WorldWideScience

Sample records for biaxial nematic phases

  1. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Science.gov (United States)

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  2. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  3. Shear flow simulations of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  4. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  5. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra [Kent State Univ., Kent, OH (United States); Li, Quan [Kent State Univ., Kent, OH (United States); Srinivasarao, Mohan [Georgia Inst. of Technology, Atlanta, GA (United States); Agra-Kooijman, Dena M. [Kent State Univ., Kent, OH (United States); Rey, Alejandro [McGill Univ., Montreal, QC (Canada)

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the support of Basic Sciences Division of the US DOE for which we are thankful.

  6. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    Science.gov (United States)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  7. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  8. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  9. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    Science.gov (United States)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  10. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation

    Science.gov (United States)

    Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2015-08-01

    We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

  11. Ray-optics analysis of inhomogeneous biaxially anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.; De Boer, D.K.G.; Urbach, H.P.

    2009-01-01

    Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial

  12. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  13. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... all phases show MI, but at the same time it has also been found that for antiferro- magnetic phase, MI depends on the relative .... with wave functions, time and spatial coordinates are measured in the units of. (¯h/2mωz)−3/2, ω−1 ... The manipulation of the resulting matrix gives eigenvalues. From the form of ...

  14. Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior

    Science.gov (United States)

    Olmsted, Peter D.; Goldbart, Paul M.

    1992-10-01

    Macroscopic fluid motion can have dramatic consequences near the isotropic-nematic transition in fluids of nematogens. We explore some of these consequences using both deterministic and stochastic descriptions involving coupled hydrodynamic equations of motion for the nematic order parameter and fluid velocity fields. By analyzing the deterministic equations of motion we identify the locally stable states of homogeneous nematic order and strain rate, thus determining the homogeneous nonequilibrium steady states which the fluid may adopt. By examining inhomogeneous steady states we construct the analog of a first-order phase boundary, i.e., a line in the nonequilibrium phase diagram spanned by temperature and applied stress, at which nonequilibrium states may coexist, and which terminates in a nonequilibrium analog of a critical point. From an analysis of the nematic order-parameter discontinuity across the coexistence line, along with properties of the interface between homogeneous states, we extract the analog of classical equilibrium critical behavior near the nonequilibrium critical point. We develop a theory of fluctuations about biaxial nonequilibrium steady states by augmenting the deterministic description with noise terms, to simulate the effect of thermal fluctuations. We use this description to discuss the scattering of polarized light by order-parameter fluctuations near the nonequilibrium critical point and also in weak shear flow near the equilibrium phase transition. We find that fluids of nematogens near an appropriate temperature and strain rate exhibit the analog of critical opalescence, the intensity of which is sensitive to the polarizations of the incident and scattered light, and to the precise form of the critical mode.

  15. Evidence of a fractional quantum Hall nematic phase in a microscopic model

    Science.gov (United States)

    Regnault, N.; Maciejko, J.; Kivelson, S. A.; Sondhi, S. L.

    2017-07-01

    At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.

  16. Dynamics of phase ordering of nematics in a pore

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Chakrabarti, A.

    1994-06-01

    We study the kinetics of phase ordering of a nematic liquid crystal, modeled by a spin-rotor Hamiltonian, confined within a parallel piped pore. The dynamics of the rotor obeys the time-dependent Ginzburg-Landau equation. We study the generation and evolution of a variety of defect structures, and the growth of domains, with different anchoring conditions at the pore surface. Unlike in binary fluids, mere confinement with no anchoring field, does not result in slow dynamics. Homeotropic anchoring, however, leads to slow logarithmic growth. Interestingly, homogeneous anchoring dynamically generates wall defects, resulting in an Ising like structure factor at late times. (author). 27 refs, 4 figs

  17. Phase separation and disorder in doped nematic elastomers

    KAUST Repository

    Kö pf, M. H.; Pismen, L. M.

    2013-01-01

    We formulate and analyse a model describing the combined effect of mechanical deformation, dynamics of the nematic order parameter, and concentration inhomogeneities in an elastomeric mixture of a mesogenic and an isotropic component. The uniform nematic state may exhibit a long-wave instability corresponding to nematic-isotropic demixing. Numerical simulations starting from either a perfectly ordered nematic state or a quenched isotropic state show that coupling between the mesogen concentration and the nematic order parameter influences the shape and orientation of the domains formed during the demixing process. © EDP Sciences/ Società Italiana di Fisica/ Springer-Verlag 2013.

  18. Phase separation and disorder in doped nematic elastomers

    KAUST Repository

    Köpf, M. H.

    2013-10-01

    We formulate and analyse a model describing the combined effect of mechanical deformation, dynamics of the nematic order parameter, and concentration inhomogeneities in an elastomeric mixture of a mesogenic and an isotropic component. The uniform nematic state may exhibit a long-wave instability corresponding to nematic-isotropic demixing. Numerical simulations starting from either a perfectly ordered nematic state or a quenched isotropic state show that coupling between the mesogen concentration and the nematic order parameter influences the shape and orientation of the domains formed during the demixing process. © EDP Sciences/ Società Italiana di Fisica/ Springer-Verlag 2013.

  19. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order phase transition

    Science.gov (United States)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann

    2018-01-01

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.

  20. Topological symmetry breakdown in cholesterics, nematics, and 3He

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Lizzi, F.; Rodgers, V.G.J.

    1984-01-01

    Cholesterics, uniaxial and biaxial nematics, and the dipole-free A phase of superfluid 3 He are characterized by order parameters which are left invariant by suitable ''symmetry'' groups H. We show that in the presence of defects, the full group H may not be implementable on the states because of topological obstructions. Thus H is topologically broken in the presence of suitable defects

  1. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  2. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  3. Possibility of the field-induced spin-nematic phase in LiCuVO4

    International Nuclear Information System (INIS)

    Hagiwara, M; Fujita, T; Yamaguchi, H; Kimura, S; Omura, K; Svistov, L E; Smirnov, A I; Prokofiev, A; Honda, Z

    2011-01-01

    We report on the magnetization of the frustrated S = 1/2 chain compound LiCuVO 4 . In addition to the transition from a planar spiral to a spin modulated structure observed recently by NMR, another transition was observed just below the saturation field. This magnetic phase could be a spin nematic, namely a condensation of two magnon bound states, phase which was predicted theoretically in the S = 1/2 linear chain model with the nearest neighbor ferromagnetic and the next nearest neighbor antiferromagnetic exchange interactions. The slope of magnetization in this phase is in good agreement with a calculated one in a realistic quasi 2-dimensional model (M. E. Zhitomirsky and H. Tsunetsugu, Europhys. Lett. 92 37001 (2010)). We compare the observed phase diagram with a numerically calculated one and discuss the possibility of the spin nematic phase.

  4. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  5. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  6. Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology

    Science.gov (United States)

    vanKonynenburg, Peter; Marsland, Stephen; McCoy, James

    1987-11-01

    A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.

  7. Self-Assembling, Stable Photonic Bend-Gap Phases in Emulsions of Chiral Nematics with Isotropic Fluids

    Science.gov (United States)

    Huang, Chien-Yueh; Petschek, R. G.

    1998-03-01

    We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.

  8. Studies of nematic to smectic-A phase transitions using synchrotron radiation. Experimental techniques and experiments

    International Nuclear Information System (INIS)

    Christensen, F.

    1981-10-01

    High resolution X-ray diffraction on liquid crystals, with a triple-axis spectrometer, was initiated 4-5 years ago, using rotating-anode sources. The triple-axis spectrometer, built at Risoe, is permanently positioned at the DORIS storage ring. Triple-axis X-ray spectrometer work in general and especially at the synchrotron source is a new field and a description of the techniques used is given. The experiments described are studies of the nematic to smectic-A phase transition in liquid crystals. The first is a study of the monomolecular liquid crystal 8-barS5 (C 8 H 17 O-phi-COS-phi-C 5 H 11 , where phi denotes a benzene ring). The second experimental study is one of the reentrance phenomenon in the ternary mixture: 5CTsub(.09):7CBsub(.x):80CBsub(.91-x); where 5CT(C 5 H 11 -phi-phi-phi-CN) and 7CB(C 7 H 15 -phi-phi-CN) have only a nematic phase and not the smectic-A phase. The results are interpreted in terms of Landau theory. Finally, a frame is given for discussing the nature of the smectic-A phase and an experiment is proposed to explore the nature of the smectic-A phase together with detailed calculations of (001)- and (002)-lineshapes for the smectic-A phase. (Auth.)

  9. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    Science.gov (United States)

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic

  10. Nematic phase formation in suspensions of graphene oxide

    Science.gov (United States)

    Fresneau, Nathalie; Campidelli, Stéphane

    The last decade has seen the rise of graphene. Graphene is a single layer of graphite; it can be obtained by direct liquid phase exfoliation of the latter through harsh sonication. This technique presents the disadvantage to produce small graphene flakes (typically in the 0.05 to 0.4 μm2 range for the monolayers) and multilayer graphene with uncontrolled thickness distributions. In order to improve the exfoliation process, one has to counter the strong van der Waals interactions between the carbon planes of graphite. This implies to increase the distance between two planes and it can be done, for example, by oxidizing graphite to introduce oxygen species in the graphenic planes. The fabrication of graphite oxide is known for almost 150 years, and it became popular again these last ten years. Generally, the oxidation of graphite is performed following a method described by Hummers in the 1950's and the material produced by this technique exfoliates quasi-spontaneously into monolayer species called graphene oxide (GO). The highly anisotropic shape of GO (several μm in length and width for a thickness of ca. 1 nm) combined with the presence of oxygenated functions on the sp2 carbon structure of graphene lead to the formation of a lyotropic liquid crystalline phase in water. Above a certain concentration of graphene flakes the gain in translational entropy for a long-range ordered phase outweighs the loss in rotational entropy, and the liquid crystal phase then forms. The value of the threshold is affected by the aspect ratio of the graphene flakes but other factors such as the interactions also play a strong role.

  11. Positional short-range order in the nematic phase of n BABAs

    Science.gov (United States)

    Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.

    1991-10-01

    The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.

  12. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Block, Sector 1, Kolkata-700064 (India)

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  13. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  14. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala; Ockendon, John; Howell, Peter; Surovyatkina, Elena

    2013-01-01

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  15. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  16. Molecular reorientations in the nematic and rotatory phases of di-n-pentyloxyazoxybenzene

    International Nuclear Information System (INIS)

    Nguyen, X.P.; Krawczyk, J.; Chrusciel, D.

    1986-04-01

    Results of dielectric relaxation (DR), quasielastic neutron scattering (QNS), calorimetric DSC and preliminary X-ray measurements on the fifth member - 5.OAOB - of the alkoxyazoxybenzene homologous series are presented. It has been found that 5.OAOB exhibits two mesophases: a nematic (N) and an ''intermediate'' crystalline phase (Cr I) just below it. From comparison of the DR and QNS studies one can conclude that in the N phase the molecule as a whole performs rotational diffusion around the long axis (τ perpendicular DR ∼150 ps) and at the same time the two moieties perform faster independent reorientations around N - benzene rings bonds with τ QNS ∼5 ps. The Cr I phase is identified as a solid unaxial rotational phase in which fast molecular reorientations exist. It seems that the fast reorientations observed in the N phase to some extent survive to the Cr I phase. A model of molecular arrangements in the Cr I phase is proposed and it explains the reduction of the dielectric increment observed on passing from the N phase to this phase. (author)

  17. Persistence of Smectic-A Oily Streaks into the Nematic Phase by UV Irradiation of Reactive Mesogens

    Directory of Open Access Journals (Sweden)

    Ines Gharbi

    2017-12-01

    Full Text Available Thin smectic liquid crystal films with competing boundary conditions (planar and homeotropic at opposing surfaces form well-known striated structures known as “oily streaks”, which are a series of hemicylindrical caps that run perpendicular to the easy axis of the planar substrate. The streaks vanish on heating into the nematic phase, where the film becomes uniform and exhibits hybrid alignment. On adding sufficient reactive mesogen and polymerizing, the oily streak texture is maintained on heating through the entire nematic phase until reaching the bulk isotropic phase, above which the texture vanishes. Depending on the liquid crystal thickness, the oily streak structure may be retrieved after cooling, which demonstrates the strong impact of the polymer backbone on the liquid crystal texture. Polarizing optical, atomic force, and scanning electron microscopy data are presented.

  18. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  19. Critical linear thermal expansion in the smectic-A phase near the nematic-smectic phase transition.

    Science.gov (United States)

    Anesta, E; Iannacchione, G S; Garland, C W

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient alpha// parallel to the director. Combining such data with available volume thermal expansion alpha(V) data yields the in-plane linear expansion coefficient alpha(perpendicular) . The critical behaviors of alpha// and alpha(perpendicular) are the same as those for alpha(V) and the heat capacity Cp. However, for any given liquid crystal, alpha//(crit) and alpha(perpendicular)(crit) differ in sign. Furthermore, the quantity alpha// (crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  20. Interpretation of cw-ESR spectra of p-methyl-thio-phenyl-nitronyl nitroxide in a nematic liquid crystalline phase.

    Science.gov (United States)

    Collauto, Alberto; Zerbetto, Mirco; Brustolon, Marina; Polimeno, Antonino; Caneschi, Andrea; Gatteschi, Dante

    2012-03-07

    In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.

  1. Kinetic pathways of the nematic-isotropic phase transition as studied by confocal microscopy on rod-like viruses

    International Nuclear Information System (INIS)

    Lettinga, M Paul; Kang, Kyongok; Imhof, Arnout; Derks, Didi; Dhont, Jan K G

    2005-01-01

    We investigate the kinetics of phase separation for a mixture of rod-like viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point

  2. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    Science.gov (United States)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  3. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  4. SANS study of deformation and relaxation of a comb-like liquid crystal polymer in the nematic phase

    Science.gov (United States)

    Brûlet, A.; Boué, F.; Keller, P.; Davidson, P.; Strazielle, C.; Cotton, J. P.

    1994-06-01

    A comb-like liquid crystal polymer is stretched and quenched after a certain time in the nematic phase. The conformation of the deformed chain is determined using small angle neutron scattering (SANS) as a function of the temperature of stretching, the stretching ratio and the duration of the relaxation. The scattering data are well fitted to junction affine and phantom network models. Some data are even well fitted by a totally affine model that we call “ pseudo affine ” because the only parameter, the stretching ratio, is found to be well below the macroscopic stretching ratio. The latter result, never encountered with amorphous polymers, is attributed to the cooperative effects of the nematic phase. We also note that the form factors of the chain in the underformed sample remain similar in the isotropic, nematic and glassy state ; they correspond to a Gaussian chain. The same samples were studied by wide angle X-ray scattering. On one hand, the orientation of the mesogenic groups is found to be parallel or perpendicular to the stretching direction depending on the stretching temperature. This result is discussed as a function of the presence of smectic fluctuations. On the other hand, longer relaxations at constant elongation ratio do not lead to a disorganization of the mesogenic group orientation whereas the polymer chains are partly relaxed.

  5. A simple free energy for the isotropic-nematic phase transition of rods

    NARCIS (Netherlands)

    Tuinier, R.

    2016-01-01

    A free energy expression is proposed that describes the isotropic-nematic binodal concentrations of hard rods. A simple analytical form for this free energy was yet only available using a Gaussian trial function for the orientation distribution function (ODF), leading, however, to a significant

  6. Spin nematic and orthogonal nematic states in S=1 non-Heisenberg magnet

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Klevets, Ph.N.

    2013-01-01

    Phases of S=1 non-Heisenberg magnet at various relationships between the exchange integrals are studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal nematic states. The phase diagram is constructed. It is shown that the phase transitions between the ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra of elementary excitations in all phases are obtained within the mean-field limit. - Highlights: ► We investigated phases of S=1 non-Heisenberg magnet. ► Found four phases: ferromagnetic, antiferromagnetic, nematic, and orthogonal nematic. ► The phase diagram is determined. ► The spectra of elementary excitations are obtained in all phases for the first time.

  7. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    Science.gov (United States)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  8. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    Science.gov (United States)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  9. Possible quadrupolar nematic phase in the frustrated spin chain LiCuSbO4: An NMR investigation

    Science.gov (United States)

    Bosiočić, M.; Bert, F.; Dutton, S. E.; Cava, R. J.; Baker, P. J.; Požek, M.; Mendels, P.

    2017-12-01

    The frustrated one-dimensional quantum magnet LiCuSbO4 is a rare realization of the J1-J2 spin chain model with an easily accessible saturation field, formerly estimated at 12 T. Exotic multipolar nematic phases were theoretically predicted in such compounds just below the saturation field, but without unambiguous experimental observation so far. In this paper we present extensive experimental research on the compound in a wide temperature (30 mK to 300 K) and field (0-13.3 T) range by muon spin rotation (μ SR ), 7Li nuclear magnetic resonance (NMR), and magnetic susceptibility (SQUID). μ SR experiments in zero magnetic field demonstrate the absence of long-range 3D ordering down to 30 mK. Together with former heat capacity data [Dutton et al., Phys. Rev. Lett. 108, 187206 (2012), 10.1103/PhysRevLett.108.187206], magnetic susceptibility measurements suggest a short-range-correlated vector chiral phase in the field range 0-4 T. At the intermediate-field values (5-12 T), the system enters a 3D-ordered spin density wave phase with 0.75 μB per copper site at lowest temperatures (125 mK), estimated by NMR. At still higher field, the magnetization is found to be saturated above 13 T where the spin lattice T1-1 relaxation reveals a spin gap estimated at 3.2(2) K. We narrow down the possibility of observing a multipolar nematic phase to the range 12.5-13 T.

  10. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule.

    Science.gov (United States)

    Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo

    2008-04-01

    We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.

  11. Molecular orientational re-ordering and the transformation of a Landau second order phase transition to first order in a nematic liquid crystal

    International Nuclear Information System (INIS)

    Ponce, T.C.

    1988-08-01

    We consider the nature of the nematic to isotropic phase transition in terms of the molecular orientational re-ordering, expressed by the variation of the order parameter, s, in the light of Landau's theory of second order phase transition. Then, we show how the de Gennes modification to the Landau thermodynamic potential converts the transition to first order which is in better agreement with the experimental observations. (author). 9 refs, 2 figs, 1 tab

  12. A parity-breaking electronic nematic phase transition in the spin-orbit coupled correlated metal Cd2Re2O7

    Science.gov (United States)

    Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.

    Strong interactions between electrons are known to drive metallic systems toward a variety of well-known symmetry-broken phases, including superconducting, electronic liquid crystalline, and charge- and spin-density wave ordered states. In contrast, the electronic instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncover a novel multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially-resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic liquid crystalline phases, this multipolar nematic phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 K in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order parameter.

  13. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  14. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  15. Nematic fluctuations and resonance in iron-based superconductors

    Science.gov (United States)

    Gallais, Yann

    The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is ubiquitous in many iron based superconductors (Fe SC), and has relevance for the cuprates as well. Here I will review recent electronic Raman scattering experiments which report the presence of critical nematic fluctuations in the charge channel in the tetragonal phase of several Fe SC systems. In electron doped Co-BaFe2As2 (Co-Ba122), these fluctuations extend over most of the superconducting dome. Their associated nematic susceptibility shows Curie-Weiss behavior, and its doping dependence suggests the presence of a nematic quantum critical point near optimal TC Similar nematic fluctuations are also observed in FeSe despite the absence of magnetic order, raising the question of the link between nematicity and magnetism in Fe SC. In FeSe I will further contrast the evolution of nematic fluctuations under isoelectronic S substitution and hydrostatic pressures up to 8 GPa, with only the former showing evidence for a nematic quantum critical point. In the superconducting state of Co-Ba122, I will show that a resonance emerges in the Raman spectra near the nematic quantum critical point. This nematic resonance is a clear fingerprint of the coupling between nematic fluctuations and Bogoliubov quasiparticles, and can be thought as the nematic counterpart of the spin resonance observed in neutron scattering experiments. Support from Agence Nationale de la Recherche via ANR Grant ''Pnictides'' is acknowledged.

  16. The Effect of Shear Flow on the Isotropic-Nematic Transition in Liquid Crystals.

    Science.gov (United States)

    Olmsted, Peter David

    1991-08-01

    In this thesis I will discuss the effects of shear flow on the Isotropic-Nematic phase transition in liquid crystals. Shear flow has dramatic orienting effects on the rod-like constituents of nematic liquid crystals, with the general effects of (1) inducing order in the high-temperature isotropic phase, and (2) dictating a direction of alignment for the low-temperature nematic phase. Shear flow also imposes a biaxial symmetry on both the high and low temperature phases, thereby changing the nature of the symmetry-breaking at the transition. We develop coupled deterministic dynamical equations for the 5-component nematic order parameter and the fluid velocity, which may be considered generalizations of the Leslie-Ericksen and Navier-Stokes equations, respectively. We examine the stable stationary solutions to these equations to determine the nature of the non-equilibrium phases, and discuss the analogies and differences between this system and equilibrium systems. From homogeneous solutions we obtain a state diagram analogous to that of a Van der Waals fluid, including a two-state region and a discontinuous transition which terminates at a critical point. To resolve the question of the analog of the Maxwell construction to distinguish locally stable states, we construct stable inhomogeneous interfacial states. From an analysis of these states we determine a coexistence line and find exponents characterizing the shape of the coexistence curve and the interface thickness as the critical point is approached. We find mean-field critical behavior, and comment on the possibility of the analogs of spinodal decomposition and nucleation. Finally, we develop a formalism for describing light scattering from biaxial steady state, and investigate the Gaussian level fluctuations about these states. In the vicinity of the critical point we find singular behavior analogous to critical opalescence of a simple fluid at its critical point. We also find anisotropic correlations at the

  17. Dynamical Properties of a Living Nematic

    Science.gov (United States)

    Genkin, Mikhail

    The systems, which are made of a large number or interacting particles, or agents that convert the energy stored in the environment into mechanical motion, are called active systems, or active matter. The examples of active matter include both living and synthetic systems. The size of agents varies significantly: bird flocks and fish schools represent macroscopic active systems, while suspensions of living organisms or artificial colloidal particles are examples of microscopic ones. In this work, I studied one of the simplest realization of active matter termed living (or active) nematics, that can be conceived by mixing swimming bacteria and nematic liquid crystal. Using modeling, numerical simulations and experiments I studied various dynamical properties of active nematics. This work hints into new methods of control and manipulation of active matter. Active nematic exhibits complex spatiotemporal behavior manifested by formation, proliferation, and annihilation of topological defects. A new computational 2D model coupling nematic liquid crystal and swimming bacteria dynamics have been proposed. We investigated the developed system of partial differential equations analytically and integrated it numerically using the highly efficient parallel GPU code. The integration results are in a very good agreement with other theoretical and experimental studies. In addition, our model revealed a number of testable phenomena. The major model prediction (bacteria accumulation in positive and depletion in negative topological defects) was tested by a dedicated experiment. We extended our model to study active nematics in a biphasic state, where nematic and isotropic phases coexist. Typically this coexistence is manifested by formation of tactoids - isotropic elongated regions surrounded by nematic phase, or nematic regions surrounded by isotropic phase. Using numerical integration, we revealed fundamental properties of such systems. Our main model outcome - spontaneous

  18. The influence of nanoparticles on the phase and structural ordering for nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, S; Bradac, Z [Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska 160, 2000 Maribor (Slovenia); Popa-Nita, V [Faculty of Physics, University of Bucharest, PO Box MG-11, Bucharest 077125 (Romania)], E-mail: samo.kralj@uni-mb.si

    2008-06-18

    We study the influence of nanoparticles (NPs) on liquid crystal (LC) ordering. As regards the structural ordering we consider NPs as a source of a quenched random field. Roughly such a situation is encountered in mixtures of LCs and aerosil NPs (aerosil NPs are spherular ones). Using the semi-microscopic lattice model and Brownian molecular simulation we show that after a quench from the isotropic phase a quasi-stable domain pattern forms. The characteristic size of an average domain is inversely proportional to the concentration of NPs, and domain patterns exhibit memory effects. In the study of the phase behaviour we limit consideration to NPs resembling LC molecules. A Landau-type free energy expression is derived for the mixture, originating from the Maier-Saupe molecular approach. We show that the resulting phase behaviour exhibits the slave-master behaviour as the temperature or pressure is varied.

  19. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  20. Molecular engineering of discotic nematic liquid crystals

    Indian Academy of Sciences (India)

    Connecting two columnar phase forming discotic mesogens via a short rigid spacer leads to the formation of a -conjugated discotic dimer showing discotic nematic (D) phase. Attaching branched-alkyl chains directly to the core in hexaalkynylbenzene resulted in the stabilisation of D phase at ambient temperature.

  1. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

    KAUST Repository

    Majumdar, Apala

    2009-07-07

    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W1,2, to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions. © Springer-Verlag (2009).

  2. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

    KAUST Repository

    Majumdar, Apala; Zarnescu, Arghir

    2009-01-01

    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W1,2, to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions. © Springer-Verlag (2009).

  3. Spin Triplet Nematic Pairing Symmetry and Superconducting Double Transition in U1-xThxBe13

    Science.gov (United States)

    Machida, Kazushige

    2018-03-01

    Motivated by a recent experiment on U1-xThxBe13 with x = 3%, we develop a theory to narrow down the possible pair symmetry to consistently describe the double transition utilizing various theoretical tools, including group theory and Ginzburg-Landau theory. It is explained in terms of the two-dimensional representation Eu with spin triplet. Symmetry breaking causes the degenerate Tc to split into two. The low-temperature phase is identified as the cyclic p wave: d(k) = \\hat{x}kx + ɛ \\hat{y}ky + ɛ 2\\hat{z}kz with ɛ3 = 1, whereas the biaxial nematic phase: d(k) = √{3} (\\hat{x}kx - \\hat{y}ky) is the high-temperature one. This allows us to simultaneously identify the uniaxial nematic phase: d(k) = 2\\hat{z}kz - \\hat{x}kx - \\hat{y}ky for UBe13, which spontaneously breaks the cubic symmetry of the system. Those pair functions are fully consistent with this description and existing data. We comment on the accidental scenario in addition to this degeneracy scenario and the intriguing topological nature hidden in this long-known material.

  4. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  5. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    Science.gov (United States)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  6. A theory of the nematic liquid crystals

    International Nuclear Information System (INIS)

    Hazoume, R.P.

    1980-09-01

    A theory of the nematic phase of liquid crystals is presented, taking explicit account of the geometry of the molecule. The three broad peaks of the neutron scattering structure factor are explained. Expressions of the order parameters (average value of Psub(2L)) are given and they can be extracted by comparison with scattering experiments. (author)

  7. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  8. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  10. Dynamical patterns in nematic active matter on a sphere

    Science.gov (United States)

    Henkes, Silke; Marchetti, M. Cristina; Sknepnek, Rastko

    2018-04-01

    Using simulations of self-propelled agents with short-range repulsion and nematic alignment, we explore the dynamical phases of a dense active nematic confined to the surface of a sphere. We map the nonequilibrium phase diagram as a function of curvature, alignment strength, and activity. Our model reproduces several phases seen in recent experiments on active microtubule bundles confined the surfaces of vesicles. At low driving, we recover the equilibrium nematic ground state with four +1 /2 defects. As the driving is increased, geodesic forces drive the transition to a polar band wrapping around an equator, with large empty spherical caps corresponding to two +1 defects at the poles. Upon further increasing activity, the bands fold onto themselves, and the system eventually transitions to a turbulent state marked by the proliferation of pairs of topological defects. We highlight the key role of the nematic persistence length in controlling pattern formation in these confined systems with positive Gaussian curvature.

  11. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    Science.gov (United States)

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  12. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  13. Thermically tuned nematic guide

    Science.gov (United States)

    Corella-Madueño, Adalberto; Reyes, Juan Adrián

    2006-06-01

    We consider a cylindrical fiber with a liquid crystal core satisfying homeotropic weak anchoring boundary conditions. We find the different textures of the nematic inside the cylinder obtained by changing the temperature. We calculate exactly the spatial distribution of the transverse magnetic modes in the guide as a function of temperature of the system by using a numerical scheme.

  14. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  15. Nanoscale interfacial defect shedding in a growing nematic droplet.

    Science.gov (United States)

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  16. Biaxial vent extruder

    International Nuclear Information System (INIS)

    Idemoto, A.; Maki, Y.; Oda, N.

    1981-01-01

    A biaxial vent extruder is described for processing of slurry-like waste fluids or radioactive waste fluids which have a hopper cylinger, a solidifying substance port and a solidified substance port. A plurality of vent cylinders each having a vent port are provided with a plunger type scraper. An extruding cylinder having a single opening for a main screw is connected to the assembled vent cylinders. The main screw extends to the upstream end of the extruding cylinder and a sub-screw extends to the extruding cylinder. The screws each having a full flight engaging the other and a set of rings are mounted on the screws near the respective vent port inlets. The screws are rotated in different directions and inwardly with respect to the vent ports. Rotors may be mounted on the screws to break down solid particles

  17. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  18. Depletion interactions in lyotropic nematics

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.

    2000-01-01

    A theoretical study of depletion interactions between pairs of small, globular colloids dispersed in a lyotropic nematic of hard, rodlike particles is presented. We find that both the strength and range of the interaction crucially depends on the configuration of the spheres relative to the nematic

  19. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  20. Failure of composite plates under static biaxial planar loading

    Science.gov (United States)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  1. Negative stiffness and modulated states in active nematics.

    Science.gov (United States)

    Srivastava, Pragya; Mishra, Prashant; Marchetti, M Cristina

    2016-10-04

    We examine the dynamics of an active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability phase diagram that exhibits a nonequilibrium tricritical point where ordered, modulated and disordered phases meet. Numerical solution of the nonlinear equations yields a succession of spatial structures of increasing complexity with increasing activity, including kink walls and active turbulence, as observed in experiments on microtubule bundles confined at an oil-water interface. Our work provides a minimal model for an overdamped active nematic that reproduces all the nonequilibrium structures seen in simulations of the full active nematic hydrodynamics and provides a framework for understanding some of the mechanisms for selection of the nonequilibrium patterns in the language of equilibrium critical phenomena.

  2. Liquid crystal polymers: evidence of hairpin defects in nematic main chains, comparison with side chain polymers

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.

    1996-09-01

    This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.

  3. Numerical method of lines for the relaxational dynamics of nematic liquid crystals.

    Science.gov (United States)

    Bhattacharjee, A K; Menon, Gautam I; Adhikari, R

    2008-08-01

    We propose an efficient numerical scheme, based on the method of lines, for solving the Landau-de Gennes equations describing the relaxational dynamics of nematic liquid crystals. Our method is computationally easy to implement, balancing requirements of efficiency and accuracy. We benchmark our method through the study of the following problems: the isotropic-nematic interface, growth of nematic droplets in the isotropic phase, and the kinetics of coarsening following a quench into the nematic phase. Our results, obtained through solutions of the full coarse-grained equations of motion with no approximations, provide a stringent test of the de Gennes ansatz for the isotropic-nematic interface, illustrate the anisotropic character of droplets in the nucleation regime, and validate dynamical scaling in the coarsening regime.

  4. Quenched disorder and spin-glass correlations in XY nematics

    International Nuclear Information System (INIS)

    Petridis, L; Terentjev, E M

    2006-01-01

    We present a theoretical study of the equilibrium ordering in a 3D XY nematic system with quenched random disorder. Within this model, treated with the replica trick and Gaussian variational method, the correlation length is obtained as a function of the local nematic order parameter Q and the effective disorder strength Γ. These results, ξ ∼ Q 2 e 1/Q 2 and ξ ∼ (1/Γ) e -Γ , clarify what happens in the limiting cases of diminishing Q and Γ, that is near a phase transition of a pure system. In particular, it is found that quenched disorder is irrelevant as Q → 0 and hence does not change the character of the continuous XY nematic-isotropic phase transition. We discuss how these results compare with experiments and simulations

  5. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  6. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    Science.gov (United States)

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  7. Dynamics of Active Nematic Liquid Crystals

    Science.gov (United States)

    DeCamp, Stephen J.

    /s) while -1/2 defects are passive Brownian-like particles which receive random kicks by their +1/2 counterparts. Surprisingly, we discover a previously unknown phase in which motile +1/2 defects obtain nematic orientational order whereupon they have equal probability of pointing along a single axis in the sample. Our experiments show that the preferred direction of defect alignment is independent of the boundary conditions suggesting that it is the result of spontaneous symmetry breaking. We find that the extent of the alignment is continuously tuned from essentially isotropic to highly aligned by varying the thickness of the quasi-2D microtubule film. Interestingly, the order and alignment of defects, which is accompanied by nematic order of the constituent microtubules, persists for the sample lifetime (many hours). Finally, we assemble the 2D microtubule-based active nematic liquid crystal onto the inner leaflet of lipid bilayer vesicles. The activity drives the formation of 4x +1/2 defects which subsequently stream across the inner surface of the vesicle. The defects oscillate between a tetrahedral orientation and a state in which they reside on the great circle of the sphere with a periodicity that is directly tunable by varying ATP concentration. Remarkably, the activity of the nematic can drive large shape deformations of the vesicle producing filopodia-like protrusions.

  8. Nematic order on the surface of a three-dimensional topological insulator

    Science.gov (United States)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  9. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    Science.gov (United States)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  10. Observation of hairpin defects in a nematic main-chain polyester

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.

    1993-04-01

    The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.

  11. Spontaneous topological charging of tactoids in a living nematic

    Science.gov (United States)

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    2018-04-01

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I–N) phase transition. On the basis of the computational analysis, we have established that tactoid’s I–N interface spontaneously acquire negative topological charge which is proportional to the tactoid’s size and depends on the concentration of bacteria. The observed negative charging is attributed to the drastic difference in the mobilities of +1/2 and ‑1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. The results hint into new strategies for control of active matter.

  12. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  13. Formation and field-driven dynamics of nematic spheroids.

    Science.gov (United States)

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  14. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  15. Instabilities and chaos in a kinetic equation for active nematics

    International Nuclear Information System (INIS)

    Shi, Xia-qing; Ma, Yu-qiang; Chaté, Hugues

    2014-01-01

    We study dry active nematics at the kinetic equation level, stressing the differences with the well-known Doi theory for non-active rods near thermal equilibrium. By deriving hydrodynamic equations from the kinetic equation, we show analytically that these two description levels share the same qualitative phase diagram, as defined by the linear instability limits of spatially-homogeneous solutions. In particular, we show that the ordered, homogeneous state is unstable in a region bordering the linear onset of nematic order, and is only linearly stable deeper in the ordered phase. Direct simulations of the kinetic equation reveal that its solutions are chaotic in the region of linear instability of the ordered homogeneous state. The local mechanisms for this large-scale chaos are discussed. (paper)

  16. Nematicity, magnetism and superconductivity in FeSe.

    Science.gov (United States)

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  17. Self-assembled structures of Gaussian nematic particles.

    Science.gov (United States)

    Nikoubashman, Arash; Likos, Christos N

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge.

  18. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    OpenAIRE

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  19. Stabilisation problem in biaxial platform

    Directory of Open Access Journals (Sweden)

    Lindner Tymoteusz

    2016-12-01

    Full Text Available The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  20. Stabilisation problem in biaxial platform

    Science.gov (United States)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  1. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  2. Measuring the nematic order of suspensions of colloidal fd virus by x-ray diffraction and optical birefringence

    International Nuclear Information System (INIS)

    Purdy, Kirstin R.; Dogic, Zvonimir; Fraden, Seth; Ruehm, Adrian; Lurio, Lawrence; Mochrie, Simon G. J.

    2003-01-01

    The orientational distribution function of the nematic phase of suspensions of the semiflexible rodlike virus fd is measured by x-ray diffraction as a function of concentration and ionic strength. X-ray diffraction from a single-domain nematic phase of fd is influenced by interparticle correlations at low angle, while only intraparticle scatter contributes at high angle. Consequently, the angular distribution of the scattered intensity arises from only the single-particle orientational distribution function at high angle but it also includes spatial and orientational correlations at low angle. Experimental measurements of the orientational distribution function from both the interparticle (structure factor) and intraparticle (form factor) scattering were made to test whether the correlations present in interparticle scatter influence the measurement of the single-particle orientational distribution function. It was found that the two types of scatter yield consistent values for the nematic order parameter. It was also found that x-ray diffraction is insensitive to the orientational distribution function's precise form, and the measured angular intensity distribution is described equally well by both Onsager's trial function and a Gaussian. At high ionic strength, the order parameter S of the nematic phase coexisting with the isotropic phase approaches theoretical predictions for long semiflexible rods S=0.55, but deviations from theory increase with decreasing ionic strength. The concentration dependence of the nematic order parameter also better agrees with theoretical predictions at high ionic strength indicating that electrostatic interactions have a measurable effect on the nematic order parameter. The x-ray order parameters are shown to be proportional to the measured birefringence, and the saturation birefringence of fd is determined enabling a simple, inexpensive way to measure the order parameter. Additionally, the spatial ordering of nematic fd was probed

  3. Search for a nematic phase in the quasi-two-dimensional antiferromagnet CuCrO2 by NMR in an electric field

    Science.gov (United States)

    Sakhratov, Yu. A.; Kweon, J. J.; Choi, E. S.; Zhou, H. D.; Svistov, L. E.; Reyes, A. P.

    2018-03-01

    The magnetic phase diagram of CuCrO2 was studied with an alternative method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that, regardless of cooling history of the sample, the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. [Phys. Rev. B 94, 094410 (2016), 10.1103/PhysRevB.94.094410] that the high-field low-temperature phase is in fact a three-dimensional (3D) polar phase characterized by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D spiral to the 3D polar phase.

  4. Fractional quantum Hall systems near nematicity: Bimetric theory, composite fermions, and Dirac brackets

    Science.gov (United States)

    Nguyen, Dung Xuan; Gromov, Andrey; Son, Dam Thanh

    2018-05-01

    We perform a detailed comparison of the Dirac composite fermion and the recently proposed bimetric theory for a quantum Hall Jain states near half filling. By tuning the composite Fermi liquid to the vicinity of a nematic phase transition, we find that the two theories are equivalent to each other. We verify that the single mode approximation for the response functions and the static structure factor becomes reliable near the phase transition. We show that the dispersion relation of the nematic mode near the phase transition can be obtained from the Dirac brackets between the components of the nematic order parameter. The dispersion is quadratic at low momenta and has a magnetoroton minimum at a finite momentum, which is not related to any nearby inhomogeneous phase.

  5. Magnetic quasi-long-range ordering in nematic systems due to competition between higher-order couplings

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2018-05-01

    Critical properties of the two-dimensional X Y model involving solely nematic-like terms of the second and third orders are investigated by spin-wave analysis and Monte Carlo simulation. It is found that, even though neither of the nematic-like terms alone can induce magnetic ordering, their coexistence and competition leads to an extended phase of the magnetic quasi-long-range-order phase, wedged between the two nematic-like phases induced by the respective couplings. Thus, except for the multicritical point, at which all the phases meet, for any finite value of the coupling parameters ratio there are two phase transition: one from the paramagnetic phase to one of the two nematic-like phases followed by another one at lower temperatures to the magnetic phase. The finite-size scaling analysis indicates that the phase transitions between the magnetic and nematic-like phases belong to the Ising and three-state Potts universality classes. Inside the competition-induced algebraic magnetic phase, the spin-pair correlation function is found to decay even much more slowly than in the standard X Y model with purely magnetic interactions. Such a magnetic phase is characterized by an extremely low vortex-antivortex pair density attaining a minimum close to the point at which the two couplings are of about equal strength.

  6. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-01-01

    are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  7. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  8. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Science.gov (United States)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  9. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  10. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  11. Evidence for a jacketed nematic polymer

    Science.gov (United States)

    Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.

    1991-05-01

    The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.

  12. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  13. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  14. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  15. Active nematic gels as active relaxing solids

    Science.gov (United States)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  16. Theory of Electron Nematic Order in LaOFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chen

    2010-04-06

    We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature symmetric phase to a narrow region of intermediate 'nematic' phase, and then to a low temperature spin ordered phase. Identifying phases by their broken symmetries, these phases correspond precisely to the sequence of structural (tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron scattering studies of LaOFeAs. The structural transition can thus be identified with the existence of incipient ('fluctuating') magnetic order.

  17. Fluctuating dynamics of nematic liquid crystals using the stochastic method of lines

    Science.gov (United States)

    Bhattacharjee, A. K.; Menon, Gautam I.; Adhikari, R.

    2010-07-01

    We construct Langevin equations describing the fluctuations of the tensor order parameter Qαβ in nematic liquid crystals by adding noise terms to time-dependent variational equations that follow from the Ginzburg-Landau-de Gennes free energy. The noise is required to preserve the symmetry and tracelessness of the tensor order parameter and must satisfy a fluctuation-dissipation relation at thermal equilibrium. We construct a noise with these properties in a basis of symmetric traceless matrices and show that the Langevin equations can be solved numerically in this basis using a stochastic version of the method of lines. The numerical method is validated by comparing equilibrium probability distributions, structure factors, and dynamic correlations obtained from these numerical solutions with analytic predictions. We demonstrate excellent agreement between numerics and theory. This methodology can be applied to the study of phenomena where fluctuations in both the magnitude and direction of nematic order are important, as for instance, in the nematic swarms which produce enhanced opalescence near the isotropic-nematic transition or the problem of nucleation of the nematic from the isotropic phase.

  18. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    Science.gov (United States)

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  19. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  20. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  1. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio; Cruz, Monica; de Pablo, Juan

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.

  2. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  3. Particles with changeable topology in nematic colloids

    International Nuclear Information System (INIS)

    Ravnik, Miha; Čopar, Simon; Žumer, Slobodan

    2015-01-01

    We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles. (paper)

  4. Direct and inverted nematic dispersions for soft matter photonics.

    Science.gov (United States)

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  5. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  6. Temperature-dependent study of isotropic-nematic transition for a Gay-Berne fluid using density-functional theory

    International Nuclear Information System (INIS)

    Singh, Ram Chandra

    2007-01-01

    We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available

  7. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    Science.gov (United States)

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  8. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  9. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    Science.gov (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  10. Isotropic-nematic transition of long, thin, hard spherocylinders confined in a quasi-two-dimensional planar geometry

    NARCIS (Netherlands)

    Lagomarsino, M.C.; Dogterom, M.; Dijkstra, Marjolein

    2003-01-01

    We present computer simulations of long, thin, hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is intrinsically two-dimensional and of

  11. Patterning nonisometric origami in nematic elastomer sheets

    Science.gov (United States)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  12. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  13. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  14. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    Science.gov (United States)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  15. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  16. Enhancement of the nonlinear optical absorption of the E7 liquid crystal at the nematic-isotropic transition

    International Nuclear Information System (INIS)

    Gomez, S.L.; Lenart, V.M.; Bechtold, I.H.; Figueiredo Neto, A.M.

    2012-01-01

    We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient P, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter SNL, whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 ± 0.05, in good agreement with the tricritical hypothesis for the nematic isotropic transition. (author)

  17. Near-infrared dichroism of a mesogenic transition metal complex and its solubility in nematic hosts

    International Nuclear Information System (INIS)

    Marshall, K.L.; Jacobs, S.D.

    1987-01-01

    A transition metal complex possessing the nematic phase, bis (p-n-butylstyryl-1, 2-dithiolato) nickel, was synthesized and its optical properties and solubility in the nematic hosts K15 and MBBA were investigated. The metal complex displayed a high solubility in both host materials (up to 10% wt/wt) and a strong near-infrared absorption band centered at 860 nm. A blocking extinction of greater than OD = 3 was obtained with a 100 micron pathlength of a 0.5% wt/wt mixture of the nematic metal complex in K15, suggesting its usefulness for passive blocking of near infrared radiation. A 24 micron thick, homogeneously aligned guest-host cell containing a 1% wt/wt mixture of the metal complex in K15 possessed a contrast ratio of nearly 5:1 and a blocking extinction of OD = 3.5 at 860 nm, demonstrating for the first time the existence of near-infrared dichroism in this class of materials. The solubility and blocking extinction of the mesogenic metal complex in K15 was considerably superior to the non-mesogenic near ir laser dye bis(dimethylaminodithiobenzil) nickel in the same host. An interaction of the nematic metal complex in mixtures with MBBA which resulted in the creation of a new absorption band at 1050 nm was also observed. 21 refs., 9 figs

  18. New theories for smectic and nematic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from new statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with LCPs is presented. Thermodynamic and molecular ordering properties (including odd-even effects) have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories have been used to design new LCPs and new solvents and to predict and explain properties

  19. Flicker in a twisted nematic spatial light modulator

    Science.gov (United States)

    Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser

    2013-06-01

    Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.

  20. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  1. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains

    Science.gov (United States)

    Zhao, Yan; Stratt, Richard M.

    2018-05-01

    Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.

  5. Biaxial behavior of plain concrete of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Keun E-mail: sklee0806@bcline.com; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f{sub 1}=f{sub 2}, is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension.

  6. Biaxial behavior of plain concrete of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Sang-Keun; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f 1 =f 2 , is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension

  7. Self-regulation in self-propelled nematic fluids.

    Science.gov (United States)

    Baskaran, A; Marchetti, M C

    2012-09-01

    We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.

  8. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  9. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  10. Defect Proliferation in Active Nematic Suspensions

    Science.gov (United States)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  11. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  12. Pervasive electronic nematicity in a cuprate superconductor

    Science.gov (United States)

    Wu, J.; Bollinger, A. T.; He, X.; Božović, I.

    2018-06-01

    We describe an extensive experimental study of La2-xSrxCuO4 films synthesized by molecular beam epitaxy and investigated by angle-resolved measurements of transverse resistivity (without applied magnetic field). The data show that an unusual metallic state, in which the rotational symmetry of the electron fluid is spontaneously broken, occurs in a large temperature and doping region. The superconducting state always emerges out of this nematic metal state.

  13. Optical nonlinearity due to thermomechanical effect in the planar and homeotropic nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Poursamad, J.B. [Physics & Optic Engineering Group, University of Bonab, Bonab (Iran, Islamic Republic of); Phirouznia, A. [Department of Physics, Azerbaijan ShahidMadani University, 53714-161 Tabriz (Iran, Islamic Republic of); Sahrai, M. [Research Institue for Applied Physics and Astronomy, Univerity of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-11-01

    Possibility of observing third thermomechanical (TM) effect in uniform nematic liquid crystals (NLC) with proper selection of boundary conditions on the cell walls is theoretically studied. Absorption of a light wave induces the needed temperature gradient for the TM effect. The molecular director reorientation due to third TM effect and the induced phase shift on the probe beam are calculated. The forth TM coefficient can be measured directly by the method proposed in this work.

  14. Ultrasound and orientational relaxation of nematic liquid crystals at high pressure

    International Nuclear Information System (INIS)

    Khabibullaev, P.K.; Oribjonov, Kh.J.; Lagunov, A.S.

    2004-01-01

    The acoustic properties of the nematic liquid crystal N-96 and its benzene solution in anisotropic phase are investigated in rotational magnetic field. The effects of concentration, temperature, pressure, and frequency of magnetic field rotation on ultrasonic absorption anisotropy are studied. Critical frequency values are experimentally determined. The relationship between the diamagnetic susceptibility anisotropy rotational viscosities was calculated, and its dependences on the pressure and temperature are also discussed. (author)

  15. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  16. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  17. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  18. Flexible polymers in a nematic medium : a Monte Carlo simulation

    NARCIS (Netherlands)

    Vliet, J.H. van; Luyten, M.C.; Brinke, G. ten

    Monte Carlo simulations of self-avoiding random walks surrounded by aligned rods on a square lattice and a simple cubic lattice were performed to address the topological constraints involved for dilute solutions of flexible polymers in a highly oriented nematic solvent. The nematic constraint

  19. Polarization-independent nematic liquid crystal waveguides for optofluidic applications

    NARCIS (Netherlands)

    d'Alessandro, A.; Martini, L.; Gilardi, G.; Beccherelli, R.; Asquini, R.

    2015-01-01

    We present the fabrication and the characterization of waveguides made of a nematic liquid crystal infiltrated in poly(dimethylsiloxane) channels. They are made by means of cast and molding technique and patterned using soft photolithography. The orientation of the nematic liquid crystal molecules

  20. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  1. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations.

  2. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.

    Science.gov (United States)

    Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S

    2013-10-09

    Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.

  3. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  4. Electron spin resonance for the detection of long-range spin nematic order

    Science.gov (United States)

    Furuya, Shunsuke C.; Momoi, Tsutomu

    2018-03-01

    Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low

  5. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  6. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-01-01

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  7. Biaxial seismic behaviour of reinforced concrete columns =

    Science.gov (United States)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  8. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    International Nuclear Information System (INIS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-01-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  9. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Energy Technology Data Exchange (ETDEWEB)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  10. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Science.gov (United States)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  11. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    Science.gov (United States)

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  12. Droplet snap-off in fluids with nematic liquid crystalline ordering

    International Nuclear Information System (INIS)

    Verhoeff, A A; Lekkerkerker, H N W

    2012-01-01

    We studied the snap-off of nematic liquid crystalline droplets originating from the Rayleigh-Taylor instability at the isotropic-nematic interface in suspensions of charged gibbsite in water and sterically stabilized gibbsite in bromotoluene. We found that droplet snap-off strongly depends on the director field structure inside the thinning neck, which is determined by the ratio of the splay elastic constant and the anchoring strength of the nematic phase to the droplet interface relative to the thickness of the thinning neck. If anchoring is weak, which is the case for aqueous gibbsite, this ratio is comparable to the thickness of the breaking thread. As a result, the thinning neck and pending drop have a uniform director field and droplet snap-off is determined by the viscous properties of the liquid crystal as well as by thermal fluctuations of the interface. On the other hand, in sterically stabilized gibbsite where anchoring is strong, this ratio is significantly smaller than the neck thickness. In this case, the neck has an escaped radial director field and the neck thinning is retarded close to snap-off due to a topological energy barrier involved in the separation of the droplet from the thread. (paper)

  13. Temperature Driven Topological Switch in 1T'-MoTe2 and Strain Induced Nematicity in NaFeAs

    Science.gov (United States)

    Berger, Ayelet Denise Notis

    Quasiparticle interference (QPI) is a powerful technique within Scanning Tunneling Microscopy (STM) that is used to probe the electronic bandstructure of materials. This thesis presents two examples using QPI to measure the bandstructure in materials with exotic electronic states that can be tuned via outside parameters (temperature and strain). In Part I of the thesis, we discuss the temperature dependence of Fermi Arcs in 1T'-MoTe 2, and then in Part II, the strain dependent nematic state in NaFeAs. The recent discovery of Weyl semimetals has introduced a new family of materials with topologically protected electronic properties and potential applications due to their anomalous transport effects. Even more useful is a Weyl semimetal that can be turned "on" and "off," switching between a topological and trivial state. One possible material is MoTe2, which undergoes a phase transition at 240K. This thesis consists of experiments using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at different temperatures to visualize changes in the electronic bandstructure of MoTe2 across the topological phase transition. We show that a signature of topologically protected Fermi Arcs is present at low temperatures but disappears at room temperature, in the trivial phase. We include an in-depth discussion of how to account for thermal effects when comparing these two types of measurements. In Part II, we discuss strain induced nematicity in NaFeAs, an iron pnictide. Nematic fluctuations and spin correlations play an important role in the phase diagram of the iron pnictides, a family of unconventional superconductors. Illuminating the mechanism behind this symmetry breaking is key to understanding the superconducting state. Previous work has shown that nematicity in the iron pnictides responds strongly to applied strain [1, 2]. In this thesis, I present results from a new experimental technique, elasto-scanning tunneling microscopy (E-STM), which combines in situ strain

  14. Optics of twisted nematic and supertwisted nematic liquid-crystal displays

    Science.gov (United States)

    Leenhouts, F.; Schadt, M.

    1986-11-01

    For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.

  15. In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals

    Science.gov (United States)

    Sidky, Hythem; de Pablo, Juan J.; Whitmer, Jonathan K.

    2018-03-01

    Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.

  16. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  17. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    Science.gov (United States)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  18. Influence of the nematic order on the rheology and conformation of stretched comb-like liquid crystalline polymers

    Science.gov (United States)

    Fourmaux-Demange, V.; Brûlet, A.; Boué, F.; Davidson, P.; Keller, P.; Cotton, J. P.

    2000-04-01

    We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t_r. The conformation can be described with two parameters only: λ_p, the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: λ_p is always smaller than λ (the deformation ratio of the whole sample). In the isotropic phase, λ_p has a constant value, while p increases as t_r. This latter behavior is not that expected for non-entangled chains, in which p varies as {t_r}^{1/2} (Rouse model). In the nematic phase, λ_p decreases as a stretched exponential function of t_r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain.

  19. Pretransitional behaviour in the vicinity of the isotropic-nematic transition of strongly polar compounds

    International Nuclear Information System (INIS)

    Sridevi, S; Krishna Prasad, S; Shankar Rao, D S; Yelamaggad, C V

    2008-01-01

    The isotropic-nematic transition, being weakly first order, exhibits pretransitional effects signifying the appearance of the nematic-like regions in the isotropic phase. In the isotropic phase, strongly polar liquid crystals, such as the popular alkyl and alkoxy cyano biphenyl behave in a non-standard fashion: whereas far away from the transition the dielectric constant ε iso has a 1/T dependence (a feature also commonly seen in polar liquids), on approaching the nematic phase the trend reverses resulting in a maximum in ε iso , at a temperature slightly above the transition, an effect explained on the basis of short-range correlations with an antiparallel association of the neighbouring molecules. Recently, there has been a revival in studies on this behaviour to possibly associate it with the order of transition. Here we report dielectric measurements carried in the vicinity of this transition for a number of compounds having different molecular structures including a bent core system, but with a common feature that the molecules possess a strong terminal polar group, nitro in one case and cyano in the rest. Surprisingly, the convex shape of the thermal variation of ε iso was more an exception than the rule. In materials that exhibit such an anomaly we find a linear correlation between δε = (ε peak -ε IN )/ε IN and δT = T peak -T IN , where ε peak is the maximum value of the dielectric constant in the isotropic phase, ε IN the value at the transition, and T peak and T IN the corresponding temperatures.

  20. Negative stiffness and modulated states in active nematics

    OpenAIRE

    Srivastava, Pragya; Mishra, Prashant; Marchetti, M. Cristina

    2016-01-01

    We examine the dynamics of a compressible active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that respo...

  1. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    Science.gov (United States)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  2. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  3. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  4. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  5. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    (deformable) interfaces and the shape of fluid colloids in smectic-C films. Keywords. .... with hundreds of points and end with tens of thousands, yielding free energies with an accuracy of ... For simplicity we neglect biaxiality and use the simpler.

  6. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    Science.gov (United States)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  7. Statistical thermodynamics of long straight rigid rods on triangular lattices: nematic order and adsorption thermodynamic functions.

    Science.gov (United States)

    Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J

    2012-09-04

    The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.

  8. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  9. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2016-01-01

    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ...

  10. Anomalously temperature-independent birefringence in biaxial optical crystals

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-01

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160 0 C. (letters to the editor)

  11. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    linearity arising from the non-linear stress-strain relationships and the cracking of the cross-section. · As a result, the systematic production of biaxial design charts necessitates the application of numerical methods that are based on iterations.

  12. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    Science.gov (United States)

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  13. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  14. Instabilities and patterns in an active nematic film

    Science.gov (United States)

    Srivastava, Pragya; Marchetti, Cristina

    2015-03-01

    Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.

  15. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  16. Stability of Disclinations in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Wang Yusheng; Yang Guohong; Tian Lijun; Duan Yishi

    2006-01-01

    In the light of φ-mapping method and topological current theory, the stability of disclinations around a spherical particle in nematic liquid crystals is studied. We consider two different defect structures around a spherical particle: disclination ring and point defect at the north or south pole of the particle. We calculate the free energy of these different defects in the elastic theory. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclinations. The other is the free energy density of disclinations themselves, which is shown to be concentrated at the defect and to be topologically quantized in the unit of (k-k 24 )π/2. It is shown that in the presence of saddle-splay elasticity a dipole (radial and hyperbolic hedgehog) configuration that accompanies a particle with strong homeotropic anchoring takes the structure of a small disclination ring, not a point defect.

  17. Nematic elastomers: from a microscopic model to macroscopic elasticity theory.

    Science.gov (United States)

    Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette

    2008-05-01

    A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.

  18. Biaxial fatigue tests and crack paths for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    V. Chaves

    2014-10-01

    Full Text Available AISI 304L stainless steel specimens have been tested in fatigue. The tests were axial, torsional and in-phase biaxial, all of them under load control and R=-1. The S-N curves were built following the ASTM E739 standard and the method of maximum likelihood proposed by Bettinelli. The fatigue limits of the biaxial tests were represented in axes σ-τ. The elliptical quadrant, appropriate for ductile materials, and the elliptical arc, appropriate for fragile materials, were included in the graph. The experimental values were better fitted with an elliptical quadrant, despite the ratio between the pure torsion and tension fatigue limits, τFL/σFL, is 0.91, close to 1, which is a typical value for fragile materials. The crack direction along the surface has been analyzed by using a microscope, with especial attention to the crack initiation zones. The crack direction during the Stage I has been compared with theoretical models.

  19. Study of uniaxial nematic lyomesophases by x-ray diffraction and auxiliary techniques

    International Nuclear Information System (INIS)

    Bittencourt, D.R.S.

    1986-01-01

    The uniaxial lyotropic nematic liquid crystals made of amphiphile/water/decanol/salt have been studied. The amphiphiles sodium decyl sulphate and sodium dodecil sulphate have been used. Characterization of samples conditioned in plane and cylindrical cells has been made by orthoscopic polarized optical microscopy (OM) and X.ray diffraction (XD) by observation of orientation under surface and magnetic field effects. It was possible to determine the director orientation of uniaxial discotic (N D ) and cylindrical (N C ) samples under surface and magnetic effects by both OM and XD techniques in independent ways. The homologous amphiphilies sodium octil, decil and dodecil sulfate, in powder form, have been studied by Debye-Scherrer technique. Observed reflexions have been indexed and crystallographic parameters determined. Good agreement between calculated and measured densities has been obtained. A crysostat for temperature variation in the interval- 10 0 /60 0 has been constructed, XD diagrams has been obtained for sodium decil sulfate samples allowing determination of phase transitions of two systems. Scattering curves at room temperatures have been obtained in a small-angle X-ray diffractometer. Analysis of profiles allowed determination of short range positional order and correlation ranges. Interference function between scattering objects have been obtained using structural models for the micelles of the uniaxial nematic phases. (author) [pt

  20. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    OpenAIRE

    Kaur, Sarabjot; Panov, V. P.; Greco, C.; Ferrarini, A.; Görtz, Verena; Goodby, John W.; Gleeson, Helen F.

    2014-01-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e 1 − e 3|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e 1 − e 3| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm−1 to 20 pCm−1 across the ∼60 K—wide nematic regime. We have also calculat...

  1. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  2. Limit load assessment of centre cracked plates under biaxial loading

    International Nuclear Information System (INIS)

    Meek, C.; Ainsworth, R.A.

    2015-01-01

    Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ 2 perpendicular to the crack and Bσ 2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B

  3. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  4. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  5. Continuous director-field transformation of nematic tactoids

    NARCIS (Netherlands)

    Prinsen, P.; Schoot, van der P.P.A.M.

    2004-01-01

    We theoretically investigate the director field inside spindle-shaped nematic droplets, known as tactoids. Tactoids typically form in dispersions of rod-like colloidal particles. By optimising the bulk elastic and surface energies, we find that the director field crosses over smoothly from a

  6. Lossy effects in a nonlinear nematic optical fiber

    Science.gov (United States)

    Rodríguez, R. F.; Reyes, J. A.

    2001-09-01

    We use the multiple scales method to derive a generalized nonlinear Schrödinger equation that takes into account the dissipative effects in the reorientation of a nematic confined in a cylindrical waveguide. This equation has soliton-like solutions and predicts a decrease in the penetration length of the optical solitons for each propagating mode with respect to the dissipationless case.

  7. Alignment of carbon nanotubes in nematic liquid crystals

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Popa-Nita, V.; Kralj, S.

    2008-01-01

    The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial

  8. Metric approach for sound propagation in nematic liquid crystals

    Science.gov (United States)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  9. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  10. Nematicity and Magnetism in FeSe and Other Families of Fe-Based Superconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yamakawa

    2016-06-01

    Full Text Available Nematicity and magnetism are two key features in Fe-based superconductors, and their interplay is one of the most important unsolved problems. In FeSe, the magnetic order is absent below the structural transition temperature T_{str}=90  K, in stark contrast to the fact that the magnetism emerges slightly below T_{str} in other families. To understand such amazing material dependence, we investigate the spin-fluctuation-mediated orbital order (n_{xz}≠n_{yz} by focusing on the orbital-spin interplay driven by the strong-coupling effect, called the vertex correction. This orbital-spin interplay is very strong in FeSe because of the small ratio between the Hund’s and Coulomb interactions (J[over ¯]/U[over ¯] and large d_{xz}, d_{yz}-orbital weight at the Fermi level. For this reason, in the FeSe model, the orbital order is established irrespective of the fact that the spin fluctuations are very weak, so the magnetism is absent below T_{str}. In contrast, in the LaFeAsO model, the magnetic order appears just below T_{str} both experimentally and theoretically. Thus, the orbital-spin interplay due to the vertex correction is the key ingredient in understanding the rich phase diagram with nematicity and magnetism in Fe-based superconductors in a unified way.

  11. Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides

    Science.gov (United States)

    Patz, Aaron; Li, Tianqi; Ran, Sheng; Fernandes, Rafael M.; Schmalian, Joerg; Bud'Ko, Sergey L.; Canfield, Paul C.; Perakis, Ilias E.; Wang, Jigang

    2014-02-01

    Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behaviour these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe1-xCox)2As2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.

  12. Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators

    International Nuclear Information System (INIS)

    Duran, Vicente; Climent, Vicent; Lancis, Jesus; Tajahuerce, Enrique; Bara, Salvador; Arines, Justo; Ares, Jorge; Andres, Pedro; Jaroszewicz, Zbigniew

    2010-01-01

    Off-the-shelf twisted nematic liquid crystal displays (TNLCDs) show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four level codification scheme. Wavefront estimation is performed through conventional Hartmann-Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0.76 microns and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. These values correspond to typical aberrations found in human eyes. The key of our approach is careful characterization and optimization of the TNLCD for phase-only modulation. For this purpose, we exploit the so-called retarder-rotator approach for twisted nematic liquid crystal cells. The optimization process has been successfully applied to SLMs working either in transmissive or in reflective mode, even when light depolarization effects are observed.

  13. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    Science.gov (United States)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  14. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

  15. Isotropic-nematic transition in a mixture of hard spheres and hard spherocylinders: scaled particle theory description

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2017-12-01

    Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.

  16. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    Science.gov (United States)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  17. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  18. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-01

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  19. Group theoretical arguments on the Landau theory of second-order phase transitions applied to the phase transitions in some liquid crystals

    International Nuclear Information System (INIS)

    Rosciszewski, K.

    1979-01-01

    The phase transitions between liquids and several of the simplest liquid crystalline phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied from the point of view of the group-theoretical arguments of Landau theory. It was shown that the only possible candidates for second-order phase transitions are those between nematic and smectic A, between centrosymmetric nematic and smectic C and between centrosymmetric smectic A and smectic C. Simple types of density functions for liquid crystalline phases are proposed. (author)

  20. Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs

    Science.gov (United States)

    Rubin, Leslie; Federico, Frank; Formato, Richard; Larouco, John; Slager, William

    2004-01-01

    Tubes made from biaxially oriented liquid-crystal polymers (LCPs) have been developed for use as penetrations on cryogenic tanks. ( Penetrations in this context denotes feed lines, vent lines, and sensor tubes, all of which contribute to the undesired conduction of heat into the tanks.) In comparison with corresponding prior cryogenic-tank penetrations made from stainless steels and nickel alloys, the LCP penetrations offer advantages of less weight and less thermal conduction. An additional major advantage of LCP components is that one can tailor their coefficients of thermal expansion (CTEs). The estimated cost of continuous production of LCP tubes of typical sizes is about $1.27/ft ($4.17/m) [based on 1998 prices]. LCP tubes that are compatible with liquid oxygen and that feature tailored biaxial molecular orientation and quasi-isotropic properties (including quasi-isotropic CTE) have been fabricated by a combination of proprietary and patented techniques that involve the use of counterrotating dies (CRDs). Tailoring of the angle of molecular orientation is what makes it possible to tailor the CTE over a wide range to match the CTEs of adjacent penetrations of other tank components; this, in turn, makes it possible to minimize differential-thermal expansion stresses that arise during thermal cycling. The fabrication of biaxially oriented LCP tubes by use of CRDs is not new in itself. The novelty of the present development lies in tailoring the orientations and thus the CTEs and other mechanical properties of the LCPs for the intended cryogenic applications and in modifications of the CRDs for this purpose. The LCP tubes and the 304-stainless-steel tubes that the LCP tubes were intended to supplant were tested with respect to burst strength, permeability, thermal conductivity, and CTE.

  1. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  2. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  3. Light propagation in a magneto-optical hyperbolic biaxial crystal

    Science.gov (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.

    2017-12-01

    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  4. Multiple Order Diffractions by laser-Injured Transient Grating in Nematic MBBA Film

    International Nuclear Information System (INIS)

    Kim, Seong Kyu; Kim, Hack Jin

    1999-01-01

    The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals

  5. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    Science.gov (United States)

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  6. Effects of various surface treatments on the biaxial flexural properties of yttria-stabilized zirconia ceramics

    Directory of Open Access Journals (Sweden)

    Teerthesh Jain

    2018-01-01

    Conclusions: Air particle abrasion with CoJet Sand, LTD, and CTs had no negative impact on biaxial flexural strength indeed it increased the biaxial flexural strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restorations.

  7. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  8. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Science.gov (United States)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  9. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  10. Creation and manipulation of topological states in chiral nematic microspheres

    Science.gov (United States)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  11. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal.

    Science.gov (United States)

    Schoen, Martin; Haslam, Andrew J; Jackson, George

    2017-10-24

    The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.

  12. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  13. Dynamics of optical signals in a nematic waveguide

    Science.gov (United States)

    Reyes, J. Adrian

    2001-03-01

    We study the modes in a nonlinear nematic waveguide above the Frederickz transition and calculate each of the thresholds associated with different optical and orientational modes. Then, we exhibit the presence of kink-like solutions for the orientational equation under the action of optical fields and study its propagation. Finally, we analyse the dynamics of optical signal in the presence of orientational kinks for different modes and type of signals.

  14. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  15. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Hamstad, M.A.; Leon, E.M.; Mukherjee, A.K.

    1980-01-01

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  16. Probing Active Nematic Films with Magnetically Manipulated Colloids

    Science.gov (United States)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  17. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  18. Topological Nematic States and Non-Abelian Lattice Dislocations

    Science.gov (United States)

    Barkeshli, Maissam; Qi, Xiao-Liang

    2012-07-01

    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  19. Topological transitions in unidirectional flow of nematic liquid crystal

    Science.gov (United States)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  20. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  1. Biaxial experimental and analytical characterization of a dielectric elastomer

    Science.gov (United States)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  2. Biaxial loading effects on the growth of cracks

    International Nuclear Information System (INIS)

    Brown, M.W.; Miller, K.J.; Walker, T.J.

    1983-01-01

    Fatigue crack growth under different biaxial stress states is considered for both small scale yielding and high bulk stress conditions. Analytical and elastic finite element results are compared favourably alongside experimental results on a AISI 316 stainless steel at both room and elevated temperatures. Differences in crack growth rates are compared against different crack tip cyclic plastic zone sizes for various degrees of mixed mode loading, thereby overcoming the limitations of the Paris Law and LEFM. The usefulness of the approach is indicated for studies in the behaviour of materials subjected to thermal shock. Where steep temperature gradients are introduced due to rapid thermal transients, high strains are produced which propagate fatigue cracks under cyclic conditions. Since stress gradients are generally associated with thermal shock situations, the cracks grow through a plastically deformed region near the surface into an elastic region. A unified approach to fatigue behaviour, encompassing both linear elastic and elastic-plastic fracture mechanics, will enable analysis of thermal shock situations. The approach to crack propagation developed here shows that cyclic growth rates are a function of a severe strain zone size in which local stresses exceed the tensile strength, i.e. monotonic instability. The effects of stress biaxiality and mixed mode loading are included in the analysis, which may be extended to general yielding situations. (orig.)

  3. Liquid crystal phase behaviour of attractive disc-like particles.

    Science.gov (United States)

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  4. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  5. Orientational Order of Carbon Nanotube Guests in a Nematic Host Suspension of Colloidal Viral Rods

    NARCIS (Netherlands)

    Puech, N.; Dennison, M.; Blanc, C.; van der Schoot, P.; van Roij, R.; Poulin, P.; Grelet, E.

    2012-01-01

    In order to investigate the coupling between the degrees of alignment of elongated particles in binary nematic dispersions, surfactant stabilized single-wall carbon nanotubes (CNTs) have been added to nematic suspensions of colloidal rodlike viruses in aqueous solution. We have independently

  6. Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods

    NARCIS (Netherlands)

    Puech, N.; Dennison, M; Blanc, C; van der Schoot, P. P. A. M.; Dijkstra, M.; Van Roij, R.; Poulin, P.; Grelet, E

    2012-01-01

    In order to investigate the coupling between the degrees of alignment of elongated particles in binary nematic dispersions, surfactant stabilized single-wall carbon nanotubes (CNTs) have been added to nematic suspensions of colloidal rodlike viruses in aqueous solution.We have independently measured

  7. Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods

    NARCIS (Netherlands)

    Puech, N.; Dennison, M.; Blanc, C.; Schoot, van der P.P.A.M.; Dijkstra, Marjolein; Roij, van R.; Poulin, P.; Grelet, E.

    2012-01-01

    In order to investigate the coupling between the degrees of alignment of elongated particles in binary nematic dispersions, surfactant stabilized single-wall carbon nanotubes (CNTs) have been added to nematic suspensions of colloidal rodlike viruses in aqueous solution. We have independently

  8. Study of the chain conformation of thermotropic nematic main chain polyesters

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Cotton, J. P.; Davidson, P.; Strazielle, C.; Keller, P.

    1994-10-01

    The conformation of main chain mesomorphic polyesters is studied by small angle neutron scattering (SANS) in the isotropic and in the nematic phases, by using mixtures of deuterated and undeuterated polymers. Particular attention is given to neglect the transesterification effects occurring mainly at high temperature for these LC polymers. In the isotropic phase, despite the presence of long rigid mesogenic groups, the LC polyester chains have a Gaussian conformation shown by the variation of the radius of gyration as a function of the molecular weight. This result is confirmed from the scattering variation in the intermediate range of the scattering vector. In the nematic phase, the SANS data are well fitted to a model of cylinder, in which the main chain polymer is confined. In the unoriented phase, the measurements in the intermediate range give the values of the radii of cylinders : they lie in between 10 Å and 19 Å depending on the degree of polymerization of chains. In the oriented nematic phase, the scattering patterns are highly anisotropic : they correspond to very long, thin and well-oriented cylinders. We have calculated the fully extended chain lengths using for the monomer length that measured in situ by X-ray diffraction. Then the comparison of this length with the measured height of the cylinders gives the existence of hairpins and their number per chain. For the short chain, the conformation is almost completely elongated in the nematic direction, whereas hairpin defects appear in longer chains. Their number decreases slightly with decreasing temperature. The orientational fluctuations of cylinders relatively to the nematic director are weak as shown from the high values of their order parameter (P_2 > 0.9). These results are discussed for two spacer lengths as a function of the molecular weight and of the temperature. La conformation de polyesters linéaires mésomorphes est étudiée par diffusion de neutrons aux petits angles (DNPA) dans les

  9. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  10. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  11. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Phan, G. N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; Takahashi, T.

    2017-06-01

    One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (Tc). It was found in FeSe that the lattice strain leads to a drastic increase in Tc, accompanied by suppression of nematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (Δ Eh -e ) between the hole and electron pockets in the normal state. The change in Δ Eh -e modifies the Fermi-surface volume, leading to a change in Tc. Furthermore, the strength of nematicity is also found to be characterized by Δ Eh -e . These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.

  12. Creep modeling of textured zircaloy under biaxial stressing

    International Nuclear Information System (INIS)

    Adams, B.L.; Murty, K.L.

    1984-01-01

    Anisotropic biaxial creep behavior of textured Zircaloy tubing was modeled using a crystal-plastic uniform strain-rate upper-bound and a uniform stress lower-bound approach. Power-law steady-state creep is considered to occur on each crystallite glide system by fixing the slip rate to be proportional to the resolved shear stress raised to a power. Prismatic, basal, and pyramidal slip modes were considered. The crystallographic texture is characterized using the orientation distribution function determined from a set of three pole-figures. This method is contrasted with a Von-Mises-Hill phenomenological model in comparison with experimental data obtained at 673 deg K. The resulting creep-dissipative loci show the importance of the basal slip mode on creep in heavily cold-worked cladding, whereas prismatic slip is more important for the recrystallized materials. (author)

  13. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  14. Elastic stability of biaxially loaded longitudinally stiffened composite structures.

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1973-01-01

    A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.

  15. High temperature strength of Hastelloy XR under biaxial stress states

    International Nuclear Information System (INIS)

    Muto, Yasushi; Hada, Kazuhiko; Koikegami, Hajime; Ohno, Nobutada.

    1991-01-01

    Biaxial(tension/torsion) creep and creep-fatigue tests were conducted on Hastelloy XR at 950degC in air. Hastelloy XR is a nickel base solution-annealed heat resistant alloy. Thin-walled tubular test specimens were employed. As results of the creep tests, the von Mises' flow rule was revealed to be applicable very well. Under the torsion load, sufficient growth of voids was necessary to initiate the fracture and this resulted in longer life time compared with that under the tension load. Only a few number of small voids could be observed and very long life times were attained under the compression load. The creep-fatigue tests revealed that superposition of constant torsion load on a cyclic axial load reduced the cycles to failure significantly and the amount of reduction was consistent with the prediction by the linear life fraction rule. (author)

  16. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.

    2012-01-01

    slenderness and edge displacement ratio are included in the investigations presented. Capacity interaction curves are established in the bi-axial stress domain. It turns out that for certain stress ratios the imperfections dominating the ultimate capacity are not affine to the lowest classical buckling mode...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...

  17. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  18. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  19. Connecting and disconnecting nematic disclination lines in microfluidic channels.

    Science.gov (United States)

    Agha, Hakam; Bahr, Christian

    2016-05-14

    Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We show that the application of an electric field establishes a continuous disclination that spans across a channel region in which a disclination usually would not exist (because of different anchoring conditions), demonstrating an interruptible and reconnectable soft rail for colloidal transport.

  20. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  1. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  2. Dynamics and Thermodynamics of Artificial Muscles Based on Nematic Gels

    Science.gov (United States)

    Hébert, M.; Kant, R.; de Gennes, P.-G.

    1997-07-01

    A scheme based on nemato-mechanical conversion has been proposed for potential artificial muscle applications (de Gennes P.-G., Hébert M. and Kant R., to appear in Macromol. Symp. (1996)). As the temperature in a nematic gel is reduced through the transition temperature, strong uniaxial deformation is encountered. We briefly expose the dynamics of contraction/elongation in this system. Work and dissipative losses are calculated for an operating cycle to get an approximative expression of the ratio work/losses, which can then be compared with real muscular efficiencies.

  3. Traveling waves in twisted nematic liquid crystal cells

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Vakulenko, A.A.

    2007-01-01

    We have described a novel reorientation mechanism in the form of the traveling waves, under influence of an external electric field, directed parallel to both glass plates, which occur in the twisted nematic cell (TNC). It is found that the slowest velocity of the traveling front is proportional to the field strength, and, approximately, in three times higher than the front velocity corresponding to the non-traveling solution. The value of the critical electric field E cr which may excite the traveling waves in the TNC in π times less than the value of the threshold electric field E th corresponding to the untwisted geometry

  4. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  5. Single-source mechanical loading system produces biaxial stresses in cylinders

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1967-01-01

    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  6. Failure criterion for graphene in biaxial loading—a molecular dynamics study

    International Nuclear Information System (INIS)

    Yazdani, Hessam; Hatami, Kianoosh

    2015-01-01

    Molecular dynamics simulations are carried out in order to develop a failure criterion for infinite/bulk graphene in biaxial tension. Stresses along the principal edge configurations of graphene (i.e. armchair and zigzag directions) are normalized to the corresponding uniaxial ultimate strength values. The combinations of normalized stresses resulting in the failure of graphene are used to define failure envelopes (limiting stress ratio surfaces). Results indicate that a bilinear failure envelope can be used to represent the tensile strength of graphene in biaxial loading at different temperatures with reasonable accuracy. A circular failure envelope is also introduced for practical applications. Both failure envelopes define temperature-independent upper limits for the feasible combinations of normalized stresses for a graphene sheet in biaxial loading. Predicted failure modes of graphene under biaxial loading are also shown and discussed. (paper)

  7. Local behavior of an AISI 304 stainless steel submitted to in situ biaxial loading in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Caër, C., E-mail: celia.caer@gmail.com; Pesci, R.

    2017-04-06

    The microstructural response of a coarse grained AISI 304 stainless steel submitted to biaxial tensile loading was investigated using SEM and X-ray diffraction. The specimen geometry was designed to allow for biaxial stress state and incipient crack in the center of the active part under biaxial tensile loading. This complex loading was performed step by step by a micromachine fitting into a SEM chamber. At each loading step FSD pictures and EBSD measurements were carried out to study the microstructural evolution of the alloy, namely grain rotations and misorientations, stress-induced martensite formation and crack propagation. According to their initial orientation, grains are found to behave differently under loading. Approximately 60% of grains are shown to reorient to the [110] Z orientation under biaxial tensile loading, whereas the 40% left undergo high plastic deformation. EBSD and XRD measurements respectively performed under loading and on the post mortem specimen highlighted the formation of about 4% of martensite.

  8. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  9. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  10. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  11. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film

    International Nuclear Information System (INIS)

    Zhang, Y.; Lawrence Berkeley National Laboratory; Yi, M.; Stanford University, CA; Liu, Z.-K.

    2016-01-01

    Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-T c , however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the d xz and d yz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80 meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of d xz and d yz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.

  12. Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension

    Science.gov (United States)

    Jackson, Wade C.; Ratcliffe, James G.

    2013-01-01

    Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa

  13. Steady-state and time-resolved spectroscopic investigations on intramolecular electron transfer processes within a synthesized methoxynaphthalene dyad by using a nematic liquid crystal medium

    International Nuclear Information System (INIS)

    Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit; Chowdhury, Joydeep; Ganguly, Tapan

    2010-01-01

    UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (ε S ∼10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (ε S ∼37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.

  14. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    Science.gov (United States)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  15. Geometry of thresholdless active flow in nematic microfluidics

    Science.gov (United States)

    Green, Richard; Toner, John; Vitelli, Vincenzo

    2017-10-01

    Active nematics are orientationally ordered but apolar fluids composed of interacting constituents individually powered by an internal source of energy. When activity exceeds a system-size-dependent threshold, spatially uniform active apolar fluids undergo a hydrodynamic instability leading to spontaneous macroscopic fluid flow. Here we show that a special class of spatially nonuniform configurations of such active apolar fluids display laminar (i.e., time-independent) flow even for arbitrarily small activity. We also show that two-dimensional active nematics confined on a surface of nonvanishing Gaussian curvature must necessarily experience a nonvanishing active force. This general conclusion follows from a key result of differential geometry: Geodesics must converge or diverge on surfaces with nonzero Gaussian curvature. We derive the conditions under which such curvature-induced active forces generate thresholdless flow for two-dimensional curved shells. We then extend our analysis to bulk systems and show how to induce thresholdless active flow by controlling the curvature of confining surfaces, external fields, or both. The resulting laminar flow fields are determined analytically in three experimentally realizable configurations that exemplify this general phenomenon: (i) toroidal shells with planar alignment, (ii) a cylinder with nonplanar boundary conditions, and (iii) a Frederiks cell that functions like a pump without moving parts. Our work suggests a robust design strategy for active microfluidic chips and could be tested with the recently discovered living liquid crystals.

  16. Intrinsic frame transport for a model of nematic liquid crystal

    Science.gov (United States)

    Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.

    1997-02-01

    We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.

  17. Key-lock colloids in a nematic liquid crystal.

    Science.gov (United States)

    Silvestre, Nuno M; Tasinkevych, M

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  18. Measuring Nematic Susceptibilities from the Elastoresistivity Tensor

    Science.gov (United States)

    Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian

    The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  19. Optical security devices using nonuniform schlieren texture of UV-curable nematic liquid crystal.

    Science.gov (United States)

    Nakayama, Keizo; Ohtsubo, Junji

    2016-02-10

    We proposed and quantitatively evaluated an optical security device that provides nonuniform or random patterns of schlieren texture in nematic liquid crystal as unique identification information with a design by employing computer image processing and normalized cross correlation. Using the same photomask as the first author's university logo, the written patterns, which were composed of polymerized isotropic areas and polymerized nematic areas, were stable among different cells. Judging from the maximum correlation coefficient of 0.09, the patterns of the schlieren texture were unique in different cells. These results indicate that photocurable nematic liquid crystal materials have the potential to be applied to security devices for anticounterfeiting measures.

  20. Nematic-isotropic transition in some lattice models for rigid cores having semiflexible tails: segmental Lennard-Jones interactions

    International Nuclear Information System (INIS)

    Dowell, F.

    1983-01-01

    Two average-environment simple cubic lattice models: a refined model and a simple model, both having site-site (segmental) pair Lennard-Jones (LJ) interactions: for molecules composed of rigid cores having semiflexible tails are presented. The calculated values of the following properties at the nematic-isotropic transition for rigid rods of varying length are compared with relevant experimental data for PAA (p-azoxyanisole, or 4,4'-dimethoxyazoxybenzene): temperature, core orientational order parameter, nematic density and volume, relative density change, and relative entropy change. The temperature change as a function of volume change at constant order parameter is also discussed. In general, both LJ models give considerably better quantitative agreement with experiment, especially for the temperature and the relative density change, than do the earlier lattice models with hard repulsions, with or without constant segmental pair interaction energies. In most aspects, these LJ models give good quantitative agreement with experiment. These LJ models elucidate the importance of realistic intermolecular potentials, especially the role of soft repulsions, in describing an order-disorder transition between two condensed phases

  1. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    Science.gov (United States)

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  2. Different phases of a system of hard rods on three dimensional cubic lattice

    Science.gov (United States)

    Vigneshwar, N.; Dhar, Deepak; Rajesh, R.

    2017-11-01

    We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.

  3. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  4. Research on self-calibration biaxial autocollimator based on ZYNQ

    Science.gov (United States)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui

    2018-01-01

    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  5. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  6. Experimental studies of yield phenomena in biaxially loaded metals

    International Nuclear Information System (INIS)

    Hecker, S.S.

    1976-01-01

    Realistic materials properties input represents one of the major limitations in computer stress analysis in the plastic range. Lack of data on the response of many structural materials to multiaxial loading requires modeling plastic behavior. Such models can at best predict the response of a limited class of materials for a limited range of loading. A summary of biaxial plasticity experiments on metals is presented to provide a testing ground for such models and to serve as a reference guide for materials that may be of practical interest. Most of the work has been done on materials assumed to exhibit time-and-pressure-independent plastic flow. Special attention is focused on initial and subsequent yield conditions and stress-strain relations. Some specific examples of material behavior that does not fall within the assumptions of classical plasticity theories are discussed. These include time-dependence as evidenced in creep, cyclic loading and strain-rate effects, pressure dependence, large strain behavior, microstructural changes and failure laws. 15 figures, 277 references

  7. Modeling of biaxial gimbal-less MEMS scanning mirrors

    Science.gov (United States)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  8. Dynamic Spin-Lattice Coupling and Nematic Fluctuations in NaFeAs

    Directory of Open Access Journals (Sweden)

    Yu Li

    2018-06-01

    Full Text Available We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron-pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at T_{s}≈58  K and a collinear antiferromagnetic order at T_{N}≈45  K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to T_{s} and then harden on approaching T_{N} before saturating below T_{N}. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the c axis increase dramatically below T_{s} and show a weak anomaly across T_{N}. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon–two-magnon mechanism.

  9. Atomic-scale Visualization of Electronic Nematicity and Cooper Pairing in Iron-based Superconductors

    Science.gov (United States)

    Allan, Milan P.

    2013-03-01

    The mechanism of high-temperature superconductivity in the relatively novel iron-based high-Tc superconductors is unresolved, both in terms of how the phases evolve with doping, and in terms of the actual Cooper pairing process. To explore these issues, we used spectroscopic-imaging scanning tunneling microscopy to study the electronic structure of CaFe2As2 in the antiferromagnetic-orthorhombic `parent' state from which the superconductivity emerges. We discovered and visualized the now widely studied electronic `nematicity' of this phase, whose suppression is associated with the emergence of superconductivity (Science 327, 181, 2010). As subsequent transport experiments discovered a related anisotropic conductance which increases with dopant concentration, the interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has become a pivotal focus of research. We find that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical and strongly anisotropic impurity states that are distributed randomly but aligned with the antiferromagnetic a-axis. We also demonstrate, by imaging their surrounding interference patterns, that these impurity states scatter quasiparticles and thus influence transport in a highly anisotropic manner (M.P. Allan et al., 2013). Next, we studied the momentum dependence of the energy gaps of iron-based superconductivity, now focusing on LiFeAs. If strong electron-electron interactions mediate the Cooper pairing, then momentum-space anisotropic superconducting energy gaps Δi (k) were predicted by multiple techniques to appear on the different electronic bands i. We introduced intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for the determination of anisotropic energy gaps to test these hypotheses and discovered the anisotropy, magnitude, and relative orientations of the energy gaps on multiple

  10. Hydrodynamics of defects in nematic liquid crystal films

    International Nuclear Information System (INIS)

    Kurz, G.

    1999-01-01

    In this thesis I propose a new theory to deal with the presence of a macroscopic density of defects or disclinations in two-dimensional systems of uniaxial nematic liquid crystal. The static part of the Abelian-Higgs model is the basis for a gauge covariant form of the Frank free energy for distortions in nematics, where the gauge field models the screening due to the presence of the defects. Certain results for vortices in the Abelian-Higgs model are reformulated for use in my theory. The model suggests disclinations with an isotropic core region. The covariant Frank free energy is used to derive a new form of the Ericksen-Leslie equations describing the hydrodynamics off nematics. These equations are set up according to the concept of thermodynamic fluxes and forces. Detailed analytic results are derived for the case where the dynamics is due to director reorientations, but no liquid flow. The hydrodynamic equations are reduced to dynamic equations for disclination points assuming a quasi-static motion in moduli space. The static form of the disclinations is based on solutions in the Bogomol'nyi limit, their quasi-static motion is induced through a deviation from this limit. The resulting equations are valid for a configuration containing disclinations with winding numbers of the same sign. These general equations require a, specific ansatz to yield further results. I consider two regimes, for defects close together and far apart from one another. A set of disclinations with winding numbers of the same sign which are close to one another, i.e. with overlapping cores, can result from disintegration of a larger disclination, and they repel one another. The results for this case predict how the disintegration could occur. The interaction of disclinations, with winding numbers of the same sign, which are far apart from one another is repulsive and decreases exponentially with the distances between them. Two such disclinations move on a straight line where their

  11. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo; Qian, Tiezheng; Sheng, Ping

    2008-01-01

    rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  12. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  13. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  14. Color Gamut of a Nematic Liquid Crystal Display

    Science.gov (United States)

    Shimomura, Teruo; Mada, Hitoshi; Kobayashi, Shunsuke

    1980-05-01

    The theoretical color gamut of a nematic liquid crystal display is described. The color gamut of a tunable birefringence mode and a guest host mode are revealed with the CIE chromaticity diagram and color solid. In order to account for the quantitative color gamut, color matching between the given chromaticity coordinates and those calculated is investigated. Color matching is performed by a combination of three liquid crystal subcells (A, B, C), where each subcell receives the voltage VA, VB, VC or contains the dye amount a, b, c. Calculation of the value of voltage or dye amount was executed by the matrix representation method. The calculated data are in good agreement with the given data within 0.50 CIE-UNIT color difference in the 1964 CIE (U*, V*, W*) color scale.

  15. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  16. Optical solitons in nematic liquid crystals: model with saturation effects

    Science.gov (United States)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  17. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  18. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  19. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  20. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  1. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  2. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  3. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  4. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

    KAUST Repository

    Ball, John M.

    2010-07-20

    We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime. Copyright © Taylor & Francis Group, LLC.

  5. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  6. Phonon deformation potentials of hexagonal GaN studied by biaxial stress modulation

    Directory of Open Access Journals (Sweden)

    Jun-Yong Lu

    2011-09-01

    Full Text Available In this work, a biaxial stress modulation method, combining the microfabrication technique, finite element analysis and a weighted averaging process, was developed to study piezospectroscopic behavior of hexagonal GaN films, epitaxially grown by metalorganic chemical vapor deposition on c-sapphire and Si (111 substrates. Adjusting the size of patterned islands, various biaxial stress states could be obtained at the island centers, leading to abundant stress-Raman shift data. With the proposed stress modulation method, the Raman biaxial stress coefficients of E2H and A1 (LO phonons of GaN were determined to be 3.43 cm-1/GPa and 2.34 cm-1/GPa, respectively.

  7. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  8. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a Bi-Axial Box

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the

  9. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  10. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    Wu, K.; Wang, S.S.; Meng, J.; Han, Z.

    2004-01-01

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  11. Photo-responsive surface topology in chiral nematic media

    Science.gov (United States)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  12. Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation

    Science.gov (United States)

    Delev, V. A.; Krekhov, A. P.

    2017-12-01

    The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving "abnormal" rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.

  13. Electrically modulated capillary filling imbibition of nematic liquid crystals

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2018-04-01

    The flow of nematic liquid crystals (NLCs) in the presence of an electric field is typically characterized by the variation in its rheological properties due to transition in its molecular arrangements. Here, we bring out a nontrivial interplay of a consequent alteration in the resistive viscous effects and driving electrocapillary interactions, toward maneuvering the capillary filling dynamics over miniaturized scales. Considering a dynamic interplay of the relevant bulk and interfacial forces acting in tandem, our results converge nicely to previously reported experimental data. Finally, we attempt a scaling analysis to bring forth further insight to the reported observations. Our analysis paves the way for the development of microfluidic strategies with previously unexplored paradigms of interaction between electrical and fluidic phenomenon, providing with an augmented controllability on capillary filling as compared to tthose reported to be achievable by the existing strategies. This, in turn, holds utilitarian scopes in improved designs of functional capillarities in electro-optical systems, electrorheological utilities, electrokinetic flow control, as well as in interfacing and imaging systems for biomedical microdevices.

  14. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  15. Unified Phase Diagram for Iron-Based Superconductors.

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  16. Unified Phase Diagram for Iron-Based Superconductors

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-feng; Luo, Huiqian; Li, Shiliang

    2017-10-01

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  17. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. II. Neutron diffraction stress analysis at the IBR-2 pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Sheverev, S.G.; ); Schreiber, J.; Bomas, H.; Korsunsky, A.M.

    2007-01-01

    The in-plane biaxial low cycle fatigued sample of the cruciform geometry from austenitic stainless steel AISI 321 was investigated on the time-of-flight neutron Fourier stress-diffractometer. The lattice parameters in the austenite matrix and the martensite inclusions created during the fatigue cycling as well as the martensite volume fraction were measured along two mutually perpendicular planar axes of the sample of the cruciform geometry by using the strain neutron scanner. The phase total residual strain components were calculated using the stress equilibrium relations. The separation of the residual stresses into macro- and microstresses was performed using the mixture rule. The measurements of the applied load-phase elastic strain responses were carried out on a uniaxial load machine. The strong difference between the phase elastic moduli was found out

  18. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  19. Accessible switching of electronic defect type in SrTi O3 via biaxial strain

    Science.gov (United States)

    Chi, Yen-Ting; Youssef, Mostafa; Sun, Lixin; Van Vliet, Krystyn J.; Yildiz, Bilge

    2018-05-01

    Elastic strain is used widely to alter the mobility of free electronic carriers in semiconductors, but a predictive relationship between elastic lattice strain and the extent of charge localization of electronic defects is still underdeveloped. Here we considered SrTi O3 , a prototypical perovskite as a model functional oxide for thin film electronic devices and nonvolatile memories. We assessed the effects of biaxial strain on the stability of electronic defects at finite temperature by combining density functional theory (DFT) and quasiharmonic approximation (QHA) calculations. We constructed a predominance diagram for free electrons and small electron polarons in this material, as a function of biaxial strain and temperature. We found that biaxial tensile strain in SrTi O3 can stabilize the small polaron, leading to a thermally activated and slower electronic transport, consistent with prior experimental observations on SrTi O3 and distinct from our prior theoretical assessment of the response of SrTi O3 to hydrostatic stress. These findings also resolved apparent conflicts between prior atomistic simulations and conductivity experiments for biaxially strained SrTi O3 thin films. Our computational approach can be extended to other functional oxides, and for the case of SrTi O3 our findings provide concrete guidance for conditions under which strain engineering can shift the electronic defect type and concentration to modulate electronic transport in thin films.

  20. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49 ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  2. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  3. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  4. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  5. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  6. Anisotropic stokes drag and dynamic lift on cylindrical colloids in a nematic liquid crystal.

    Science.gov (United States)

    Rovner, Joel B; Lapointe, Clayton P; Reich, Daniel H; Leheny, Robert L

    2010-11-26

    We have measured the Stokes drag on magnetic nanowires suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The effective drag viscosity for wires moving perpendicular to the nematic director differs from that for motion parallel to the director by factors of 0.88 to 2.4, depending on the orientation of the wires and their surface anchoring. When the force on the wires is applied at an oblique angle to the director, the wires move at an angle to the force, demonstrating the existence of a lift force on particles moving in a nematic. This dynamic lift is significantly larger for wires with homeotropic anchoring than with longitudinal anchoring in the experiments, suggesting the lift force as a mechanism for sorting particles according to their surface properties.

  7. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    International Nuclear Information System (INIS)

    Zheng Gui-Li; Xuan Li; Zhang Hui; Ye Wen-Jiang; Zhang Zhi-Dong; Song Hong-Wei

    2016-01-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and –1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and −1 defects obtained in the experiment conducted by Kumar et al. (paper)

  8. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  9. Experimental and analytical comparison of constraint effects due to biaxial loading and shallow-flaws

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bass, B.R.; Bryson, J.W.

    1993-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. The focus of studies described herein is on the evaluation of a micromechanical scaling model based on critical stressed volumes for quantifying crack-tip constraint through applications to experimental data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Shallow-crack effects and far-field tensile out-of-plane biaxial loading have been identified as constraint issues that influence both fracture toughness and the extent of the toughness scatter band. Results from applications indicate that the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen subjected to uniaxial or biaxial loading conditions are shown to represent a significant challenge for these methodologies. Unresolved issued identified from these analyses require resolution as part of a validation process for biaxial loading applications

  10. Steady-state and time-resolved spectroscopic investigations on intramolecular electron transfer processes within a synthesized methoxynaphthalene dyad by using a nematic liquid crystal medium

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Chowdhury, Joydeep [Sammilani Mahavidyalaya Baghajatin Station, West Bengal (India); Ganguly, Tapan, E-mail: sptg@mahendra.iacs.res.i [Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India)

    2010-06-15

    UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (epsilon{sub S}approx10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (epsilon{sub S}approx37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.

  11. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  12. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  13. Nematic liquid crystal in a cylindrical sample: Theoretical analysis of the electrical response

    Science.gov (United States)

    Gomes, O. A.; Yednak, C. A. R.; da Silva, B. V. H. V.; Teixeira-Souza, R. T.

    2018-02-01

    The electrical responses of a nematic liquid crystal sample confined between two cylindrical surfaces are investigated in the framework of elastic continuum theory. The responses are the result of the molecular reorientation induced by both the applied electric field and the cylindrical geometry of the sample. The nematic medium is considered as a parallel RC circuit since the capacitance and the resistance are under the same difference of potential. The electrical properties, including the total electric current, are determined from the molecular reorientation of the director. The elastic anisotropy has been shown to influence substantially the profile of the electrical current, capacitance, and resistance characterizing the equivalent circuit for the medium.

  14. Asymmetric electrooptic response in a nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dascalu, Constanta [Politechnica University of Bucharest, Bucharest (Romania)

    2001-06-01

    An asymmetric electrooptic response in nematic liquid crystal (LC) has been obtained. The liquid crystal hybrid cell was made by using a standard configuration. One of the ITO (Indium Tin Oxide) electrodes was covered with a surfactant, which induces a homeotropic alignment. The second of the indium tin oxide electrodes was covered by a thin layer of photopolymer, which was previously mixed with an acid, which favours a process of release of protons. Such cations are responsible of electrochemical process in the LC leading to an asymmetric electrooptic response, which depend on the polarity of the applied electric field. This fact is due to an internal field, which change the effective voltage thresholds for the reorientation of the liquid crystal. During the anodic polarization, the optical switching is inhibited because the effective field decreases below the threshold value. On contrary for the opposite polarization the effective field is enough to determine a homeotropic alignment. [Spanish] Se ha obtenido una respuesta electro-optica asimetrica en cristales liquidos neumaticos. La celula hibrida de cristal liquido fue construida utilizando una configuracion estandar. Uno de los electrodos ITO fue cubierto con una pelicula delgada de material organico para inducir una alineacion homeotropa. El otro electrodo ITO fue cubierto con una pelicula delgada de fotopolimero anteriormente mezclada con un acido para favorecer la emision de protones. Estos cationes son responsables del proceso electroquimico en LC, conduciendo a una respuesta electro-optica asimetrica que depende de la polaridad del campo electrico aplicado. Este efecto es originado por un campo interno que cambia el umbral efectivo del voltaje para la reorientacion del cristal liquido. Durante la polarizacion anodica, la conmutacion optica se inhibe debido a que el campo efectivo disminuye abajo del valor del umbral. Por el contrario, para la polarizacion opuesta el campo efectivo es suficiente para

  15. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Science.gov (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  16. Two-phase behavior in strained thin films of hole-doped manganites

    OpenAIRE

    Biswas, Amlan; Rajeswari, M.; Srivastava, R. C.; Li, Y. H.; Venkatesan, T.; Greene, R. L.; Millis, A. J.

    1999-01-01

    We present a study of the effect of biaxial strain on the electrical and magnetic properties of thin films of manganites. We observe that manganite films grown under biaxial compressive strain exhibit island growth morphology which leads to a non-uniform distribution of the strain. Transport and magnetic properties of these films suggest the coexistence of two different phases, a metallic ferromagnet and an insulating antiferromagnet. We suggest that the high strain regions are insulating whi...

  17. Demixing and nematic behaviour of oblate hard spherocylinders and hard spheres mixtures: Monte Carlo simulation and Parsons-Lee theory

    Science.gov (United States)

    Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro

    2013-10-01

    Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.

  18. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  19. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  20. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  1. Study of intrinsic anchoring in nematic liquid crystals based on modified Gruhn-Hess pair potential

    International Nuclear Information System (INIS)

    Zhang Zhidong; Zhang Yanjun

    2008-01-01

    A nematic liquid crystal slab composed of N molecular layers is investigated using a simple cubic lattice model, based upon the molecular pair potential which is spatially anisotropic and dependent on elastic constants of liquid crystals. A perfect nematic order is assumed in the theoretical treatment, which means the orientation of the molecular long axis coincides with the director of liquid crystal and the total free energy equals to the total interaction energy. We present a modified Gruhn-Hess model, which is relative to the splay-bend elastic constant K 13 . Furthermore, we have studied the free nematic interfacial behavior (intrinsic anchoring) by this model in the assumption of the perfect nematic order. We find that the preferred orientation at the free interface and the intrinsic anchoring strength change with the value of modification, and that the director profile can be determined by the competition of the intrinsic anchoring with external forces present in the system. Also we simulate the intrinsic anchoring at different temperatures using Monte Carlo method and the simulation results show that the intrinsic anchoring favors planar alignment and the free interface is more disordered than the bulk

  2. Modification of the twist angle in chiral nematic polymer films by photoisomerization of the chiral dopant

    NARCIS (Netherlands)

    Witte, van de P.; Neuteboom, E.E.; Brehmer, M.; Lub, Johan

    1999-01-01

    A method for the production of polarization sensitive recordings in liquid crystalline polymers is presented. The system is based on local modification of the twist angle of chiral nematic polymer films. The twist angle of the polymer film is varied by modifying the chemical structure of the chiral

  3. Correlation and disorder-enhanced nematic spin response in superconductors with weakly broken rotational symmetry

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.

    2012-01-01

    Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...

  4. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    Science.gov (United States)

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  5. Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions

    DEFF Research Database (Denmark)

    Huang, Qian; Javier Alvarez, Nicolas; Matsumiya, Yumi

    Local correlations in the orientation of neighboring molecules have been shown to exist both experimentally and theoretically for polymer melts, blends and networks. Such nematic interactions alter the stress-optic coefficient, but predict no change in the overall stress in long time scales...

  6. Rheological properties of a nematic cell oriented in a planar manner

    International Nuclear Information System (INIS)

    Barbero, G.; Meyer, C.; Lelidis, I.

    2010-01-01

    We propose a simple model to investigate the rheological properties of a nematic cell oriented in a planar manner. The storage and loss modulus are evaluated in the case of strong and weak anchoring conditions. The contribution of the surface viscosity to the rheological parameters is also considered.

  7. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  8. Monotonicity of a Key Function Arised in Studies of Nematic Liquid Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    2007-01-01

    Full Text Available We revisit a key function arised in studies of nematic liquid crystal polymers. Previously, it was conjectured that the function is strictly decreasing and the conjecture was numerically confirmed. Here we prove the conjecture analytically. More specifically, we write the derivative of the function into two parts and prove that each part is strictly negative.

  9. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  10. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    Science.gov (United States)

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  11. Two-loop disorder effects on the nematic quantum criticality in d-wave superconductors

    International Nuclear Information System (INIS)

    Wang, Jing

    2015-01-01

    The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic quantum critical point that is supposed to exist in some d-wave cuprate superconductors. This non-Fermi liquid state may be turned into a disorder-dominated diffusive metal if the fermions also couple to a disordered potential that generates a relevant perturbation in the sense of renormalization group theory. It is therefore necessary to examine whether a specific disorder is relevant or not. We study the interplay between critical nematic fluctuation and random chemical potential by performing renormalization group analysis. The parameter that characterizes the strength of random chemical potential is marginal at the one-loop level, but becomes marginally relevant after including the two-loop corrections. Thus even weak random chemical potential leads to diffusive motion of nodal fermions and the significantly critical behaviors of physical implications, since the strength flows eventually to large values at low energies. - Highlights: • The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic QCP. • The strength of random chemical potential is marginal at the one-loop level. • The strength becomes marginally relevant after including the two-loop corrections. • The diffusive metallic state is induced by the marginally relevant disorder. • The behaviors of some physical observables are presented at the nematic QCP

  12. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  13. Preliminary assessment of the effects of biaxial loading on reactor pressure vessel structural-integrity-assessment technology

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Merkle, J.G.

    1996-01-01

    Effects of biaxial loading on shallow-flaw fracture toughness were studied to determine potential impact on structural integrity assessment of a reactor pressure vessel (RPV) under pressurized thermal shock (PTS) transient loading and pressure-temperature (PT) loading produced by reactor heatup and cooldown transients. Biaxial shallow-flaw fracture-toughness tests results were also used to determine the parameter controlling fracture in the transition temperature range, and to develop a related dual-parameter fracture-toughness correlation. Shallow-flaw and biaxial loading effects were found to reduce the conditional probability of crack initiation by a factor of nine when the shallow-flaw fracture-toughness K Jc data set, with biaxial-loading effects adjustments, was substituted in place of ASME Code K Ic data set in PTS analyses. Biaxial loading was found to reduce the shallow-flaw fracture toughness of RPV steel such that the lower-bound curve was located between ASME K Ic and K IR curves. This is relevant to future development of P-T curve analysis procedures. Fracture in shallow-flaw biaxial samples tested in the lower transition temperature range was shown to be strain controlled. A strain-based dual-parameter fracture-toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture

  14. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  15. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  16. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  17. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.

    Science.gov (United States)

    Baah-Dwomoh, Adwoa; De Vita, Raffaella

    2017-10-01

    The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between

  18. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  19. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  20. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  1. Ab initio study of Co and Ni under uniaxial and biaxial loading and in epitaxial overlayers

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Legut, Dominik; Šob, Mojmír

    2008-01-01

    Roč. 78, č. 22 (2008), 224105/1-224105/11 ISSN 1098-0121 R&D Projects: GA ČR GD106/05/H008; GA AV ČR IAA1041302; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * epitaxial overlayers * uniaxial and biaxial loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  2. Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2017-09-01

    Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.

  3. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Kuznetsov, A.N.; Schreiber, J.; Bomas, H.; Stoeberl, Ch.; Rathjen, P.; Vorster, W.J.J.; Korsunsky, A.M.

    2007-01-01

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  4. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  5. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    Science.gov (United States)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  6. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Biaxial testing for nuclear grade graphite by ball on three balls assessment

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Yusof Abdullah

    2012-01-01

    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite. (author)

  8. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-01-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  9. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  11. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  12. A study of isotropic-nematic transition of quadrupolar Gay-Berne fluid using density-functional theory approach

    Science.gov (United States)

    Singh, Ram Chandra; Ram, Jokhan

    2011-11-01

    The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.

  13. Effect of aerosil dispersions on the photoinduced nematic-isotropic transition

    Energy Technology Data Exchange (ETDEWEB)

    Jayalakshmi, V; Nair, Geetha G; Prasad, S Krishna [Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013 (India)

    2007-06-06

    We report differential scanning calorimetric (DSC) and dielectric measurements on the nematic-isotropic transition in the bulk and aerosil composites of a liquid-crystal mixture having a photoactive guest azobenzene compound in a non-photoactive host, 4-n-heptyl cyanobiphenyl (7CB). The DSC scans taken at different cooling rates show that, at slower rates, the bulk displays a single peak across the transition, whereas the composites in the soft gel regime exhibit a double-peak profile. Such a double-peak profile, although seen in high-resolution ac calorimetric studies, has been observed for the first time in DSC experiments. The temperature range of the region between the two peaks is comparable to that seen in ac calorimetric experiments and has similar features. This observation is significant since the appearance of the low-temperature peak in ac calorimetric data has been explained to be due to a crossover from the random-dilution to the random-field limits. This work also constitutes the first experiments on the photoisomerization driven isothermal phase transitions in liquid-crystal-aerosil composites. The studies carried out in the absence and presence of a low-magnitude UV radiation not only bring out the standard features now established for such photostimulated phase transitions, but display a few surprises. Notable among them are that (i) the photoinduced shift in the transition temperature is a non-monotonic function of the aerosil composition and appears qualitatively similar to the dependence of the transition temperature itself, and (ii) the thermal anomaly mentioned above characterizing the crossover is also seen in the temperature-dependent as well as the temporal variation of the sample capacitance for a composite in the soft gel regime. We have also evaluated, using the temporal variation of the capacitance, the different response times associated with the UV-on photochemical process as well as the UV-off thermal back-relaxation process; the

  14. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    Science.gov (United States)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  15. Role of electronic nematicity in the interplay between s- and d-wave broken-symmetry states

    International Nuclear Information System (INIS)

    Kee, Hae-Young

    2010-01-01

    To understand the role of electronic nematic order in the interplay between s- and d-wave particle-particle or particle-hole condensate states, relations between various s- and d-wave order parameters are studied. We find that the nematic operator transforms two independent six-dimensional vectors. The d-wave superconducting, d-density wave, and antiferromagnetic orders are organized into one vector, and the s-wave superconducting, charge density wave, and spin-triplet d-density wave orders into the other vector. Each vector acts as a superspin and transforms under the action of SO(6) where charge, spin, η- and π-pairing, spin-triplet nematic operators satisfy the SO(6) Lie algebra. Electronic nematic order is not a part of the SO(6) group. It commutes with all 15 generators. Our findings imply that nematic order does not affect the competition among the order parameters within the same superspin, while it strongly interferes the interplay between two order parameters that belong to different superspins. For example, nematicity allows a linear coupling between d- and s-wave superconducting order parameters which modifies the superconducting transition temperature. A generalized Ginzburg-Landau theory and further physical implications are discussed.

  16. Phase behaviour of rod-like colloid + flexible polymer mixtures

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Stroobants, A.

    The effect of non-adsorbing, flexible polymer on the isotropic-nematic transition in dispersions of rod-like colloids is investigated. A widening of the biphasic gap is observed, in combination with a marked polymer partitioning between the coexisting phases. Under certain conditions, areas of

  17. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Bradai, Soumaya

    2014-01-01

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author) [fr

  18. Nematic fluctuations, fermiology and the pairing potential in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Florian

    2015-08-18

    The thesis comprises a systematic study on the doping, temperature and momentum dependent electron dynamics in iron-based superconductors using inelastic light scattering. The observation of Bardasis-Schrieffer modes in the excitation spectrum of superconducting Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} is reported and the energy and symmetry dependence of the modes are analyzed. The analysis yields the identification of a strong subdominant component of the interaction potential V(k,k{sup '}). Strong nematic fluctuations are investigated in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The nature of the fluctuations and the origin of nematicity in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are identified.

  19. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

    Science.gov (United States)

    Nakayama, K.; Miyata, Y.; Phan, G. N.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T.

    2014-12-01

    We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (Tc˜8 K ), which exhibits a tetragonal-to-orthorhombic structural transition at Ts˜90 K . At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ˜110 K , slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.

  20. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    Science.gov (United States)

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  1. Orientational behavior of a nematic liquid crystal filled with inorganic oxide nanoparticles

    International Nuclear Information System (INIS)

    Gavrilko, T.; Kovalchuk, O.; Nazarenko, V.; Hauser, A.; Kresse, H.

    2004-01-01

    We report the results of dielectric spectroscopy, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies performed on the nematic liquid crystal (LC) mixture Merck ZLI-1132 filled with TiO 2 (rutile and anatase) and SiO 2 nanoparticles. The observed static dielectric permittivities are interpreted in terms of orientation of the LC with respect to the measuring electric field. Adding of SiO 2 particles mainly induces a statistical orientation of LC molecules, whereas TiO 2 particles promote the perpendicular orientation. The dynamics of LC molecules in all systems is very similar. The reason for the slightly faster reorientation observed in the mixtures may be connected with a disturbed nematic order near the surface of solid particles

  2. Curvature-induced defect unbinding and dynamics in active nematic toroids

    Science.gov (United States)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  3. Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier–Meier theory

    International Nuclear Information System (INIS)

    Ran, Zhang; Jun, He; Zeng-Hui, Peng; Li, Xuan

    2009-01-01

    This paper investigates the average dielectric permittivity (ε-bar ) in the Maier–Meier theory for calculating the dielectric anisotropy (Δε) of nematic liquid crystals. For the reason that ε-bar of nematics has the same expression as the dielectric permittivity of the isotropic state, the Onsager equation for isotropic dielectric was used to calculate it. The computed ε-bar shows reasonable agreement with the results of the numerical methods used in the literature. Molecular parameters, such as the polarizability and its anisotropy, the dipole moment and its angle with the molecular long axis, were taken from semi-empirical quantum chemistry (MOCPAC/AM1) modeling. The calculated values of Δε according to the Maier–Meier equation are in good agreement with the experimental results for the investigated compounds having different core structures and polar substituents. (condensed matter: structure, thermal and mechanical properties)

  4. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    International Nuclear Information System (INIS)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv

    2011-01-01

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  5. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  6. Scattering of light from small nematic spheres with radial dielectric anisotropy

    International Nuclear Information System (INIS)

    Karacali, H.; Risser, S.M.; Ferris, K.F.

    1997-01-01

    We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes for droplets much smaller than the wavelength of the incident radiation show that droplets with continual variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy. The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller polymer dielectric constants than the other models. These results show that the scattering from small anisotropic droplets is sensitive to details of the internal structure and anisotropy of the droplet. copyright 1997 The American Physical Society

  7. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  8. Hydrodynamics of defects in the Abelian-Higgs model: An application to nematic liquid crystals

    International Nuclear Information System (INIS)

    Kurz, Guenter; Sarkar, Sarben

    2000-01-01

    The Abelian-Higgs model is the basis for a gauge covariant form of the distortion free energy for nematic liquid crystals. This is used to derive a new form of the Ericksen-Leslie equations incorporating the dynamics of disclinations in nematic films. The zero liquid flow case is treated in detail for simplicity. The equations are reduced to dynamic equations for disclination points in moduli space for a small deviation from the Bogomol'nyi limit. We are able to derive analytically the dynamics of disclinations with winding numbers of the same sign. A set of such disclinations close to one another, i.e., with overlapping cores, can result from the disintegration of a larger disclination, and they repel one another. For a pair of such dis- clinations far apart from one another we find that they move on a straight line where their separation increases logarithmically over time

  9. Bistability induced by crossed electric and magnetic fields in a nematic film

    Science.gov (United States)

    Barbero, G.; Miraldi, E.; Oldano, C.

    1988-09-01

    The static distortions in a homogeneously aligned nematic liquid-crystal film in crossed electric and magnetic fields are theoretically analyzed. Both fields are orthogonal to the undistorted molecular alignment and destabilizing. In the limit of small distortions, a first-order transition between two distorted configurations, with bistability and hysteresis, is obtained if the dielectric anisotropy parameter 1-ɛ∥/ɛ⊥ is lower than the elastic anisotropy parameter (k3-k2)2/(4k1k2), where k1, k2, and k3 are the Frank elastic constants. This condition is satisfied by many commonly used nematic materials. At higher distortions an inversion point is found, above which the transition becomes of the second order. At this point a phenomenon similar to the critical opalescence of fluids is expected.

  10. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  11. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with γ-Alumina Nanoparticles

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Salud, Josep; Diego, José Antonio; Sellarès, Jordi; Robles-Hernández, Beatriz; de la Fuente, María Rosario; Ros, María Blanca

    2015-01-01

    In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy)-ω-(1-pyrenimine-benzylidene-4′-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  12. Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Schimperna, G.; Rocca, E.; Zarnescu, A.

    2015-01-01

    Roč. 194, č. 5 (2015), s. 1269-1299 ISSN 0373-3114 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : nematic liquid crystal * Ball-Majumdar free theory * nonisothermal model * existence theorem Subject RIV: BA - General Mathematics Impact factor: 0.861, year: 2015 http://link.springer.com/article/10.1007%2Fs10231-014-0419-1

  13. Saddle-splay screening and chiral symmetry breaking in toroidal nematics

    OpenAIRE

    Koning, Vinzenz; van Zuiden, Benjamin C.; Kamien, Randall D.; Vitelli, Vincenzo

    2013-01-01

    We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find spontaneous chirality: despite the achiral nature of nematics the director configuration show a handedness if the toroid is thick enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positiv...

  14. On the long-time behavior of some mathematical models for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Petzeltová, Hana; Rocca, E.; Schimperna, G.

    2013-01-01

    Roč. 46, 3-4 (2013), s. 623-639 ISSN 0944-2669 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : nematic liquid crystals * long-time behavior * flows Subject RIV: BA - General Mathematics Impact factor: 1.526, year: 2013 http://www.springerlink.com/content/d61u566014515884/

  15. A fast anharmonic mode in electrooptical switching of liquid crystal structures based on chiral nematics

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I; Blinov, L M; Umanskii, B. A., E-mail: umanskii@yahoo.com; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-09-15

    Polarization, spectral, and relaxation features of a new electrooptical effect in oriented layers of chiral nematic liquid crystals (LCs) are considered. The physics behind this electrooptical effect is the induction of higher order spatial harmonics in the helical distribution of the director field, which ensures the high speed of electrooptical response. It is shown that the spectral properties of the electrooptical response can be effectively controlled by varying the optical anisotropy of the LC and the pitch of the helical structure.

  16. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    Science.gov (United States)

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to

  17. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture toughness

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Theiss, T.J.; Rao, M.C.

    1994-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for commercially licensed nuclear RPVs. The focus of studies described herein is on the evaluation of two stressed-based methodologies for quantifying crack-tip constraint (i.e., J-Q theory and a micromechanical scaling model based on critical stressed volumes) through applications to experimental and fractographic data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Results from applications indicate that both the J-Q methodology and the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Fractographic data taken from the fracture surfaces of the SENB and cruciform specimens are used to assess the relevance of stress-based fracture characterizations to conditions at cleavage initiation sites. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications. This report is designated as HSST Report No. 142

  18. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    Science.gov (United States)

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Quantum Hall Valley Nematics: From Field Theories to Microscopic Models

    Science.gov (United States)

    Parameswaran, Siddharth

    The interplay between quantum Hall ordering and spontaneously broken ``internal'' symmetries in two-dimensional electron systems with spin or pseudospin degrees of freedom gives rise to a variety of interesting phenomena, including novel phases, phase transitions, and topological excitations. I will discuss a theory of broken-symmetry quantum Hall states, applicable to a class of multivalley systems, where the symmetry at issue is a point-group element that combines a spatial rotation with a permutation of valley indices. I will explore its ramifications for the phase diagram of a variety of experimental systems, such as AlAs and Si quantum wells and the surface states of bismuth. I will also discuss unconventional transport phenomena in these phases in the presence of quenched randomness, and the possible mechanisms of selection between degenerate broken-symmetry phases in clean systems. I acknowledge support from NSF DMR-1455366.

  20. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Science.gov (United States)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  1. Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Christopher B. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, Adriana [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-15

    Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a TS higher than the temperature TN where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ12 between the monoclinic lattice strain and an orbital-nematic order parameter with B2g symmetry. Monte Carlo simulations show that with increasing ˜λ12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.

  2. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    Science.gov (United States)

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  3. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    Science.gov (United States)

    Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan

    2016-03-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.

  4. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  5. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  6. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  7. In-situ neutron diffraction study of Zircaloy 4 subjected to biaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Gharghouri, M.A. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, ON (Canada); McDonald, D.; Xiao, L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Zircaloy-4 is widely used as fuel element cladding in nuclear reactors. Pellet-clad interaction (PCI) failure is a concern for many water reactor fuel designs. Extensive work on the mechanism of PCI failure has led to the conclusion that stress corrosion cracking (SCC) induced by iodine vapour in the temperature range relevant to fuel operation is the most probable cause of PCI failure in zirconium alloy fuel element cladding. In-situ neutron diffraction measurements performed on tubular Zircaloy-4 specimens simultaneously pulled in tension and pressurized internally will provide information on the effects of stress biaxiality on the distribution of stresses at the crystal level during loading. (author)

  8. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B

    2001-03-01

    Full Text Available and Peirce, 1995). Additional edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the Voronoi polygons with the vertices of the polygons. These last elements are further referred to as the internal fracture paths, while... samples without flaws therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic behaviour, it may be necessary to adjust the flaw density as well (D0 to D0b, Table 2). The brittleness of the simulated biaxial tests...

  9. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Amit; Sangwan, S. [UIET, Panjab University, Chandigarh (India); Roy, J. N., E-mail: amit_chaudhry01@yahoo.com [Solar Semiconductro Pvt. Ltd, Hyderabad (India)

    2011-05-15

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  10. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P. E-mail: fyzipbut@nic.savba.sk; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P

    2000-06-02

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible.

  11. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P.

    2000-01-01

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  12. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  13. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    Chaudhry, Amit; Sangwan, S.; Roy, J. N.

    2011-01-01

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  14. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic......A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...

  15. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  16. Phase diagram of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system with application of mechanical deformation

    Science.gov (United States)

    Yavuz, Aykut Evren; Masalci, Özgür; Kazanci, Nadide

    2014-11-01

    Morphological properties of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system in different concentrations have been studied. In the process, isotropic phase (L1) and nematic calamitic (NC), nematic discotic (ND), hexagonal E and lamellar D anizotropic mesophases have been determined by polarizing microscopy method and partial ternary phase diagram of the system set up. Textural properties of the anisotropic mesophases of the system have been discussed and their birefringence values measured. Mechanical deformation has been applied to the mesophases. The textural properties and the birefringence values have been observed to be changed by the deformation, after and before which changes have been compared.

  17. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  18. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  19. Investigation of the liquid crystalline phase transitions using the new modified Pople Karasz model

    Science.gov (United States)

    Yazıcı, Mustafa; Özgan, Şükrü; Keskin, Mustafa

    2005-09-01

    Thermodynamics of solid nematic and nematic isotropic liquid transitions are studied by using a new modified model that combines the modified theories of Chandrasekhar et al. with those Keskin and Özgan which are based on the Pople Karasz theory. The thermodynamic properties of the disordered system are evaluated relative to those of the perfectly ordered one within the lowest approximation of the cluster variation method which is identical to the mean-field approximation. The results are compared with the some available experimental data, the predictions of the original Pople Karasz (PK) theory and its previous modified theories. For nematic isotropic and s(nematic) at the transition temperatures, the agreement is very good and much better than the predictions of the PK theory and its previous modified theories. For the solid nematic transition, all theories give very nearly the same results, but the values are significantly lower than the observed data. Moreover, one of the theoretical phase diagrams is also qualitatively similar to the experimental phase diagram for p-azoxyphenetole (PAA).

  20. Investigation of the liquid crystalline phase transitions using the new modified Pople-Karasz model

    International Nuclear Information System (INIS)

    Yazici, Mustafa; Oezgan, Suekrue; Keskin, Mustafa

    2005-01-01

    Thermodynamics of solid-nematic and nematic-isotropic liquid transitions are studied by using a new modified model that combines the modified theories of Chandrasekhar et al. with those Keskin and Oezgan which are based on the Pople-Karasz theory. The thermodynamic properties of the disordered system are evaluated relative to those of the perfectly ordered one within the lowest approximation of the cluster variation method which is identical to the mean-field approximation. The results are compared with the some available experimental data, the predictions of the original Pople-Karasz (PK) theory and its previous modified theories. For nematic-isotropic and s(nematic) at the transition temperatures, the agreement is very good and much better than the predictions of the PK theory and its previous modified theories. For the solid-nematic transition, all theories give very nearly the same results, but the values are significantly lower than the observed data. Moreover, one of the theoretical phase diagrams is also qualitatively similar to the experimental phase diagram for p-azoxyphenetole (PAA)

  1. Experiment to measure the effects of biaxial strain on the critical current of NbTi superconductor

    International Nuclear Information System (INIS)

    Froelich, K.J.

    1975-01-01

    Twisted multifilament, copper-clad NbTi superconductors have been axially and biaxially strained at 4.2K with a 7.5T background field. A simply-constructed cryogenic loading frame was built and used to strain the conductor. Results on 1.27 mm x 3.13 mm conductor have shown that degradation of less than .3 percent of critical current occurred when the wire was biaxially strained to +3260 μepsilon in the axial direction and -1875 μepsilon in the transverse direction. Degradation approaches 3 percent of critical current at approximately 6000 μepsilon in the axial direction only

  2. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  3. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  4. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  5. Laser damage metrology in biaxial nonlinear crystals using different test beams

    Science.gov (United States)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  6. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin

    2016-10-01

    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  7. Experimental study of internal conical refraction in a biaxial crystal with Laguerre–Gauss light beams

    International Nuclear Information System (INIS)

    Peet, V

    2014-01-01

    The effect of internal conical refraction (CR) in a biaxial crystal was studied using Laguerre–Gauss light beams LG 0 ℓ with ℓ=1 and 2, while the lowest-order LG 0 0 beam was used as a reference. The transition from ordinary double refraction to CR was examined. It has been shown that double refraction of an LG 0 ℓ beam forms two focal spots containing ℓ dark stripes. These stripes evolve into ℓ+1 dark rings over an annular focal image when CR is established, and it results in a fine-structure of ℓ+2 bright focal rings with different intensities. In a sharp contrast to the lowest-order reference, the multiring focal structure has a distinct asymmetry with respect to the focal image plane. It has been shown that bright off-axis ‘hot spot’ can be formed on the far-field profiles of outgoing light beams when the biaxial crystal is slightly tilted, and a small angle between the propagation axis of the beam and the optic axis of the crystal arises. These off-axis light structures emerge as either a charge-one optical vortex or a zero-charge spot with annihilated vorticity. Polarization selection reveals J 1 or J 0 Bessel-like profiles of the corresponding ‘hot spots’, and a complex pattern of forked fringes in the dark region near the beam core. (paper)

  8. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  9. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.

    Science.gov (United States)

    Murdock, Kyle; Martin, Caitlin; Sun, Wei

    2018-01-01

    Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene

    Science.gov (United States)

    Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.

    2018-06-01

    By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

  11. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  12. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Nematic-smectic A and nematic-solid transitions of parallel hard spherocylinders from density functional theory

    NARCIS (Netherlands)

    University Utrecht

    1992-01-01

    A simple density functional theory for the various liquid-crystalline phases of parallel hard spherocylinders is formulated on the basis of Pynn's ansatz for the direct correlation function of the spherocylinders. Fair agreement with the computer simulations is found.

  14. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes

    International Nuclear Information System (INIS)

    Arkhipkin, V. G.; Gunyakov, V. A.; Myslivets, S. A.; Gerasimov, V. P.; Zyryanov, V. Ya.; Vetrov, S. Ya.; Shabanov, V. F.

    2008-01-01

    Transmission spectra of a one-dimensional photonic crystal (PC) formed by two multilayer dielectric mirrors and a planar oriented layer of 5CB nematic liquid crystal (LC) that is sandwiched between these mirrors and serves as a structure defect are investigated experimentally. Specific features of the behavior of the spectrum of defect modes as a function of the angle of incidence of light on the crystal are studied for two polarizations: parallel and perpendicular to the director of the LC; the director either lies in the plane of incidence or is perpendicular to it. It is shown that, for the configurations considered, the maxima of the defect modes shift toward the short-wavelength region as the tilt angle of incidence radiation increases; this tendency is more manifest for the parallel-polarized component, when the director lies in the plane of incidence. In the latter case, the width of the photonic band gap (PBG) appreciably decreases. The temperature dependence of the polarization components of the transmission spectra of a PC is investigated in the case of normal incidence of light. The spectral shift of defect modes due to the variation of the refractive index of the LC at the nematic-isotropic liquid phase transition point is measured. It is shown that, in real PCs, the amplitude of defect modes decreases when approaching the center of the band gap, as well as when the number of layers in the dielectric mirrors increases. Theoretical transmission spectra of the PCs calculated by the method of recurrence relations with regard to the decay of defect modes are in good agreement with experimental data.

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    core liquid crystals. Abstract. The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture ...

  16. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using th...... electrical degrees in less than 2 ms test time....

  17. Mechanical response of cross-ply Si3N4/BN fibrous monoliths under uniaxial and biaxial loading

    International Nuclear Information System (INIS)

    Singh, D.; Cruse, T. A.; Hermanson, D. J.; Goretta, K. C.; Zok, F. W.; McNulty, J. C.

    2000-01-01

    Mechanical properties of hot-pressed Si 3 N 4 /BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0degree/90degree and ±45degree, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy

  18. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    Science.gov (United States)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  19. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  20. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    Science.gov (United States)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  1. Novel hockey-stick mesogens with the nematic, synclinic and anticlinic smectic C phase sequence

    Czech Academy of Sciences Publication Activity Database

    Novotná, Vladimíra; Žurek, J.; Kozmik, V.; Svoboda, J.; Glogarová, Milada; Kroupa, Jan; Pociecha, D.

    2008-01-01

    Roč. 35, č. 8 (2008), 1023-1036 ISSN 0267-8292 R&D Projects: GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * synclinic and anticlinic ordering * hockey-stick mezogens Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  2. Ação dos extratos de quatro plantas sobre larvas infectantes de nematódeos gastrintestinais de ovinos

    OpenAIRE

    Hassum, Izabella Cabral; Venturi, Caroline Rita; Gosmann, Grace; Deiro, Ana M. Girardi

    2013-01-01

    Introdução: a ação de extratos hidroalcoólicos de Eugenia uniflora L. (pitangueira), Mentha x piperita L. (hortelã), Myrcianthes pungens (O. Berg) D. Legrand (guabiju) e Peltophorum dubium (Spreng.) Taub. (canafístula) foi avaliada sobre o desenvolvimento de nematódeos gastrintestinais nas coproculturas de ovinos. Objetivo: avaliar a ação in vitro dos extratos vegetais sobre os nematódeos gastrintestinais de ovinos. Métodos: cada extrato foi testado em culturas triplicadas de fezes nas seguin...

  3. Hyper capacity of MCM-41<nematic> supramoleculer structure in the radio- frequency range

    OpenAIRE

    I.I. Grygorchak; S.A. Vojtovych; Z.A. Stotsko; B.A. Seredyuk; N.K. Tovstyuk

    2011-01-01

    Purpose: of this paper was: 1) to synthesize supramolecular МСМ-41 structure (p-cyanogen phenyl ether of n-heptyl benzoic acid - 40%)>> with inserted guested nematic and 2) to study its dielectric properties.Design/methodology/approach: Supramolecular МСМ-41 structure has been synthesized by vacuum encapsulated method at room temperature. Dielectric properties have been studied by impedance spectroscopy method in the frequency range 10-3-106 Hz by “AUTOLAB” complex of “ECO CHEMIE” (Holland),...

  4. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  5. Light propagation and transmission in hybrid-aligned nematic liquid crystal cells: Geometrical optics calculations

    Science.gov (United States)

    Mendoza, Carlos I.; Reyes, J. Adrian

    2006-08-01

    The authors present a geometrical approach to calculate the transmission of light in a hybrid-aligned nematic cell under the influence of an applied electric field. Using the framework of geometrical optics they present results for the ray tracing as well as the transmission of light as a function of the applied low frequency voltage. Dispersion effects are included through a wavelength dependent dielectric function. Their results for the transmittance as a function of the applied voltage show oscillations that are in good qualitative agreement with previously obtained experimental measurements.

  6. Electrical Properties of Zn-Phthalocyanine and Poly (3-hexylthiophene Doped Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Y. Karakuş

    2011-01-01

    Full Text Available An E7 coded nematic liquid crystal was doped with zinc phthalocyanine and poly (3-hexylthiophene. A variety of properties including relaxation time, absorption coefficient, and critical frequency of this doped system were investigated using impedance spectroscopy. The doped systems displayed increased absorption coefficients in the range 0.22–0.55 and relaxation times from 5.05×10−7 s to 3.59×10−6 s with a decrease in the critical frequency from 3.54 MHz to 2.048 MHz.

  7. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  8. Convection in a nematic liquid crystal with homeotropic alignment and heated from below

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, G. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    Experimental results for convection in a thin horizontal layer of a homeotropically aligned nematic liquid crystal heated from below and in a vertical magnetic field are presented. A subcritical Hopf bifurcation leads to the convecting state. There is quantitative agreement between the measured and the predicted bifurcation line as a function of magnetic field. The nonlinear state near the bifurcation is one of spatio-temporal chaos which seems to be the result of a zig-zag instability of the straight-roll state.

  9. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  10. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  11. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  12. Method for measuring biaxial stress in a body subjected to stress inducing loads

    Science.gov (United States)

    Clotfelter, W. N. (Inventor)

    1977-01-01

    A method is described for measuring stress in test articles including the steps of obtaining for a calibrating specimen a series of transit time differentials between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated through the specimen as it is subjected to known stress load of a series of stress loads for thus establishing a series of indications of the magnitudes for stress loads induced in the specimen, and thereafter obtaining a transit time differential between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated in the planes of the stress axes of a test article and comparing the transit time differential thus obtained to the series of transit time differentials obtained for the specimen to determine the magnitude of biaxial stress in the test article.

  13. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  14. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.

  15. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  16. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  17. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    Science.gov (United States)

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  18. Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers

    Science.gov (United States)

    Huynh, K. K.; Tanabe, Y.; Urata, T.; Oguro, H.; Heguri, S.; Watanabe, K.; Tanigaki, K.

    2014-10-01

    An SDW antiferromagnetic (SDW-AF) low-temperature phase transition is generally observed and the AF spin fluctuations are considered to play an important role for the superconductivity pairing mechanism in FeAs superconductors. However, a similar magnetic phase transition is not observed in FeSe superconductors, which has caused considerable discussion. We report on the intrinsic electronic states of FeSe as elucidated by electric transport measurements under magnetic fields using a high quality single crystal. A mobility spectrum analysis, an ab initio method that does not make assumptions on the transport parameters in a multicarrier system, provides very important and clear evidence that another hidden order, most likely the symmetry broken from the tetragonal C4 symmetry to the C2 symmetry nematicity associated with the selective d -orbital splitting, exists in the case of superconducting FeSe other than the AF magnetic order spin fluctuations. The intrinsic low-temperature phase in FeSe is in the almost compensated semimetallic states but is additionally accompanied by Dirac cone-like ultrafast electrons ˜104cm2(VS) -1 as minority carriers.

  19. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Science.gov (United States)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-05-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  20. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    International Nuclear Information System (INIS)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-01-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  1. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates

    Science.gov (United States)

    Barberis, Lucas; Peruani, Fernando

    2016-12-01

    We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit—due to the VC that breaks Newton's third law—various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving—locally polar—files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.

  2. Confined Electroconvective and Flexoelectric Instabilities Deep in the Freedericksz State of Nematic CB7CB.

    Science.gov (United States)

    Krishnamurthy, Kanakapura S; Palakurthy, Nani Babu; Yelamaggad, Channabasaveshwar V

    2017-06-01

    We report wormlike flexoelectric structures evolving deep in the Freedericksz state of a nematic layer of the liquid crystal cyanobiphenyl-(CH2) 7 -cyanobiphenyl. They form in the predominantly splay-bend thin boundary layers and are built up of solitary flexoelectric domains of the Bobylev-Pikin type. Their formation is possibly triggered by the gradient flexoelectric surface instability that remains optically discernible up to unusually high frequencies. The threshold voltage at which the worms form scales as square root of the frequency; in their extended state, worms often appear as labyrinthine structures on a section of loops that separate regions of opposite director deviation. Such asymmetric loops are also derived through pincement-like dissociation of ring-shaped walls. Formation of isolated domains of bulk electroconvection precedes the onset of surface instabilities. In essence, far above the Freedericksz threshold, the twisted nematic layer behaves as a combination of two orthogonally oriented planar half-layers destabilized by localized flexoelectric distortion.

  3. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  4. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole; Womack, James [Soft Matter and Nanomaterials Laboratory, Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402 (United States)

    2016-05-14

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  5. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  6. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  7. Molecular reorientation of dye doped nematic liquid crystals in the laser illumination

    International Nuclear Information System (INIS)

    San, S. E.; Koeysal, O.; Ecevit, F. N.

    2002-01-01

    In this study it is investigated how dye doped nematic liquid crystals reorient under the illumination of laser beam whose wavelength is appropriate to absorbance characteristics of the doping dye. Nematic liquid crystal E7 is used with anthraquinone dye 1% wt/wt in the preparation of the sample and this material is filled in homegenously aligned measurement cell having 15 μm thickness. Mechanism of molecular reorientation includes the absorbance effects of the energy of laser by doping dye and this reorientation causes the refractive index of the material to be changed. There are potential application possibilities of such molecular reorientation based effects in nonlinear optics such as real time holography whose basis is grating diffraction that is observed and investigated in the frame of fundamentals of molecule light interaction mechanisms. Experimental analyses allowed finding characteristic values of diffraction signals depending on physical parameters of set up for a dye doped liquid crystal system and this system provided a 20 % diffraction efficiency under the optimum circumstances

  8. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  9. Transient director patterns upon flow start-up of nematic liquid crystals (an explanation for stress oscillation damping)

    NARCIS (Netherlands)

    Ternet, D.J.; Larson, R.G.; Leal, L.G.

    2001-01-01

    In this work we attempt to determine the origin of damped stress oscillations upon flow start-up of a nematic liquid crystalline monodomain. These damped stress oscillations were first observed by Gu et¿al. (1993) in the cone-plate flow cell and have since also been observed by Mather et¿al. (1997)

  10. Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations

    Directory of Open Access Journals (Sweden)

    Jacques M. Huyghe

    2010-03-01

    Full Text Available The in vivo mechanics of the annulus fibrosus of the intervertebral disc is one of biaxial rather than uniaxial loading. The material properties of the annulus are intimately linked to the osmolarity in the tissue. This paper presents biaxial relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. The force tracings show that stresses are strongly dependent on time, salt concentration and orientation. The force tracing signature of are sponse to a change instrain, is one of a jumpin stress that relaxes partly as the new strain is maintained. The force tracing signature of a stepwise change in salt concentration is a progressive monotonous change in stress towards a new equilibrium value. Although the number of samples does not allow any definitive quantitative conclusions, the trends may shed light on the complex interaction among the directionality of forces, strains and fiber orientation on one hand, and on the other hand, the osmolarity of the tissue. The dual response to a change in strain is understood as an immediate response before fluid flows in or out of the tissue, followed by a progressive readjustment of the fluid content in time because of the gradient in fluid chemical potential between the tissue and the surrounding solution.A mecânica in vivo do anel fibroso do disco intervertebral é baseada em carregamento biaxial ao invés de uniaxial. As propriedades materiais do anel estão intimamente ligadas à osmolaridade no tecido. O artigo apresenta experimentos de relaxação biaxiais do anel fibroso de um tecido canino sob mudanças abruptas na concentração externa de sal. A assinatura da força devido à mudança brusca de salinidade resulta em uma progressiva e monótona mudança na tensão em direção a um novo valor de equilíbrio. Embora o número de amostras não permita nenhuma conclusão quantitativa, as tendências podem abrir uma luz no entendimento das intera

  11. Electrically conducting oxide buffer layers on biaxially textured nickel alloy tapes by reel-to-reel MOCVD process

    International Nuclear Information System (INIS)

    Stadel, O; Samoilenkov, S V; Muydinov, R Yu; Schmidt, J; Keune, H; Wahl, G; Gorbenko, O Yu; Korsakov, I E; Melnikov, O V; Kaul, A R

    2006-01-01

    Reel-to-reel MOCVD process for continuous growth of electrically conducting buffer layers on biaxially textured Ni5W tapes has been developed. The new buffer layer architechture is presented: 200 nm (La, Ba) 2 CuO 4 /40 nm (La, Ba)MnO 3 /Ni5W. Constituting layers with high structural quality have been grown on moving tapes (in plane FWHM ≤ 6 0 and out of plane FWHM ≤ 3 0 )

  12. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    Science.gov (United States)

    2016-08-18

    Subjected to Biaxial Cyclic Loads.” Engineering Fracture Mechanics , 78:1516- 1528, 2011. [37] Sih, G.C.. “A Special Theory of Crack Propagation...of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...environments from pre- cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R

  13. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.

    Science.gov (United States)

    Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza

    2008-07-01

    The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.

  14. Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers

    Directory of Open Access Journals (Sweden)

    N. Kani

    2017-05-01

    Full Text Available The goal of this paper is to investigate the short time-scale, thermally-induced probability of magnetization reversal for an biaxial nanomagnet that is characterized with a biaxial magnetic anisotropy. For the first time, we clearly show that for a given energy barrier of the nanomagnet, the magnetization reversal probability of an biaxial nanomagnet exhibits a non-monotonic dependence on its saturation magnetization. Specifically, there are two reasons for this non-monotonic behavior in rectangular thin-film nanomagnets that have a large perpendicular magnetic anisotropy. First, a large perpendicular anisotropy lowers the precessional period of the magnetization making it more likely to precess across the x^=0 plane if the magnetization energy exceeds the energy barrier. Second, the thermal-field torque at a particular energy increases as the magnitude of the perpendicular anisotropy increases during the magnetization precession. This non-monotonic behavior is most noticeable when analyzing the magnetization reversals on time-scales up to several tens of ns. In light of the several proposals of spintronic devices that require data retention on time-scales up to 10’s of ns, understanding the probability of magnetization reversal on the short time-scales is important. As such, the results presented in this paper will be helpful in quantifying the reliability and noise sensitivity of spintronic devices in which thermal noise is inevitably present.

  15. Development and evolution of biaxial texture of rolled nickel tapes by ion beam bombardment for high Tc coated conductors

    International Nuclear Information System (INIS)

    Wang, S.S.; Wu, K.; Shi, K.; Liu, Q.; Han, Z.

    2004-01-01

    High quality YBa 2 Cu 3 O 7-x films on metallic substrates with high critical current densities well over 10 6 A/cm 2 can be prepared by the rolling assisted biaxially textured substrates (RABiTS) method. Nickel or its alloys have been used as biaxially textured substrates formed through a specific rolling and high temperature annealing procedures. In this paper, we report a newly developed process for developing biaxial texture in rolled Ni tape by argon ion beam bombardment. It is named the ion-beam structure modification (ISM) process. In the ISM processed Ni foils, X-ray diffraction ω scans showed the full width-half maximum (FWHM) value of the (2 0 0) peak was 5.7 deg. . And the electron back scattering diffraction (EBSP) analysis based on scanning electron microscopy showed good {1 0 0} cubic orientation and the mean grain size was determined as about 25 μm. The texture evolution of rolled Ni foils during ISM process is reported also. For ISM process, local temperature elevation and distribution arises from the ion bombardment, coupled with anisotropic incident ion penetration and propagation as a result of channeling effects in the metal lattice, are expected to play the major roles in the development of grain reorientation in the Ni foil. Due to the simplicity and efficiency of the ISM process, the technique shows a great promise for application in the industrial scale production of long-lengths of superconductor tapes

  16. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density

    NARCIS (Netherlands)

    Khandelwal, H.; Timmermans, G.H.; Debije, M.G.; Schenning, A.P.H.J.

    2016-01-01

    A broadband reflector based on a polymer stabilized chiral nematic liquid crystal has been fabricated. The reflection bandwidth can be manually controlled by an electric field and autonomously by temperature.

  17. New theory for competing interactions and microstructures in partially-ordered (liquid-crystalline) phases

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from a unique statistical-physics theory to predict and explain competing interactions and resulting microstructures in some partially-ordered [in this case, liquid-crystalline (LC)] phases is presented. The static aspects of both partial orientational and partial positional ordering of the molecules into various microstructures in these phases (including the incommensurate smectic-Ad phase) can be understood in terms of various competing interactions (both entropic and energetic) involved in the packing together of the different molecular sub-units at given pressures and temperatures. These microstructures are predicted and explained (using no ad hoc or arbitrarily adjustable parameter) as a function of molecule chemical structure [including lengths and shapes (from bond lengths and angles), intramolecular rotations, site-site polarizabilities and pair potentials, dipole moments, etc]. Theoretical results are presented for the nematic, re-entrant nematic, smectic-Ad, and smectic-Al LC phases and the isotropic phase

  18. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dutta, B.K., E-mail: bijon.dutta@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Chattopadhyay, J. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (J{sub IC}) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine J{sub IC} using available empirical correlations. The correlations between J{sub IC} and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (ε{sub qf}) and crack initiation toughness (J{sub i}) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (ε{sub qf}) and analysis of TPB specimen generated value of J{sub i}. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in J{sub i} for the same value of biaxial fracture strain (ε{sub qf}) within a limit. Such variation in the value of J{sub i} has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get J

  19. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  20. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  1. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  2. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    Science.gov (United States)

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  3. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  4. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  5. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading

    Science.gov (United States)

    Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; Li, Jianlin; Simunovic, Srdjan; Turner, John A.; Gorney, Phillip

    2018-02-01

    Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. The critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. The results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.

  6. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  7. Behavior of annealed type 316 stainless steel under monotonic and cyclic biaxial loading at room temperature

    International Nuclear Information System (INIS)

    Ellis, J.R.; Robinson, D.N.; Pugh, C.E.

    1978-01-01

    This paper addresses the elastic-plastic behavior of type 316 stainless steel, one of the major structural alloys used in liquid-metal fast breeder reactor components. The study was part of a continuing program to develop a structural design technology applicable to advanced reactor systems. Here, behaviour of solution annealed material was examined through biaxial stress experiments conducted at room temperature under radial loadings (√3tau=sigma) in tension-torsion stress space. The effects of both stress limited monotonic loading and strain limited cyclic loading were determined on the size, shape and position of yield loci corresponding to small offset strain (10 microstrain) definition of yield. In the present work, the aim was to determine the extent to which the constitutive laws previously recommended for type 304 stainless steel are applicable to type 316 stainless steel. It was concluded that for the conditions investigated, the inelastic behavior of the two materials are qualitatively similar. Specifically, the von Mises yield criterion provides a reasonable approximation of initial yield behavior and the subsequent hardening behavior, at least under small offset definitions of yield, is to the first order kinematic in nature. (Auth.)

  8. Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid).

    Science.gov (United States)

    Gu, Chun-Hong; Wang, Jia-Jun; Yu, Yang; Sun, Hui; Shuai, Ning; Wei, Bing

    2013-02-15

    A layer-by-layer (LBL) approach was used to assemble alternating layers of sodium alginate (ALG)/polyethyleneimine (PEI) on biaxially oriented poly(lactic acid) (BOPLA) films in order to produce bio-based all-polymer thin films with low gas permeability. Increasing the depositing of ALG and PEI from 0 to 30 layers results in large thickness variations (from 0 to 3.92 μm). After 30 ALG/PEI layers are deposited, the resulting assembly has an OTR of 1.22 cm(3)/(m(2) day atm). When multiplied by thickness, the resulting oxygen permeability (OP) is found to be less than 3.8×10(-17) cm(3) cm/cm(2) s Pa, which is almost 3 orders of magnitude lower than that of uncoated BOPLA film (1.8×10(-14) cm(3)cm/cm(2) s Pa). At the same time, the resulting multilayer-coated BOPLA films maintain high optical clarity and tensile properties. This unique barrier thin film has become a promising alternative to non-biodegradable synthetic food packaging materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Development of partial safety factors for the design of partially prestressed rectangular sections in biaxial flexure

    International Nuclear Information System (INIS)

    Chatterjee, Aritra; Bhattacharya, Baidurya; Agrawal, Gunjan; Mondal, Apurba

    2011-01-01

    Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class of structural components in the given load combination and limit state. This paper describes the methodology in detail for developing a set of optimal reliability-based PSFs for the design of rectangular partially prestressed concrete sections subjected to biaxial flexure. The mechanical formulation of the flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16 and failure is defined as tensile cracking of concrete extending beyond the depth of cover. The applied moments are combined according to Wood's criteria. The optimization of the PSFs is based on reliability indices obtained from first order reliability analysis of the structural components; Monte Carlo simulations are performed in each run to determine the capacity statistics and dependence between capacity and applied loads (effected through the axial loads influencing moment capacity corresponding to cracking). Numerical examples involving flexural design of partially prestressed concrete shell elements in nuclear power plant containments under accidental pressure load combination are provided. (author)

  10. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  11. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    Science.gov (United States)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  12. Analysis of biaxial strain in InN(0001) epilayers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Dimakis, E.; Domagala, J.; Iliopoulos, E.; Adikimenakis, A.; Georgakilas, A.

    2007-01-01

    The in-plane lattice parameters of InN, GaN and Al 2 O 3 in a InN/GaN/Al 2 O 3 (0001) heterostructure have been measured as a function of temperature in the range of 25-350 C, using high resolution X-ray diffraction. The results reveal that both the GaN and InN crystals follow the in-plane thermal expansion of the Al 2 O 3 substrate's lattice and there is no rearrangement of misfit dislocations at the InN/GaN and GaN/Al 2 O 3 interfaces. It was also found that either compressive or tensile character of residual biaxial strain is possible for the InN films, depending on the two-dimensional (2D) or three-dimensional (3D) growth mode of InN on the GaN(0001) buffer layer. The tensile strain is inherent to the nucleation and coalescence of 3D islands. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  14. Novel cell parameter determination of a twisted-nematic liquid crystal display

    International Nuclear Information System (INIS)

    Huang Xia; Jing Hai; Fu Guozhu

    2008-01-01

    In this paper a novel method is proposed to determine the cell parameters including the twist angle, optic retardation and rubbing direction of twisted-nematic liquid crystal displays (TNLCD) by rotating the TNLCD. It is a single-wavelength method. Because using subtraction equation of transmittance as curve fitting equation, the influence of the light from environment and the absorption by polarizer, the sample of TNLCD and analyser on the transmittance is eliminated. Accurate results can also be obtained in imperfect darkness. By large numbers of experiments, we found that not only the experimental setup is quite simple and can be easily adopted to be carried out, but also the results are accurate

  15. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  16. Optical transitions driven by self-induced walk-off in nematic liquid crystals

    International Nuclear Information System (INIS)

    Brasselet, E.

    2004-01-01

    Optical field induced reorientation of a nematic liquid crystals film is investigated for finite cross-section of the excitation beam. An approach based on self-induced walk-off between extraordinary and ordinary waves is proposed, including the geometrical aspect ratio between the beam diameter and the cell thickness in a perturbative fashion. The bifurcation scenario when the intensity is taken as the control parameter is calculated in the case of a circularly polarized excitation beam at normal incidence. The sudden appearance of a new saddle-node bifurcation is predicted for a walk-off corresponding to realistic experimental conditions. Changes of the light angular momentum transfer induced by walk-off are singled out as a valid candidate to explain observed nonlinear dynamics whose origin is not yet well understood

  17. Symmetry of Uniaxial Global Landau--de Gennes Minimizers in the Theory of Nematic Liquid Crystals

    KAUST Repository

    Henao, Duvan; Majumdar, Apala

    2012-01-01

    We extend the recent radial symmetry results by Pisante [J. Funct. Anal., 260 (2011), pp. 892-905] and Millot and Pisante [J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 1069- 1096] (who show that the equivariant solutions are the only entire solutions of the three-dimensional Ginzburg-Landau equations in superconductivity theory) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures. Copyright © by SIAM.

  18. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.; LOW, J.; MYERS, T. G.

    2013-01-01

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified 'Trouton ratio'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  19. Influence of Surface Geometry of Grating Substrate on Director in Nematic Liquid Crystal Cell

    International Nuclear Information System (INIS)

    Ye Wenjiang; Xing Hongyu; Yang Guochen; Zhang Zhidong; Sun Yubao; Chen Guoying; Xuan Li

    2011-01-01

    The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z. The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage. The deepness of groove and the cell gap affect the distribution of director. For the relatively shallow groove and the relatively thick cell gap, the director is only dependent on the coordinate z. For the relatively deep groove and the relatively thin cell gap, the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface. (condensed matter: structural, mechanical, and thermal properties)

  20. Behaviour of nematic liquid crystals doped with ferroelectric nanoparticles in the presence of an electric field

    Science.gov (United States)

    Emdadi, M.; Poursamad, J. B.; Sahrai, M.; Moghaddas, F.

    2018-06-01

    A planar nematic liquid crystal cell (NLC) doped with spherical ferroelectric nanoparticles is considered. Polarisation of the nanoparticles are assumed to be along the NLC molecules parallel and antiparallel to the director with equal probability. The NLC molecules anchoring to the cell walls are considered to be strong, while soft anchoring at the nanoparticles surface is supposed. Behaviour of the NLC molecules and nanoparticles in the presence of a perpendicular electric field to the NLC cell is theoretically investigated. The electric field of the nanoparticles is taken into account in the calculations. Freedericksz transition (FT) threshold field in the presence of nanoparticles is found. Then, the director and particles reorientations for the electric fields larger than the threshold field are studied. Measuring the onset of the nanoparticles reorientation is proposed as a new method for the FT threshold measurement.