagram(FLD) is found to be significantly different from FLDs commonly used in room temperature stamping. The effects of temperature on final thickness distribution, dome height and cavitation were investigated for the case of equi-biaxial stretching. Increasing temperature in free bulge forming can improve the thickness distribution of final parts but have no significant effect on dome height. The results indicate that determination of forming limits in SPF cannot be represented with a simple FLD and additional metrics such as external thinning and internal cavitation needed to determine the SPF potential of a material.

  1. Formation of biaxially textured molybdenum thin films under the influence of recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Rahul, E-mail: krishr2@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, NY 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2011-06-01

    This article highlights the formation of biaxially textured body centered cubic Mo nanorods under recrystallization conditions using glancing angle deposition. The flux incidence angle has been changed ({alpha} = 0 deg., 70 deg. and 85 deg. away from the surface normal) to observe its effect on the formation of biaxial texture under a constant low Ar pressure environment (0.306 Pa). Only at a glancing flux incidence ({alpha} = 85 deg.), the directional diffusion overcomes the effect of recrystallization to yield a highly biaxial texture. In another study, a normal flux incidence ({alpha} = 0 deg.) was kept constant and the Ar pressure was changed (0.67, 1.33 and 2.67 Pa) to see its influence on the film morphology and the resulting texture. The Ar pressure variation was aimed at attempting a zone transformation in accordance with the structure zone model. While the morphology appeared to agree with the expected zone transformation, the texture did not.

  2. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai

    2016-01-01

    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  3. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  4. Singularities and nonuniqueness in cylindrical flow of nematic liquid crystals

    OpenAIRE

    Van Hout, R.; Vilucchi, E

    2001-01-01

    The subject of this paper is the behavior of the director field of a nematic liquid crystal in flow through a tube with circular cross-section. Both the flow and the director field are assumed to have cylindrical symmetry. The requirement of finite Frank-Oseen energy forces ``admissible" director fields to be axially directed at the location of the symmetry axis. Thus, the angle between the axis and the director field at the location of the axis amounts to $k\\pi$, $k$ being an ...

  5. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    Science.gov (United States)

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  6. Localization of Waves without Bistability Worms in Nematic Electroconvection

    CERN Document Server

    Riecke, H; Riecke, Hermann; Granzow, Glen D.

    1998-01-01

    A general localization mechanism for waves in dissipative systems is identified that does not require the bistability of the basic state and the nonlinear plane-wave state. The mechanism explains the two-dimensional localized wave structures (`worms') that recently have been observed in experiments on electroconvection in nematic liquid crystals where the transition to extended waves is supercritical. The mechanism accounts for the propagation direction of the worms and certain aspects of their interaction. The dynamics of the localized waves can be steady or irregular.

  7. Modulation instability and solitons in two-color nematic crystals

    CERN Document Server

    Horikis, Theodoros P

    2016-01-01

    The conditions under which stable evolution of two nonlinear interacting waves are derived within the context of nematic crystals. Two cases are considered: plane waves and solitons. In the first case, the modulation instability analysis reveals that while the nonlocal term suppresses the growth rates, substantially, the coupled system exhibits significantly higher growth rates than its scalar counterpart. In the soliton case, the necessary conditions are derived that lead the solitons to exhibit stable, undistorted evolution, suppressing any breathing behavior and radiation, leading to soliton mutual guiding.

  8. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  9. Determination of azimuthal anchoring strength in twisted nematic liquid crystal cells using heterodyne polarimeter.

    Science.gov (United States)

    Yu, Tsung-Chih; Lo, Yu-Lung; Huang, Rei-Rong

    2010-09-27

    Two external-field-free methods are presented for measuring the azimuthal anchoring strength in twisted nematic liquid crystal (TNLC) cells. For asymmetrical TNLC samples, the twist angle is derived from the phase of the detected signal in a phase-sensitive heterodyne polarimeter and is then used to calculate the weak anchoring strength directly. The measurement resolution which is found to be about 0.01 μJ/m(2) makes the present method sensitive enough for the LC-based bio-sensing application. Using the proposed method, the weak azimuthal anchoring strength of a composite liquid crystal mixture (40% LCT-061153 + 60% MJO-42761) in contact with a plasma-alignment layer is found to be 7.19 μJ/m(2). For symmetrical TNLC samples, the liquid crystals are injected into a wedge cell, and the two-dimensional distributions of the twist angle and cell gap are extracted from the detected phase distribution using a genetic algorithm (GA). The azimuthal anchoring strength is then obtained by applying a fitting technique to the twist angle vs. cell gap curve. Utilizing the proposed approach, it is shown that the strong anchoring strength between a rubbed polyimide (PI) alignment layer and E7 liquid crystal is around 160 μJ/m(2) while that between a rubbed PI alignment layer and MLC-7023 liquid crystal is approximately 32 μJ/m(2). PMID:20941014

  10. Behavior of reinforced concrete slabs subjected to combined punching shear and biaxial tension

    International Nuclear Information System (INIS)

    This investigation was a continuing study of peripheral (punching) shear strength of precracked, biaxially tensioned, orthogonally reinforced concrete slabs. This research was motivated by the need to determie the strength of a reinforced concrete containment vessel wall when subjected to combined internal pressure and punching shear loads normal to the wall. The study served to determine the effect of three major variables (shear span, size of loaded area, and reinforcing steel ratio) on punching shear strength of slabs that were precracked in biaxial tension and then held at one of the two tension levels (0 or 0.8f/sub y/) during shear load application

  11. Long-term strength of Kh13M2S2 in biaxial stressed state

    International Nuclear Information System (INIS)

    Long-term strength of thin-walled tubular and plane samples of Kh13M2S2 steel at 650 deg C was studied. The tubular samples were loaded with internal gas pressure which resulted in a biaxial stressed state, the plane ones were loaded with uniaxial extension. Statistical processing of the experimental results was carried out, the straight lines of long-term strength with confidence intervals were plotted. Of four studied criteria of the complex stressed state the best coincidence of the experimental results under biaxial and uniaxial load is obtained using the Lebedev criterion

  12. Scratch resistance anisotropy in biaxially oriented polypropylene and poly(ethylene terephthalate) films

    Science.gov (United States)

    Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.

    2006-12-01

    Using a diamond-tipped stylus, scratch tests were conducted on biaxially oriented polypropylene and poly(ethylene terephthalate) films in the two draw directions, i.e., the machine-direction (MD) and the transverse-direction (TD) along which the draw ratios are different. Atomic force microscopy study of those scratches revealed a significant anisotropy in the scratch resistance between the MD and TD for both of the polymer films. We confirmed that the scratch resistance of polymer strands is closely related to the draw ratios, which determine the mechanical strength and optical clarity of biaxially oriented polymer films.

  13. Effective-Field Theory on High Spin Systems with Biaxial Crystal Field

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; GUO An-Bang; LI Xin; WANG Xi-Kun; BAI Bao-Dong

    2006-01-01

    Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.

  14. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.

    Science.gov (United States)

    Makarov, D V; Zakhlevnykh, A N

    2006-10-01

    Within the framework of Ericksen-Leslie continuum theory we analyze the influence of shear flow on the magnetic-field-induced Fréedericksz transition in nematic liquid crystal with rodlike molecules. We consider three basic orientational configurations of a nematic planar layer in the uniform magnetic field. Conditions of rigid director coupling on the boundaries of the layer and constant shear flow gradient inside the layer are used. We exhibit some flow aligning effects for nematic liquid crystals with various ratio of rotary viscosities and investigate how unequal elastic constants (elastic anisotropy) alter the magnetic Fréedericksz transition in sheared nematics. Our calculations predict that surface boundary effects in nematic films and magnetic field action lead to existence of stationary flow regimes in the so-called nonflow aligning nematics, otherwise, surface and magnetic forces extend the range of viscous coefficient values corresponding to the flow aligning regimes. We show that imposing of shear flow on the Fréedericksz transition leads to a threshold behavior or to a "smoothing" of the transition. It depends on the orientation of the nematic layer in magnetic field and magnitudes of rotary viscous coefficients. PMID:17155081

  15. Semicrystalline Structure-Dielectric Property Relationship and Electrical Conduction in a Biaxially Oriented Poly(vinylidene fluoride) Film under High Electric Fields and High Temperatures.

    Science.gov (United States)

    Yang, Lianyun; Ho, Janet; Allahyarov, Elshad; Mu, Richard; Zhu, Lei

    2015-09-16

    Poly(vinylidene fluoride) (PVDF)-based homopolymers and copolymers are attractive for a broad range of electroactive applications because of their high dielectric constants. Especially, biaxially oriented PVDF (BOPVDF) films exhibit a DC breakdown strength as high as that for biaxially oriented polypropylene films. In this work, we revealed the molecular origin of the high dielectric constant via study of a commercial BOPVDF film. By determination of the dielectric constant for the amorphous phase in BOPVDF, a high value of ca. 21-22 at 25 °C was obtained, and a three-phase (i.e., lamellar crystal/oriented interphase/amorphous region) semicrystalline model was proposed to explain this result. Meanwhile, electronic conduction mechanisms in BOPVDF under high electric fields and elevated temperatures were investigated by thermally stimulated depolarization current (TSDC) spectroscopy and leakage current studies. Space charge injection from metal electrodes was identified as a major factor for electronic conduction when BOPVDF was poled above 75 °C and 20 MV/m. In addition, when silver or aluminum were used as electrodes, new ions were generated from electrochemical reactions under high fields. Due to the electrochemical reactions between PVDF and the metal electrode, a question is raised for practical electrical applications using PVDF and its copolymers under high-field and high-temperature conditions. A potential method to prevent electrochemical degradation of PVDF is proposed in this study.

  16. Nematic order by elastic interactions and rigidity sensing of living cells

    CERN Document Server

    Friedrich, Benjamin M

    2010-01-01

    We predict spontaneous nematic order in an ensemble of active force generators with elastic interactions as a minimal model for early cytoskeletal self-polarization. Mean-field theory is formally equivalent to Maier-Saupe theory for a nematic liquid. However, the elastic interactions are long-ranged (and thus depend on cell shape and matrix elasticity) and originate in cell activity. Depending on the density of force generators, we find two regimes of cellular rigidity sensing for which nematic order depends on matrix rigidity either in a step-like manner or with a maximum at an optimal rigidity.

  17. Electronic and optical properties of kesterite Cu2ZnSnS4 under in-plane biaxial strains: First-principles calculations

    International Nuclear Information System (INIS)

    The electronic structures and optical properties of Cu2ZnSnS4 (CZTS) under in-plane biaxial strain were systematically investigated using first-principles calculations based on generalized gradient approximation and hybrid functional method, respectively. It is found that the fundamental bandgap at the Γ point decreases linearly with increasing tensile biaxial strain perpendicular to c-axis. However, a bandgap maximum occurs as the compressive biaxial strain is 1.5%. Further increase of compressive strain decreases the bandgap. In addition, the optical properties of CZTS under biaxial strain are also calculated, and the variation trend of optical bandgap with biaxial strain is consistent with the fundamental bandgap.

  18. Numerical simulation of planar contraction flow of nematic liquid crystals. Nematic ekisho no nijigen kyushukusho nagare no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chono, S.; Tsuji, T. (Fukui University, Fukui (Japan). Faculty of Engineering); Denn, M. (University of California, Barkeley, CA (United States))

    1994-06-25

    The nematic liquid crystal is liquid crystal having the simplest structure of molecular arrangement. Though its molecules are oriented in a fixed direction, its gravity is, similarly to that of the isotropic fluid, located at random. After having described the Leslie-Ericksen continuum (L-E) theory utilizable as a structural equation of nematic crystal, the present paper explained how a planar 4:1 contraction flow was numerically analyzed with the L-E theory for a wide range of Ericksen numbers. Further, the velocity field and orientation field were analyzed as well. The transversely isotropic fluid (TIF) was also studied about its stream line and orientation angle distribution of liquid crystal, and stream line of Newtonian fluid. Around a convex part in the liquid crystal flow, generated is its comparatively large secondary flow, which is made slightly smaller by an increase in Ericksen number. The secondary flow of TIF is small and resembles the Newtonian fluid flow in configuration. It is also the case with the main flow of TIF. 20 refs., 8 figs., 1 tab.

  19. The effect of biaxial strain on impurity diffusion in Si and SiGe

    DEFF Research Database (Denmark)

    Larsen, Arne Nylandsted; Zangenberg, Nikolaj; Fage-Pedersen, Jacob

    2005-01-01

    Results from diffusion studies of different impurities in biaxially strained Si and Si"1"-"xGe"x for low x-values will be presented. The structures are all molecular-beam epitaxy (MBE) grown on strain-relaxed Si"1"-"xGe"x layers, and the impurity profiles are introduced during growth. We have...

  20. Large-deformation properties of wheat dough in uni- and biaxial extension. Part I. Flour dough

    NARCIS (Netherlands)

    Sliwinski, E.L.; Kolster, P.; Vliet, van T.

    2004-01-01

    Rheological and fracture properties of optimally mixed flour doughs from three wheat cultivars which perform differently in cereal products were studied in uniaxial and biaxial extension. Doughs were also tested in small angle sinusoidal oscillation. In accordance with previously published results t

  1. On the sensitivity of directions that support Voigt wave propagation in infiltrated biaxial dielectric materials

    Science.gov (United States)

    Mackay, Tom G.

    2014-01-01

    Voigt wave propagation (VWP) was considered in a porous biaxial dielectric material that was infiltrated with a material of refractive index n. The infiltrated material was regarded as a homogenized composite material in the long wavelength regime, and its constitutive parameters were estimated using the extended Bruggeman homogenization formalism. In our numerical studies, the directions that support VWP were found to vary by as much as 300 deg per RIU as the refractive index n was varied. The sensitivities achieved were acutely dependent upon the refractive index n and the degrees of anisotropy and dissipation of the porous biaxial material. The orientations, shapes, and sizes of the particles that constitute the infiltrating material and the porous biaxial material exerted only a secondary influence on the maximum sensitivities achieved. Also, for the parameter ranges considered, the degree of porosity of the biaxial material had little effect on the maximum sensitivities achieved. These numerical findings bode well for the possible harnessing of VWP for optical sensing applications.

  2. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  3. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  4. Energy exchange between electromagnetic waves on the director diffraction grating in planar waveguide with nematic layer

    International Nuclear Information System (INIS)

    The energy exchange between two coupled TE modes on the diffraction grating of the director in a planar waveguide containing a nematic liquid crystal layer is calculated. The diffraction grating is induced by an external electric field in the nematic layer with periodic anchoring energy at the waveguide surface. The intensity of the signal mode at the output of the nematic layer is calculated as a function of the amplitude and period of the anchoring-energy modulation, the nematic layer sizes, and the electric-field strength. The cases of modes with the same and opposite directions are considered. Analytical expressions for the maximum intensities of the signal mode are derived. In both cases the maximum intensity of the signal mode increases with an increase in the electric-field strength

  5. Director configurations of nematic liquid crystalline droplets and corresponding configuration transitions

    Institute of Scientific and Technical Information of China (English)

    陆建明; 张红东; 丁建东; 杨玉良

    1996-01-01

    The director configurations of nematic liquid crystalline droplets and their corresponding configuration transitions were studied with Monte Carlo simulation in cubic lattices. The Lebwohl-Lasher (LL) nematogen potential was employed as the prototype of the nematic interaction between nearest-neighbor rodlike molecules. It has been found that the director configurations of nematic droplets change with the mode and strength of the interfacial interaction as well as temperature. Further description is given of the restructuring processes of spheric and elliptic nematic droplets subjected to different strengths of external fields. These results are, hence, helpful for understanding the display mechanism of polymer dispersed liquid crystal materials. The studies also demonstrate that Monte Carlo simulation based on LL model is an effective method for investigating the physics in the small systems of liquid crystal under confined geometries.

  6. Study of two dimensional nematic liquid crystal reorientations and anchoring effects

    OpenAIRE

    S Shoarinejad; MA Shahzamanian

    2010-01-01

    In this paper, the director distribution is calculated for a nematic liquid crystal, in the cell with different surface anchoring conditions and external fields. The effects of finite and infinite surface anchoring on molecular orientations for one dimensional geometry are discussed. In these situations, the planar alignment is considered. Then, in a two dimensional geometry the planar and homotropic anchoring conditions are assumed for wall- interfaces of confined nematic, and the reorientat...

  7. Stability of the Melting Hedgehog in the Landau-de Gennes Theory of Nematic Liquid Crystals

    Science.gov (United States)

    Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir

    2015-02-01

    We investigate stability properties of the radially symmetric solution corresponding to the vortex defect (the so called "melting hedgehog") in the framework of the Landau-de Gennes model of nematic liquid crystals. We prove local stability of the melting hedgehog under arbitrary Q-tensor valued perturbations in the temperature regime near the critical supercooling temperature. As a consequence of our method, we also rediscover the loss of stability of the vortex defect in the deep nematic regime.

  8. A continuum model for nematic alignment of self-propelled particles

    OpenAIRE

    Degond, Pierre; Manhart, Angelika; Yu, Hui

    2015-01-01

    A continuum model for a population of self-propelled particles interacting through nematic alignment is derived from an individual-based model. The methodology consists of introducing a hydrodynamic scaling of the corresponding mean-field kinetic equation. The resulting perturbation problem is solved thanks to the concept of generalized collision invariants. It yields a hyperbolic but non-conservative system of equations for the nematic mean direction of the flow and the densities of particle...

  9. Mechanical actions on nanocylinders in nematic liquid crystals.

    Science.gov (United States)

    McKay, Geoff; Virga, Epifanio G

    2005-04-01

    We apply the Landau-de Gennes theory to study the equilibrium problem that arises when a cylinder of radius R is kept at a given distance h from a plane wall. We assume that both the lateral boundary of the cylinder and the wall enforce homeotropic anchoring conditions on the liquid crystal, which prescribe the liquid crystal molecules to stick orthogonally to the bounding surfaces. Typically, in our study R ranges from a few to hundreds of biaxial coherence lengths, where a biaxial coherence length, which depends on the temperature, is a few nanometers. The equilibrium textures exhibit a bifurcation between a flat solution, where one eigenvector of the order tensor Q is everywhere parallel to the cylinder's axis, and an escape solution, where the eigenframe of Q flips out of the plane orthogonal to the cylinder's axis. The escape texture minimizes an appropriately renormalized energy functional F(*) for h>h(c), while the flat texture minimizes F(*) for h< h(c). We compute both the force and the torque transmitted to the cylinder by the surrounding liquid crystal and we find that the diagrams of both as functions of h fail to be monotonic along the escape texture. Thus, upon decreasing h, a snapping instability is predicted to occur, with an associated hysteresis loop in the force diagram, before h reaches h(c). Finally, since the symmetry of this problem makes it equivalent to the one where two parallel cylinders are separated by the distance 2h , the snapping instability predicted here should also be observed there.

  10. Nonlinear flow behaviors of nematic liquid crystals in complex geometries

    Science.gov (United States)

    Araki, Takeaki

    2013-02-01

    We study nematic liquid crystals flowing in a regular-shaped porous medium by means of lattice Boltzmann simulations. With strong anchoring, the director field cannot align uniformly and topological defects are stably formed with a large number of possible configurations. In a quiescent state, each configuration is arrested since the energy barriers between possible configurations are higher than the thermal energy. If the flow speed is slow enough, the defect pattern is not changed from the initial quiescent configuration. Above a critical flow speed, the defect pattern transforms to a new stable configuration. In a regular-shaped porous matrix, there remain regularly aligned disclination loops. This regular pattern is maintained even after the flow is stopped.

  11. Programming complex shapes in thin nematic elastomer and glass sheets

    Science.gov (United States)

    Plucinsky, Paul; Lemm, Marius; Bhattacharya, Kaushik

    2016-07-01

    Nematic elastomers and glasses are solids that display spontaneous distortion under external stimuli. Recent advances in the synthesis of sheets with controlled heterogeneities have enabled their actuation into nontrivial shapes with unprecedented energy density. Thus, these have emerged as powerful candidates for soft actuators. To further this potential, we introduce the key metric constraint which governs shape-changing actuation in these sheets. We then highlight the richness of shapes amenable to this constraint through two broad classes of examples which we term nonisometric origami and lifted surfaces. Finally, we comment on the derivation of the metric constraint, which arises from energy minimization in the interplay of stretching, bending, and heterogeneity in these sheets.

  12. Programming complex shapes in thin nematic elastomer and glass sheets.

    Science.gov (United States)

    Plucinsky, Paul; Lemm, Marius; Bhattacharya, Kaushik

    2016-07-01

    Nematic elastomers and glasses are solids that display spontaneous distortion under external stimuli. Recent advances in the synthesis of sheets with controlled heterogeneities have enabled their actuation into nontrivial shapes with unprecedented energy density. Thus, these have emerged as powerful candidates for soft actuators. To further this potential, we introduce the key metric constraint which governs shape-changing actuation in these sheets. We then highlight the richness of shapes amenable to this constraint through two broad classes of examples which we term nonisometric origami and lifted surfaces. Finally, we comment on the derivation of the metric constraint, which arises from energy minimization in the interplay of stretching, bending, and heterogeneity in these sheets. PMID:27575067

  13. Advection of nematic liquid crystals by chaotic flow

    CERN Document Server

    O'Naraigh, Lennon

    2016-01-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar two-dimensional geometry. The Landau-de Gennes equation coupled to an externally-prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation of motion for the uid velocity. The numerical simulations demonstrate that the coarsening of the liquid-crystal domains is arrested by the ow. The nature of the arrest is different depending on whether the flow is regular or chaotic. For the specific case where tumbling is important, the flow has a strong effect on the the liquid-crystal morphology: this provides a mechanism for controlling the shape of the liquid-crystal domains.

  14. Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment

    Science.gov (United States)

    Agha, Hakam; Galerne, Yves

    2016-04-01

    Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain

  15. X-ray Scattering Studies of Director Tumbling Dynamics in a Nematic Surfactant Solution

    Science.gov (United States)

    Caputo, F.; Burghardt, W.

    1998-03-01

    Many cationic surfactants self-assemble into wormlike micelles. At high concentrations, these micellar solutions may then form liquid crystalline nematic phases. Recent studies have demonstrated that the rheology of such solutions is quite similar to that observed in lyotropic liquid crystalline polymers, particularly with respect to stress oscillations in transient flows that are attributed to director tumbling. Here we present complementary rheological and x-ray scattering data on an aqueous solution of cetylpyridinium chloride/hexanol(Sample kindly supplied by L. Walker and J.-F. Berret) to compare the mechanical and structural response. Time-resolved synchtrotron x-ray scattering under shear(Experiments performed at DND-CAT at the APS) is used to measure the average micelle orientation state during transient flows such as step increases and decreases in shear rate, and reversals in flow direction. There is a strong connection between the rheology and the fluid structure: stress minima are well correlated with high instantaneous micellar orientation. The experimental observations are compared with the predictions of the Larson-Doi tumbling polydomain model, which captures many aspects of the observed behavior.

  16. Manipulation of modified clay particles in a nematic solvent by a magnetic field

    International Nuclear Information System (INIS)

    The magnetic alignment of organically modified montmorillonite platelets in magnetic fields is studied using small-angle x-ray scattering. When suspended in non-mesogenic solvents such as dodecanol the platelets are found to align parallel to the magnetic field due to the negative anisotropy of the magnetic susceptibility of the montmorillonite. Alignment of the clay in the nematic phase of 5CB was possible for sufficiently dilute samples and at sufficiently high field strengths. However, in this case the platelets aligned with their normals parallel to the field. It is argued that this is due to homeotropic anchoring of the liquid crystal at the clay particle surfaces leading to the particle orientation being slaved to the director alignment. Alignment of the 5CB director parallel to the field was only apparent at high fields and low particle concentrations, where the magnetic coherence length of the liquid crystal would be smaller than the typical size of a domain between stacks of clay platelets. A simple theoretical model is presented to aid the interpretation of the observations. The observed degree of particle alignment is often less than predicted, probably as the result of interactions between stacks of particles opposing reorientation

  17. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

    KAUST Repository

    Ball, John M.

    2010-07-20

    We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime. Copyright © Taylor & Francis Group, LLC.

  18. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    Science.gov (United States)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-03-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71+/-5 l m-2 hr-1 bar-1 for 150+/-15 nm thick membranes).

  19. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  20. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a bi-axial Box

    OpenAIRE

    Imole, O.I.; Kumar, N; Magnanimo, V.; S. Luding

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the effects of friction and polydispersity on our simulations and present the second stress response namely the deviatoric stress as a function of the deviatoric strain.

  1. Strength Behavior of High Strength R/C Columns under Biaxial Bending-Shear and Varying Axial Load

    OpenAIRE

    MIZOGUCHI, Mitsuo; Arakawa, Takashi; ARAI, Yasuyuki

    1991-01-01

    Twelve short square R/C columns using high-strength concrete were tested to examine the effects of biaxial bending-shear force and varying axial load on the shear and flexural strength behavior. The columns were cyclically deflected either along their transverse principal axis to produce uniaxial bending-shear or along their diagonal to produce biaxial bending-shear. For columns failing in flexure, the experimental results were found to be in close agreement with the computed values given by ...

  2. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  3. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states

  4. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  5. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  6. Biaxial load effects on the crack border elastic strain energy and strain energy rate

    Science.gov (United States)

    Eftis, J.; Subramonian, N.; Liebowitz, H.

    1977-01-01

    The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.

  7. Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal

    Science.gov (United States)

    Brenier, Alain

    2016-09-01

    With an experimental set-up designed to record simultaneously the far-field and the near-field patterns, we got lasing with feature of conical diffraction in the biaxial Nd3+-doped KGd(WO4)2 crystal. The key-point is that the lasing direction is not single and is constituted by an angular distribution including the optical axis. Very slight changes of crystal orientation leads to crescent shape 1068-nm light distributions in the near-field. The beam launched towards the biaxial crystal is mainly linear polarized with its intensity in agreement with the Nd fluorescence angular distribution. A theoretical background is provided, including the monoclinic and triclinic symmetries and laser amplification including elliptical modes and cavity round trip.

  8. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-25

    A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

  9. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    CERN Document Server

    Sundell, Per

    2016-01-01

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by the sum of two generalized Petrov type-D tensors, and the twistor space connections are smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  10. Genuine effectively biaxial left-handed metamaterials due to extreme coupling.

    Science.gov (United States)

    Menzel, Christoph; Alaee, Rasoul; Pshenay-Severin, Ekaterina; Helgert, Christian; Chipouline, Arkadi; Rockstuhl, Carsten; Pertsch, Thomas; Lederer, Falk

    2012-02-15

    Most left-handed metamaterials cannot be described by local effective permittivity or permeability tensors in the visible or near-infrared due to the mesoscopic size of the respective unit cells and the related strong spatial dispersion. We lift this problem and propose a metamaterial exhibiting artificial magnetism that does not suffer from this restriction. The artificial magnetism arises from the extreme coupling between both metallic films forming the unit cell. We show that its electromagnetic response can be properly described by biaxial local constitutive relations. A genuine biaxial left-handed fishnet metamaterial is suggested, which can be realized by atomic layer deposition to fabricate the nanoscaled spacing layers required for extreme coupling.

  11. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  12. Non-proportional tension-shear experiments in a biaxial test facility

    OpenAIRE

    Riel, van, A.C.M.J.; Boogaard, van den, F.E.; Huetink, J.

    2006-01-01

    This paper discusses the results obtained from experiments on DC06 mild steel with a biaxial test facility. The two presented tests are non-proportional tests consisting of a two stage strain path. First the samples are deformed in the tensile direction after which simple shear deformation is applied. In the one case elastic unloading is applied after the tensile deformation, while in the other case the tensile deformation is directly followed by the simple shear deformation. For the test wit...

  13. Measuring knife stab penetration into skin simulant using a novel biaxial tension device

    OpenAIRE

    Gilchrist, M. D.; Keenan, S.; Curtis, Michael; et al.,

    2008-01-01

    This paper describes the development and use of a biaxial measurement device to analyse the mechanics of knife stabbings. In medicolegal situations it is typical to describe the consequences of a stabbing incident in relative terms that are qualitative and descriptive without being numerically quantitative. Here, the mechanical variables involved in the possible range of knife-tissue penetration events are considered so as to determine the necessary parameters that would need to be controlled...

  14. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation

    OpenAIRE

    Zeinali-Davarani, Shahrokh; Chow, Ming-Jay; Turcotte, Raphaël; Zhang, Yanhang

    2013-01-01

    Arteries are composed of multiple constituents that endow the wall with proper structure and function. Many vascular diseases are associated with prominent mechanical and biological alterations in the wall constituents. In this study, planar biaxial tensile test data of elastase-treated porcine aortic tissue (Chow et al. 2012) is re-examined to characterize the altered mechanical behavior at multiple stages of digestion through constitutive modeling. Exponential-based as well as recruitment-b...

  15. Novel biaxial tensile test for studying aortic failure phenomena at a microscopic level

    Directory of Open Access Journals (Sweden)

    Sugita Shukei

    2013-01-01

    Full Text Available Abstract Background An aortic aneurysm is a local dilation of the aorta, which tends to expand and often results in a fatal rupture. Although larger aneurysms have a greater risk of rupture, some small aneurysms also rupture. Since the mechanism of aortic rupture is not well understood, clarification of the microstructure influencing the failure to rupture is important. Since aortic tissues are stretched biaxially in vivo, we developed a technique to microscopically observe the failure of an aortic rupture during biaxial stretch. Methods A thinly sliced porcine thoracic aortic specimen was adhered to a circular frame and pushed onto a cylinder with a smaller diameter to stretch the specimen biaxially. To induce failure to rupture at the center, the specimen was thinned at the center of the hole as follows: the specimen was frozen while being compressed with metal plates having holes, which were 3 mm in diameter at their centers; the specimen was then sliced at 50-μm intervals and thawed. Results The ratio of the thickness at the center to the peripheral area was 99.5% for uncompressed specimens. The ratio decreased with an increase in the compression ratio εc and was 47.3% for specimens with εc = 40%. All specimens could be stretched until failure to rupture. The probability for crack initiation within the cylinder was εc εc >30%, respectively. Among specimens ruptured within the cylinder, 93% of those obtained from the mid-media showed crack initiation at the thin center area. Conclusions Aortic tissues were successfully stretched biaxially until failure, and their crack initiation points were successfully observed under a microscope. This could be a very useful and powerful method for clarifying the mechanism of aortic rupture. We are planning to use this technique for a detailed investigation of events occurring at the point of failure when the crack initiates in the aortic aneurysm wall.

  16. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    OpenAIRE

    Xue-wei Liu; Quan-sheng Liu; Shi-bing Huang; Lai Wei; Guang-feng Lei

    2016-01-01

    This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C). On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the...

  17. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

    Science.gov (United States)

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-10-01

    Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies. PMID:27434651

  18. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

    Science.gov (United States)

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-10-01

    Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies.

  19. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    Science.gov (United States)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-07-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  20. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  1. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Hsiao-Ming, E-mail: hmtung2@gmail.com [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan, ROC (China); Mo, Kun; Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  2. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Science.gov (United States)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  3. Biaxial CdTe/CaF{sub 2} films growth on amorphous surface

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, W., E-mail: yuanw@rpi.ed [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); Tang, F.; Li, H.-F.; Parker, T. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); LiCausi, N. [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); Lu, T.-M. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); Bhat, I. [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); Wang, G.-C. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th St., Troy, NY 12180 (United States); Lee, S. [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, NY 12189 (United States)

    2009-10-30

    A continuous and highly biaxially textured CdTe film was grown by metal organic chemical vapor deposition on an amorphous substrate using biaxial CaF{sub 2} nanorods as a buffer layer. The interface between the CdTe film and CaF{sub 2} nanorods and the morphology of the CdTe film were studied by transmission electron microscopy (TEM) and scanning electron microscopy. Both the TEM and X-ray pole figure analysis clearly reveal that the crystalline orientation of the continuous CdTe film followed the {l_brace}111{r_brace}<121> biaxial texture of the CaF{sub 2} nanorods. A high density of twin faults was observed in the CdTe film. Furthermore, the near surface texture of the CdTe thin film was investigated by reflection high-energy electron diffraction (RHEED) and RHEED surface pole figure analysis. Twinning was also observed from the RHEED surface pole figure analysis.

  4. The failure behavior of the cladding with outer surface pre-crack in biaxial stress test

    International Nuclear Information System (INIS)

    Biaxial stress tests using the unirradiated Cold Worked Stress Relieved (CWSR) Zircaloy-4 cladding with an outer surface pre-crack were conducted under room temperature condition. To reproduce the biaxial stress states assumed in RIA conditions, Expansion Due to Compression (EDC) test which induces uniaxial stress states was developed using a tensile test machine. Constant tensile loads, 0, 5.0 and 10.0 kN, were applied to specimens through each test, respectively. All specimens failed in the tests, and the failure morphology was similar to that observed in the PIEs conducted for the pulse irradiation experiments using a high burnup fuel. The longitudinal strain (εtz) at failure clearly increased with increasing tensile loads and the circumferential strain (εtθ) at failure decreased significantly in 5.0 and 10.0 kN tests compared to 0 kN tests. These data obtained in this study are considered as the fundamentals to quantify the failure criteria of claddings in a biaxial stress state. (author)

  5. On the correct interpretation of measured force and calculation of material stress in biaxial tests.

    Science.gov (United States)

    Nolan, D R; McGarry, J P

    2016-01-01

    Biaxial tests are commonly used to investigate the mechanical behaviour of soft biological tissues and polymers. In the current paper we uncover a fundamental problem associated with the calculation of material stress from measured force in standard biaxial tests. In addition to measured forces, localised unmeasured shear forces also occur at the clamps and the inability to quantify such forces has significant implications for the calculation of material stress from simplified force-equilibrium relationships. Unmeasured shear forces are shown to arise due to two distinct competing contributions: (1) negative shear force due to stretching of the orthogonal clamp, and (2) positive shear force as a result of material Poisson-effect. The clamp shear force is highly dependent on the specimen geometry and the clamp displacement ratio, as consequently, is the measured force-stress relationship. Additionally in this study we demonstrate that commonly accepted formulae for the estimation of material stress in the central region of a cruciform specimen are highly inaccurate. A reliable empirical correction factor for the general case of isotropic materials must be a function of specimen geometry and the biaxial clamp displacement ratio. Finally we demonstrate that a correction factor for the general case of non-linear anisotropic materials is not feasible and we suggest the use of inverse finite element analysis as a practical means of interpreting experimental data for such complex materials. PMID:26327453

  6. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    Science.gov (United States)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  7. Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation

    Science.gov (United States)

    Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.

    2014-03-01

    Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.

  8. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test.

    Science.gov (United States)

    Chung, S M; Yap, A U J; Chandra, S P; Lim, C T

    2004-11-15

    This study compared two test methods used to evaluate the flexural strength of resin-based dental composites. The two test methods evaluated were the three-point bending test4 and the biaxial flexural test. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid modified (F2000), and flowable [Filtek Flowable (FF)] composites. Flexural strength was determined with the use of both test methods after 1 week of conditioning in water at 37 degrees C. Data were analyzed with the use of an ANOVA/Scheffe test and an independent-samples t test at significance level 0.05. Mean flexural strength (n = 7) ranged from 66.61 to 147.21 and 67.27 to 182.81 MPa for three-point bending and ball-on-three-ball biaxial test methods, respectively. In both test methods, Z100 was significantly stronger than all other composites evaluated. In the three-point bending test, flexural strength of Z250 was significantly higher than A110, F2000 and FF, and FF was significantly stronger than A110 and F2000. The biaxial test method arrived at the same conclusions except that there was no significant difference between Z250 and FF. Pearson's correlation revealed a significantly (p bending test. PMID:15386492

  9. Wrinkling of a thin film on a nematic liquid-crystal elastomer

    Science.gov (United States)

    Soni, Harsh; Pelcovits, Robert A.; Powers, Thomas R.

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)], 10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  10. Wrinkling of a thin film on a nematic liquid-crystal elastomer.

    Science.gov (United States)

    Soni, Harsh; Pelcovits, Robert A; Powers, Thomas R

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer. PMID:27575192

  11. In situ laser-imprinted surface realignment of a nematic liquid crystal.

    Science.gov (United States)

    Mirri, Giorgio; Škarabot, Miha; Muševič, Igor

    2015-05-01

    We present a new method for the in-plane realignment of nematic liquid crystals in already fully assembled cells with uni-directionally rubbed polyimide as an aligning layer. We use nematic liquid crystals (NLCs) with a relatively high nematic-isotropic transition temperature and we focus the IR laser beam of the laser tweezers selectively onto one or the other of the inner interfaces. The heat generated by the IR absorption locally melts the liquid crystal and creates an isotropic island with well-defined molecular anchoring at the nematic-isotropic interface. By scanning the laser beam along a pre-defined line, the moving isotropic-nematic interface leaves behind a well oriented LC domain, with LC molecules aligned at 45° to the rubbing direction. If we in addition move the sample with respect to this scanning line, we would be able to selectively realign micro-domains of the liquid crystal with respect to the original alignment induced by the PI rubbing. The realignment can be performed independently on each LC-glass interface, thereby producing predefined domains with customized and controllable alignment within an otherwise uniformly aligned cell. PMID:25790268

  12. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.

    Science.gov (United States)

    Stella, John A; Liao, Jun; Sacks, Michael S

    2007-01-01

    Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-dependent behaviors under physiological biaxial loading states have yet to be quantified. In the current study, we performed strain rate, creep, and stress-relaxation experiments using porcine AVL under planar biaxial stretch and loaded to physiological levels (60 N/m equi-biaxial tension), with strain rates ranging from quasi-static to physiologic. The resulting stress-strain responses were found to be independent of strain rate, as was the observed low level of hysteresis ( approximately 17%). Stress relaxation and creep results indicated that while the AVL exhibited significant stress relaxation, it exhibited negligible creep over the 3h test duration. These results are all in accordance with our previous findings for the mitral valve anterior leaflet (MVAL) [Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P., 2006a. Planar biaxial creep and stress relaxatin of the mitral valve anterior leaflet. Annals of Biomedical Engineering 34 (10), 1509-1518; Grashow, J.S., Yoganathan, A.P., Sacks, M.S., 2006b. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering 34 (2), 315-325], and support our observations that valvular tissues are functionally anisotropic, quasi-elastic biological materials. These results appear to be unique to valvular tissues, and indicate an ability to withstand loading without time-dependent effects under physiologic loading conditions. Based on a recent study that suggested valvular collagen fibrils are not intrinsically viscoelastic [Liao, J., Yang, L., Grashow, J., Sacks, M.S., 2007

  13. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    Science.gov (United States)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  14. Generation of harmonics and supercontinuum in nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nyushkov, B N; Trashkeev, S I; Klementyev, Vasilii M; Pivtsov, V S; Kobtsev, Sergey M

    2013-02-28

    Nonlinear optical properties of nematic liquid crystals (NLC) have been investigated. A technique for efficient laser frequency conversion in a microscopic NLC volume deposited on an optical fibre end face is experimentally demonstrated. An efficient design of a compact NLC-based IR frequency converter with a fibre input and achromatic collimator is proposed and implemented. Simultaneous generation of the second and third harmonics is obtained for the first time under pumping NLC by a 1.56-mm femtosecond fibre laser. The second-harmonic generation efficiency is measured to be about 1 %, while the efficiency of third-harmonic generation is several tenths of percent. A strong polarisation dependence of the third-harmonic generation efficiency is revealed. When pumping NLC by a cw laser, generation of spectral supercontinua (covering the visible and near-IR spectral ranges) is observed. The nonlinear effects revealed can be due to the light-induced change in the orientational order in liquid crystals, which breaks the initial symmetry and leads to formation of disclination structures. The NLC optical nonlinearity is believed to be of mixed orientationalelectronic nature as a whole. (laser optics 2012)

  15. Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals.

    Science.gov (United States)

    Beller, Daniel A; Gharbi, Mohamed A; Liu, Iris B

    2015-02-14

    The assembly of colloids in nematic liquid crystals via topological defects has been extensively studied for spherical particles, and investigations of other colloid shapes have revealed a wide array of new assembly behaviors. We show, using Landau-de Gennes numerical modeling, that nematic defect configurations and colloidal assembly can be strongly influenced by fine details of colloid shape, in particular the presence of sharp edges. For cylinder, microbullet, and cube colloid geometries, we obtain the particles' equilibrium alignment directions and effective pair interaction potentials as a function of simple shape parameters. We find that defects pin at sharp edges, and that the colloid consequently orients at an oblique angle relative to the far-field nematic director that depends on the colloid's shape. This shape-dependent alignment, which we confirm in experimental measurements, raises the possibility of selecting self-assembly outcomes for colloids in liquid crystals by tuning particle geometry. PMID:25523158

  16. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  17. Polymer and Mesoporous Silica Microspheres with Chiral Nematic Order from Cellulose Nanocrystals.

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y; MacLachlan, Mark J

    2016-09-26

    Polymer microspheres with chiral nematic order were obtained from an emulsion polymerization technique using cellulose nanocrystals (CNCs) as the template. The growth of the liquid crystals from tiny tactoids to droplets with spherical symmetry was captured and investigated by both optical and electron microscopy for the first time. The size of the microspheres could be tuned between tens and hundreds of micrometers; to obtain single, integrated chiral nematic kernels, the size of water droplets in the emulsion should be similar to that of CNC tactoids. Through a double-matrix templating method, novel silica microspheres with chiral nematic order were fabricated, which showed a high surface area and mesoporosity. The methods developed here may help to reveal the evolution of other self-assembling systems, and these materials have potential applications in optical devices and chiral separations. PMID:27581056

  18. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.

    Science.gov (United States)

    Napoli, Gaetano; Vergori, Luigi

    2016-08-01

    We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell. PMID:27627231

  19. Director orientation of nematic liquid crystal using orientated nanofibers obtained by electrospinning

    Science.gov (United States)

    Toan, Duong Quoc; Ozaki, Ryotaro; Moritake, Hiroshi

    2014-01-01

    Nanofibers with diameters less than 1000 nm assembled by electrospinning and with a large surface area per unit mass have been attracting considerable attention and are expected to affect the orientation of liquid crystals (LCs). Firstly, to determine the orientated nanofibers on an indium-tin-oxide (ITO) glass surface, the spectral analysis technique of using fast Fourier transform is applied. Optical observation is performed to confirm the orientation of LC molecules in a twisted nematic LC cell. Finally, optical measurement of an LC cell is carried out to estimate the threshold voltage of the LC in two types of twisted nematic LC cell: one with rubbed polyimide and the other with orientated nanofibers as the alignment layer. A twisted nematic LC is oriented in the cell using orientated nanofibers as the alignment layer and the threshold voltage of this cell agrees with that of the conventional polyimide rubbed cell.

  20. In situ biaxial texture analysis of MGO films during growth on amorphous substrates by ion beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R. T. (Rhett T.); Arendt, P. N. (Paul N.); Atwater, H. A. (Harry A.); Groves, J. R. (James R.)

    2001-01-01

    We used a previously reported kinematical electron scattering model to develop a RHEED based method for performing quantitative analysis of mosaic polycrystalline thin film in-plane and out-of-plain grain orientation distributions. RHEED based biaxial texture measurements are compared to X-Ray and transmission electron microscopy measurements to establish the validity of the RHEED analysis method. In situ RHEED analysis reveals that the out of plane orientation distribution starts out very broad, and then decreases during IBAD MgO growth. Other results included evidence that the in-plane orientation distribution narrows, the grain size increases, and the film roughens as film thickness increases during IBAD MgO growth. Homoepitaxy of MgO improves the biaxial texture of the IBAD layer, making X-ray measurements of IBAD films with an additional homoepitaxial layer not quantitatively representative of the IBAD layer. Systematic offsets between RHEED analysis and X-ray measurements of biaxial texture, coupled with evidence that biaxial texture improves with increasing film thickness, indicate that RHEED is a superior technique for probing surface biaxial texture.

  1. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author)

  2. Polar structure of disclination loops in nematic liquid crystals probed by second-harmonic-light scattering.

    Science.gov (United States)

    Pardaev, Shokir A; Williams, J C; Twieg, R J; Jakli, A; Gleeson, J T; Ellman, B; Sprunt, S

    2015-03-01

    Angle-resolved, second-harmonic-light scattering (SHLS) measurements are reported for three different classes of thermotropic nematic liquid crystals (NLCs): polar and nonpolar rodlike compounds and a bent-core compound. Results revealing well-defined scattering peaks are interpreted in terms of the electric polarization induced by distortions of the nematic orientational field ("flexopolarity") associated with inversion wall defects, nonsingular disclinations, analogous to Neel walls in ferromagnets, that often exhibit a closed loop morphology in NLCs. Analysis of the SHLS patterns based on this model provides a "proof-of-concept" for a potentially useful method to probe the flexopolar properties of NLCs.

  3. Anomalous Increase in Nematic-Isotropic Transition Temperature in Dimer Molecules Induced by a Magnetic Field

    Science.gov (United States)

    Salili, S. M.; Tamba, M. G.; Sprunt, S. N.; Welch, C.; Mehl, G. H.; Jákli, A.; Gleeson, J. T.

    2016-05-01

    We have determined the nematic-isotropic transition temperature as a function of an applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15 K when subjected to a 22 T magnetic field. The increase is conjectured to be caused by a magnetic-field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers.

  4. Influence of the bias-voltage on the anchoring energy for nematic liquid crystals

    OpenAIRE

    Barbero, Giovanni

    2004-01-01

    The influence of the bias-voltage on the anisotropic part of the nematic surface energy is analyzed. The experimental data show a strong dependence of the anchoring strength on the bias-voltage when the electrodes of the nematic cell are covered with WO3. The observed dependence can be interpreted taking into account the ions dissolved in the liquid crystal. We propose a model in which the effect of the bias-voltage is to collect the ions near the electrodes, in a surface layer whose thicknes...

  5. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light

    Science.gov (United States)

    Zheng, Zhi-Gang; Li, Yannian; Bisoyi, Hari Krishna; Wang, Ling; Bunning, Timothy J.; Li, Quan

    2016-03-01

    Chiral nematic liquid crystals—otherwise referred to as cholesteric liquid crystals (CLCs)—are self-organized helical superstructures that find practical application in, for example, thermography, reflective displays, tuneable colour filters and mirrorless lasing. Dynamic, remote and three-dimensional control over the helical axis of CLCs is desirable, but challenging. For example, the orientation of the helical axis relative to the substrate can be changed from perpendicular to parallel by applying an alternating-current electric field, by changing the anchoring conditions of the substrate, or by altering the topography of the substrate’s surface; separately, in-plane rotation of the helical axis parallel to the substrate can be driven by a direct-current field. Here we report three-dimensional manipulation of the helical axis of a CLC, together with inversion of its handedness, achieved solely with a light stimulus. We use this technique to carry out light-activated, wide-area, reversible two-dimensional beam steering—previously accomplished using complex integrated systems and optical phased arrays. During the three-dimensional manipulation by light, the helical axis undergoes, in sequence, a reversible transition from perpendicular to parallel, followed by in-plane rotation on the substrate surface. Such reversible manipulation depends on experimental parameters such as cell thickness, surface anchoring condition, and pitch length. Because there is no thermal relaxation, the system can be driven either forwards or backwards from any light-activated intermediate state. We also describe reversible photocontrol between a two-dimensional diffraction state, a one-dimensional diffraction state and a diffraction ‘off’ state in a bilayer cell.

  6. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    Science.gov (United States)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  7. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    Science.gov (United States)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  8. Phase behaviour of rod-like colloid + flexible polymer mixtures

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Stroobants, A.

    1994-01-01

    The effect of non-adsorbing, flexible polymer on the isotropic-nematic transition in dispersions of rod-like colloids is investigated. A widening of the biphasic gap is observed, in combination with a marked polymer partitioning between the coexisting phases. Under certain conditions, areas of isotr

  9. Band offsets for biaxially and uniaxially stressed silicon-germanium layers with arbitrary substrate and channel orientations

    Science.gov (United States)

    Eneman, Geert; Roussel, Philippe; Brunco, David Paul; Collaert, Nadine; Mocuta, Anda; Thean, Aaron

    2016-08-01

    The conduction and valence band offsets between a strained silicon-germanium layer and a silicon-germanium substrate are reported for arbitrary substrate and channel crystal orientations. The offsets are calculated both for the case of biaxial stress, corresponding approximately to the stress state of a thin strained channel in a planar field-effect transistor (FET), and for uniaxial stress, which is the approximate stress state for strained channels in a FinFET configuration. Significant orientation dependence is found for the conduction band offset, overall leading to the strongest electron quantum confinement in biaxial-tensile stressed channels on {100}-oriented substrates, and uniaxial-tensile stressed channels in the ⟨100⟩ and ⟨110⟩ directions. For biaxially stressed layers on {111} substrates, the conduction band offset is significantly smaller than for {100} or {110} directions. For the valence band offset, the dependence on crystal orientation is found to be small.

  10. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  11. Application of Bi-axial Warp Knitted Structures in Concrete Constructions

    Institute of Scientific and Technical Information of China (English)

    李炜; 陈南梁

    2001-01-01

    The warp knitted bi-axial directionally oriented structure (D. O. S. ) reinforcement substrates applied to building construction are discussed in comparison to woven fabrics. One of usage barriers of reinforced cement with gloss-grid is its sensitivity to alkali existed in the cement which will lead to the reduction of its service-life. The tests show that the treatment by sol-gel method to protect the composite from alkali corrosion is effective. Then two formulae of sol-gel solution are also recommended here for application.

  12. Collinear Acousto-Optical Transformation of Bessel Light Beams in Biaxial Gyrotropic Crystals

    Science.gov (United States)

    Belyi, V. N.; Kulak, G. V.; Krokh, G. V.; Shakin, O. V.

    2016-05-01

    The collinear acousto-optical transformation of Bessel light beams in biaxial gyrotropic crystals into two annular, internal conical refraction beams with orthogonal elliptical polarization is studied. It is found that the diffraction efficiency is maximal (~50-60%) for low ultrasound intensities and varies slightly with further increases in acoustic power. At high ultrasound intensities, the intensities of the transmitted and diffracted annular beams differ insignificantly. The possible use of this acousto-optical interaction for creating collinear tuneable narrow-band acousto-optical filters at low ultrasonic frequencies is demonstrated.

  13. Mechanism of biaxial pre-stress method on welding residual stress and hot cracks controlling

    Institute of Scientific and Technical Information of China (English)

    LIU Xuesong; ZHOU Guangtao; WANG Ping; LIU Haoyuan; FANG Hongyuan

    2009-01-01

    Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion as-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks

  14. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  15. Biaxial high cycle fatigue: experimental investigation and two-scale damage model

    International Nuclear Information System (INIS)

    This research thesis first describes the multi-axial fatigue phenomenon in the cases of mechanical and complex loadings, discusses multi-axial fatigue criteria, and presents the approach of fatigue by incremental damage mechanics. Then, it reports an experimental investigation of fatigue crack initiation under biaxial polycyclic fatigue in 304L austenitic stainless steel and in titanium alloy. The author presents a probabilistic two-scale damage model, and then reports the assessment of multi-axial fatigue life by means of this model

  16. Behavior of High Water-cement Ratio Concrete under Biaxial Compression after Freeze-thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    SHANG Huaishuai; SONG Yupu; OU Jinping

    2008-01-01

    The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied.Strength and deformations of plain concrete specimens after 0,25,50 cycles of freeze-thaw.Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed aecording to the experimental results.Based on the test data,the failure criterion expressed in terms of principal stress after difierent cycles of freeze-thaw,and the failure criterion with consideration of the influence of freeze-thaw cycle and sffess ratio were proposed respectively.

  17. Control of biaxial strain in single-layer Molybdenite using local thermal expansion of the substrate

    OpenAIRE

    Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C; Korn, T.

    2015-01-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllabl...

  18. Transformation of vector beams with radial and azimuthal polarizations in biaxial crystals

    CERN Document Server

    Turpin, Alex; Lizana, Angel; Torres-Ruiz, Fabián; Estévez, Irene; Moreno, Ignacio; Campos, Juan; Mompart, Jordi

    2015-01-01

    We present both experimentally and theoretically the transformation of radially and azimuthally polarized vector beams when they propagate through a biaxial crystal and are transformed by the conical refraction phenomenon. We show that, at the focal plane, the transverse pattern is formed by a ring-like light structure with an azimuthal node, being this node found at diametrically opposite points of the ring for radial/azimuthal polarizations. We also prove that the state of polarization of the transformed beams is conical refraction-like, i.e. that every two diametrically opposite points of the light ring are linearly orthogonally polarized.

  19. Orientational fluctuations and phase transitions in 8CB confined by cylindrical pores of the PET film

    Science.gov (United States)

    Maksimochkin, G. I.; Shmeliova, D. V.; Pasechnik, S. V.; Dubtsov, A. V.; Semina, O. A.; Kralj, S.

    2016-08-01

    Results of optical investigations of the isotropic-nematic and nematic-smectic A phase transitions in porous polyethyleneterephthalate (PET) films filled with octyl-cyanobihenyl (8CB) liquid crystal (LC) are reported. Samples of porous films of thickness 23 µm with normally oriented cylindrical pores of a radius R ranging from 10 nm to 1000 nm were prepared using the track-etched membrane technology. The dynamic light scattering method was used to probe the nematic orientational fluctuations of confined LC samples. The corresponding relaxation time τ was measured as a function of R and temperature T at slow enough cooling rates (0.3-0.6 K/h) to locate the phase transition temperatures. Changes in τ(T) dependencies relatively sensitivity fingerprint the LC phase transformations. Experimental results are analysed using the Landau-de Gennes-Ginzburg phenomenological approach.

  20. Nematóides do Brasil 2ª parte: nematóides de anfíbios Brazilian nematodes - part 2: nematodes of amphibians

    Directory of Open Access Journals (Sweden)

    Joaquim Julio Vicente

    1990-01-01

    Full Text Available São reunidas neste trabalho todas as espécies de nematóides parasitas de anfíbios encontradas no Brasil, com dados suficientes para a sua identificação especifica. Na primeira parte que é o catálogo dos nematóides parasitos de anfíbios, são relacionadas nove superfamilias, quatorze famílias, vinte e quatro gêneros e sessenta e três espécies, sendo que destas, são dadas figuras e medidas. Na segunda parte que é o catálogo dos anfíbios hospedeiros, todos pertencentes à ordem Anura, são referidas seis famílias e cinqüenta e cinco espécies de anfíbios, estas com os nematóides respectivos. A identificação dos nematóides é auxiliada por chaves de determinação das superfamílias, famílias e gêneros, sendo a identificação específica feita através de quadros de medidas e figuras.A survey of nematode species parasitizing Brazilian amphibians is presented, with data enough to provide their specific identification. The first section refers to the catalogation of the species, related to 9 superfamilies, 14 families, 24 genera and 63 species that are figurated and included in measurement tables. The second section is concerned to the catalogue of host amphibians of the order Anura, with 6 families, and 55 species and their respective parasite nematodes. The identification of these helminths is achieved by means of keys to the superfamilies, families and genera. Specific determination is induced through the figures and tables as above mentioned.

  1. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    Science.gov (United States)

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT. PMID:26262770

  2. Electronic and optical properties of kesterite Cu{sub 2}ZnSnS{sub 4} under in-plane biaxial strains: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Ran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng, E-mail: liyongfeng@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Yang, Gang [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Ding, Zhan-Hui [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Deng, Rui [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Liu, Lei [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2013-11-08

    The electronic structures and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) under in-plane biaxial strain were systematically investigated using first-principles calculations based on generalized gradient approximation and hybrid functional method, respectively. It is found that the fundamental bandgap at the Γ point decreases linearly with increasing tensile biaxial strain perpendicular to c-axis. However, a bandgap maximum occurs as the compressive biaxial strain is 1.5%. Further increase of compressive strain decreases the bandgap. In addition, the optical properties of CZTS under biaxial strain are also calculated, and the variation trend of optical bandgap with biaxial strain is consistent with the fundamental bandgap.

  3. A new method for solid surface topographical studies using nematic liquid crystals

    Science.gov (United States)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  4. Monotonicity of a Key Function Arised in Studies of Nematic Liquid Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    2007-01-01

    Full Text Available We revisit a key function arised in studies of nematic liquid crystal polymers. Previously, it was conjectured that the function is strictly decreasing and the conjecture was numerically confirmed. Here we prove the conjecture analytically. More specifically, we write the derivative of the function into two parts and prove that each part is strictly negative.

  5. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal

    Science.gov (United States)

    Ryzhkova, A. V.; Škarabot, M.; Muševič, I.

    2015-04-01

    We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ˜4.5 ×10-3C/m2 for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ˜2.3 ×10-5C/m2 , for 1 -μ m colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell.

  6. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

    Science.gov (United States)

    Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-02-01

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization. PMID:26768844

  7. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K11, K22 and K33 as well as the surface constants K13 and K24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  8. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

    Science.gov (United States)

    Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-02-01

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.

  9. Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors.

    Science.gov (United States)

    Frandsen, Benjamin A; Bozin, Emil S; Hu, Hefei; Zhu, Yimei; Nozaki, Yasumasa; Kageyama, Hiroshi; Uemura, Yasutomo J; Yin, Wei-Guo; Billinge, Simon J L

    2014-01-01

    Understanding the role played by broken-symmetry states such as charge, spin and orbital orders in the mechanism of emergent properties, such as high-temperature superconductivity, is a major current topic in materials research. That the order may be within one unit cell, such as nematic, was only recently considered theoretically, but its observation in the iron-pnictide and doped cuprate superconductors places it at the forefront of current research. Here, we show that the recently discovered BaTi2Sb2O superconductor and its parent compound BaTi2As2O form a symmetry-breaking nematic ground state that can be naturally explained as an intra-unit-cell nematic charge order with d-wave symmetry, pointing to the ubiquity of the phenomenon. These findings, together with the key structural features in these materials being intermediate between the cuprate and iron-pnictide high-temperature superconducting materials, render the titanium oxypnictides an important new material system to understand the nature of nematic order and its relationship to superconductivity. PMID:25482113

  10. Correlation and disorder-enhanced nematic spin response in superconductors with weakly broken rotational symmetry

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.

    2012-01-01

    Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...

  11. Two-loop disorder effects on the nematic quantum criticality in d-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: jwang315@ustc.edu.cn

    2015-09-18

    The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic quantum critical point that is supposed to exist in some d-wave cuprate superconductors. This non-Fermi liquid state may be turned into a disorder-dominated diffusive metal if the fermions also couple to a disordered potential that generates a relevant perturbation in the sense of renormalization group theory. It is therefore necessary to examine whether a specific disorder is relevant or not. We study the interplay between critical nematic fluctuation and random chemical potential by performing renormalization group analysis. The parameter that characterizes the strength of random chemical potential is marginal at the one-loop level, but becomes marginally relevant after including the two-loop corrections. Thus even weak random chemical potential leads to diffusive motion of nodal fermions and the significantly critical behaviors of physical implications, since the strength flows eventually to large values at low energies. - Highlights: • The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic QCP. • The strength of random chemical potential is marginal at the one-loop level. • The strength becomes marginally relevant after including the two-loop corrections. • The diffusive metallic state is induced by the marginally relevant disorder. • The behaviors of some physical observables are presented at the nematic QCP.

  12. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Science.gov (United States)

    Bagheri, Hossein; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372

  13. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  14. Time-evolving collagen-like structural fibers in soft tissues: biaxial loading and spherical inflation

    Science.gov (United States)

    Topol, Heiko; Demirkoparan, Hasan; Pence, Thomas J.; Wineman, Alan

    2016-05-01

    This work considers a previously developed constitutive theory for the time dependent mechanical response of fibrous soft tissue resulting from the time dependent remodeling of a collagen fiber network that is embedded in a ground substance matrix. The matrix is taken to be an incompressible nonlinear elastic solid. The remodeling process consists of the continual dissolution of existing fibers and the creation of new fibers. Motivated by experimental reports on the enzyme degradation of collagen fibers, the remodeling is governed by first order chemical kinetics such that the dissolution rate is dependent upon the fiber stretch. The resulting time dependent mechanical response is sensitive to the natural configuration of the fibers when they are created, and different assumptions on the nature of the fiber's stress free state are considered here. The response under biaxial loading, a type of loading that has particular significance for the characterization of biological materials, is studied. The inflation of a spherical membrane is then analyzed in terms of the equal biaxial stretch that occurs in the membrane approximation. Different assumptions on the natural configuration of the fibers, combined with their time dependent dissolution and reforming, are shown to emulate alternative forms of creep and relaxation response. This formal similarity to viscoelastic phenomena occurs even though the underlying mechanisms are fundamentally different from the mechanism of macromolecular reconfiguration that one typically associates with viscoelastic response.

  15. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    Directory of Open Access Journals (Sweden)

    Xue-wei Liu

    2016-01-01

    Full Text Available This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C. On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the propagation paths are affected by the loading condition obviously. Then, by adopting acoustic emission (AE location technique, AE event localization characteristics in the process of loading are investigated. The locations of AE events are in good agreement with the macroscopic fracture propagation path. Finally, the micromechanism of macroscopic fracture propagation under uniaxial and biaxial compression conditions is analyzed, and the fracture propagation can be concluded as a result of microdamage accumulation inside the material. The results of this paper are helpful for theory and engineering design of the fractured rock mass.

  16. Measurement and material modeling of biaxial work-hardening behavior for pure titanium sheet

    Science.gov (United States)

    Sumita, Takeshi; Kuwabara, Toshihiko

    2013-12-01

    Biaxial tensile tests of a commercial pure titanium sheet (JIS ♯1) were performed using a servo-controlled multiaxial tube expansion testing machine developed by one of the authors [Kuwabara, T. and Sugawara, F., Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, Int. J. Plasticity, 45 (2013), 103-118]. Tubular specimens with an inner diameter of 54 mm were fabricated by roller bending and TIG welding the as-received test material with a thickness of 0.5 mm. Several linear stress paths in the first quadrant of the stress space were applied to the tubular specimens to measure the contours of plastic work and the directions of the plastic strain rates for an equivalent plastic strain range of 0.05 ≤ ɛ0p ≤ 0.30. It was found that the shapes of the work contours significantly changed with an increase in ɛ0p and that the Yld2000-2d yield function could reproduce the differential work hardening behavior of the test material by changing the material parameters and the exponent as functions of ɛ0p.

  17. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  18. Characterization of Biaxial and Triaxial Braids: Fiber Architecture and Mechanical Properties

    Science.gov (United States)

    Birkefeld, Karin; Röder, Mirko; von Reden, Tjark; Bulat, Martina; Drechsler, Klaus

    2012-06-01

    Biaxial and triaxial carbon fiber braids with off-axis braiding angles of 30°, 45° and 55° are characterized with respect to their fiber architecture. All braids are produced on a round mandrel with constant cross section. Detailed geometric information on the different braids, like roving dimensions, roving shapes and the degree of nesting is given. The findings from measurements in photomicrographs are used to construct meso-model yarn architectures at the unit cell level which are then analyzed with the WiseTex software (Lomov et al. Compos. Sci. Technol. 60:2083-2095, 2000). The results of the models' analysis with TexComp and comparison of mechanical properties with tests are consistent and essential for further steps in predictive modeling. Predictive modeling was also performed for biaxial braids based on the packing density in the material and parameters of the braiding process. The good conformance of the predictive models gives a validated starting point for development of braided structures concerning stiffness behavior. In addition, the information about the fiber architecture can be used for failure analysis on unit cell level.

  19. Practical approach in surface modification of biaxially oriented polypropylene films for gravure printability

    Science.gov (United States)

    Nuntapichedkul, Boonchai; Tantayanon, Supawan; Laohhasurayotin, Kritapas

    2014-09-01

    Biaxially oriented polypropylene (BOPP) film is one of the most popularly used materials for the gravure printing process in flexible packaging industry. The skin layers of BOPP film were associated with 3-6 weight % of propylene-ethylene copolymer. These films were completely biaxial-oriented by sequential stretching process after which the film surfaces were subjected to corona treatment integrated in the production line. The FT-IR results exhibited that polar functional groups as carbonyl molecules were established on the corona-treated BOPP film. The contact angles of these BOPP films were measured; the surface free energies (SFE) were then calculated. AFM topographical images also agreed well with the SFE which increased as the contents of propylene-ethylene copolymer increased. An approximated 20% increased SFE was obtained for the BOPP film that was associated with 6% propylene-ethylene copolymer. The printing quality on BOPP films was tested by light microscope which confirmed that the chromatic resolution of the printed images improved down to even more smaller groove sizes, 10 or 5 dot%. This improvement was also examined and found to correspond well with the interfacial tensions and work of adhesion between the inks and the modified BOPP films.

  20. Fatigue life prediction of magnetorheological elastomers subjected to dynamic equi-biaxial cyclic loading

    International Nuclear Information System (INIS)

    Prediction of fatigue life is of great significance in ensuring that dynamically loaded rubber components exhibit safety and reliability in service. In this text, the dynamic equi-biaxial fatigue behaviour of magnetorheological elastomer (MREs) using a bubble inflation method is described. Wöhler (S–N) curves for both isotropic and anisotropic MREs were produced by subjecting the compounds to cycling over a range of stress amplitudes (σa) between 0.75 MPa and 1.4 MPa. Changes in physical properties, including variation in stress–strain relations and complex modulus (E*) during the fatigue process were analysed. It was found that the complex modulus of MRE samples decreased throughout the entire fatigue test and failure took place at a limiting value of approximately 1.228MPa ± 4.38% for isotropic MREs and 1.295 ± 10.33% for anisotropic MREs. It was also determined that a dynamic stored energy criterion can be used as a plausible predictor in determining the fatigue life of MREs. - Highlights: • The first Wöhler curves for MREs subjected to equi-biaxial loading were presented. • Anisotropic MREs exhibited higher fatigue resistance than isotropic MREs. • There is a limiting value of complex modulus (E*) at which fatigue failure will occur. • The dynamic stored energy criterion can be used as a fatigue life predictor

  1. Anisotropy and probe-medium interactions in the microrheology of nematic fluids.

    Energy Technology Data Exchange (ETDEWEB)

    Cordoba, Andres; Stieger, Tillmann; Mazza, Marco G.; Schoen, Martin; de Pablo, Juan J.

    2016-01-01

    A theoretical formalism is presented to analyze and interpret microrheology experiments in anisotropic fluids with nematic order. The predictions of that approach are examined in the context of a simple coarse-grained molecular model which is simulated using nonequilibrium molecular dynamics calculations. The proposed formalism is used to study the effect of confinement, the type of anchoring at the probe-particle surface, and the strength of the nematic field on the rheological response functions obtained from probe-particle active microrheology. As expected, a stronger nematic field leads to increased anisotropy in the rheological response of the material. It is also found that the defect structures that arise around the probe particle, which are determined by the type of anchoring and the particle size, have a significant effect on the rheological response observed in microrheology simulations. Independent estimates of the bulk dynamic modulus of the model nematic fluid considered here are obtained from small-amplitude oscillatory shear simulations with Lees Edwards boundary conditions. The results of simulations indicate that the dynamic modulus extracted from particle-probe microrheology is different from that obtained in the absence of the particle, but that the differences decrease as the size of the defect also decreases. Importantly, the results of the nematic microrheology theory proposed here are in much closer agreement with simulations than those from earlier formalisms conceived for isotropic fluids. As such, it is anticipated that the theoretical framework advanced in this study could provide a useful tool for interpretation of microrheology experiments in systems such as liquid crystals and confined macromolecular solutions or gels.

  2. Dynamics of transient metastable states in mixtures under coupled phase ordering and chemical demixing

    OpenAIRE

    Soulé, Ezequiel R.; Rey, Alejandro D.

    2013-01-01

    We present theory and simulation of simultaneous chemical demixing and phase ordering in a polymer-liquid crystal mixture in conditions where isotropic-isotropic phase separation is metastable with respect to isotropic-nematic phase transition. In the case the mechanism is nucleation and growth, it is found that mesophase growth proceeds by a transient metastable phase that surround the ordered phase, and whose lifetime is a function of the ratio of diffusional to orientational mobilities. In...

  3. The phases of deuterium at extreme densities

    OpenAIRE

    Bedaque, Paulo F.; Buchoff, Michael I.; Cherman, Aleksey

    2010-01-01

    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects th...

  4. Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting

    NARCIS (Netherlands)

    Molina, G. Fabian; Cabral, R.J.; Mazzola, I.; Lascano, L. Brain; Frencken, J.E.F.M.

    2013-01-01

    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ket

  5. Growth of Biaxially Textured Yttria-Stabilized Zirconia Thin Films on Si(111) Substrate by Ion Beam Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    MU Hai-Chuan; REN Cong-Xin; JIANG Bing-Yao; DING Xing-Zhao; YU Yue-Hui; WANG Xi; LIU Xiang-Huai; ZHOU Gui-En; JIA Yun-Bo

    2000-01-01

    The (001) oriented yttria-stabilized zirconia (YSZ) films with in-plane biaxial texture have been deposited on Si(lll ) substrates by ion beam assisted deposition at ambient temperature. The effects of ion/atom arrival rate ratio (R=(Ar+ +O2+)/ZrO2) and incident angle of bombarding ion beam on the film texture development were investigated. It was found that the in-plane biaxial texture of the films was improved gradually with increasing ion/atom arrival rate ratio R up to a critical value 1.9, but it was degraded with the further increase of R. The optimal in-plane biaxial texture, whose full width at half maximum of the (lll) φ-scan spectrum is 14°, can be obtained at R=1.9 and incident angle of 55°. For a fixed R, the optimal crystallinity and in-plane biaxial alignment of the YSZ films did not appear at the same incident angle and showed an opposite variation with the change of the incident angle from 51° to 55°. C-axis lignment (perpendicular to substrate surface) does not show any substantial variation with the change of incident angle within the range of 47° - 56°.

  6. INVESTIGATION ON THE CONFORMATION OF THE MAIN-CHAIN NEMATIC POLYMER BY SMALL ANGLE X-RAY SCATTERING

    Institute of Scientific and Technical Information of China (English)

    SUN Zhengmin; WANG Huaqin; WANG Xinjiu

    1990-01-01

    The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been determined in nematic and isotropic state respectively. The experiment shows that the boundary between domains is not sharp but diffuse, and the diffuse - boundary thickness of the polymer as a function of temperature has been given.

  7. Room temperature epitaxial stabilization of a tetragonal phase in ARuO3 (A = Ca and Sr) thin films

    NARCIS (Netherlands)

    Vailionis, Arturas; Siemons, Wolter; Koster, Gertjan

    2008-01-01

    We demonstrate that SrRuO3 and CaRuO3 thin films undergo a room temperature structural phase transition driven by the substrate imposed epitaxial biaxial strain. As tensile strain increases, ARuO3 (A = Ca and Sr) films transform from the orthorhombic phase which is usually observed in bulk SrRuO3 an

  8. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    OpenAIRE

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-01-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic–isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal ...

  9. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle

    Science.gov (United States)

    Matsuyama, Akihiko

    2009-11-01

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  10. Comparison of calculation methods for the tunnel splitting at excited states of biaxial spin models

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Bo; Chen Zhi-De

    2004-01-01

    We present the calculation and comparison of tunnel splitting at excited levels of biaxial spin models by various methods, including the generalized instanton method, the generalized path integral method for coherent spin states,the perturbation method, and the exact method by numerical diagonalization of the Hamiltonian. It is found that,for integer spin with spin number around 10, tunnel splitting predicted by the generalized path integral for coherent spin states is about 10-n times of the exact numerical result for the nth excited level, while the ratio of the results of the perturbation method and the exact numerical method diverges in the large spin limit. We thus conclude that the generalized instanton method is the best approximate way for calculating tunnel splitting in spin models.

  11. Biaxial lidar efficiency rising based on improving of spatial selectivity and stability against background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M. [Kazan State Technical Univ., Tatarstan (Russian Federation). Dept. of Radioelectronic and Quantum Systems

    1996-12-31

    A criterion of spatial-angular efficiency (SAE) of remote electro-optical systems for atmosphere monitoring is formulated. The dependencies of the SAE from normalized range and minimal operating range for different optical receiving schemes of ground-based biaxial lidar are analyzed. It is shown that low SAE of traditional VIS and NIR systems are a main cause of a low signal-to-background-noise ratio at the photodetector input, the considerable measurements errors. and the following low accuracy of atmospheric optical parameters reconstruction. The most effective protection against sky background radiation in such systems consists in forming an angular field according to the introduced SAE criterion. Some approaches to achieve high value of the SAE-parameter for receiving system optimization are discussed.

  12. Measurement of refractive index of biaxial potassium titanyl phosphate crystal plate using reflection spectroscopic ellipsometry technique

    Indian Academy of Sciences (India)

    A K Chaudhary; A Molla; A Asfaw

    2009-10-01

    The paper reports the measurement of refractive indices and anisotropic absorption coefficients of biaxial potassium titanyl phosphate (KTP) crystal in the form of thin plate using reflection ellipsometry technique. This experiment is designed in the Graduate Optics Laboratory of the Addis Ababa University and He–Ne laser ( = 632.8 nm), diode laser ( = 670.0 nm) and temperature-tuned diode laser ( = 804.4 and 808.4 nm), respectively have been employed as source. The experimental data for , are fitted to the Marquardt–Levenberg theoretical model of curve fitting. The obtained experimental data of refractive indices are compared with different existing theoretical and experimental values of KTP crystals and found to be in good agreement with them.

  13. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...... engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic...... material behaviour. Experimental strain release measurements and the analytical solution determine the residual stress state present in the material. A demonstration on neat epoxy is conducted and residual stress predictions of high accuracy and repeatability have been achieved. The precise determination...

  14. Numerical simulations of biaxial experiments on damage and fracture in sheet metal forming

    Science.gov (United States)

    Gerke, Steffen; Schmidt, Marco; Brünig, Michael

    2016-08-01

    The damage and failure process of ductile metals is characterized by different mechanisms acting on the micro-scale as well as on the macro-level. These deterioration processes essentially depend on the material type and on the loading conditions. To describe these phenomena in an appropriate way a phenomenological continuum damage and fracture model has been proposed. To detect the effects of stress-state-dependent damage mechanisms, numerical simulations of tests with new biaxial specimen geometries for sheet metals have been performed. The experimental results including digital image correlation (DIC) show good agreement with the corresponding numerical analysis. The presented approach based on both experiments and numerical simulation provides several new aspects in the simulation of sheet metal forming processes.

  15. Voigt wave investigation in the KGd(WO4)2:Nd biaxial laser crystal

    Science.gov (United States)

    Brenier, Alain

    2015-07-01

    We have investigated the Nd3+-doped KGd(WO4)2 biaxial laser crystal for wave propagation directions in the vicinity of the optical axis at wavelengths tunable around 800 nm. The angular absorption distribution was found to be strongly anisotropic. Increasing absorption, the optical axis splits in two new ones able to propagate unchanged a left or a right circularly polarized light and able to propagate a circularly polarized Voigt wave with a linear spatial dependence. The intensities of the transmitted light in different configurations of polarizations were investigated. The angular displacement of the two optical axes versus the absorbed wavelengths was measured and explained with a single oscillator model. The light energy propagation was found distributed inside a crescent-shaped area.

  16. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    International Nuclear Information System (INIS)

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  17. Fabrication of YBCO Coated Conductors on Biaxial Textured Metal Substrate by All-Sputtering

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Jing-Tan He; Jie Xiong; Bo-Wan Tao

    2008-01-01

    CeO2/YSZ/CeO2 buffer layers were prepared on biaxial textured Ni-5at.%W substrate by direct-current magnetron reactive sputtering with the optimum process. YBCO thin films were deposited on CeO2/YSZ/CeO2 buffered Ni-5at.%W substrate at temperature ranging from 500°C to 700°C by diode dc sputtering. By optimizing substrate temperature, pure c-axis oriented YBCO films were obtained. The microstructures of CeO2/YSZ/CeO2 buffer layers were characterized by X-ray diffraction. A smooth, dense and crack-free surface morphology was observed with scanning electron microscopy. The critical current density Jc about 0.75 MA/cm2 at 77 K was obtained.

  18. Impacts of virtual substrate doping on high frequency characteristics of biaxially strained Si PMOSFET

    Science.gov (United States)

    Khatami, Mohammad Mahdi; Shalchian, Majid; Kolahdouz, Mohammadreza

    2015-09-01

    Formation of a parasitic channel in biaxially strained Si channel p-MOSFET, degrades performance of the device. In this paper the effect of SiGe (virtual substrate) doping on formation of parasitic channel and high frequency characteristics of the strained MOSFET has been studied. Simulation results, indicate that increasing virtual substrate's doping from e.g. 4 × 1015 cm-3 to 4 × 1017 cm-3 effectively eliminates parasitic channel by reducing hole concentration from 1 × 1017 cm-3 to 1 × 1011 cm-3 in the parasitic channel. This improves MOSFET's characteristics including parasitic capacitances and channel length modulation. Also it has been demonstrated that the highest unity-gain bandwidth might be achieved at doping level of 4 × 1017 cm-3.

  19. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  20. ANALYTICAL SOLUTIONS TO STRESS CONCENTRATION PROBLEM IN PLATES CONTAINING RECTANGULAR HOLE UNDER BIAXIAL TENSIONS

    Institute of Scientific and Technical Information of China (English)

    Yi Yang; Jike Liu; Chengwu Cai

    2008-01-01

    The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods.For the problem with a rectangular hole,only approximate results are derived.This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions.By using the U-transformation technique and the finite element method,the analytical displacement solutions of the finite element equations are derived in the series form.Therefore,the stress concentration can then be discussed easily and conveniently.For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method.The stress concentration factors for various ratios of height to width of the hole are obtained.

  1. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    Science.gov (United States)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  2. Powder metallurgy for the fabrication of bi-axially textured Ni tapes for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bi-axially textured Ni tapes for YBCO coated conductors were fabricated by forming, sintering, cold rolling and heat treatment of Ni powder compacts. The powder metallurgy process consists of filling of fine Ni powders in a rubber mold, cold isostatical pressing in a water chamber and sintering of the powder compacts. The sintered compacts were cold-rolled and made into tapes with a thickness of 100 micron and then heat-treated at 1000 deg. C for various time periods for the development of the (2 0 0) texture. The (2 0 0) texture of Ni tape was successfully formed through the optimization of the recrystallization heat treatment condition for the cold rolled Ni tapes. The full width half maximum of the Ni tapes was 8-10 deg. and the atomic force microscopy surface roughness was 3-5 nm

  3. Assessment of incident intensity on laser speckle contrast imaging using a nematic liquid crystal spatial light modulator (Conference Presentation)

    Science.gov (United States)

    Kirby, Mitchell A.; Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-03-01

    In this work the effects of incident intensity and effective camera dynamic range on image acquisition of both frozen and time-averaged dynamic speckle patterns, and their effects on laser speckle contrast imaging are addressed. A nematic liquid crystal, phase-only, spatial light modulator (SLM) was employed to generate laser speckle in a controlled and repeatable fashion. By addressing the calculated spatial contrast of frozen and time-averaged dynamic speckle patterns imaged across a wide range of intensities, we present a description of optimum intensity characteristics that should be observed when using LSCI. The results indicate the importance of assessing the intensity of the signal quantized by the camera in LSCI. By analyzing intensity PDF's during image acquisition of speckle patterns used in LSCI, an optimum incident intensity can be detected when a single, polarized speckle frame displays the first order statistics characteristic of fully developed speckle. Our results indicate that there is a range of laser power densities where the ensuing imaged speckle exhibit optimum sensitivity to flow as well as relatively constant calculated contrast values. It is clear that at high intensities, high frequency information is lost due to camera saturation, resulting in a decrease in contrast. When imaging speckle at low intensity, there is a risk for loss of data during the digital quantization process. The results are presented in a generalized fashion, so they should be applicable to any LSCI system, regardless of incident laser power or camera depth.

  4. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with g-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sergio Diez-Berart

    2015-06-01

    Full Text Available In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy-ω-(1-pyrenimine-benzylidene-4′-oxy undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  5. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition

    Science.gov (United States)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-01

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={}/{}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  6. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  7. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  8. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays.

    Science.gov (United States)

    Fang, Angbo; Qian, Tiezheng; Sheng, Ping

    2008-12-01

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable pi -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. PMID:19256854

  9. Dependence of interparticle force on temperature and cell thickness in nematic colloids.

    Science.gov (United States)

    Kondo, Noboru; Iwashita, Yasutaka; Kimura, Yasuyuki

    2010-08-01

    We have experimentally studied the interparticle force between two particles accompanied by hyperbolic hedgehog defects in a nematic liquid crystal. The force F was measured with dual-beam optical tweezers at various temperatures and in cells with various thicknesses. In a thick cell, the dependence of F on the interparticle distance R obtained at different temperatures can be scaled to a universal curve of F∝R^(-4) for R>3a , where a is the radius of a particle. The effective elastic constant evaluated from F is found to be in good agreement with splay constant of the nematic liquid crystal. In a thin cell, the magnitude of F decreases and the dependence of F on R becomes short-ranged as the thickness of a cell, L , decreases. The reduced force curves, FL(4) against R/L , at different L are found to be scaled to a single theoretical curve which has been proposed recently. PMID:20866767

  10. Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier-Meier theory

    Institute of Scientific and Technical Information of China (English)

    Zhang Ran; He Jun; Peng Zeng-Hui; Xuan Li

    2009-01-01

    This paper investigates the average dielectric permittivity (-ε) in the Maier-Meier theory for calculating the dielectric anisotropy (△ε) of nematic liquid crystals. For the reason that e of nematics has the same expression as the dielectric permittivity of the isotropic state, the Onsager equation for isotropic dielectric was used to calculate it. The computed -ε shows reasonable agreement with the results of the numerical methods used in the literature. Molecular parameters, such as the polarizability and its anisotropy, the dipole moment and its angle with the molecular long axis,were taken from semi-empirical quantum chemistry (MOCPAC/AM1) modeling. The calculated values of Ae according to the Maier-Meier equation are in good agreement with the experimental results for the investigated compounds having different core structures and polar substituents.

  11. Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

    Institute of Scientific and Technical Information of China (English)

    关荣华; 叶文江; 邢红玉

    2015-01-01

    The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U . Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered.

  12. The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals

    Science.gov (United States)

    Ye, Lihua; Liu, Bo; Li, Fangjie; Feng, Yangyang; Cui, Yiping; Lu, Yanqing

    2016-10-01

    The threshold energy and electric field response characteristic of random laser have been investigated in dye-doped nematic liquid crystal (DDNLC) with the addition of different concentrations of Ag nanoparticles (NPs). Due to the localized surface plasmon resonance (LSPR) induced by Ag NPs, random laser from DDNLC with Ag NP doping had a lower threshold energy. From another point of view, nematic liquid crystals (LCs) in a DDNLC cell with the addition of Ag NPs could be more easily influenced by the electric field, which allowed the random laser to be controlled at a lower applied voltage. The turn-off time and turn-on time of random laser also decreased in the DDNLC cells with increasing the concentration of Ag NPs. This is due to the enhancement of the electro-optical characteristic of LC and the restoring force imparted by the locally ordered LCs induced by the Ag NPs, respectively.

  13. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching.

    Science.gov (United States)

    Zografopoulos, Dimitrios C; Beccherelli, Romeo

    2015-08-14

    The electrically tunable properties of liquid-crystal fishnet metamaterials are theoretically investigated in the terahertz spectrum. A nematic liquid crystal layer is introduced between two fishnet metallic structures, forming a voltage-controlled metamaterial cavity. Tuning of the nematic molecular orientation is shown to shift the magnetic resonance frequency of the metamaterial and its overall electromagnetic response. A shift higher than 150 GHz is predicted for common dielectric and liquid crystalline materials used in terahertz technology and for low applied voltage values. Owing to the few micron-thick liquid crystal cell, the response speed of the tunable metamaterial is calculated as orders of magnitude faster than in demonstrated liquid-crystal based non-resonant terahertz components. Such tunable metamaterial elements are proposed for the advanced control of electromagnetic wave propagation in terahertz applications.

  14. Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films

    Science.gov (United States)

    Golovaty, Dmitry; Montero, José Alberto; Sternberg, Peter

    2015-12-01

    We use the method of Γ -convergence to study the behavior of the Landau-de Gennes model for a nematic liquid crystalline film in the limit of vanishing thickness. In this asymptotic regime, surface energy plays a greater role, and we take particular care in understanding its influence on the structure of the minimizers of the derived two-dimensional energy. We assume general weak anchoring conditions on the top and the bottom surfaces of the film and the strong Dirichlet boundary conditions on the lateral boundary of the film. The constants in the weak anchoring conditions are chosen so as to enforce that a surface-energy-minimizing nematic Q-tensor has the normal to the film as one of its eigenvectors. We establish a general convergence result and then discuss the limiting problem in several parameter regimes.

  15. Exploring the cylindrical photo-bending shape in polydomain nematic glass

    CERN Document Server

    Xuan, Chen; Huo, Yongzhong

    2016-01-01

    This paper explores different photo-bending shapes in polydomain nematic glass. The motivation is to explain the phenomenon in experiment [1] under polarized light in which a nematic film curls into an circular arc, like part of a cylindrical surface. Polarized light triggers photo-isomerization and therefore makes liquid crystals (LCs) contract along their directors. We apply the Sachs limit to homogenize the deformation of polydomain LC glass. Photo-strain can be either contraction or expansion through the material. Bending shapes can be anticlastic, bowl-shaped and cylindrical affected by Poisson ratio and illumination intensity. An explanation for the cylindrical bend and ways to observe other shapes are given in a parameter plane.

  16. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  17. Weak Anchoring and Surface Elasticity Effects in Electroosmotic Flow of Nematic Liquid Crystals Through Narrow Confinements

    CERN Document Server

    Poddar, Antarip; Chakraborty, Suman

    2016-01-01

    Advent of nematic liquid crystals flows have attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electroosmosis stands as one of the efficient flow actuation method through narrow confinement. In the present study, we explore the electrically actuated flow of a nematic fluid with ionic inclusions taking into account the influences from surface induced elastic and electrical double layer phenomena. Influence of surface effects on the flow characteristics is known to get augmented in micro-confined environment and must be properly addressed. Towards this, we devise the coupled flow governing equations from fundamental free energy analysis considering the contributions from first and second-order elastic, dielectric, flexoelectric, ionic and entropic energies. We have further considered weak anchoring surface conditions with second order elasticity which helps us to more accurately capture the director deformations along the boundaries. The present study fo...

  18. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals.

    Science.gov (United States)

    Kubo, Shoichi; Taguchi, Rei; Hadano, Shingo; Narita, Mamiko; Watanabe, Osamu; Iyoda, Tomokazu; Nakagawa, Masaru

    2014-01-22

    Inorganic semiconductor nanorods are regarded as the primary components of optical and electrical nanoscale devices. In this paper, we demonstrate the unidirectional alignment of monolayered and dispersed ZnO nanorods on a rubbed polyimide alignment layer, which was achieved by a conventional liquid crystal alignment technique. The outermost surfaces of the ZnO nanorods (average diameter 7 nm; length 50 nm) were modified by polymerization initiator moieties, and nematic liquid crystalline (LC) methacrylate polymers were grown by atom transfer radical polymerization. By regulating the densities of the polymerization initiator moieties, we successfully hybridized LC-polymer-grafted ZnO nanorods and small nematic LC molecules. The LC-polymer-modified ZnO nanorods were hierarchically aligned on the substrate via cooperative molecular interactions among the liquid crystal mesogens, which induced molecular orientation on the rubbed polyimide alignment layer. PMID:24299205

  19. Dynamics of electroconvective nematic liquid crystal structures in a nonharmonic electric field

    Science.gov (United States)

    Kartavykh, N. N.; Smorodin, B. L.

    2010-10-01

    The emergence of electroconvection in a nematic liquid crystal under the action of a nonharmonic electric field is investigated. Analysis is carried out using a 2D model. We propose new forms of the varying electric field acting on the system, for which subharmonic oscillations exist: (a) electric field of a trapezoidal form and (b) external field varying in accordance with the law of “joined cosines.” The behavior of synchronous excitations in the insulating and conducting regimes, as well as subharmonic oscillations, is analyzed. The parametric instability domains are found, and the critical frequencies of transition between different response regimes are determined. The stability maps of the nematic liquid crystal are constructed on the frequency-voltage amplitude plane.

  20. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2015-04-01

    Full Text Available A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.