WorldWideScience

Sample records for biaxial nematic liquid

  1. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  2. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra [Kent State Univ., Kent, OH (United States); Li, Quan [Kent State Univ., Kent, OH (United States); Srinivasarao, Mohan [Georgia Inst. of Technology, Atlanta, GA (United States); Agra-Kooijman, Dena M. [Kent State Univ., Kent, OH (United States); Rey, Alejandro [McGill Univ., Montreal, QC (Canada)

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the support of Basic Sciences Division of the US DOE for which we are thankful.

  3. The symmetry of the nematic phase of a thermotropic liquid crystal: biaxial or uniaxial?

    Science.gov (United States)

    Fan, S. M.; Fletcher, I. D.; GündoAn, B.; Heaton, N. J.; Kothe, G.; Luckhurst, G. R.; Praefcke, K.

    1993-03-01

    The symmetry of the thermotropic nematic phase of 2,3,4-tri- n-hexyloxycinnamic acid is investigated using deuterium NMR spectroscopy of the nematogen selectively deuterated in the ethylenic bond. In our experiments the sample was spun about an axis orthogonal to the magnetic field in order to produce a random distribution of the director in two dimensions. The resultant NMR powder pattern is characteristic of a partially averaged quadrupolar tensor with cylindrical symmetry and hence of a uniaxial nematic phase. Simulation of the powder patterns reveals that the upper limit to the biaxiality parameter is approximately 0.1 which is in marked contrast to the large values found for lyotropic biaxial nematics. Our result is not, however, necassarily inconsistent with conoscopic measurements which indicated a small optical biaxiality for this thermotropic nematic.

  4. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra; (Kent); (Platypus)

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  5. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  6. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Science.gov (United States)

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  7. Anomalous behavior in the crossover between the negative and positive biaxial nematic mesophases in a lyotropic liquid crystal.

    Science.gov (United States)

    Akpinar, Erol; Reis, Dennys; Figueiredo Neto, Antonio M

    2014-05-19

    A novel quaternary lyotropic liquid-crystalline mixture of dodecyltrimethylammonium bromide (DDTMABr)/sodium bromide/1-dodecanol/water, presenting the biaxial nematic phase (NB ) in addition to two uniaxial discotic (ND) and calamitic (NC) nematic ones, was synthesized. The partial phase diagram of this new mixture was constructed as a function of the DDTMABr molar-fraction concentration. The phase transitions from uniaxial to biaxial nematic phases were studied by means of the temperature dependence of the optical birefringence. In a particular region of the phase diagram, anomalous behavior was observed in the crossover from N-B to N+b: the contrast of the conoscopic fringes, which allows the birefringence measurements, almost vanishes, and the sample loses its alignment. This behavior, which was not observed before in lyotropics, was interpreted as a decrease in the mean diamagnetic susceptibility anisotropy (Δχ) of the sample, which was related to the shape anisotropy of the micelles. Small-angle X-ray scattering measurements were performed to evaluate the micellar shape anisotropy; these revealed that this mixture presented a smaller shape anisotropy than those of other lyotropic micellar systems presenting the NB phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  9. Depletion-induced biaxial nematic states of boardlike particles

    NARCIS (Netherlands)

    Belli, S; Dijkstra, M.; van Roij, R.H.H.G.

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective

  10. The elusive thermotropic biaxial nematic phase in rigid bent-core ...

    Indian Academy of Sciences (India)

    Abstract. The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture studies of the phases exhibited by rigid bent-core molecules derived from 2 ...

  11. Emergence of biaxial nematic phases in solutions of semiflexible dimers

    Science.gov (United States)

    Vaghela, Arvin; Teixeira, Paulo I. C.; Terentjev, Eugene M.

    2017-10-01

    We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at the Landau point, at a critical bend angle of 36∘. For flexible dimers with no intrinsic biaxiality, we find that a biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending stiffness κ >0.86 kBT , this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one plane. When the dimers are more flexible, κ the modal shape of the fluctuating dimer is a V with an acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors. These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate in terms of the spacer stiffness and particle density.

  12. Nematic biaxiality in a bent-core material

    Science.gov (United States)

    Yoon, Hyung Guen; Kang, Shin-Woong; Dong, Ronald Y.; Marini, Alberto; Suresh, Kattera A.; Srinivasarao, Mohan; Kumar, Satyendra

    2010-05-01

    The results of a recent investigation of the nematic biaxiality in a bent-core mesogen (A131) are in apparent disagreement with earlier claims. Samples of mesogen A131 used in the two studies were investigated with polarized optical microscopy, conoscopy, carbon-13 NMR, and crossover frequency measurements. The results demonstrate that textural changes associated with the growth of biaxial nematic order appear at ˜149°C . The Maltese cross observed in the conoscopic figure gradually splits into two isogyres at lower temperatures indicating phase biaxiality. Presence of the uniaxial to biaxial nematic phase transition is further confirmed by temperature trends of local order parameters based on C13 chemical shifts in NMR experiments. Frequency switching measurements also clearly reveal a transition at 149°C . Differences between the two reports appear to be related to the presence of solvent, impurities, and/or adsorbed gases in samples of A131 used in the study of Van Le [Phys. Rev. E 79, 030701 (2009)].

  13. Complex free-energy landscapes in biaxial nematic liquid crystals and the role of repulsive interactions: A Wang-Landau study

    Science.gov (United States)

    Kamala Latha, B.; Murthy, K. P. N.; Sastry, V. S. S.

    2017-09-01

    General quadratic Hamiltonian models, describing the interaction between liquid-crystal molecules (typically with D2 h symmetry), take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram (contravening in some regions of model parameter space), the predictions of mean-field theory, and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase. The free-energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes. On the one hand, these profiles account for the unusual thermal behavior of the biaxial order parameter under significant destabilizing influence from the cross terms. On the other, they also allude to the possibility that in real systems, these complexities might indeed be inhibiting the formation of a low-temperature biaxial order itself—perhaps reflecting the difficulties in their ready realization in the laboratory.

  14. Nematic Liquid-Crystal Colloids.

    Science.gov (United States)

    Muševič, Igor

    2017-12-25

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of k B T per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology.

  15. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  16. Nematic Liquid-Crystal Colloids

    Science.gov (United States)

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  17. Nematic Liquid-Crystal Colloids

    Directory of Open Access Journals (Sweden)

    Igor Muševič

    2017-12-01

    Full Text Available This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology.

  18. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    Science.gov (United States)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  19. Solid microparticles in nematic liquid crystals

    Science.gov (United States)

    Muševič, Igor

    A brief historic overview of colloidal experiments in the 1990's is given in the introduction. These experiments have later inspired research on nematic colloids, after the technique of laser tweezers manipulation of particles was introduced to this field. Basic topological properties of colloidal inclusions in the nematic liquid crystals are discussed and the nematic-mediated forces between dipolar and quadrupolar colloidal particles in bulk nematic are explained. Structural and topological properties of 2D and 3D colloidal crystals and superstructures made of colloidal particles of different size and symmetry in bulk nematic liquid crystal are described. Laser-tweezer manipulation and rewiring of topological defect loops around colloidal particles is introduced. This results in the colloidal entanglement, as well as knotting and linking of defect loops of the order parameter field. Shape and size-dependent colloidal interactions in the nematic liquid crystals are reviewed. The chapter concludes with the discussion of bulk chiral nematic and blue phase colloids.

  20. Discotic nematic liquid crystals: science and technology.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Kumar, Sandeep

    2010-01-01

    The nematic phase of discotic liquid crystals, although rarely observed, has made very significant progress over the past three decades since their discovery. It has made its way from a mere scientific curiosity to application in commodities. The negative birefringence films formed by polymerized nematic discotic liquid crystals have been commercialized as compensation films to enlarge the viewing angle and enhance the contrast ratio of commonly used twisted nematic liquid-crystal displays. High strength and high performance carbon fibers for industrial applications have been obtained from the carbonaceous mesophase and a liquid-crystal display device with wide and symmetrical viewing angle has been demonstrated by using discotic nematic liquid crystals. Discotic films with patterned colours have been obtained from cholesteric lyo-mesophases of discotic liquid crystals. Various molecular architectures have been designed and synthesized to exhibit the discotic nematic phase over a wide range of temperature. This critical review focuses on the synthesis and physical properties of these fascinating materials. It deals with the structure of various nematic phases, different discotic cores exhibiting the nematic phase, novel designing and transition temperature engineering principles, alignment and physical properties, and finally the application of discotic nematic LCs as the active switching component and as optical compensation films for widening the viewing angle and contrast ratio of liquid-crystal display devices (98 references).

  1. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  2. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond

    KAUST Repository

    Majumdar, Apala

    2009-07-07

    We study global minimizers of a continuum Landau-De Gennes energy functional for nematic liquid crystals, in three-dimensional domains, subject to uniaxial boundary conditions. We analyze the physically relevant limit of small elastic constant and show that global minimizers converge strongly, in W1,2, to a global minimizer predicted by the Oseen-Frank theory for uniaxial nematic liquid crystals with constant order parameter. Moreover, the convergence is uniform in the interior of the domain, away from the singularities of the limiting Oseen-Frank global minimizer. We obtain results on the rate of convergence of the eigenvalues and the regularity of the eigenvectors of the Landau-De Gennes global minimizer. We also study the interplay between biaxiality and uniaxiality in Landau-De Gennes global energy minimizers and obtain estimates for various related quantities such as the biaxiality parameter and the size of admissible strongly biaxial regions. © Springer-Verlag (2009).

  3. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra; (Kent); (CLCR); (Platypus)

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  4. Molecular engineering of discotic nematic liquid crystals

    Indian Academy of Sciences (India)

    Molecular engineering of discotic nematic liquid crystals. SANDEEP KUMAR. Centre for Liquid Crystal Research, P.O. Box 1329, Jalahalli, Bangalore 560 013, India. Present Address: Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080, India. Abstract. Connecting two columnar phase forming discotic ...

  5. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  6. Dielectric properties of liquid crystalline dimer mixtures exhibiting the nematic and twist-bend nematic phases.

    Science.gov (United States)

    Trbojevic, Nina; Read, Daniel J; Nagaraj, Mamatha

    2017-11-01

    A detailed investigation of the thermal and dielectric properties of a series of binary mixtures exhibiting the nematic (N) and twist-bend nematic (N_{TB}) liquid crystal phases is presented. The mixtures consist of an achiral, dimeric liquid crystal CB7CB, which forms the nematic and twist-bend nematic phases, and a calamitic liquid crystal 5CB, which shows the nematic phase. As the concentration of the calamitic liquid crystal is increased, the transition temperatures decrease linearly, and the width of the nematic phase increases. The enthalpies of phase transitions obtained from DSC measurements show that on increasing the concentration of 5CB in the binary mixtures, the enthalpy associated with the N-N_{TB} phase transitions reduces considerably compared to a clear first-order N-N_{TB} transition in pure CB7CB. The real and imaginary parts of the dielectric permittivity are measured as a function of frequency from 100 Hz to 2 MHz in the nematic and twist-bend nematic phases in planar and homeotropic devices. A significant decrease in the average dielectric permittivity as a function of temperature for mixtures forming the N_{TB} phase is observed. Measurements of the imaginary part of the dielectric permittivity show a relaxation peak in the measured frequency window for all of the mixtures exhibiting the N_{TB} phase. The activation energy associated with this relaxation process is calculated and is shown to remain constant irrespective of the composition of the mixtures.

  7. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  8. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  9. Colloidal discs in nematic liquid crystals

    International Nuclear Information System (INIS)

    Silvestre, N M; Patricio, P; Tasinkevych, M; Andrienko, D; Gama, M M Telo da

    2004-01-01

    We use adaptive finite elements methods to investigate a variety of structures in inverted nematic emulsions numerically. In particular, we study dipolar and quadrupolar interactions between colloidal discs in two-dimensional nematics. The behaviour of colloidal particles near a substrate and at a nematic-isotropic interface are also considered

  10. Symmetry breaking and structure of a mixture of nematic liquid crystals and anisotropic nanoparticles

    Directory of Open Access Journals (Sweden)

    Marjan Krasna

    2010-07-01

    Full Text Available Orientational ordering of a homogeneous mixture of uniaxial liquid crystalline (LC molecules and magnetic nanoparticles (NPs is studied using the Lebwohl–Lasher lattice model. We consider cases where NPs tend to be oriented perpendicularly to LC molecules due to elastic forces. We study domain-type configurations of ensembles, which are quenched from the isotropic phase. We show that for large enough concentrations of NPs the long range uniaxial nematic ordering is replaced by short range order exhibiting strong biaxiality. This suggests that the impact of NPs on orientational ordering of LCs for appropriate concentrations of NPs is reminiscent to the influence of quenched random fields which locally enforce a biaxial ordering.

  11. Solitary waves in nematic liquid crystals

    Science.gov (United States)

    Panayotaros, Panayotis; Marchant, T. R.

    2014-02-01

    We study soliton solutions of a two-dimensional nonlocal NLS equation of Hartree-type with a Bessel potential kernel. The equation models laser propagation in nematic liquid crystals. Motivated by the experimental observation of spatially localized beams, see Conti et al. (2003), we show existence, stability, regularity, and radial symmetry of energy minimizing soliton solutions in R2. We also give theoretical lower bounds for the L2-norm (power) of these solitons, and show that small L2-norm initial conditions lead to decaying solutions. We also present numerical computations of radial soliton solutions. These solutions exhibit the properties expected by the infinite plane theory, although we also see some finite (computational) domain effects, especially solutions with arbitrarily small power.

  12. UV response on dielectric properties of nano nematic liquid crystal

    Science.gov (United States)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  13. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  14. Stability of Disclinations in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Wang Yusheng; Yang Guohong; Tian Lijun; Duan Yishi

    2006-01-01

    In the light of φ-mapping method and topological current theory, the stability of disclinations around a spherical particle in nematic liquid crystals is studied. We consider two different defect structures around a spherical particle: disclination ring and point defect at the north or south pole of the particle. We calculate the free energy of these different defects in the elastic theory. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclinations. The other is the free energy density of disclinations themselves, which is shown to be concentrated at the defect and to be topologically quantized in the unit of (k-k 24 )π/2. It is shown that in the presence of saddle-splay elasticity a dipole (radial and hyperbolic hedgehog) configuration that accompanies a particle with strong homeotropic anchoring takes the structure of a small disclination ring, not a point defect.

  15. In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals

    Science.gov (United States)

    Sidky, Hythem; de Pablo, Juan J.; Whitmer, Jonathan K.

    2018-03-01

    Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.

  16. The Nematic Phases of Bent-Core Liquid Crystals

    Science.gov (United States)

    Gleeson, Helen F; Kaur, Sarabjot; Görtz, Verena; Belaissaoui, Abdel; Cowling, Stephen; Goodby, John W

    2014-01-01

    Over the last ten years, the nematic phases of liquid crystals formed from bent-core structures have provoked considerable research because of their remarkable properties. This Minireview summarises some recent measurements of the physical properties of these systems, as well as describing some new data. We concentrate on oxadiazole-based materials as exemplars of this class of nematogens, but also describe some other bent-core systems. The influence of molecular structure on the stability of the nematic phase is described, together with progress in reducing the nematic transition temperatures by modifications to the molecular structure. The physical properties of bent-core nematic materials have proven difficult to study, but patterns are emerging regarding their optical and dielectric properties. Recent breakthroughs in understanding the elastic and flexoelectric behaviour are summarised. Finally, some exemplars of unusual electric field behaviour are described. PMID:24700653

  17. Development of an equation of state for nematic liquid crystals

    NARCIS (Netherlands)

    Van Westen, T.

    2015-01-01

    In this thesis I aim to contribute to a molecular understanding and -description of the phase behaviour of liquid crystalline materials. In particular, I aim at the development of a molecular-based equation of state (EoS) for describing nematic (only orientationally ordered) liquid crystals (LCs)

  18. Biaxial phases in mineral liquid crystals

    NARCIS (Netherlands)

    Vroege, G.J.|info:eu-repo/dai/nl/074293001

    2013-01-01

    A review is given of liquid crystals formed in colloidal dispersions, in particular those consisting of mineral particles. Starting with the historical development and early theory, the characteristic properties related to the colloidal nature of this type of liquid crystals are discussed. The

  19. Molecular engineering of discotic nematic liquid crystals

    Indian Academy of Sciences (India)

    Connecting two columnar phase forming discotic mesogens via a short rigid spacer leads to the formation of a -conjugated discotic dimer showing discotic nematic (D) phase. Attaching branched-alkyl chains directly to the core in hexaalkynylbenzene resulted in the stabilisation of D phase at ambient temperature.

  20. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  1. Elastic constants of hard and soft nematic liquid crystals

    NARCIS (Netherlands)

    Tjipto-Margo, B.; Evans, G.T.; Allen, M.P.; Frenkel, D.

    1992-01-01

    The Frank elastic constants for a nematic liquid crystal have been calculated by computer simulations for a fluid of hard ellipsoids and by the Poniewierski-Stecki method for ellipsoids with and without an attractive square well. Required for the Poniewierski-Stecki method is the direct

  2. Density functional theory for chiral nematic liquid crystals

    NARCIS (Netherlands)

    Belli, S.; Dussi, S.|info:eu-repo/dai/nl/372628885; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807; van Roij, R.|info:eu-repo/dai/nl/152978984

    2014-01-01

    Even though chiral nematic phases were the first liquid crystals experimentally observed more than a century ago, the origin of the thermodynamic stability of cholesteric states is still unclear. In this Rapid Communication we address the problem by means of a density functional theory for the

  3. Nonstandard electroconvection and flexoelectricity in nematic liquid crystals.

    Science.gov (United States)

    Krekhov, Alexei; Pesch, Werner; Eber, Nándor; Tóth-Katona, Tibor; Buka, Agnes

    2008-02-01

    For many years it has been commonly accepted that electroconvection (EC) as primary instability in nematic liquid crystals for the "classical" planar geometry requires a positive anisotropy of the electric conductivity, sigma(a), and a slightly negative dielectric anisotropy, epsilon(a). This firm belief was supported by many experimental and theoretical studies. Recent experiments, which have surprisingly revealed EC patterns at negative conduction anisotropy as well, have motivated the theoretical studies in this paper. It will be demonstrated that extending the common hydrodynamic description of nematics by the usually neglected flexoelectric effect allows for a simple explanation of EC in the "nonstandard" case sigma(a)<0 .

  4. Statistical mechanics of splay flexoelectricity in nematic liquid crystals.

    Science.gov (United States)

    Dhakal, Subas; Selinger, Jonathan V

    2010-03-01

    We develop a lattice model for the splay flexoelectric effect in nematic liquid crystals. In this model, each lattice site has a spin representing the local molecular orientation, and the interaction between neighboring spins represents pear-shaped molecules with shape polarity. We perform Monte Carlo simulations and mean-field calculations to find the behavior as a function of interaction parameters, temperature, and applied electric field. The resulting phase diagram has three phases: isotropic, nematic, and polar. In the nematic phase, there is a large splay flexoelectric effect, which diverges as the system approaches the transition to the polar phase. These results show that flexoelectricity can be a statistical phenomenon associated with the onset of polar order.

  5. Quantum Dot Chain Assembly Mediated by Nematic Liquid Crystals

    Science.gov (United States)

    Brereton, Peter; Basu, Rajratan; Finkenstadt, Daniel

    2015-03-01

    A small quantity of CdSe quantum dots (QDs) were dispersed in a nematic liquid crystal (LC) media and the QDs were found to exhibit self-assembled asymmetric structures, most likely QD-chains. In the nematic phase the ensemble LC +QD photoluminescence (PL) exhibits an anisotropic spectral line shape, as compared to the emission of QDs doped in the isotropic phase. This indicates a nematic mediated arrangement of the QDs. A simple model is proposed to explain the asymmetric behavior of the PL band as an effective chain of radiatively coupled emitters. The effect of the liquid crystals is to provide an entropic force that attracts dots to minimize the excluded volume. The dielectric reorientation dynamics immediately following the removal of an applied field appears as a one-step exponential decay for the LC and a two-step exponential decay with a slower process for the LC +QD system. The results suggest that anisotropic chain-like QD-assemblies are formed in the nematic platform. A related study has examined PL of ferroelectric LC doped with graphene QD [Kumar, Veeresh, et al., Liquid Crystals (2014)

  6. Giant flexoelectricity of bent-core nematic liquid crystals.

    Science.gov (United States)

    Harden, J; Mbanga, B; Eber, N; Fodor-Csorba, K; Sprunt, S; Gleeson, J T; Jákli, A

    2006-10-13

    Flexoelectricity is a coupling between orientational deformation and electric polarization. We present a direct method for measuring the flexoelectric coefficients of nematic liquid crystals (NLCs) via the electric current produced by periodic mechanical flexing of the NLC's bounding surfaces. This method is suitable for measuring the response of bent-core liquid crystals, which are expected to demonstrate a much larger flexoelectric effect than traditional, calamitic liquid crystals. Our results reveal that not only is the bend flexoelectric coefficient of bent-core NLCs gigantic (more than 3 orders of magnitude larger than in calamitics) but also it is much larger than would be expected from microscopic models based on molecular geometry. Thus, bent-core nematic materials can form the basis of a technological breakthrough for conversion between mechanical and electrical energy.

  7. History-Dependent Patterns in Randomly Perturbed Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    A. Ranjkesh

    2013-01-01

    Full Text Available We study the characteristics of nematic structures in a randomly perturbed nematic liquid crystal (LC phase. We focus on the impact of the samples history on the universal behavior. The obtained results are of interest for every randomly perturbed system exhibiting a continuous symmetry-breaking phase transition. A semimicroscopic lattice simulation is used where the LC molecules are treated as cylindrically symmetric, rod-like objects interacting via a Lebwohl-Lasher (LL interaction. Pure LC systems exhibit a first order phase transition into the orientationally ordered nematic phase at T=Tc on lowering the temperature T. The orientational ordering of LC molecules is perturbed by the quenched, randomly distributed rod-like impurities of concentration p. Their orientation is randomly distributed, and they are coupled with the LC molecules via an LL-type interaction. Only concentrations below the percolation threshold are considered. The key macroscopic characteristics of perturbed LC structures in the symmetry-broken nematic phase are analyzed for two qualitatively different histories at T≪Tc. We demonstrate that, for a weak enough interaction among the LC molecules and impurities, qualitatively different history-dependent states could be obtained. These states could exhibit either short-range, quasi-long-range, or even long-range order.

  8. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  9. Statistical physics of modulated phases in nematic liquid crystals

    Science.gov (United States)

    Shamid, Shaikh M.

    Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics

  10. Converse flexoelectric effect in bent-core nematic liquid crystals.

    Science.gov (United States)

    Kumar, Pramoda; Marinov, Y G; Hinov, H P; Hiremath, Uma S; Yelamaggad, C V; Krishnamurthy, K S; Petrov, A G

    2009-07-09

    We report on the converse flexoelectric effect in two bent-core nematic liquid crystals with opposite dielectric anisotropies. The results are based on electro-optic investigations of inplane field-driven distortions in homeotropic samples (the Helfrich method). They are interpreted by an extension of the Helfrich theory that takes into account the higher order distortions. The bend flexocoefficient for both the compounds is of the usual order of magnitude as in calamitics, unlike in a previously investigated bent-core nematic for which giant values of the bend flexocoefficient are reported. In order to resolve this discrepancy, we propose a molecular model with nonpolar clusters showing quadrupolar flexoelectricity. The study also includes measurements on surface polarization instabilities in the dielectrically positive material; the splay flexocoefficient thereby deduced is also of the conventional order.

  11. Theory of nonlocal soliton interaction in nematic liquid crystals

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw

    2005-01-01

    We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....

  12. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  13. Electroconvection of pure nematic liquid crystals without free charge carriers.

    Science.gov (United States)

    Lee, Kuang-Wu; Pöschel, Thorsten

    2017-11-29

    We consider electroconvection as a response of nematic liquid crystals to an external electric AC field, in the absence of free charge carriers. Previous experimental and theoretical results emphasized charge carriers as a necessary precondition of electroconvection because free-charges in the fluid can respond to an external electric field. Therefore, ionized molecules are considered as responsible for the driving of electroconvective flows. In experiments, finite conductivity is achieved by adding charge-carrying dye molecules or in non-dyed liquid crystals by impurities of the samples. The phenomenon of electroconvection is explained by the Carr-Helfrich theory, supported by numerical simulations. In the present paper, we show that electroconvection may occur also in pure nematic liquid crystals. By means of particle-based numerical simulations we found that bound charges emerge by alignment of polarized liquid crystal molecules in response to the external electric field. In our simulations we could reproduce the characteristic features of electroconvection, such as director-flow patterns, the phase-transition in the voltage-frequency diagram, and dislocation climb/glide motion, which are well known from experiments and hydrodynamic simulations under the assumption of free charge carriers.

  14. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: Sarabjot.Kaur@manchester.ac.uk; Panov, V. P.; Gleeson, H. F. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Greco, C.; Ferrarini, A. [Department of Chemical Sciences, University of Padua, Padua I-35131 (Italy); Görtz, V. [Department of Chemistry, University of York, York YO10 5DD (United Kingdom); Department of Chemistry, University of Lancaster, Lancaster LA1 4YB (United Kingdom); Goodby, J. W. [Department of Chemistry, University of York, York YO10 5DD (United Kingdom)

    2014-12-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e{sub 1} − e{sub 3}|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e{sub 1} − e{sub 3}| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm{sup −1} to 20 pCm{sup −1} across the ∼60 K—wide nematic regime. We have also calculated the individual flexoelectric coefficients e{sub 1} and e{sub 3}, with the dipolar and quadrupolar contributions of the bent-core liquid crystal by combining density functional theory calculations with a molecular field approach and atomistic modelling. Interestingly, the magnitude of the bend flexoelectric coefficient is found to be rather small, in contrast to common expectations for bent-core molecules. The calculations are in excellent agreement with the experimental values, offering an insight into how molecular parameters contribute to the flexoelectric coefficients and illustrating a huge potential for the prediction of flexoelectric behaviour in bent-core liquid crystals.

  15. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    International Nuclear Information System (INIS)

    Kaur, S.; Panov, V. P.; Gleeson, H. F.; Greco, C.; Ferrarini, A.; Görtz, V.; Goodby, J. W.

    2014-01-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e 1 − e 3 |, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e 1 − e 3 | is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm −1 to 20 pCm −1 across the ∼60 K—wide nematic regime. We have also calculated the individual flexoelectric coefficients e 1 and e 3 , with the dipolar and quadrupolar contributions of the bent-core liquid crystal by combining density functional theory calculations with a molecular field approach and atomistic modelling. Interestingly, the magnitude of the bend flexoelectric coefficient is found to be rather small, in contrast to common expectations for bent-core molecules. The calculations are in excellent agreement with the experimental values, offering an insight into how molecular parameters contribute to the flexoelectric coefficients and illustrating a huge potential for the prediction of flexoelectric behaviour in bent-core liquid crystals

  16. Millisecond time resolution neutron reflection from a nematic liquid crystal

    International Nuclear Information System (INIS)

    Dalgliesh, R.M.; Lau, Y.G.J.; Richardson, R.M.; Riley, D.J.

    2004-01-01

    The director reorientation of the liquid crystal 4,4' octyl cyanobiphenyl in the nematic phase under application of bursts of ac field have been observed using time-resolved neutron scattering in reflection geometry. The relaxation of the director has been shown to agree with existing theory, as determined by material and cell parameters. This result shows that it is possible to use neutron reflection measurements from buried interfaces to follow kinetic processes on a time scale comparable with the pulse length of the ISIS neutron source (20 ms)

  17. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties.

    Science.gov (United States)

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-09-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired optoelectronic applications. Up to now, however, only the smectic phase of DNA TLCs has been reported. The development of new mesophases including nematic, hexagonal, and cubic structures for DNA TLCs remains a significant challenge, which thus limits their technological applications considerably. In this work, a new type of DNA TLC that is formed by electrostatic complexation of anionic oligonucleotides and cationic surfactants containing an azobenzene (AZO) moiety is demonstrated. DNA-AZO complexes form a stable nematic mesophase over a temperature range from -7 to 110 °C and retain double-stranded DNA structure at ambient temperature. Photoisomerization of the AZO moieties from the E- to the Z-form alters the stiffness of the DNA-AZO hybrid materials opening a pathway toward the development of DNA TLCs as stimuli-responsive biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Laser Induced Refractive Index Change in Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Crispulo Larraga

    1999-12-01

    Full Text Available We report the observation of laser induced refractive index change for a homeotropically aligned nematic liquid crystal (BDH-E7 film of 10 mm thickness. Diffraction rings were observed when an intense Ar+ ion laser hits a homeotropically aligned nematic liquid crystal at normal incidence above a threshold of 110 KW/cm2, which correspond to the threshold of the Optical Freedericksz Transition (OFT. Above the threshold, as the laser intensity was increased, the number of observed diffraction rings likewise increased. The mechanism for optical molecular reorientation has a great dependence on elastic restoring forces. By exploring the dependence of bend elastic constant, K33 with Freedericksz transition, the value of the K33 was calculated at 2.6 x 10-12 N. To investigate the behavior of Dn as a function of intensity, an experiment was performed for oblique laser incidence. It was shown that the refractive index change increased linearly from values of 0.00 1 to 0.18 at laser intensities ranging from 50 KW /cm2 to 200 KW /cm2. The Kerr coefficient n2 was calculated for various laser incidence angles.

  19. New theories for smectic and nematic liquid crystalline polymers

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of results from new statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with LCPs is presented. Thermodynamic and molecular ordering properties (including odd-even effects) have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories have been used to design new LCPs and new solvents and to predict and explain properties

  20. Light-controlled topological charge in a nematic liquid crystal

    Science.gov (United States)

    Nikkhou, Maryam; Škarabot, Miha; Čopar, Simon; Ravnik, Miha; Žumer, Slobodan; Muševič, Igor

    2015-02-01

    Creating, imaging, and transforming the topological charge in a superconductor, a superfluid, a system of cold atoms, or a soft ferromagnet is a difficult--if not impossible--task because of the shortness of the length scales and lack of control. The length scale and softness of defects in liquid crystals allow the easy observation of charges, but it is difficult to control charge creation. Here we demonstrate full control over the creation, manipulation and analysis of topological charges that are pinned to a microfibre in a nematic liquid crystal. Oppositely charged pairs are created through the Kibble-Zurek mechanism by applying a laser-induced local temperature quench in the presence of symmetry-breaking boundaries. The pairs are long-lived, oppositely charged rings or points that either attract and annihilate, or form a long-lived, charge-neutral loop made of two segments with a fractional topological charge.

  1. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  2. Nematic liquid crystal director structures in rectangular regions

    Science.gov (United States)

    Walton, J.; Mottram, N. J.; McKay, G.

    2018-02-01

    We consider a shallow rectangular well of nematic liquid crystal subject to weak anchoring on the sides of the well. By considering weak anchoring instead of infinitely strong anchoring, we are able to analyze nematic equilibria in the well without the need to exclude point defects at the corners, as done in previous work in the area. For relatively weak anchoring, we are able to derive analytic expressions for the director alignment angle in terms of an infinite series of modes, involving roots of a transcendental equation. The analytic forms of the director configuration are then used to calculate critical anchoring strengths at which uniform and distorted director structures exchange stability. We also consider the asymptotic behavior of the director structure and energy for very strong anchoring. We show that in both cases—for the transitions from uniform to distorted states and the limit of infinitely strong anchoring—the approximate analytic expansions agree very well with corresponding numerical calculations of the full model.

  3. Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens

    Science.gov (United States)

    Francescangeli, Oriano

    2012-02-01

    The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A

  4. Optical solitons in nematic liquid crystals: model with saturation effects

    Science.gov (United States)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2‑norm. For sufficiently large L 2‑norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  5. Soliton-like defects in nematic liquid crystal thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru; Timirov, Yu. I. [Russian Academy of Sciences, Institute of Molecule and Crystal Physics, Ufa Research Center (Russian Federation)

    2016-11-15

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions of a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.

  6. Fullerene (C60) nano-colloids in nematic liquid crystal

    Science.gov (United States)

    Visco, Angelo; Sobczak, Kevin; Mahmood, Rizwan

    2015-03-01

    We report high resolution homodyne light scattering studies to probe director fluctuations in bend/splay mode in bulk nematic liquid crystal and as a function of fullerene (C60) nanoparticles concentration. The preliminary analysis shows that the relaxation time of these fluctuations is fairly constant with in the experimental uncertainty despite the constraints imposed on the director fluctuations due to the insertion of nano colloids. The relaxation time extracted from the data found to be in nano seconds range and the diffusion constant (D) found to be, D = 4.29 x 106 cm/sec. The authors acknowledge the financial support from grants office, Dean, college of Health, Environment & Science and the physics department.

  7. Artificial web of disclination lines in nematic liquid crystals.

    Science.gov (United States)

    Wang, Mengfei; Li, Yannian; Yokoyama, Hiroshi

    2017-08-30

    Disclinations are topological singularities of molecular arrangement in liquid crystals, which typically occur when the average orientation of molecules makes a π rotation along a fictitious closed loop taken inside the liquid crystal. Depending on the sense of molecular rotation, the disclination lines are either of 1/2 or -1/2 strength. When two disclination lines with the opposite strength meet, they are annihilated without trace. It is hence generally considered difficult in the nematic phase to stabilize a condensed array of free-standing disclination lines without the aid of topological objects like colloidal inclusions. Here we show that a free-standing web of 1/2-strength twist disclination lines can be stably formed in thin liquid crystal cells by means of a judicious combination of orientationally patterned confining surfaces fabricated by the micropatterned photoalignment technique. Theoretical model indicates that disclination lines are held apart at the intersection by a repulsive force generated by the Frank elasticity.Disclination lines are topological defects in molecular orientation widely found in liquid crystals. Here Wang et al. use a surface patterning technique to produce a very stable freestanding 3D array of ½ twist disclinations, which could be exploited in a variety of nanometre scale applications.

  8. Optical security devices using nonuniform schlieren texture of UV-curable nematic liquid crystal.

    Science.gov (United States)

    Nakayama, Keizo; Ohtsubo, Junji

    2016-02-10

    We proposed and quantitatively evaluated an optical security device that provides nonuniform or random patterns of schlieren texture in nematic liquid crystal as unique identification information with a design by employing computer image processing and normalized cross correlation. Using the same photomask as the first author's university logo, the written patterns, which were composed of polymerized isotropic areas and polymerized nematic areas, were stable among different cells. Judging from the maximum correlation coefficient of 0.09, the patterns of the schlieren texture were unique in different cells. These results indicate that photocurable nematic liquid crystal materials have the potential to be applied to security devices for anticounterfeiting measures.

  9. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  10. Asymmetric electrooptic response in a nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dascalu, Constanta [Politechnica University of Bucharest, Bucharest (Romania)

    2001-06-01

    An asymmetric electrooptic response in nematic liquid crystal (LC) has been obtained. The liquid crystal hybrid cell was made by using a standard configuration. One of the ITO (Indium Tin Oxide) electrodes was covered with a surfactant, which induces a homeotropic alignment. The second of the indium tin oxide electrodes was covered by a thin layer of photopolymer, which was previously mixed with an acid, which favours a process of release of protons. Such cations are responsible of electrochemical process in the LC leading to an asymmetric electrooptic response, which depend on the polarity of the applied electric field. This fact is due to an internal field, which change the effective voltage thresholds for the reorientation of the liquid crystal. During the anodic polarization, the optical switching is inhibited because the effective field decreases below the threshold value. On contrary for the opposite polarization the effective field is enough to determine a homeotropic alignment. [Spanish] Se ha obtenido una respuesta electro-optica asimetrica en cristales liquidos neumaticos. La celula hibrida de cristal liquido fue construida utilizando una configuracion estandar. Uno de los electrodos ITO fue cubierto con una pelicula delgada de material organico para inducir una alineacion homeotropa. El otro electrodo ITO fue cubierto con una pelicula delgada de fotopolimero anteriormente mezclada con un acido para favorecer la emision de protones. Estos cationes son responsables del proceso electroquimico en LC, conduciendo a una respuesta electro-optica asimetrica que depende de la polaridad del campo electrico aplicado. Este efecto es originado por un campo interno que cambia el umbral efectivo del voltaje para la reorientacion del cristal liquido. Durante la polarizacion anodica, la conmutacion optica se inhibe debido a que el campo efectivo disminuye abajo del valor del umbral. Por el contrario, para la polarizacion opuesta el campo efectivo es suficiente para

  11. Structural Transformations in Nematic Liquid Crystals with a Hybrid Orientation

    Science.gov (United States)

    Delev, V. A.; Krekhov, A. P.

    2017-12-01

    The structural transformations in a nematic liquid crystal (NLC) layer with a hybrid orientation (planar director orientation is created on one substrate and homeotropic director orientation is created on the other) are studied. In the case of a dc voltage applied to the NLC layer, the primary instability is flexoelectric. It causes the appearance of flexoelectric domains oriented along the director on the substrate with a planar orientation. When the voltage increases further, an electroconvective instability in the form of rolls moving almost normal to flexoelectric domains develops along with these domains. Thus, the following spatially periodic structures of different natures coexist in one system: equilibrium static flexoelectric deformation of a director and dissipative moving oblique electroconvection rolls. The primary instability in the case of an ac voltage is represented by electroconvection, which leads to moving oblique or normal rolls depending on the electric field frequency. Above the electroconvection threshold, a transition to moving "abnormal" rolls is detected. The wavevector of the rolls coincides with the initial director orientation on the substrate with a planar orientation, and the projection of the director at the midplane of the NLC layer on the layer plane makes a certain angle with the wavevector. The results of numerical calculations of the threshold characteristics of the primary instabilities agree well with the obtained experimental data.

  12. Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectric Sm-C* liquid crystals

    Science.gov (United States)

    Song, Jang-Kun; Chandani, A. D. L.; Fukuda, Atsuo; Vij, J. K.; Kobayashi, Ichiro; Emelyanenko, A. V.

    2007-07-01

    We have studied various ferroelectric liquid crystals to find the average molecular direction of the shortest axis in the perfectly unwound state by using tilted conoscopic measurements. We find that there exist two types of temperature dependencies of the biaxiality. Some materials exhibit increasing biaxiality while others show decreasing biaxiality with increasing temperature. The former shows a temperature-induced sign reversal of biaxiality. Three different physical mechanisms are identified as responsible for the emergence of biaxiality: (i) anisotropic fluctuations of the long molecular axis, (ii) a biased rotation around the long axis, and (iii) the local field effect. By means of a simple theoretical investigation, we conclude that these two types of trends are due mainly to the opposite signs of the biaxial order parameter C , which represents the second mechanism: the biased rotation around the long axis. This means that the central phenyl planes of molecules belonging to materials having biaxiality that increases with temperature are oriented on the average parallel to the tilt plane (the shortest index of refraction axis normal to the tilt plane), and, on the contrary, in those of the others molecules are oriented perpendicular to the tilt plane (the shortest index of refraction axis lying in the tilt plane). Thus, the direction of the phenyl ring plane of the liquid crystal molecules determines the different temperature dependencies of the biaxiality. It is also shown that the phenomenon of sign reversal of the biaxiality is due to the competitive contributions of the first and second physical mechanisms.

  13. Formation of nematic liquid crystals in suspensions of hard colloidal platelets

    NARCIS (Netherlands)

    Kooij, F.M. van der; Lekkerkerker, H.N.W.

    1998-01-01

    A novel model system of hard colloidal platelets was observed to phase-separate into an isotropic and a liquid crystalline phase. Polarization microscopy revealed that the liquid crystalline phase was of nematic origin. With such orientational ordering in suspensions of platelike particles already

  14. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals

    Science.gov (United States)

    Lin, Fanghua; Wang, Changyou

    2014-01-01

    The study of hydrodynamics of liquid crystals leads to many fascinating mathematical problems, which has prompted various interesting works recently. This article reviews the static Oseen–Frank theory and surveys some recent progress on the existence, regularity, uniqueness and large time asymptotic of the hydrodynamic flow of nematic liquid crystals. We will also propose a few interesting questions for future investigations. PMID:25332384

  15. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  16. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Abstract. Resonance width, shift in resonance frequency, relaxation time and activation energy of. 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different ...

  17. Neutron small-angle scattering by dislocations in homogeneously oriented nematic liquid crystals

    International Nuclear Information System (INIS)

    Olivei, A.

    1976-01-01

    A complete examination of the shape of the neutron-scattering cross-section curves at very small scattering vectors, of the order of 0.05 to approximately 0.1 nm -1 , has been made for homogeneously oriented nematic liquid crystals. It is shown that the shape of the scattering curves at small angles is mainly determined by the kind of dislocation configuration exhibited by homogeneously oriented nematic liquid crystals. This study will furnish a partial guide to the construction of scattering relations for any kind of possible dislocation configuration in homogeneously oriented nematic liquid crystals, e.g. for stationary straight edge dislocations, moving edge dislocations, oscillating edge dislocations, curved dislocations and dislocation networks. (Auth.)

  18. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects.

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  19. Enhanced diffraction properties of photoinduced gratings in nematic liquid crystals doped with Disperse Red 1.

    Science.gov (United States)

    Li, Hongjing; Wang, Jianhao; Wang, Changshun; Zeng, Pengfei; Pan, Yujia; Yang, Yifei

    2016-01-01

    Diffraction properties of photoinduced gratings recorded by overlapping two coherent beams at 532 nm in nematic liquid crystals doped with Disperse Red 1 were investigated with a probe beam at 632.8 nm. The grating was formed due to the alignment of dye molecules that leaded to the reorientation of the liquid crystal phase. The diffraction efficiency of the photoinduced grating was found to increase rapidly when the sample temperature was close to the clearing point in the nematic phase and a nearly 30-fold enhancement of the first-order diffraction efficiency was obtained. The pretransitional enhancement of the diffraction efficiency was discussed in terms of the reorientation of liquid crystals, optical nonlinearity effects and the onset of critical opalescence near the nematic-isotropic phase transition. Moreover, a peak shift of diffraction efficiency towards the lower temperature was observed with the increase of recording light intensity, which was attributed to laser induced photochemical disordering.

  20. Flexoelectricity and pattern formation in nematic liquid crystals.

    Science.gov (United States)

    Krekhov, Alexei; Pesch, Werner; Buka, Agnes

    2011-05-01

    We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency ω), which leads to stripe patterns (flexodomains) in the plane of the layer. This equilibrium transition is governed by the free energy of the nematic, which describes the elasticity with respect to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit ω→0 is highly singular. In distinct contrast to the dc case, where the patterns are stationary and time independent, they appear at finite, small ω periodically in time as sudden bursts. Flexodomains are in competition with the intensively studied electrohydrodynamic instability in nematics, which presents a nonequilibrium dissipative transition. It will be demonstrated that ω is a very convenient control parameter to tune between flexodomains and convection patterns, which are clearly distinguished by the orientation of their stripes.

  1. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  2. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  3. Thermally enhanced optical nonlinearity in nematic liquid crystal close to phase transition temperature

    Science.gov (United States)

    Shih, Chia-Chi; Chen, Yu-Jen; Hung, Wen-Chi; Jiang, I.-Min; Tsai, Ming-Shan

    2010-09-01

    This study investigates the beam profile and the liquid crystal (LC) arrangement affected by an optical field on LC thin films at a temperature close to nematic-isotropic phase transition temperature ( TNI). A combined microscopic and conoscopic technique was used in experiments as a convenient way to analyze the optical nonlinearity that is associated with the molecular configuration of nematic liquid crystal (NLC). An optical field combined with thermal enhancement enhances molecular reorientation and causes additional molecular excitation along the axis of propagation of the beam. The reorientational nonlinearity yields an undulating structure with multi-foci; the length between each pair of foci increases with time, as described.

  4. Determining the sum of flexoelectric coefficients in nematic liquid crystals by the capacitance method

    International Nuclear Information System (INIS)

    Ye Wen-Jiang; Xing Hong-Yu; Zhou Xuan; Sun Yu-Bao; Zhang Zhi-Dong; Cui Wen-Jing

    2014-01-01

    A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined. (condensed matter: structural, mechanical, and thermal properties)

  5. Multiscale approach to nematic liquid crystals via statistical field theory.

    Science.gov (United States)

    Lu, Bing-Sui

    2017-08-01

    We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients A, B, C, L_{1}, and L_{2} of the Landau-de Gennes free energy for the isotropic-nematic phase transition to the parameters of a molecular model of uniaxial nematics, which we take to be a lattice gas model of nematogenic molecules interacting via a short-ranged potential. We obtain general constraints on the temperature and volume fraction of nematogens for the Landau-de Gennes theory to be stable against molecular orientation fluctuations at quartic order. In particular, for the case of a fully occupied lattice, we compute the values of the isotropic-nematic transition temperature and the order parameter discontinuity predicted by (i) a continuum approximation of the nearest-neighbor Lebwohl-Lasher model and (ii) a Lebwohl-Lasher-type model with a nematogenic interaction of finite range. We find that the predictions of (i) are in reasonably good agreement with known results of Monte Carlo simulation.

  6. A theory for the orientational ordering in nematic liquids and for the phase diagram of the nematic-isotropic transition

    International Nuclear Information System (INIS)

    Hazoume, R.P.

    1982-10-01

    A molecular theory for the orientational distribution function f(#betta#) in the nematic phase is presented. Simple models are also derived yielding nematic order parameters in agreement with experimental data. The phase diagram of the nematic-isotropic transition is obtained by using a rigid rod model, showing that a short-range order theory does explain the structure in the nematic phase. (author)

  7. A new method for solid surface topographical studies using nematic liquid crystals

    Science.gov (United States)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  8. Monotonicity of a Key Function Arised in Studies of Nematic Liquid Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    2007-01-01

    Full Text Available We revisit a key function arised in studies of nematic liquid crystal polymers. Previously, it was conjectured that the function is strictly decreasing and the conjecture was numerically confirmed. Here we prove the conjecture analytically. More specifically, we write the derivative of the function into two parts and prove that each part is strictly negative.

  9. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  10. Consequences of director-density coupling theory for flexoelectricity in nematic liquid crystals

    Science.gov (United States)

    Vitoriano, Carlindo; Sátiro, Caio

    2016-02-01

    We theoretically study how the measurements of the flexoelectric coefficients in nematic liquid crystals are affected by the inclusion of the director-density coupling energy. It is shown that this investigation is quite relevant for interpreting the data of experiments.

  11. Nematic liquid crystal in a cylindrical sample: Theoretical analysis of the electrical response

    Science.gov (United States)

    Gomes, O. A.; Yednak, C. A. R.; da Silva, B. V. H. V.; Teixeira-Souza, R. T.

    2018-02-01

    The electrical responses of a nematic liquid crystal sample confined between two cylindrical surfaces are investigated in the framework of elastic continuum theory. The responses are the result of the molecular reorientation induced by both the applied electric field and the cylindrical geometry of the sample. The nematic medium is considered as a parallel RC circuit since the capacitance and the resistance are under the same difference of potential. The electrical properties, including the total electric current, are determined from the molecular reorientation of the director. The elastic anisotropy has been shown to influence substantially the profile of the electrical current, capacitance, and resistance characterizing the equivalent circuit for the medium.

  12. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    Science.gov (United States)

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  13. Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates.

    Science.gov (United States)

    Atherton, T J; Adler, J H

    2012-10-01

    We show that patterned surfaces can promote bistable configurations of nematics for reasons other than the symmetry of the surface. Numerical and analytical calculations reveal that a nematic liquid crystal in contact with a striped surface is subject to the competing aligning influences of elastic anisotropy, differing energy cost of various types of deformation, and flexoelectricity, curvature-induced spontaneous polarization. These effects favor opposing ground states where the azimuthal alignment is, respectively, parallel or perpendicular to the stripes. Material parameters for which the effect might be observed lie within the range measured for bent-core nematogens.

  14. Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates

    Science.gov (United States)

    Atherton, T. J.; Adler, J. H.

    2012-10-01

    We show that patterned surfaces can promote bistable configurations of nematics for reasons other than the symmetry of the surface. Numerical and analytical calculations reveal that a nematic liquid crystal in contact with a striped surface is subject to the competing aligning influences of elastic anisotropy, differing energy cost of various types of deformation, and flexoelectricity, curvature-induced spontaneous polarization. These effects favor opposing ground states where the azimuthal alignment is, respectively, parallel or perpendicular to the stripes. Material parameters for which the effect might be observed lie within the range measured for bent-core nematogens.

  15. Anisotropic stokes drag and dynamic lift on cylindrical colloids in a nematic liquid crystal.

    Science.gov (United States)

    Rovner, Joel B; Lapointe, Clayton P; Reich, Daniel H; Leheny, Robert L

    2010-11-26

    We have measured the Stokes drag on magnetic nanowires suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The effective drag viscosity for wires moving perpendicular to the nematic director differs from that for motion parallel to the director by factors of 0.88 to 2.4, depending on the orientation of the wires and their surface anchoring. When the force on the wires is applied at an oblique angle to the director, the wires move at an angle to the force, demonstrating the existence of a lift force on particles moving in a nematic. This dynamic lift is significantly larger for wires with homeotropic anchoring than with longitudinal anchoring in the experiments, suggesting the lift force as a mechanism for sorting particles according to their surface properties.

  16. Traveling waves in twisted nematic liquid crystal cells

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Vakulenko, A.A.

    2007-01-01

    We have described a novel reorientation mechanism in the form of the traveling waves, under influence of an external electric field, directed parallel to both glass plates, which occur in the twisted nematic cell (TNC). It is found that the slowest velocity of the traveling front is proportional to the field strength, and, approximately, in three times higher than the front velocity corresponding to the non-traveling solution. The value of the critical electric field E cr which may excite the traveling waves in the TNC in π times less than the value of the threshold electric field E th corresponding to the untwisted geometry

  17. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio; Cruz, Monica; de Pablo, Juan

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.

  18. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    Science.gov (United States)

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  19. Surface-polarization electrooptic effect in a nematic liquid crystal

    International Nuclear Information System (INIS)

    Lavrentovich, O.D.; Nazarenko, V.G.; Pergamenshchik, V.M.; Sergan, V.V.; Sorokin, V.M.

    1991-01-01

    A new electrooptic effect was observed experimentally in a homeotropic layer of a nematic with a positive anisotropy of the permittivity and of the electrical conductivity. This effect appeared in an external vertical static electric field and was manifested by the appearance of circular or elongated domain structures due to static distortions of the director near the anode or cathode of a cell. The polarity of the effect depended on the nature of an orienting coating. The origin of the effect was the nematic surface polarization which was sufficiently strong (∼10 -2 dyn 1/2 ) to induce an instability even under the conditions where other mechanisms (dielectric, flexoelectric, anisotropic electrohydrodynamic) impeded stability. Special attention was given to the separation of the surface polarization mechanism of the investigated effect from the flexoelectric and isotropic electrodynamic mechanisms. A hierarchy of static structures observed experimentally was clearly accounted for by a theory based on an equilibrium thermodynamic approach allowing for the anisotropic properties and for the real geometry of the system

  20. Impact of titanium dioxide nanoparticles on purification and contamination of nematic liquid crystals.

    Science.gov (United States)

    Shcherbinin, Dmitrii Pavlovich; Konshina, Elena A

    2017-01-01

    We have investigated the impact of titanium dioxide nanoparticles on the ionic contamination of liquid crystals. Nematic liquid crystals with high and low initial ionic contamination have been examined. It has been shown that titanium dioxide nanoparticles reduced the ion density of liquid crystals with high initial ionic contamination from 134.5 × 10 12 cm -3 to 63.2 × 10 12 cm -3 . In the case of liquid crystals with low initial ionic contamination, the nanoparticles led to an insignificant increase of ion density from 19.8 × 10 12 cm -3 to 25.7 × 10 12 cm -3 .

  1. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  2. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  3. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Musgrave, B

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow ({approx} 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster (< 100 {mu}s) ferroelectric switching of the smectic C* phase are in production. The research presented in this thesis relates to a new switching effect recently discovered in the chiral nematic phase. The flexoelectrically-driven rotation of the chiral nematic phase's optic axis is fast - of the order 10 {mu}s to lms - proportional to the applied field amplitude and completely in-plane. The optic axis has been deflected by over 30 deg. from the equilibrium position in some materials. These electro-optic properties make the 'flexoelectro-optic' effect a potential contender in the liquid crystal device market. The present thesis contains the first studies of the effect of molecular structure on flexoelectric coupling in the chiral nematic phase. Several homologous series of estradiol-cyanobiphenyl bimesogenic materials synthesized for this work have been characterized and their electro-optic properties investigated. The chiral nematic phases of these materials have unusually strong flexoelectro-optic effects and respond on a sub-millisecond timescale. The ratios of the effective flexoelectric coefficient to the mean splay-bend elastic constant, e-bar/K, in the present materials lie in the range 0.3 to 0.6 C N{sup -1} m{sup -1}, and are the highest measured to date: the highest value previously published is 0.12 C N{sup -1} m{sup -1}, measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens

  4. Radiative Transfer Theory and Diffusion of Light in Nematic Liquid Crystals

    OpenAIRE

    Stark, Holger

    1997-01-01

    In nematic liquid crystals light is strongly scattered from director fluctuations. We are interested in the limit where the incoming light wave is scattered many times. Then, the light transport can be described by a diffusion equation for the energy density of light with diffusion constants $D_{\\|}$ and $D_{\\perp}$, respectively, parallel and perpendicular to the director. We start from a radiative transfer theory, connect the diffusion constants to the dynamic structure factor of director f...

  5. Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Schimperna, G.; Rocca, E.; Zarnescu, A.

    2015-01-01

    Roč. 194, č. 5 (2015), s. 1269-1299 ISSN 0373-3114 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : nematic liquid crystal * Ball-Majumdar free theory * nonisothermal model * existence theorem Subject RIV: BA - General Mathematics Impact factor: 0.861, year: 2015 http://link.springer.com/article/10.1007%2Fs10231-014-0419-1

  6. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    OpenAIRE

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola

    2018-01-01

    We present a novel framework for the study of disclinations in two-dimensional active nematic liquid crystals, and topological defects in general. The order tensor formalism is used to calculate exact multi-particle solutions of the linearized static equations inside a uniformly aligned state. Topological charge conservation requires a fixed difference between the number of half charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parame...

  7. On the long-time behavior of some mathematical models for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Petzeltová, Hana; Rocca, E.; Schimperna, G.

    2013-01-01

    Roč. 46, 3-4 (2013), s. 623-639 ISSN 0944-2669 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : nematic liquid crystals * long-time behavior * flows Subject RIV: BA - General Mathematics Impact factor: 1.526, year: 2013 http://www.springerlink.com/content/d61u566014515884/

  8. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  9. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    International Nuclear Information System (INIS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-01-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  10. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Energy Technology Data Exchange (ETDEWEB)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  11. Fast and ultrafast all-optical control of light in nematic and smectic-A liquid crystals

    Science.gov (United States)

    Muševič, Igor; Vitek, Maruša.; Cattaneo, Laura; Savoini, Matteo; Kimel, Alexey; Rasing, Theo

    2016-03-01

    We review recent experiments on the fast and ultrafast all-optical control of light in bulk nematic and smectic-A liquid crystals. Ultrafast optical control at sub-picosecond time scalecan be achieved via the optical Kerr response of a nematic liquid crystal. We show that the refractive index changes are of the order of 10-4 in 5CB nematic liquid crystal and can be optically induced by applying 100 fs pulses of 4 mJ/cm2 fluence. We discuss stimulated emission depletion of fluorescence in a smectic-A liquid crystal and demonstrate nanosecond light control of fluorescent pulse shaping. Both methods could be applied to control light by light in future photonic devices based on liquid crystals.

  12. Orientational behavior of a nematic liquid crystal filled with inorganic oxide nanoparticles

    International Nuclear Information System (INIS)

    Gavrilko, T.; Kovalchuk, O.; Nazarenko, V.; Hauser, A.; Kresse, H.

    2004-01-01

    We report the results of dielectric spectroscopy, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies performed on the nematic liquid crystal (LC) mixture Merck ZLI-1132 filled with TiO 2 (rutile and anatase) and SiO 2 nanoparticles. The observed static dielectric permittivities are interpreted in terms of orientation of the LC with respect to the measuring electric field. Adding of SiO 2 particles mainly induces a statistical orientation of LC molecules, whereas TiO 2 particles promote the perpendicular orientation. The dynamics of LC molecules in all systems is very similar. The reason for the slightly faster reorientation observed in the mixtures may be connected with a disturbed nematic order near the surface of solid particles

  13. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  14. The molecular ordering phenomenon in dye-doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prakash Yadav, Satya; Pandey, Kamal Kumar; Kumar Misra, Abhishek; Kumar Tripathi, Pankaj; Manohar, Rajiv, E-mail: rajiv.manohar@gmail.com [Liquid Crystal Research Laboratory, Physics Department, University of Lucknow, Lucknow-226007 (India)

    2011-03-15

    The experimental results of this work point out the role of the guest dye molecules in the molecular ordering of nematic liquid crystals. We have discussed the changes in the energies of interactions between rod-like nematic molecules and anthraquinone dye by considering the presence of steric and dipole-dipole interactions in the dye-doped system. The concentration of the dye plays an important role in the determination of molecular ordering in such dye-doped systems. Below a certain concentration of dye (known as the critical concentration), where the interaction between the dye molecules can be neglected, the addition of dye molecules introduces some disorder into the system in the form of domain formation. Above this critical concentration, this disorder is small.

  15. Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

    International Nuclear Information System (INIS)

    Guan Rong-Hua; Ye Wen-Jiang; Xing Hong-Yu

    2015-01-01

    The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered. (paper)

  16. Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier–Meier theory

    International Nuclear Information System (INIS)

    Ran, Zhang; Jun, He; Zeng-Hui, Peng; Li, Xuan

    2009-01-01

    This paper investigates the average dielectric permittivity (ε-bar ) in the Maier–Meier theory for calculating the dielectric anisotropy (Δε) of nematic liquid crystals. For the reason that ε-bar of nematics has the same expression as the dielectric permittivity of the isotropic state, the Onsager equation for isotropic dielectric was used to calculate it. The computed ε-bar shows reasonable agreement with the results of the numerical methods used in the literature. Molecular parameters, such as the polarizability and its anisotropy, the dipole moment and its angle with the molecular long axis, were taken from semi-empirical quantum chemistry (MOCPAC/AM1) modeling. The calculated values of Δε according to the Maier–Meier equation are in good agreement with the experimental results for the investigated compounds having different core structures and polar substituents. (condensed matter: structure, thermal and mechanical properties)

  17. Shear flow dynamics in the Beris-Edwards model of nematic liquid crystals.

    Science.gov (United States)

    Murza, Adrian C; Teruel, Antonio E; Zarnescu, Arghir D

    2018-02-01

    We consider the Beris-Edwards model describing nematic liquid crystal dynamics and restrict it to a shear flow and spatially homogeneous situation. We analyse the dynamics focusing on the effect of the flow. We show that in the co-rotational case one has gradient dynamics, up to a periodic eigenframe rotation, while in the non-co-rotational case we identify the short- and long-time regimes of the dynamics. We express these in terms of the physical variables and compare with the predictions of other models of liquid crystal dynamics.

  18. Flexoelectric-Induced Voltage Shift in Hybrid Aligned Nematic Liquid Crystal Cell

    International Nuclear Information System (INIS)

    Xing Hongyu; Xuan Li; Ye Wenjiang; Zhang Zhidong

    2011-01-01

    Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic liquid crystal cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the flexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward. (condensed matter: structural, mechanical, and thermal properties)

  19. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties

    NARCIS (Netherlands)

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-01-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired

  20. Ordering in nematic liquid crystals from NMR cross-polarization ...

    Indian Academy of Sciences (India)

    Abstract. The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar ...

  1. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.

    Science.gov (United States)

    Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S

    2013-10-09

    Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.

  2. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Science.gov (United States)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  3. Physical properties of a bent-core nematic liquid crystal and its mixtures with calamitic molecules

    Science.gov (United States)

    Buka, Á.; Éber, N.; Fodor-Csorba, K.; Jákli, A.; Salamon, P.

    2012-10-01

    This article summarizes the results obtained by various experimental methods on the physical properties of a bent-core nematic liquid crystal 4-chloro-1,3-phenylene bis-4-[4‧-(9-decenyloxy) benzoyloxy] benzoate (ClPbis10BB). The material exhibits unusual properties in all aspects tested. Its bend flexoelectric coefficient is 1000 times larger than in calamitics; it is viscoelastic with a large, shear-rate-dependent viscosity. Its bend and twist elastic constants are abnormally low; thus the nematic phase can be rendered to be a blue fog phase with a small amount of chiral dopant. It shows very high flow birefringence and unusually small leading Landau coefficient. It has two types of isotropic phases; at lower temperature it is probably tetrahedratic that can be transferred into the nematic phase with magnetic field. ClPbis10BB has a frequency-dependent conductivity anisotropy which is characterized by a double sign inversion. It exhibits various electroconvection (EC) patterns which are currently not understood in the frame of the standard theory of EC.

  4. Numerical simulation and optimization of triple supertwist nematic liquid crystal displays

    Science.gov (United States)

    Fogarty, John Patrick

    1998-12-01

    An optimization process was undertaken for Triple Supertwist Nematic (TSTN) subtractive color stacked liquid crystal displays. An optical model for an arbitrary liquid crystal cell has been developed. This model, which is based on the Jones matrix method for light propagation through non-depolarizing elements, has been modified to account for the high voltage behavior of Supertwist nematic devices. The model has been used to characterize and optimize liquid crystal cells for use in a subtractive color stack. The simulation has been designed with a graphical user interface to ease the optimization process. Subtractive color display systems have been studied and compared to additive color systems so as to obtain a benchmark for LCD display performance. A process for optimization of the LCD displays has been developed. Liquid crystal displays have been fabricated and characterized so that the modeled optimization could be compared with experimental measurements. The results of the comparison demonstrate that modeling using a simplified Jones calculus model is effective and efficient as compared to the two other approaches which require extensive numerical computation.

  5. Ordering in nematic liquid crystals from NMR cross-polarization ...

    Indian Academy of Sciences (India)

    In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbour spins which can be extracted for several sites simultaneously by employing ...

  6. Electrical Properties of Zn-Phthalocyanine and Poly (3-hexylthiophene Doped Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Y. Karakuş

    2011-01-01

    Full Text Available An E7 coded nematic liquid crystal was doped with zinc phthalocyanine and poly (3-hexylthiophene. A variety of properties including relaxation time, absorption coefficient, and critical frequency of this doped system were investigated using impedance spectroscopy. The doped systems displayed increased absorption coefficients in the range 0.22–0.55 and relaxation times from 5.05×10−7 s to 3.59×10−6 s with a decrease in the critical frequency from 3.54 MHz to 2.048 MHz.

  7. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  8. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    Science.gov (United States)

    Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-06-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

  9. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  10. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R. [Post-Graduate Department of Physics, Government College (Autonomous), Mandya-571401 (India); Sridhar, K. N.; Sridhara, G. R.; Nagaraja, N. [Government College for Boys, Kolar-563101 (India)

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  11. Optical Rheometry of Nematic Liquid Crystals with Uniform Molecular Alignment.

    Science.gov (United States)

    Muller, Jorg Andreas

    We have developed a modular rheo-optical apparatus to study the flow properties of liquid crystals. Its main components are shearing device, strong magnetic field, and optical microscope. We performed experiments on well defined initial morphologies with uniform molecular alignment. The monodomains were achieved with strong magnetic fields (4.7T). Time resolved conoscopy is the primary optical technique in our investigation. We propose a simple relation between the distribution of alignment angles over the sample thickness and the conoscopically measured angle, to quantitatively measure the alignment angle in shear flow. We followed the relaxation of a shear induced splay deformation in small molecule model systems (N-(p -methoxybenzylidene)-p-butyl aniline (MBBA), pentyl-cyano -biphenyl (5CB) and a commercially available mixture OMI4244, and devised a model, based on the diffusion equation, to determine the rotational diffusivity from the relaxation process. The director alignment behavior of the SMLC's in shear flow is well described by the two dimensional Leslie-Ericksen model. The effect of director elasticity can clearly be seen in our experiments, resulting in a decrease of the steady state alignment angle at smaller Ericksen numbers. We found that there is no strain rate dependence of the director vorticity from 0.002/s to 2/s for poly -(gamma-benzyl-D/L-glutamate) (PBG). We determined {alpha_2/alpha _3} = 44 for a 20% solution of 280.000 molecular weight PBG in m-cresol at 20^ circC. The conoscopic interference pattern vanished after 8 strain units from an initially planar alignment and shearing could be reversed up to 10 strain units to completely recover the initial monodomain. Liquid crystalline polymers (LCP) are known to arrange into periodic director patterns during flow. We studied this for shear flow of lyotropic poly gamma-(benzyl-glutamate) as a model system, which is a well characterized synthetic poly ( alpha amino acid) with rigid chain

  12. Alignment characteristic of nematic liquid crystals on orientational patterns realized by interfering laser light

    International Nuclear Information System (INIS)

    Lee, Eun-Kyu; Kim, Jong-Hyun

    2008-01-01

    We have observed the alignment property and switching behaviour of nematic liquid crystals (NLCs) on orientation patterns that were realized on a photo-active alignment layer by using interferring beams of two coherent laser lights. Linearly polarized light orients the liquid crystals in a direction perpendicular to the polarization and the interferring laser light induced a one-dimensional periodic texture following the interference pattern. Using double irradiation, in which the direction of the second irradiation was rotated by 90 0 to the first irradiation, we constructed a quasi-four-fold symmetric orientation pattern. The NLCs exhibited bistability in two average directions of polarization of the laser light, and they stably switched between the two directions by the in-plane electric field. Furthermore, the NLCs indicated the capability of continuous and memorized switching with a changing electric field on the orientation pattern

  13. Shape control of surface-stabilized disclination loops in nematic liquid crystals

    Science.gov (United States)

    Sunami, Kanta; Imamura, Koki; Ouchi, Tomohiro; Yoshida, Hiroyuki; Ozaki, Masanori

    2018-02-01

    Recent studies on topological defects in conventional and active nematic liquid crystals have revealed their potential as sources of advanced functionality whereby the collective behavior of the constituent molecules or cells is controlled. On the other hand, the fact that they have high energies and are metastable makes their shape control a nontrivial issue. Here, we demonstrate stabilization of arbitrary-shaped closed disclination loops with 1/2 strength floating in the bulk by designing the twist angle distribution in a liquid crystal cell. Continuous variation of the twist angle from below to above |π /2 | allows us to unambiguously position reverse twist disclinations at will. We also analyze the elastic free energy and uncover the relationship between the twist angle pattern and shrink rate of the surface-stabilized disclination loop.

  14. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...... crystal. We demonstrate a modulation frequency of 2kHz for a moderate pump power of 2-3mW and describe two pump pulse regimes in which there is an order of magnitude difference between the decay times....

  15. Time-resolved sign-dependent switching in a hybrid aligned nematic liquid crystal cell

    International Nuclear Information System (INIS)

    Taphouse, T S; Cornford, S L; Birkett, J E; Sambles, J R

    2008-01-01

    An optical waveguide technique is used to determine the director tilt profile across a hybrid aligned nematic (HAN) liquid crystal cell, in which the optical response is dependent on the sign of the applied voltage. Two physical models are shown that fit the equilibrium experimental data, but with alternative explanations for this sign dependence. Models with either a flexoelectric coefficient of 2.25x10 -11 C m -1 or a bound surface charge of 12.2 μC m -2 are shown that fit this equilibrium data. In an attempt to resolve this degeneracy sign-dependent switching data are analysed. However, neither model can explain these switching data, which are affected by slow transients of ∼100 ms which are believed to be due to the motion of free ions in the liquid crystal. From the form of these slow transients, it is suggested that the equilibrium position of the ions is next to a cell substrate

  16. Photosensitive soft matter: mixtures of nematic liquid crystal with azo molecules

    International Nuclear Information System (INIS)

    Petrov, A.G.; Marinov, I.G.; Hadjichristov, G.B.; Sridevi, S.; Hiremath, U.S.; Yelamaggad, C.V.; Prasad, S.K.

    2013-01-01

    Photosensitive soft matter based upon guest-host liquid crystal systems was prepared by mixing azobenzene-containing mesogens with the nematic liquid crystal 4-butyl-cyclohexane carboxylic acid 4-pentyloxy-phenyl ester (CM80). Binary mixtures of the host CM80 with three azo-bonded compounds as UV-active dopants (guests) at a relatively small concentration of 1~wt.% were characterized by thermo-optical, dielectric, spectral and flexoelectric measurements. The study aimed to determine the mechanisms that result in variations of material parameters caused by light-driven molecular conformation change of the azo-dye guest molecules (the transition from rod-shaped trans isomers to bent-shaped cis isomers)

  17. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com [Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Block, Sector 1, Kolkata-700064 (India)

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  18. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  19. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  20. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications.

    Science.gov (United States)

    Pieraccini, Silvia; Masiero, Stefano; Ferrarini, Alberta; Piero Spada, Gian

    2011-01-01

    When a chiral dopant is dissolved in an achiral liquid crystal medium, the whole sample organizes into a helical structure with a characteristic length-scale of the order of microns. The relation between chirality at these quite different length-scales can be rationalized by a relatively simple model, which retains the relevant factors coming into play: the molecular shape of the chiral dopant, which controls the chirality of short range intermolecular interactions, and the elastic properties of the nematic environment, which control the restoring torques opposing distortion of the director. In this tutorial review the relation between molecular and phase chirality will be reviewed and several applications of the chiral doping of nematic LCs will be discussed. These range from the exploitation of the amplified molecular chirality for stereochemical purposes (e.g., the determination of the absolute configuration or the enantiomeric excess), to newer applications in physico-chemical fields. The latter take advantage of the periodicity of the chiral field, with length-scales ranging from hundreds to thousands of nanometres, which characterise the cholesteric phase.

  1. Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration

    Science.gov (United States)

    Castles, F.; Morris, S. M.; Coles, H. J.

    2009-09-01

    The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or “Grandjean” configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell’s equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.

  2. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  3. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  4. Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes

    Science.gov (United States)

    Goncharuk, A. I.; Lebovka, N. I.; Lisetski, L. N.; Minenko, S. S.

    2009-08-01

    Electrical conductivity, optical transmittance and microstructure of multiwalled carbon nanotubes (MWCNTs) dispersed in nematic liquid crystal 4-ethoxybenzylidene-4'-n-butylaniline (EBBA) were studied in the temperature range between 287 and 363 K. The concentration C of MWCNTs was varied within 0.01-1% wt. The percolation threshold with a noticeable increase in electrical conductivity (by many orders of magnitude) was observed in the vicinity of C ≈ 0.1% wt. The heating-cooling hysteretic behaviour of electrical conductivity and optical transmittance thermal pre-history effects were studied. These effects reflected strong agglomeration and rearrangement of nanotubes during the thermal incubation. The estimates show that transient behaviour during the thermal incubation can be caused by Brownian motion of MWCNTs. The solidification of MWCNT + EBBA composite in the nematic range extended by conditions of supercooling was also studied as a function of temperature using electrical conductivity measurements. The solidification lag-time dependence on supercooling temperature followed the classical heterogeneous nucleation law, with MWCNTs serving as centres of EBBA solidification.

  5. Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Goncharuk, A I; Lebovka, N I [F Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskii Prosp., Kyiv 03142 (Ukraine); Lisetski, L N; Minenko, S S, E-mail: lebovka@gmail.co [Institute for Scintillation Materials of STC ' Institute for Single Crystals' , NAS of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine)

    2009-08-21

    Electrical conductivity, optical transmittance and microstructure of multiwalled carbon nanotubes (MWCNTs) dispersed in nematic liquid crystal 4-ethoxybenzylidene-4'-n-butylaniline (EBBA) were studied in the temperature range between 287 and 363 K. The concentration C of MWCNTs was varied within 0.01-1% wt. The percolation threshold with a noticeable increase in electrical conductivity (by many orders of magnitude) was observed in the vicinity of C {approx} 0.1% wt. The heating-cooling hysteretic behaviour of electrical conductivity and optical transmittance thermal pre-history effects were studied. These effects reflected strong agglomeration and rearrangement of nanotubes during the thermal incubation. The estimates show that transient behaviour during the thermal incubation can be caused by Brownian motion of MWCNTs. The solidification of MWCNT + EBBA composite in the nematic range extended by conditions of supercooling was also studied as a function of temperature using electrical conductivity measurements. The solidification lag-time dependence on supercooling temperature followed the classical heterogeneous nucleation law, with MWCNTs serving as centres of EBBA solidification.

  6. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  7. Electrically Tunable Open-Stub Bandpass Filters Based on Nematic Liquid Crystals

    Science.gov (United States)

    Economou, E. C.; Lovejoy, J.; Harward, I.; Nobles, J. E.; Kula, P.; Herman, J.; Glushchenko, A.; Celinski, Z.

    2017-12-01

    Electrically tunable bandpass filters based on liquid crystals are designed, built, and characterized using a vector network analyzer. The filters are composed of half-wavelength open stubs and quarter-wavelength connecting lines in an inverted microstrip geometry. The filters are modeled using computational electromagnetics software utilizing the finite integration technique. Photolithography and thin-film deposition processes are employed, and standard liquid-crystal cell-assembly techniques are used to make the final filter structures. The three-stub filters with passband central frequencies of 30, 50, and 85 GHz are filled with the nematic liquid crystal, LC1917, and tested. 10% tuning of the central frequency is achieved with a 14-volt peak-to-peak ac bias across the 38 -μ m liquid-crystal layer (electric field of 0.19 V / μ m ). At 50 GHz, the insertion loss is -3.76 dB , while the return loss ranges from -9 to -25 dB , indicating a good impedance match for a proof-of-concept device. The passband widths of the 30-, 50-, and 85-GHz filters are 5, 9, and 14 GHz, respectively, resulting in a Q factor of 6. The filter devices presented in this study, although intended for microwave signal-processing applications, furnish an effective methodology for characterizing the dielectric properties of liquid-crystal materials (and fluids or solids in general) up to the terahertz frequency range.

  8. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces.

    Science.gov (United States)

    Zhong, Shenghong; Jang, Chang-Hyun

    2015-09-21

    Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.

  9. Temperature dependences of the electrooptical properties of rodlike nematic liquid crystals doped with hockey-stick-shaped liquid crystals

    Science.gov (United States)

    Yeo, Sunggu; Srivastava, Anoop Kumar; Lee, Hyojin; Lee, Ji-Hoon; Choi, E.-Joon

    2016-01-01

    We investigated the temperature dependences of the dielectric anisotropy, birefringence, order parameter, splay elastic constant, and rotational viscosity of rodlike nematic liquid crystals (RLCs) doped with hockey-stick-shaped liquid crystals (HLCs). Although the order parameter of the HLC-RLC mixtures was similar to that of the pure RLC, the dielectric anisotropy and the birefringence of the mixtures were decreased or increased depending on the structure of the HLC molecule. In addition, the activation energies of the mixtures were different, which implies that the intramolecular structure of the HLC molecule had more influence on the electrooptical properties of the HLC-RLC binary mixtures than the inter-molecular interaction between the HLC and the RLC molecules.

  10. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  11. Symmetry of Uniaxial Global Landau--de Gennes Minimizers in the Theory of Nematic Liquid Crystals

    KAUST Repository

    Henao, Duvan

    2012-01-01

    We extend the recent radial symmetry results by Pisante [J. Funct. Anal., 260 (2011), pp. 892-905] and Millot and Pisante [J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 1069- 1096] (who show that the equivariant solutions are the only entire solutions of the three-dimensional Ginzburg-Landau equations in superconductivity theory) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures. Copyright © by SIAM.

  12. Voltage-controlled optical switch in planar nematic liquid crystal film

    Science.gov (United States)

    Shih, Chia-Chi; Chen, Yu-Jen; Wu, Sean; Tsai, Cheng-Che; Jiang, I.-Min

    2009-10-01

    This study presents an integrated device that consists of a directional coupler and an electro-optic switch. The device is designed to include a nematic liquid crystal cell, comprising a grating-like electrode. Applying the appropriate voltage to the cell yields a periodically distributed refractive index. An incident polarized beam will couple to an adjacent channel if it is parallel to the channel. The coupling efficiency is controlled by applied voltage. An obliquely injected polarized beam will be reflected and refracted in the channel, and propagated along a curved path. The route of the beam can be controlled by applying the voltage. A multiport routing was achieved for voltage modulation. In addition, the distribution of refractive index is also investigated by employing conoscopic technique experimentally and numerically.

  13. Angular structure of light polarization and singularities in transmittance of nematic liquid crystal cells

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Buinyi, Igor O.; Soskin, Marat S.

    2007-06-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles. Our theoretical results are obtained by evaluating the Stokes parameters that characterize the polarization state of plane waves propagating through the NLC layer at varying direction of incidence. Using the Stokes polarimetry technique we carried out the measurements of the polarization resolved conoscopic patterns emerging after the homeotropically aligned NLC cell illuminated by the convergent light beam. The resulting polarization resolved angular patterns are described both theoretically and experimentally in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). When the ellipticity of the incident light varies, the angular patterns are found to undergo transformations involving the processes of creation and annihilation of the C-points.

  14. Topological structure in polarization resolved conoscopic patterns for nematic liquid crystal cells

    Science.gov (United States)

    Buinyi, Igor O.; Denisenko, Vladimir G.; Soskin, Marat S.

    2009-01-01

    We investigate the polarization structure of coherent light, produced by a convergent light beam transmitted through nematic liquid crystal (NLC) cells with different director configurations. Employing solutions to the transmission problem for the case when plane wave propagates through an anisotropic layer, we analyze the arrangement of the topological elements, such as polarization singularities (C points with circular polarization and L lines with linear polarization), saddle points and extrema of polarization azimuth. We observe transformations of the topological structure under the variation of the incident light ellipticity and represent it by corresponding trajectories of topological elements in three-dimensional space. For the cells with uniform and non-uniform director configuration we describe the processes of creation/annihilation of C point pairs, which can be controlled precisely in the case of the cell with non-uniform director. Our experimental measurements for the homeotropically oriented NLC cells are in good agreement with the theoretical predictions.

  15. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.

    2013-10-17

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  16. Optical transitions driven by self-induced walk-off in nematic liquid crystals

    International Nuclear Information System (INIS)

    Brasselet, E.

    2004-01-01

    Optical field induced reorientation of a nematic liquid crystals film is investigated for finite cross-section of the excitation beam. An approach based on self-induced walk-off between extraordinary and ordinary waves is proposed, including the geometrical aspect ratio between the beam diameter and the cell thickness in a perturbative fashion. The bifurcation scenario when the intensity is taken as the control parameter is calculated in the case of a circularly polarized excitation beam at normal incidence. The sudden appearance of a new saddle-node bifurcation is predicted for a walk-off corresponding to realistic experimental conditions. Changes of the light angular momentum transfer induced by walk-off are singled out as a valid candidate to explain observed nonlinear dynamics whose origin is not yet well understood

  17. Director gliding in a nematic liquid crystal layer: Quantitative comparison with experiments

    Science.gov (United States)

    Mema, E.; Kondic, L.; Cummings, L. J.

    2018-03-01

    The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004), 10.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006), 10.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006), 10.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.

  18. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  19. Influence of modified detonation nanodiamonds on electrooptical properties of nematic liquid crystals

    International Nuclear Information System (INIS)

    Vashkevich, Vera; Minko, Anatoly; Lapanik, Valeri

    2016-01-01

    To modify the structure of detonation nanodiamonds (DNDs) several carboxylate groups were added to DNDs. Activation of COOH-surface functionalized groups allowed attaching of various organic tails to molecules. It was investigated that dielectric and electrooptical properties of nematic liquid crystalline mixtures (LCMs) doped with modified DNDs (MDNDs). It is established that the effect of DNDs on mesomorphic, dielectric and electrooptical properties depends on the size of nanoparticles (NPs) and the type of tail-like organic molecules grafted to DNDs. It is found that NPs of a small size (5-6 nm) do not significantly affect on the parameters of LCMs. At the same time conglomerates of a larger size (50 and 100 nm) depending on the tails polarity can increase or decrease the dielectric anisotropy and response time of LCMs in about 1.2-1.4 times. (paper)

  20. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    Science.gov (United States)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  1. Poincaré-sphere representation of phase-mostly twisted nematic liquid crystal spatial light modulators

    Science.gov (United States)

    Durán, V.; Clemente, P.; Martínez-León, Ll; Climent, V.; Lancis, J.

    2009-08-01

    We establish necessary conditions in order to build a phase-only wavefront modulation system from a liquid crystal display. These conditions determine the dependence of the polarization state of the light emerging from the display on the addressing gray level. The analysis, which is carried out by means of the coherence-matrix formalism, includes the depolarization properties of the device. Two different types of polarization distributions at the output of the liquid crystal cells are found. This approach is applied to a twisted nematic liquid crystal display. In this case, an optimization algorithm must be designed in order to select the input polarization state that leads to the required distributions. We show that the Poincaré-sphere representation provides a convenient framework to design the optimization algorithm as it allows for a reduced number of degrees of freedom. This feature significantly decreases the computation time. Laboratory results are presented for a liquid crystal on silicon display showing a phase modulation depth greater than 2π rad with an intensity variation lower than 6%. In addition, a hybrid ternary modulation (HTM), an operation regime employed in holographic data storage, is achieved.

  2. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    International Nuclear Information System (INIS)

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-01-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4 ' -cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 μm are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface π-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network

  3. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  4. Numerical analysis of nematic liquid crystals as applied to tunable antennas

    Science.gov (United States)

    Papanicolaou, N. C.; Christou, M. A.; Polycarpou, A. C.

    2014-11-01

    In the current work we examine the application of Nematic Liquid Crystals (N-LCs) to frequency-agile antennas. A patch antenna design with a liquid crystal base is proposed. N-LCs are anisotropic and their electrical properties are determined by the macroscopic orientation of their molecules (director tilt-angle). However, these depend on the applied electric field, which means that the electric properties of the N-LC base can be effectively controlled. The above described problem is governed by a coupled system of PDEs. It is solved iteratively using a finite-difference scheme with relaxation. Once the director field is obtained, the dielectric properties of the material are determined for each value of the bias voltage. The proposed antenna is then simulated using HFSS. The return loss and resonant frequency are computed for each of value of the applied voltage. It is shown that the antennas under consideration can be tuned using relatively low applied voltages. This demonstrates the potential of liquid crystal based antennas in frequency-agile antenna design.

  5. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  6. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Science.gov (United States)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  7. Converse flexoelectric effect in a bent-core nematic liquid crystal.

    Science.gov (United States)

    Harden, J; Teeling, R; Gleeson, J T; Sprunt, S; Jákli, A

    2008-09-01

    Flexoelectricity is a unique property of liquid crystals; it is a linear coupling between electric polarizations and bend and/or splay distortions of the direction of average molecular orientation. Recently it was shown [J. Harden, Phys. Rev. Lett. 97, 157802 (2006)] that the bend flexoelectric coefficient in bent-core nematic liquid crystals can be three orders of magnitude higher than the effect with calamitic (rod-shaped) molecular shape. Here we report the converse of the flexoelectric effect: An electric field applied across a bent-core liquid crystal sandwiched between thin flexible substrates produces a director distortion which is manifested as a polarity-dependent flexing of the substrates. The flex magnitude is shown to be consistent with predictions based upon both the measured value of the bend flexoelectric constant and the elastic properties of the substrates. Converse flexoelectricity makes possible a new class of microactuators with no internal moving parts, which offers applications as diverse as optical beam steering to artificial muscles.

  8. Controlling defects in nematic and smectic liquid crystals through boundary geometry

    Science.gov (United States)

    Beller, Daniel A.

    Liquid crystals (LCs), presently the basis of the dominant electronics display technology, also hold immense potential for the design of new self-assembling, self-healing, and "smart" responsive materials. Essential to many of these novel materials are liquid crystalline defects, places where the liquid crystalline order is forced to break down, replacing the LC locally with a higher-symmetry phase. Despite the energetic cost of this local melting, defects are often present at equilibrium when boundary conditions frustrate the material order. These defects provide micron-scale tools for organizing colloids, focusing light, and generating micropatterned materials. Manipulating the shapes of the boundaries thus offers a route to obtaining new and desirable self-assembly outcomes in LCs, but each added degree of complexity in the boundary geometry increases the complexity of the liquid crystal's response. Therefore, conceptually minimal changes to boundary geometry are investigated for their effects on the self-assembled defect arrangements that result in nematic and smectic-A LCs in three dimensions as well as two-dimensional smectic LCs on curved substrates. In nematic LCs, disclination loops are studied in micropost confining environments and in the presence of sharp-edged colloidal inclusions, using both numerical modeling and topological reasoning. In both scenarios, sharp edges add new possibilities for the shape or placement of disclinations, permitting new types of colloidal self-assembly beyond simple chains and hexagonal lattices. Two-dimensional smectic LCs on curved substrates are examined in the special cases where the substrate curvature is confined to points or curves, providing an analytically tractable route to demonstrate how Gaussian curvature is associated with disclinations and grain boundaries, as well as these defects' likely experimental manifestations. In three-dimensional smectic-A LCs, novel self-assembled arrangements of focal conic domains

  9. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... We numerically observe the effect of homogeneous magnetic field on the modulation- ally stable case ... irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability. ..... [13] J Kronjager, C Becker, P S Panahi, K Bongs and K Sengstock, Phys. Rev. Lett. 105 ...

  10. Numerical investigation of influence of ionic space charge and flexoelectric polarization on measurements of elastic constants in nematic liquid crystals

    Science.gov (United States)

    Buczkowska, M.; Derfel, G.; Konowalski, M.

    2009-06-01

    Deformations of nematic layers caused by magnetic field allow determination of the elastic constants of liquid crystal. In this paper, we simulated numerically the deformations of planar and homeotropic nematic layers. The flexoelectric properties of the nematic and presence of ions were taken into account. Our aim was to show the influence of flexoelectricity on the results of the real measurement of the elastic constants k33 and k11. In these simulations, we calculated the optical phase difference ΔΦ between the ordinary and extraordinary rays of light passing through the layer placed between crossed polarizers as a function of the magnetic field induction B. One of the elastic constants can be calculated from the magnetic field threshold for deformation. The ratio k33/k11 can be found by means of fitting theoretical ΔΦ(B) dependence to the experimental results. The calculations reveal that the flexoelectric properties influence the deformations induced by the external magnetic field. In the case of highly pure samples, this may lead to false results of measurement of the elastic constants ratio k33/k11. This influence can be reduced if the nematic material contains ions of sufficiently high concentration. These results show that the flexoelectric properties may play an important role, especially in well purified samples.

  11. Optical monitoring of surface anchoring changes for nematic liquid crystal based chemical and biological sensors

    Science.gov (United States)

    Zou, Yang

    In this dissertation, optically monitoring the surface anchoring changes of liquid crystal (LC) due to the chemical or biological bindings is presented. The deformation of LC director with different anchoring energies is simulated using Finite Element Method and continuum theory of nematic LC. The optical properties of the LC film are simulated using the Finite Difference Time Domain method. First, the interference color method was used to monitor the anchoring change. The calculated and experimental interference colors of liquid crystal films due to the optical retardation of two orthogonal electromagnetic components at different surface anchoring conditions and applied voltages are studied. The calculated colors were converted into sRGB parameters so that the corresponding colors can be displayed on a color computer monitor and printed out on a color printer. A gold micro-structure was fabricated and used to control the optical retardation. Polarizing micrographs were collected and compared with the calculated colors. Second, the influence of a bias voltage on the surface-driven orientational transition of liquid crystals resulted from the weakening anchoring and anchoring transition is analyzed theoretically and experimentally. The same interdigitated Au micro-structure was used in the nematic LC based chemical and biological sensors. With a suitable bias electric field, the process of the weakening anchoring energy and the uniform surface-driven orientational transition due to targeted molecules binding to a functionalized surface were observed optically. Finally, measurement of optical transmission was used to monitor the anchoring change. Polarizing micrographs were collected and compared with simulated textures. Experimental and simulation results both demonstrate the optical method can effectively monitor the surface anchoring change due to the presence of targeted analytes. These results show that these optical techniques are suitable for LC based sensing

  12. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  13. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com [Department of Physics, DDU Gorakhpur University, Gorakhpur (India); Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com [Department of Physics, Banaras Hindu University, Varanasi (India)

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  14. Kibble-Zurek Scaling during Defect Formation in a Nematic Liquid Crystal.

    Science.gov (United States)

    Fowler, Nicholas; Dierking, Dr Ingo

    2017-04-05

    Symmetry-breaking phase transitions are often accompanied by the formation of topological defects, as in cosmological theories of the early universe, superfluids, liquid crystals or solid-state systems. This scenario is described by the Kibble-Zurek mechanism, which predicts corresponding scaling laws for the defect density ρ. One such scaling law suggests a relation ρ≈τ Q -1/2 with τ Q the change of rate of a control parameter. In contrast to the scaling of the defect density during annihilation with ρ≈t -1 , which is governed by the attraction of defects of the same strength but opposite sign, the defect formation process, which depends on the rate of change of a physical quantity initiating the transition, has only rarely been investigated. Herein, we use nematic liquid crystals as a different system to demonstrate the validity of the predicted scaling relation for defect formation. It is found that the scaling exponent is independent of temperature and material employed, thus universal, as predicted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extraordinary properties of nematic phases of bent-core liquid crystals

    Science.gov (United States)

    Jákli, A.; Chambers, M.; Harden, J.; Madhabi, M.; Teeling, R.; Kim, J.; Li, Q.; Nair, G. G.; Éber, N.; Fodor-Csorba, K.; Gleeson, J. T.; Sprunt, S.

    2008-02-01

    We briefly review systematic and comprehensive studies on several chlorine-substituted bent-core liquid crystal materials in their nematic phases. The results, in comparison to rod-shaped molecules, are both extraordinary and technologically significant. Specifically: a) Electrohydrodynamic instabilities provide unique patterns including well defined, periodic stripes and optically isotropic structures. b) Rheological measurements using different probe techniques (dynamic light scattering, pulsed magnetic field, electrorotation) reveal that the ratio of the flow and rotational viscosities are over two orders of magnitudes larger in bentcore than in calamitic materials which proves that the molecule shape and not its size is responsible for this behaviour. c) Giant flexoelectric response, as measured by dynamic light scattering and by directly probing the induced current when the material is subject to oscillatory bend deformation, turns out to be more than three orders of magnitude larger than in calamitics and 50 times larger than molecular shape considerations alone would predict. The magnitude of this effect renders these materials as promising candidates for efficient conversion between mechanical and electrical energy. d) The converse of this effect when the bent-core material sandwiched between plastic substrates 4 times thicker than the liquid crystal material provided displacements in the range of 100nm that is sensitive to the polarity of the applied field thus suggesting applications as beam steering and precision motion controls.

  16. Nematic long-range ordering of topological defects in active liquid crystals

    Science.gov (United States)

    Dunkel, Jorn; Oza, Anand

    2015-11-01

    Identifying the ordering principles of intracellular matter is key to understanding the physics of microbiological systems. Recent experiments demonstrated that ATP-driven microtubule-kinesin bundles can self-assemble into two-dimensional active liquid crystals that exhibit a rich creation and annihilation dynamics of topological defects, reminiscent of particle-pair production processes in quantum systems. This remarkable discovery has sparked considerable theoretical and experimental interest, yet a satisfactory mathematical description remains elusive. Here, we present and validate a continuum theory for this new class of active matter systems by merging universality ideas with the classical Landau-de Gennes theory. The resulting model agrees quantitatively with recently published data and, in particular, predicts correctly a previously unexplained regime of long-range nematic ordering of defects observed in experiments. Our analysis implies that active liquid crystals are governed by the same generic ordering principles that determine the non-equilibrium dynamics of dense bacterial suspensions and elastic bilayer materials. Moreover, the theory suggests an energetic analogy with strongly interacting quantum gases.

  17. Lasing in a nematic liquid crystal cell with an interdigitated electrode system

    Energy Technology Data Exchange (ETDEWEB)

    Shtykov, N M; Palto, S P; Umanskii, B A; Geivandov, A R [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-04-30

    Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of 3.75 μm and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and in the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of 33.1 ± 1.5° for TM modes and 21.8 ± 1.8° for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity. (lasers)

  18. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  19. Effects of size and ligand density on the chirality transfer from chiral-ligand-capped nanoparticles to nematic liquid crystals

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Nemati, Ahlam; Bergquist, Leah; Hegmann, Torsten

    2017-08-01

    Studies of chiroptical effects of chiral ligand-capped gold nanoparticles (Au NPs) are a fascinating and rapidly evolving field in nanomaterial research with promising applications of such chiral metal NPs in catalysis and metamaterials as well as chiral sensing and separation. The aim of our studies was to seek out a system that not only allows the detection and understanding of Au NP chirality but also permits visualization and ranking — considering size, shape and nature as well as density of the ligand shell — of the extent of chirality transfer to a surrounding medium. Nematic liquid crystal (N-LC) phases are an ideal platform to examine these effects, exhibiting characteristic defect textures upon doping with a chiral additive. To test this, we synthesized series of Au NPs capped with two structurally different chiral ligands and studied well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism (ICD) spectropolarimetry and polarized light optical microscopy (POM) confirmed that all Au NPs induce chiral nematic (N*-LC) phases, and measurements of the helical pitch as well as calculation of the helical twisting power (HTP) in various cell geometries allowed for an insightful ranking of the efficiency of chirality transfer of all Au NPs as well as their free ligands.

  20. Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions.

    Science.gov (United States)

    Palto, S P; Mottram, N J; Osipov, M A

    2007-06-01

    Using both numerical simulations and an approximate analytical theory we describe a flexoelectric-induced instability in a thin nematic liquid crystal layer with asymmetric boundary conditions subjected to an applied electric field. The dependence of the threshold value of the electric field on principal material parameters of the nematic liquid crystal and the director distribution in different regions of the cell have been studied in detail numerically. The results have been compared with a simple analytical theory that enables us to obtain explicit expressions for the threshold electric field and the period of modulation above the threshold. It has been found that in the hybrid aligned nematic cell with homeotropic anchoring on one surface and planar homogeneous anchoring on the other surface, a periodic flexoelectric-induced domain structure appears, above a critical threshold, with a chiral director distribution. The director rotates about the alignment axis when moving along a perpendicular direction in the plane of the cell. The absolute value of the threshold field has been found to depend on the direction of the field due to the initial symmetry of the hybrid aligned cell and the presence of flexoelectricity.

  1. Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal.

    Science.gov (United States)

    Babayan, E A; Budagovsky, I A; Shvetsov, S A; Smayev, M P; Zolot'ko, A S; Boiko, N I; Barnik, M I

    2010-12-01

    Interaction of light and ac electric fields with a nematic liquid crystal (NLC) doped with nanosized second-generation carbosilane codendrimers containing terminal azobenzene fragments has been studied. A first-order Freedericksz transition in the linearly polarized light, accompanied by an intrinsic bistability in a wide region, was observed. An additional ac electric field decreases the light-induced Freedericksz transition threshold and narrows the bistability region. Light illumination transforms the second-order electric-field-induced Freedericksz transition to a first-order one. The width of the bistability region increases with the light wave intensity. The theory of the interaction of light and ac electric fields with the dendrimer-doped NLCs is developed taking into account an additional (with respect to the undoped nematic host) dependence of the optical torque on the angle between the director and the light field.

  2. Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals.

    Science.gov (United States)

    Zhong, Shenghong; Jang, Chang-Hyun

    2014-09-15

    Glucose is an extremely important biomolecule, and the ability to sense it has played a significant role in facilitating the understanding of many biological processes. Here, we report a novel glucose sensor based on ultraviolet (UV)-treated nematic liquid crystals. Submerging UV-treated 4-cyano-4'-pentylbiphenyl (5CB) in a glucose solution (while carefully adjusting its pH to 7.5 with NaOH and HCl) triggered an optical response, from dark to bright, observed with a polarized microscope. Notably, 5CB was located inside a glucose oxidase (GOx)-modified gold grid. We exploited this pH-driven phenomenon to design a new glucose sensor. This device could detect as little as 1 pM analyte, which is 3 orders of magnitude lower than the detection limit of the most sensitive glucose sensor currently available. It also exhibits high selectivity due to GOx modification. Thus, this is a promising technique for glucose detection, not only for clinical diagnostics, but also for sensing low levels of glucose in a biological environment (e.g., single cells and bacterial cultures). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Low-frequency electrohydrodynamic convection patterns in nematic liquid crystal aligned using parallel-oriented nanofiber

    Science.gov (United States)

    Mahendra, Bhisma; Nugroho, Fahrudin; Yusuf, Yusril

    2018-02-01

    Parallel-aligned poly(vinyl alcohol) (PVA) nanofiber with a diameter of 240 ± 60 nm and an alignment parameter (S) of 0.95 ± 0.16 was obtained by a gap collector electrospinning that used copper (Cu) as a collector. The sandwiched cells (the horizontal-view and longitudinal-view) nematic liquid crystal was prepared by treating glass surfaces with the aligned PVA nanofiber to provide uniform anchoring of the director. When an electric field was applied to these samples, the electrohydrodynamic convection (EHC) pattern was observed. In the longitudinal-view cells, above a threshold voltage at low frequency, a typically low-frequency EHC rolls i.e., a Williams domain (WD) pattern was observed. By increasing the voltage, a fluctuating Williams domain (FWD) and grid patterns (GPs) could also be observed. In the transverse-view cells, at low-frequency regimes, WD, sawtooth patterned (STP), and dynamic scattering mode (DSM) patterns were observed. By replacing the conventional rubbing method with the use of parallel-aligned nanofibers, the well-known EHC phenomenon also could be observed.

  4. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order.

    Science.gov (United States)

    Kotikian, Arda; Truby, Ryan L; Boley, John William; White, Timothy J; Lewis, Jennifer A

    2018-03-01

    Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape-morphing LCEA architectures are fabricated, which undergo reversible planar-to-3D and 3D-to-3D' transformations on demand, that can lift significantly more weight than other LCEAs reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    Sun Xiudong; Pei Yanbo; Yao Fengfeng; Zhang Jianlong; Hou Chunfeng

    2007-01-01

    Photorefractive gratings were produced in a C 60 -doped nematic liquid crystal cell under the application of two coherent beams and a nonbiased sinusoidal ac electric field. The beam coupling and diffraction of the ac electric field assisted gratings were studied systematically. A stable asymmetric energy transference was obtained. Diffraction was observed when the angle (between the normal of the cell and the bisector of the writing beams) was 0 0 , and the dependence of diffraction efficiency on the peak-to-peak value of the ac voltage was similar to that at an incidence angle of 45 0 , suggesting that the role of the ac field was to facilitate the charge separation, and the space-charge field (SCF) originated predominantly from the diffusion of the ac electric field assisted photo-induced carriers under the application of nonuniform illumination and an applied ac field. The grating was produced by director reorientation induced by the cooperation of the SCF and the applied ac electric field. A self-erasing phenomenon was observed in this cell. An explanation in terms of the movement of two kinds of carriers with opposite signs was proposed

  6. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    Science.gov (United States)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  7. Numerical simulation of generation of optical vortices at light beam propagation through a layer of a nematic liquid crystal

    Science.gov (United States)

    Galev, Roman; Kudryavtsev, Alexey; Trashkeev, Sergey

    2017-10-01

    Light beam propagation through an anisotropic liquid crystal medium is numerically simulated. The Maxwell equations are solved by the FDTD method on computational grids with up to 6 . 108 nodes. Propagation of the fundamental mode HE11 of the fiber-optical light guide through a layer of a nematic liquid crystal filling a transverse gap in the optical fiber and containing a disclination. The behavior of the angular moment as a function of the layer thickness and disclination power is studied. System parameters that ensure the most effective generation of twisted light beams are found.

  8. Reorientational optical nonlinearity of nematic liquid-crystal cells near the nematic-isotropic phase transition temperature.

    Science.gov (United States)

    Tsai, Ming-Shan; Jiang, I-Min; Huang, Chi-Yen; Shih, Chia-Chi

    2003-12-01

    We address the reorientational optical nonlinearity of homogeneously aligned neamtic liquid-crystal (NLC) cells. The propagation of light in NLC cells depend strongly on temperature. At a temperature approaching the clearing point, an undulating beam and multifocal points are observed in the NLC cell by use of a polarizing optical microscope. Using a conoscopic technique, we observed novel consecutive concentric and parabolic patterns projected onto a screen. Optical energy is considered to compete with thermal energy to affect NLC's orientation and to generate singularities in the steady state. A model of the configuration of the liquid crystal's orientation is proposed.

  9. Reorientational optical nonlinearity of nematic liquid-crystal cells near the nematic-isotropic phase transition temperature

    Science.gov (United States)

    Tsai, Ming-Shan; Jiang, I.-Min; Huang, Chi-Yen; Shih, Chia-Chi

    2003-12-01

    We address the reorientational optical nonlinearity of homogeneously aligned neamtic liquid-crystal (NLC) cells. The propagation of light in NLC cells depend strongly on temperature. At a temperature approaching the clearing point, an undulating beam and multifocal points are observed in the NLC cell by use of a polarizing optical microscope. Using a conoscopic technique, we observed novel consecutive concentric and parabolic patterns projected onto a screen. Optical energy is considered to compete with thermal energy to affect NLC's orientation and to generate singularities in the steady state. A model of the configuration of the liquid crystal's orientation is proposed.

  10. Dynamic Response of Graphitic Flakes in Nematic Liquid Crystals: Confinement and Host Effect

    Directory of Open Access Journals (Sweden)

    Weiwei Tie

    2017-09-01

    Full Text Available Electric field-induced reorientation of suspended graphitic (GP flakes and its relaxation back to the original state in a nematic liquid crystal (NLC host are of interest not only in academia, but also in industrial applications, such as polarizer-free and optical film-free displays, and electro-optic light modulators. As the phenomenon has been demonstrated by thorough observation, the detailed study of the physical properties of the host NLC (the magnitude of dielectric anisotropy, elastic constants, and rotational viscosity, the size of the GP flakes, and cell thickness, are urgently required to be explored and investigated. Here, we demonstrate that the response time of GP flakes reorientation associated with an NLC host can be effectively enhanced by controlling the physical properties. In a vertical field-on state, higher dielectric anisotropy and higher elasticity of NLC give rise to quicker reorientation of the GP flakes (switching from planar to vertical alignment due to the field-induced coupling effect of interfacial Maxwell-Wagner polarization and NLC reorientation. In a field off-state, lower rotational viscosity of NLC and lower cell thickness can help to reduce the decay time of GP flakes reoriented from vertical to planar alignment. This is mainly attributed to strong coupling between GP flakes and NLC originating from the strong π-π interaction between benzene rings in the honeycomb-like graphene structure and in NLC molecules. The high-uniformity of reoriented GP flakes exhibits a possibility of new light modulation with a relatively faster response time in the switching process and, thus, it can show potential application in field-induced memory and modulation devices.

  11. Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell

    Directory of Open Access Journals (Sweden)

    M. Inam

    2011-12-01

    Full Text Available We report the observation of large changes in the electro-optical properties of nematic liquid crystal (NLC due to inclusion of small concentration of 10 nm diameter gold nanoparticles (GNPs. It is observed that GNPs lower switch-on voltage and also lower the relaxation frequency with applied voltage (AC field to NLC cell. These studies of GNP doped NLC cell have been done using optical interferometry and capacity measurement by impedance analyzer. The change in threshold voltage and relaxation frequency by doping GNPs in NLC is explained theoretically.

  12. Coupled effects of director orientations and boundary conditions on light induced bending of monodomain nematic liquid crystalline polymer plates

    International Nuclear Information System (INIS)

    You, Yue; Ding, Shurong; Huo, Yongzhong; Xu, Changwei

    2012-01-01

    A photo-chromic liquid crystal polymers (LCPs) is a smart material for large light-activated variation or bending to transfer luminous energy into mechanical energy. We study the light induced behavior by modeling planar and homeotropic nematic network polymer plates. We effectively illustrate some reported experimental outcomes and theoretically predict some possible bending patterns. This paper constructs an understanding between the bending behaviors and interactions among the alignments, aspect ratios and boundary conditions, etc. Our work provides information on optimizing light induced bending in the process of micro-opto-mechanical system (MOMS) design. (paper)

  13. Correlation length and chirality of the fluctuations in the isotropic phase of nematic and cholesteric liquid crystals.

    Science.gov (United States)

    Krich, Jacob J; Romanowsky, Mark B; Collings, Peter J

    2005-05-01

    Light-scattering measurements of the correlation length in the isotropic phase of a nematic liquid crystal reveal a temperature dependence following Landau-de Gennes theory for the isotropic phase with a bare correlation length smaller than has been measured in other liquid crystals. Similar measurements in a cholesteric liquid crystal demonstrate that the correlation length in the isotropic phase is larger than typically found in nematics and that the chirality of the fluctuations in the isotropic phase is slightly higher than the chirality of the cholesteric phase. Landau-de Gennes theory of the cholesteric phase describes the chirality in the cholesteric phase well but predicts that the chirality in the isotropic phase is temperature independent, which is not consistent with the data. There is a discontinuity in the chirality at the cholesteric-isotropic transition of about 15%, which is less than the predictions of Landau-de Gennes theory but more than the typical specific volume discontinuity at transitions to the isotropic phase. Except for a mismatch in the discontinuities at the transition, the chirality data resemble the temperature behavior of variables just below a critical point, in spite of the fact that this system is far from a critical point.

  14. Conoscopic evidence of the UV light-induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives

    Science.gov (United States)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Sridevi, S.; Hiremath, U. S.; Yelamaggad, C. V.; Prasad, S. K.

    2010-11-01

    A digitalized version of the standard method of conoscopy was employed to register the bend deformation of molecular orientation in homeotropic nematic layers caused by an in-plane applied DC electric field, and influenced by UV light illumination. Two guest-host systems prepared by mixing of a nematic liquid crystal and an azobenzene-containing photochromic liquid crystalline material featuring a longitudinal molecular asymmetry, were studied. Upon continuous UV irradiation, a photo-isomerization of the photochromic molecules occurs resulting in an enhanced flexoelectric response of the guest-host mixtures. The dependence of the photoflexoeffect on the field strength and UV light intensity was also examined.

  15. Conoscopic evidence of the UV light-induced flexoelectric effect in homeotropic layers of nematic liquid crystal doped with azobenzene derivatives

    International Nuclear Information System (INIS)

    Marinov, Y G; Hadjichristov, G B; Petrov, A G; Sridevi, S; Hiremath, U S; Yelamaggad, C V; Prasad, S K

    2010-01-01

    A digitalized version of the standard method of conoscopy was employed to register the bend deformation of molecular orientation in homeotropic nematic layers caused by an in-plane applied DC electric field, and influenced by UV light illumination. Two guest-host systems prepared by mixing of a nematic liquid crystal and an azobenzene-containing photochromic liquid crystalline material featuring a longitudinal molecular asymmetry, were studied. Upon continuous UV irradiation, a photo-isomerization of the photochromic molecules occurs resulting in an enhanced flexoelectric response of the guest-host mixtures. The dependence of the photoflexoeffect on the field strength and UV light intensity was also examined.

  16. Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2 D

    Science.gov (United States)

    Cavaterra, Cecilia; Rocca, Elisabetta; Wu, Hao

    2017-06-01

    In this paper, we investigate an optimal boundary control problem for a two dimensional simplified Ericksen-Leslie system modelling the incompressible nematic liquid crystal flows. The hydrodynamic system consists of the Navier-Stokes equations for the fluid velocity coupled with a convective Ginzburg-Landau type equation for the averaged molecular orientation. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the molecular orientation is subject to a time-dependent Dirichlet boundary condition that corresponds to the strong anchoring condition for liquid crystals. We first establish the existence of optimal boundary controls. Then we show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

  17. The effects of lateral halogen substituents on the low-temperature cybotactic nematic phase in oxadiazole based bent-core liquid crystals

    NARCIS (Netherlands)

    Jason Nguyen, [Unknown; Wonderly, William; Tauscher, Tatum; Harkins, Robin; Vita, Francesco; Portale, Giuseppe; Francescangeli, Oriano; Samulski, Edward T.; Scharrer, Eric

    2015-01-01

    We have previously demonstrated that the incorporation of lateral methyl groups on oxadiazole-based liquid crystals leads to relatively low-temperature cybotactic nematic phases which, in some cases, supercool to room temperature. We report here the synthesis and phase behaviour of related compounds

  18. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  19. Electrolyte effects on the stability of nematic and lamellar lyotropic liquid crystal phases: colligative and ion-specific aspects.

    Science.gov (United States)

    Dawin, Ute C; Lagerwall, Jan P F; Giesselmann, Frank

    2009-08-20

    We investigated the electrolyte effects on the stability of nematic and lamellar lyotropic liquid crystalline (LLC) phases formed by the simple anionic surfactant cesium pentadecafluorooctanoate (CsPFO) in water. To the lyotropic guest phase, at the constant CsPFO-mass fraction of 0.55, the series of electrolytes LiCl, NaCl, KCl, CsCl, CsI, and Cs(2)SO(4), respectively, was added at concentrations ranging from 0.5 to 2.5 mol %. With increasing electrolyte concentration two substantially different effects were observed. At low concentrations all added electrolytes caused an increase of the thermal stability of the LLC phases, favoring the lamellar phase over the nematic phase. This behavior is, at least qualitatively, understood within the packing parameter model. The extent of the stabilization clearly depends on the chemical nature of the added cation. For a given cation, however, the effect is colligative, i.e., independent of the chemical nature of the added anion. At higher salt concentrations a salting-out-like phase separation was induced. This effect is clearly ion-specific as the salting-out concentration varied for each cation following the order of the Hofmeister series for cations.

  20. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    Science.gov (United States)

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  1. Effect of Pyridine on the Mesophase of Teraryl Liquid Crystals: A New Series of Nematic Liquid Crystals Named 2-(4-Alkoxybiphen-4'-yl)-5-methylpyridines.

    Science.gov (United States)

    Chia, Win-Long; Huang, Yu-Sin

    2016-03-07

    A new series of teraryl 2-(4-alkoxybiphen-4'-yl)-5-methylpyridines (nO-PPPyMe, n = 3-8) nematic liquid crystal compounds, bearing a biphenylene core and a picoline terminus, were synthesized using a short two-step reaction, and overall yields between 34% and 38% were obtained. Spectral analysis results were in accordance with the expected structures. The thermotropic behavior of the teraryl liquid crystal compounds was investigated through polarized optical microscopy and differential scanning calorimetry. All compounds exhibited a solely enantiotropic nematic phase at the medium-high temperature range of 162.4-234.2 °C. Furthermore, the results for the nO-PPPyMe series were analyzed relative to three other compound series, mO-PPPyCN (m = 2-8), iO-PPQMe (i = 3-8) and xO-PPyPMe (x = 1-10). Consequently, the effect of pyridine on the mesophase of teraryl liquid crystals was demonstrated.

  2. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    Science.gov (United States)

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  3. A Simple Method to Measure the Twist Elastic Constant of a Nematic Liquid Crystal

    Science.gov (United States)

    2015-01-01

    as 180° super- twisted nematic (STN) cell. Next, we assume the helical twisting power ( HTP ) of chiral dopant is also unknown, same as K22. To solve...threshold voltages of these two 180° STN cells, both K22 and HTP can be obtained simultaneously. In the whole process, there is no need to measure...Equation (1), if we sub- stitute ϕ = π and pitch length P = 1/( HTP · c) (where c is chiral concentration), then the critical voltage can be rewritten

  4. Stereochemical control of nonamphiphilic lyotropic liquid crystals: chiral nematic phase of assemblies separated by six nanometers of aqueous solvents.

    Science.gov (United States)

    Yang, Sijie; Wang, Bing; Cui, Dawei; Kerwood, Deborah; Wilkens, Stephan; Han, Junjie; Luk, Yan-Yeung

    2013-06-13

    Unlike conventional thermotropic and lyotropic liquid crystals, nonamphiphilic lyotropic liquid crystals consist of hydrated assemblies of nonamphiphilic molecules that are aligned with a separation of about 6 nm between assemblies in an aqueous environment. This separation raises the question of how chirality, either from chiral mesogens or chiral dopants, would impact the phase as the assemblies that need to interact with each other are about 6 nm apart. Here, we report the synthesis of three stereoisomers of disodium chromonyl carboxylate, 5'DSCG-diviol, and the correlation between the molecular structure, bulk assembly, and liquid crystal formation. We observed that the chiral isomers (enantiomers 5'DSCG-(R,R)-diviol and 5'DSCG-(S,S)-diviol) formed liquid crystals while the achiral isomer 5'DSCG-meso-diviol did not. Circular dichroism indicated a chiral conformation with bisignate cotton effect. The nuclear Overhauser effect in proton NMR spectroscopy revealed conformations that are responsible for liquid crystal formation. Cryogenic transmission electron microscopy showed that chiral 5'DSCG-diviols form assemblies with crossings. Interestingly, only planar alignment of the chiral nematic phase was observed in liquid crystal cells with thin spacers. The homeotropic alignment that permitted a fingerprint texture was obtained only when the thickness of the liquid crystal cell was increase to above ~500 μm. These studies suggest that hydrated assemblies of chiral 5'DSCG-diviol can interact with each other across a 6 nm separation in an aqueous environment by having a twist angle of about 0.22° throughout the sample between the neighboring assemblies.

  5. Helical phase of chiral nematic liquid crystals as the Bianchi VII0 group manifold.

    Science.gov (United States)

    Gibbons, G W; Warnick, C M

    2011-09-01

    We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the Bianchi VII(0) group manifold, of which we give a full account. The Joets-Ribotta metric governing propagation of the extraordinary rays is invariant under the simply transitive action of the universal cover E(2) of the three-dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant metric on this Bianchi type VII(0) group. We are able to solve, by separation of variables, both the wave equation and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu's equation, and the latter to the quadrantal pendulum equation. We discuss Maxwell's equations for uniaxial optical materials where the configuration is invariant under a group action and develop a formalism to take advantage of these symmetries. The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation optics. We show that for a chiral nematic in its helical phase Maxwell's equations reduce to a generalized Mathieu equation. Our results may also be relevant to helical phases of some magnetic materials and to light propagation in certain cosmological models.

  6. Helical phase of chiral nematic liquid crystals as the Bianchi VII0 group manifold

    Science.gov (United States)

    Gibbons, G. W.; Warnick, C. M.

    2011-09-01

    We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the Bianchi VII0 group manifold, of which we give a full account. The Joets-Ribotta metric governing propagation of the extraordinary rays is invariant under the simply transitive action of the universal cover Ẽ(2) of the three-dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant metric on this Bianchi type VII0 group. We are able to solve, by separation of variables, both the wave equation and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu’s equation, and the latter to the quadrantal pendulum equation. We discuss Maxwell’s equations for uniaxial optical materials where the configuration is invariant under a group action and develop a formalism to take advantage of these symmetries. The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation optics. We show that for a chiral nematic in its helical phase Maxwell’s equations reduce to a generalized Mathieu equation. Our results may also be relevant to helical phases of some magnetic materials and to light propagation in certain cosmological models.

  7. New theories for smectic and nematic liquid-crystal polymers: Backbone LCPs [liquid crystalline polymers] and their mixtures and side-chain LCPs

    International Nuclear Information System (INIS)

    Dowell, F.

    1987-01-01

    A summary of predictions and explanations from statistical-physics theories for both backbone and side-chain liquid crystalline polymers (LCPs) and for mixtures with backbone LCPs are presented. Trends in the thermodynamic and molecular ordering properties have been calculated as a function of pressure, density, temperature, and molecule chemical structures (including degree of polymerization and the following properties of the chemical structures of the repeat units: lengths and shapes, intra-chain rotation energies, dipole moments, site-site polarizabilities and Lennard-Jones potentials, etc.) in nematic and multiple smectic-A LC phases and in the isotropic liquid phase. The theoretical results are found to be in good agreement with existing experimental data. These theories can also be applied to combined LCPs. Since these theories have no ad hoc or arbitrarily adjustable parameters, these theories can be used to design new LCPs and new solvents as well as to predict and explain properties. 27 refs., 4 tabs

  8. Non-Fermi liquid transport phenomena in SrIrO3 thin films: Role of disorder in a nematic phase

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Ki-Seok

    Recently, non-Fermi liquid transport phenomena have been found in SrIrO3 thin films on various substrates: Increasing the lattice mismatch between SrIrO3 thin films and substrates, the exponent α of electrical resistivity Δρ Tα shows the variation from α = 4/5, α = 1, to α = 3/2. Such experiments confirmed that these thin films lie away from a magnetic quantum critical point. On the other hand, we suggest that the presence of strong spin orbit coupling may give rise to an electron nematic phase. As a result of combined effects between quantum criticality of electron nematicity and nonmagnetic quenched disorders, we suspect that the continuous evolution of the power-law exponent may be involved with quantum Griffiths effects. Performing the renormalization group analysis, we discuss a possible origin of this non-Fermi liquid physics.

  9. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal

    International Nuclear Information System (INIS)

    Smalyukh, I.I.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N.; Lavrentovich, O.D.

    2005-01-01

    We demonstrate optical trapping and manipulation of transparent microparticles suspended in a thermotropic nematic liquid crystal with low birefringence. We employ the particle manipulation to measure line tension of a topologically stable disclination line and to determine colloidal interaction of particles with perpendicular surface anchoring of the director. The three-dimensional director fields and positions of the particles manipulated by laser tweezers are visualized by fluorescence confocal polarizing microscopy

  10. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

    KAUST Repository

    Ball, John M.

    2010-07-20

    We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime. Copyright © Taylor & Francis Group, LLC.

  11. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field

    Directory of Open Access Journals (Sweden)

    Emil Petrescu

    2017-11-01

    Full Text Available The dynamic behavior of a mixture of 4-cyano-4′-pentylbiphenyl (5CB with 1% CoFe2O4 nanoparticles was analyzed. Experimental data indicate a high stability of the nematic director in the mixture compared to a reference 5CB sample in the magnetic field. The ferrite nanoparticles agglomerate forming long chains as observed in polarized microscopy images. These chains have a very high influence on the magneto-optic effect of the cell. When the magnetic field is applied on the mixture, the chains tend to align with the field direction but, due to their large size, they remain oriented obliquely between the support plates. Thus, the nematic molecules anchored on their surface can not reorient with the field and only a small distortion angle of the liquid crystal molecular director is observed. A comparison with a previously developed theoretical model confirms this small deviation.

  12. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    International Nuclear Information System (INIS)

    Burnell, E. Elliott; Weber, Adrian C. J.; Dong, Ronald Y.; Meerts, W. Leo; Lange, Cornelis A. de

    2015-01-01

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche + gauche + , pp, and gauche + gauche − , pm), the isotropic trans-gauche energy difference E tg and its temperature coefficient E tg ′ are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche + gauche − conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase

  13. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  14. Polarization-resolved angular patterns of nematic liquid crystal cells: Topological events driven by incident light polarization

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Egorov, Roman I.; Chigrinov, Vladimir G.

    2008-09-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization-resolved angular (conoscopic) patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C points (points of circular polarization) and L lines (lines of linear polarization). For the homeotropically aligned cell, the Stokes polarimetry technique is used to measure the polarization resolved conoscopic patterns at different values of the ellipticity of the incident light, γell(inc) , impinging onto the cell. Using the exact analytical expressions for the transfer matrix we show that variations of the ellipticity, γell(inc) , induce transformations of the angular pattern exhibiting the effect of avoided L -line crossings and characterized by topological events such as creation and annihilation of the C points. The predictions of the theory are found to be in good agreement with the experimental results.

  15. The influence of disorder on thermotropic nematic liquid crystals phase behavior.

    Science.gov (United States)

    Popa-Nita, Vlad; Gerliĉ, Ivan; Kralj, Samo

    2009-09-10

    We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  16. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    Directory of Open Access Journals (Sweden)

    Samo Kralj

    2009-09-01

    Full Text Available We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  17. Experimental study of coarsening dynamics of the zigzag wall in a nematic liquid crystal with negative dielectric anisotropy.

    Science.gov (United States)

    Nagaya, Tomoyuki; Gilli, Jean-Marc

    2002-05-01

    When a homeotropically aligned nematic liquid crystal cell is placed above two permanent magnets forming a magnetic quadrupole, a straight splay-bend wall, or a so-called Ising wall, is formed. With a material of positive dielectric anisotropy, it has been shown that the application of an electric field perpendicular to the plates leads to a zigzag instability of the wall, exclusively related to the elastic anisotropy of the liquid crystal. In this case, the coarsening process of the zigzag is very slow, which in turn leads to experimental difficulties concerning its quantitative investigation. If a material of negative dielectric anisotropy is used under an electric field with low voltage and low frequency, two convective rolls appear along the Ising wall due to the charge focusing effect, which is also responsible, at a higher voltage in the homogenous tilted regions, for the appearance of Williams domains electrohydrodynamic instability. If the voltage is higher than a threshold value, the straight Ising wall spontaneously breaks into a zigzag shape and a fast coarsening of the zigzag proceeds, associated with the annihilation of two neighboring vertices. In the present paper, the coarsening dynamics of this system, which can be considered as a one-dimensional Ising situation, are investigated experimentally. At late times, the average width of the zigzag increases logarithmically with time. This finding is consistent with the theory and also with the numerical simulation of a one-dimensional Cahn-Hilliard situation having a conserved order parameter. The scaling analysis of size distribution of the Ising domain, the shape of the power spectrum, and of the correlation function of the Ising order parameter, as well as the number density correlation functions of kinks also confirms that the dynamical scaling law predicted for one-dimensional conservative systems holds for the coarsening process. As supposed from symmetry arguments, it is confirmed that this

  18. Poincaré-sphere representation of phase-mostly twisted nematic liquid crystal spatial light modulators

    OpenAIRE

    Durán Bosch, Vicente Andrés; Clemente Pesudo, Pedro Javier; Martínez León, Lluís; Climent Jordà, Vicent; Lancis Sáez, Jesús

    2009-01-01

    We establish necessary conditions in order to design a phase-only wave front modulation system from a liquid crystal display. These conditions determine the dependence of the polarization state of the light emerging from the display on the addressing gray level. The analysis, which is carried out by means of the coherence-matrix formalism, includes the depolarization properties of the device. Two different types of polarization distributions at the output of the liquid crystal cel...

  19. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals.

    Science.gov (United States)

    Armas-Pérez, Julio C; Li, Xiao; Martínez-González, José A; Smith, Coleman; Hernández-Ortiz, J P; Nealey, Paul F; de Pablo, Juan J

    2017-10-31

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquid-crystal-surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  20. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  1. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C. [Institute; División; Li, Xiao [Institute; Martínez-González, José A. [Institute; Smith, Coleman [Institute; Hernández-Ortiz, J. P. [Departamento; Nealey, Paul F. [Institute; Materials; de Pablo, Juan J. [Institute; Materials

    2017-08-17

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  2. Smectic-A Order at the Surface of a Nematic Liquid Crystal

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Christensen, Finn Erland; Pershan, P. S.

    1982-01-01

    A novel geometry in which it is possible to do x-ray diffraction from a horizontal surface of fluids is applied to liquid crystals. A large-diameter drop of octyloxycyanobiphenyl (8OCB) on a glass plate treated for homeotropic alignment yields perfect alignment of the smectic-A layers at the top...

  3. Calculation of the director configuration of nematic liquid crystals by the simulated-anneal method

    NARCIS (Netherlands)

    Heynderickx, I.; Raedt, H. De

    1988-01-01

    A new procedure for computing the equilibrium director pattern in a liquid-crystal-display cell subjected to an applied voltage is presented. It uses the simulated-anneal method which is based on the Metropolis Monte Carlo algorithm. The usefulness of the technique is illustrated by the simulation

  4. The dependency of twist-bend nematic liquid crystals on molecular structure: a progression from dimers to trimers, oligomers and polymers.

    Science.gov (United States)

    Mandle, Richard J

    2016-09-28

    This article gives an overview on recent developments concerning the twist-bend nematic phase. The twist-bend nematic phase has been discussed as the missing link between the uniaxial nematic mesophase (N) and the helical chiral nematic phase (N*). After an introduction discussing the key physical properties of the N TB phase and the methods used to identify the twist-bend nematic mesophase this review focuses on structure property relationships and molecular features that govern the incidence of this phase.

  5. A computational model for domain structure evolution of nematic liquid crystal elastomers

    Science.gov (United States)

    Wang, Hongbo; Oates, William S.

    2009-03-01

    Liquid crystal elastomers combine both liquid crystals and polymers, which gives rise to many fascinating properties, such as unparalleled elastic anisotropy, photo-mechanics and flexoelectric behavior. The potential applications for these materials widely range from wings for micro-air vehicles to reversible adhesion skins for mobile climbing robots. However, significant challenges remain to understand the rich range of microstructure evolution exibited by these materials. This paper presents a model for domain structure evolution within the Ginzburg-Landau framework. The free energy consists of two parts: the distortion energy introduced by Ericksen [1] and a Landau energy. The finite element method has been implemented to solve the governing equations developed. Numerical examples are given to demonstrate the microstructure evolution.

  6. Studying the orientation of bio-objects by nematic liquid crystals

    Science.gov (United States)

    Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.

    2017-05-01

    We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.

  7. A new approach to non-isothermal models for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Frémond, M.; Rocca, E.; Schimperna, G.

    2012-01-01

    Roč. 205, č. 2 (2012), s. 651-672 ISSN 0003-9527 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : liquid crystals * non-isothermal model * flows Subject RIV: BA - General Mathematics Impact factor: 2.292, year: 2012 http://www.springerlink.com/content/cl205h73077jr810/

  8. Evolution of non-isothermal Landau-De Gennes nematic liquid crystals flows with singular potential

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Rocca, E.; Schimperna, G.; Zarnescu, A.

    2014-01-01

    Roč. 12, č. 2 (2014), s. 317-343 ISSN 1539-6746 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : liquid crystals * global existence of weak solutions * Navier-Stokes equations Subject RIV: BA - General Mathematics Impact factor: 1.120, year: 2014 http://intlpress.com/site/pub/pages/journals/items/cms/content/vols/0012/0002/a006/index.html

  9. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    Science.gov (United States)

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  10. Conoscopic observation of director reorientation during Poiseuille flow of a nematic liquid crystal

    Science.gov (United States)

    Holmes, C. J.; Cornford, S. L.; Sambles, J. R.

    2009-10-01

    Director reorientation under pressure driven (Poiseuille) flow is observed conoscopically for the liquid crystal 5CB aligned at an azimuthal angle of 45° to the direction of flow. A polyimide surface treatment (AL 1254) is used to promote planar homogeneous alignment and rubbed to produce an initial azimuthal alignment angle ϕ0. Conoscopic interference figure rotation is documented as a function of flow rate and compared to that produced from numerical models using Leslie-Ericksen-Parodi theory. Model and data show excellent agreement.

  11. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film

    International Nuclear Information System (INIS)

    Yu Tao; Peng Zenghui; Ruan Shengping; Xuan Li

    2004-01-01

    It was found in this work that photosensitive monomers, bisphenol A dicinnamate ester and hexafluorobiphenol a dicinnamate ester were crosslinked under irradiation of linearly polarized ultraviolet light. The exposed films induced homogeneous and homeotropic alignment of liquid crystals (LC), respectively. We verified through experiments that it was fluorinated groups that caused the generation of LC homeotropic alignment on the crosslinked film. Photoreaction process was revealed by Fourier transform infrared spectra. There was no clear morphological anisotropy on these aligned films observed through atomic force microscope analysis. The surface energies were measured and homeotropic alignment reason was discussed in this work

  12. Bifurcation properties of nematic liquid crystals exposed to an electric field: Switchability, bistability, and multistability

    KAUST Repository

    Cummings, L. J.

    2013-07-01

    Bistable liquid crystal displays (LCDs) offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine the basic physical principles involved in generating multiple stable states and the switching between these states. We consider a two-dimensional geometry in which variable surface anchoring conditions are used to control the steady-state solutions and explore how different anchoring conditions can influence the number and type of solutions and whether or not switching is possible between the states. We find a wide range of possible behaviors, including bistability, tristability, and tetrastability, and investigate how the solution landscape changes as the boundary conditions are tuned. © 2013 American Physical Society.

  13. Towards an optimal model for a bistable nematic liquid crystal display device

    KAUST Repository

    Cummings, L. J.

    2013-03-13

    Bistable liquid crystal displays offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine a theoretical model of a possible bistable device, originally proposed by Cummings and Richardson (Euro J Appl Math 17:435-463 2006), and explore means by which it may be optimized, in terms of optical contrast, manufacturing considerations, switching field strength, and switching times. The compromises inherent in these conflicting design criteria are discussed. © 2013 Springer Science+Business Media Dordrecht.

  14. Trajectory attractors for the Sun–Liu model for nematic liquid crystals in 3D

    International Nuclear Information System (INIS)

    Frigeri, Sergio; Rocca, Elisabetta

    2013-01-01

    In this paper we prove the existence of a trajectory attractor (in the sense of Chepyzhov and Vishik) for a nonlinear PDE system obtained from a 3D liquid crystal model accounting for stretching effects. The system couples a nonlinear evolution equation for the director d (introduced in order to describe the preferred orientation of the molecules) with an incompressible Navier–Stokes equation for the evolution of the velocity field u. The technique is based on the introduction of a suitable trajectory space and of a metric accounting for the double-well type nonlinearity contained in the director equation. Finally, a dissipative estimate is obtained by using a proper integrated energy inequality. Both the cases of (homogeneous) Neumann and (non-homogeneous) Dirichlet boundary conditions for d are considered. (paper)

  15. Simultaneous determination of ordinary and extraordinary refractive index dispersions of nematic liquid crystals in the visible and near-infrared regions from an interference spectrum

    Science.gov (United States)

    Ozaki, Ryotaro; Nishi, Koji; Kan, Takayuki; Kadowaki, Kazunori

    2016-10-01

    An improved interference method is proposed to determine ordinary and extraordinary refractive index dispersions of nematic liquid crystals (LCs). In this method, an LC cell coated with a thin metal layer is used as a Fabry-Perot interferometer, which shows us a sharp transmission fringe. To ensure high reliability, the wavelength dispersion of the refractive index of the metal is taken into account in fitting calculation. In spite of measuring ordinary and extraordinary components, the LC cell, polarizers, and other equipment are not rotated during the experiment. The index evaluation from a single spectrum avoids errors depending on the measurement position owing to non-uniformities of molecular orientation and cell thickness because we can obtain the two indices at exactly the same position. This system can adapt to a wide frequency range and does not require any specific wavelength light source or laser. We demonstrate the determination of ordinary and extraordinary refractive index dispersions of a nematic liquid crystal in the visible and near-infrared regions. Furthermore, we quantitatively reproduce the measured spectrum by calculation using the measured refractive indices.

  16. Amplification of the Capacitance Containing Nematic Liquid Crystal Embedded with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shunsuke Kobayashi

    2012-01-01

    Full Text Available Herein, we report the dielectric properties of liquid crystal cells embedded with the nanoparticles of Pd, where each of which is covered with a diffusion cloud. It is shown that an amplification of the capacitors with these media occurs with the gain, Ac=12.5, when the concentration of nanoparticles is 0.3 wt% and in the frequency region below the dielectric relaxation frequency, 158.5 Hz. This phenomenon is explained by an equivalent circuit model together with a compatible explanation of the dielectric strength and the relaxation time. It is claimed that the occurrence of the capacitance amplification may be attributed to a special nature of the oscillating extra charges, which appear in the region between the host medium and inclusion, and produces an effective negative dielectric constant of the special nanoparticles. This explanation was made by formulating an independent auxiliary equivalent circuit equation that enables to determine the numerical condition of the production of the negativity in the dielectric constant of inclusions (nanoparticles, and, thus, we succeeded in getting the numerical value of this dielectric constant and that of the gain of the capacitance amplification.

  17. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    Science.gov (United States)

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; Sokolov, Andrey; Aranson, Igor S.; Lavrentovich, Oleg D.

    2017-05-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. In the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90° the new direction of swimming does not correlate with the previous swimming direction.

  18. Photo-alignment of low-molecular mass nematic liquid crystals on photochemically bifunctional chalcone-epoxy film by irradiation of a linearly polarized UV light

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong Hoon; Cha, Young Kwan [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-04-01

    Photocrosslinkable chalcone-epoxy compound comprising 1,3-bis-(4-hydroxy-phenyl)-propenone was synthesized for fabricating the photo-alignment layer of liquid crystals. Chalcone group was introduced into the main chain unit of the epoxy oligomer. We observed a photodimerization behavior and an optical anisotropy of this material by irradiation of a linearly polarized UV(LP-UV) light. With a trace amount of cationic photo initiator (TRS-HFA), polymerization of epoxy groups was also conducted at the similar wavelength range used for photodimerization . Linearly polarized UV irradiation on the chalcone-epoxy films with cationic photoinitiator induced optical anisotropy of the film and the resultant film can be used for alignment layers for low molecular weight nematic liquid crystals.

  19. Photo-alignment of low-molecular mass nematic liquid crystals on photochemically bifunctional chalcone-epoxy film by irradiation of a linearly polarized UV light

    CERN Document Server

    Choi, D H

    2002-01-01

    Photocrosslinkable chalcone-epoxy compound comprising 1,3-bis-(4-hydroxy-phenyl)-propenone was synthesized for fabricating the photo-alignment layer of liquid crystals. Chalcone group was introduced into the main chain unit of the epoxy oligomer. We observed a photodimerization behavior and an optical anisotropy of this material by irradiation of a linearly polarized UV(LP-UV) light. With a trace amount of cationic photo initiator (TRS-HFA), polymerization of epoxy groups was also conducted at the similar wavelength range used for photodimerization . Linearly polarized UV irradiation on the chalcone-epoxy films with cationic photoinitiator induced optical anisotropy of the film and the resultant film can be used for alignment layers for low molecular weight nematic liquid crystals.

  20. Pattern Formation in Active Nematics

    Science.gov (United States)

    Mishra, Prashant

    This thesis presents analytical and numerical studies of the nonequilibrium dynamics of active nematic liquid crystals. Active nematics are a new class of liquid crystals consisting of elongated rod-like units that convert energy into motion and spontaneously organize in large-scale structures with orientational order and self-sustained flows. Examples include suspensions of cytoskeletal filaments and associated motor proteins, monolayers of epithelial cells plated on a substrate, and bacteria swimming in a nematic liquid crystal. In these systems activity drives the continuous generation and annihilation of topological defects and streaming flows, resulting in spatio-temporal chaotic dynamics akin to fluid turbulence, but that occurs in a regime of flow of vanishing Reynolds number, where inertia is negligible. Quantifying the origin of this nonequilibrium dynamics has implications for understanding phenomena ranging from bacterial swarming to cytoplasmic flows in living cells. After a brief review (Chapter 2) of the properties of equilibrium or passive nematic liquid crystals, in Chapter 3 we discuss how the hydrodynamic equations of nematic liquid crystals can be modified to account for the effect of activity. We then use these equations of active nemato-hydrodynamics to characterize analytically the nonequilibrium steady states of the system and their stability. We supplement the analytical work with numerical solution of the full nonlinear equations for the active suspension and construct a phase diagram that identifies the various emergent patterns as a function of activity and nematic stiffness. In Chapter 4 we compare results obtained with two distinct hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses. This work provides a unified

  1. Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy

    International Nuclear Information System (INIS)

    Hinov, H.P.; Vistin, L.K.

    1979-01-01

    Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields, in nematic liquid crystal layers with negative dielectric anisotropy - MBBA and 440 are obtained experimentally and investigated. The basic experimental results are: the easy reproducibility of the parallel domains particularly in tilted LC layers 5-90μm with weak anchoring, synthesized on Schiff bases and when the cover glasses are treated with a surfactant - common soap; the creation of cross-like domains in thin homeotropic layers; the demonstration that these domains arise in the cathode region due to the strong inhomogeneous electric field which brings about a periodic bend-splay usually divided by disclinations. Out of the known electroslatic and electrohydrodynamic mechanisms only the flexoelectric effect, due to the gradient electric field, can explain the initial formation of these domains

  2. A new family of four-ring bent-core nematic liquid crystals with highly polar transverse and end groups

    Directory of Open Access Journals (Sweden)

    Kalpana Upadhyaya

    2013-01-01

    Full Text Available Non-symmetrically substituted four-ring achiral bent-core compounds with polar substituents, i.e.., chloro in the bent or transverse direction in the central core and cyano in the lateral direction at one terminal end of the molecule, are designed and synthesized. These molecules possess an alkoxy chain attached at only one end of the bent-core molecule. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing microscopy. All the compounds exhibit a wide-ranging monotropic nematic phase.

  3. Biaxial compression test technique

    Science.gov (United States)

    Hansard, E. T.

    1975-01-01

    Fixture and technique have been developed for predicting behavior of stiffened skin panels under biaxial compressive loading. Tester can load test panel independently in longitudinal and transverse directions. Data can also be obtained in combined mode.

  4. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    Science.gov (United States)

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-03-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71+/-5 l m-2 hr-1 bar-1 for 150+/-15 nm thick membranes).

  5. Flexoelectricity in nematic domain walls.

    Science.gov (United States)

    Elston, Steve J

    2008-07-01

    Flexoelectric effects are studied in the domain walls of a nematic liquid crystal device showing the Freedericksz transition. Walls parallel to the alignment direction have a strong twist distortion and an electro-optic effect dominated by e1-e3 is seen. Walls perpendicular to the alignment direction have a strong splay-bend distortion and an electro-optic effect dominated by e1+e3 is seen. This allows the study of both flexoelectric coefficient combinations in a single device.

  6. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  7. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  8. Transient Splitting of Conoscopic Isogyres of a Uniaxial Nematic

    Science.gov (United States)

    Kim, Young-Ki; Senuk, Bohdan; Tortora, Luana; Sprunt, Samuel; Lehmann, Matthias; Lavrentovich, Oleg D.

    2012-02-01

    The phase identification is often based on conoscopic observations of homeotropic cells: A uniaxial nematic produces a pattern with crossed isogyres, while the biaxial nematic shows a split of isogyres. We demonstrate that the splitting of isogyres occurs even when the material remains in the uniaxial nematic phase. In particular, in the bent core material J35, splitting of isogyres is caused by change of the temperature. The effect is transient and the isogyres return to a uniaxial (crossed) configuration after a certain time that depends on sample thickness, temperature, and rate of temperature change; the time varies from a few seconds to tens of hours. The transient splitting is caused by the temperature-induced material flow that triggers a (uniaxial) director tilt in the cell. The flows and the director tilt are demonstrated by the CARS microscopy and fluorescent confocal polarizing microscopy (FCPM). This transient effect is general and can be observed even in E7 and 5CB. The effect should be considered in textural identifications of potential biaxial nematic materials.

  9. Uniaxial and biaxial structures in the elastic Maier-Saupe model

    Science.gov (United States)

    Petri, A.; Liarte, D. B.; Salinas, S. R.

    2018-01-01

    We perform statistical mechanics calculations to analyze the global phase diagram of a fully connected version of a Maier-Saupe-Zwanzig lattice model with the inclusion of couplings to an elastic strain field. We point out the presence of uniaxial and biaxial nematic structures, depending on temperature T and on the applied stress σ . Under uniaxial extensive tension, applied stress favors uniaxial orientation, and we obtain a first-order boundary along which there is a coexistence of two uniaxial paranematic phases, and which ends at a simple critical point. Under uniaxial compressive tension, stress favors biaxial orientation; for small values of the coupling parameters, the first-order boundary ends at a tricritical point, beyond which there is a continuous transition between a paranematic and a biaxially ordered structure. For some representative choices of the model parameters, we obtain a number of analytic results, including the location of critical and tricritical points and the line of stability of the biaxial phase.

  10. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: application to 1H NMR reversion experiments in nematic liquid crystals.

    Science.gov (United States)

    Segnorile, H H; Zamar, R C

    2013-10-21

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and

  11. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    Science.gov (United States)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  12. Modeling elastic instabilities in nematic elastomers

    Science.gov (United States)

    Mbanga, Badel L.; Ye, Fangfu; Selinger, Jonathan V.; Selinger, Robin L. B.

    2010-11-01

    Liquid crystal elastomers are cross-linked polymer networks covalently bonded with liquid crystal mesogens. In the nematic phase, due to strong coupling between mechanical strain and orientational order, these materials display strain-induced instabilities associated with formation and evolution of orientational domains. Using a three-dimensional finite element elastodynamics simulation, we investigate one such instability, the onset of stripe formation in a monodomain film stretched along an axis perpendicular to the nematic director. In our simulation, we observe the formation of striped domains with alternating director rotation. This model allows us to explore the fundamental physics governing dynamic mechanical response of nematic elastomers and also provides a potentially useful computational tool for engineering device applications.

  13. The structure of nematic model of liquid crystal with cylindrical and ellipsoidal molecules confined in between walls

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2004-12-01

    Full Text Available   The density functional theory analogue of Percus Yevick (PY and Hyper-Netted chain (HNC has been used to write the grand potential of a liquid with cylindrical and ellipsoidal molecules. The integral equations for the density can be obtained by minimizing the grand potential with respect to the density. Some kinds of liquid crystals, can have the cylindrical or ellipsoidal rigid molecules. In this study we have calculated the density profile of this kind of liquids confined between hard walls and we compared the results. As it is seen from the graphs of the density profiles the molecules can be arranged as layers with respect to the walls.

  14. Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of I, O, and T Matter

    Directory of Open Access Journals (Sweden)

    Ke Liu (刘科 子竞

    2016-10-01

    Full Text Available The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D_{∞h} or D_{2h} symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of “generalized nematics” might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I, O, and T symmetric matter.

  15. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  16. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  17. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  18. Field Induced Memory Effects in Random Nematics

    Directory of Open Access Journals (Sweden)

    Amid Ranjkesh

    2014-01-01

    Full Text Available We studied numerically external field induced memory effects in randomly perturbed nematic liquid crystals. Random anisotropy nematic-type lattice model was used. The impurities imposing orientational disorder were randomly spatially distributed with the concentration p below the percolation threshold. Simulations were carried for finite temperatures, where we varied p, interaction strength between LC molecules, and impurities and external field B. In the {B,T} plane we determined lines separating short range—quasi long range and quasi long range—long range order. Furthermore, crossover regime separating external field and random field dominated regime was estimated. We calculated remanent nematic ordering in samples at B=0 as a function of the previously experienced external field strength B.

  19. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    Directory of Open Access Journals (Sweden)

    Sang-In Baek

    2015-09-01

    Full Text Available Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  20. Tetrahedral Order in Liquid Crystals

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R.

    2016-10-01

    We review the impact of tetrahedral order on the macroscopic dynamics of bent-core liquid crystals. We discuss tetrahedral order comparing with other types of orientational order, like nematic, polar nematic, polar smectic, and active polar order. In particular, we present hydrodynamic equations for phases, where only tetrahedral order exists or tetrahedral order is combined with nematic order. Among the latter, we discriminate between three cases, where the nematic director (a) orients along a fourfold, (b) along a threefold symmetry axis of the tetrahedral structure, or (c) is homogeneously uncorrelated with the tetrahedron. For the optically isotropic T d phase, which only has tetrahedral order, we focus on the coupling of flow with, e.g., temperature gradients and on the specific orientation behavior in external electric fields. For the transition to the nematic phase, electric fields lead to a temperature shift that is linear in the field strength. Electric fields induce nematic order, again linear in the field strength. If strong enough, electric fields can change the tetrahedral structure and symmetry leading to a polar phase. We briefly deal with the T phase that arises when tetrahedral order occurs in a system of chiral molecules. To case (a), defined above, belong (i) the non-polar, achiral, optically uniaxial D2d phase with ambidextrous helicity (due to a linear gradient free energy contribution) and with orientational frustration in external fields, (ii) the non-polar tetragonal S4 phase, (iii) the non-polar, orthorhombic D2 phase that is structurally chiral featuring ambidextrous chirality, (iv) the polar orthorhombic C2v phase, and (v) the polar, structurally chiral, monoclinic C2 phase. Case (b) results in a trigonal C3v phase that behaves like a biaxial polar nematic phase. An example for case (c) is a splay bend phase, where the ground state is inhomogeneous due to a linear gradient free energy contribution. Finally, we discuss some experiments

  1. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  2. Flexoelectricity in chiral nematic liquid crystals as a driving mechanism for the twist-bend and splay-bend modulated phases.

    Science.gov (United States)

    Vaupotič, Nataša; Čepič, Mojca; Osipov, Mikhail A; Gorecka, Ewa

    2014-03-01

    We present a continuum theoretical model describing the impact of chirality on nematic systems with large flexoelectricity. As opposed to achiral materials, where only one type of the modulated structure can exist in a given material, the model predicts that chirality can stabilize several modulated phases, which have already been observed experimentally [A. Zep et al., J. Mater. Chem. C 1, 46 (2013)].

  3. Flexoelectricity in chiral nematic liquid crystals as a driving mechanism for the twist-bend and splay-bend modulated phases

    Science.gov (United States)

    Vaupotič, Nataša; Čepič, Mojca; Osipov, Mikhail A.; Gorecka, Ewa

    2014-03-01

    We present a continuum theoretical model describing the impact of chirality on nematic systems with large flexoelectricity. As opposed to achiral materials, where only one type of the modulated structure can exist in a given material, the model predicts that chirality can stabilize several modulated phases, which have already been observed experimentally [A. Zep et al., J. Mater. Chem. C 1, 46 (2013), 10.1039/c2tc00163b].

  4. Molecular orientational re-ordering and the transformation of a Landau second order phase transition to first order in a nematic liquid crystal

    International Nuclear Information System (INIS)

    Ponce, T.C.

    1988-08-01

    We consider the nature of the nematic to isotropic phase transition in terms of the molecular orientational re-ordering, expressed by the variation of the order parameter, s, in the light of Landau's theory of second order phase transition. Then, we show how the de Gennes modification to the Landau thermodynamic potential converts the transition to first order which is in better agreement with the experimental observations. (author). 9 refs, 2 figs, 1 tab

  5. Integral equation theory for nematic fluids

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2010-01-01

    Full Text Available The traditional formalism in liquid state theory based on the calculation of the pair distribution function is generalized and reviewed for nematic fluids. The considered approach is based on the solution of orientationally inhomogeneous Ornstein-Zernike equation in combination with the Triezenberg-Zwanzig-Lovett-Mou-Buff-Wertheim equation. It is shown that such an approach correctly describes the behavior of correlation functions of anisotropic fluids connected with the presence of Goldstone modes in the ordered phase in the zero-field limit. We focus on the discussions of analytical results obtained in collaboration with T.G. Sokolovska in the framework of the mean spherical approximation for Maier-Saupe nematogenic model. The phase behavior of this model is presented. It is found that in the nematic state the harmonics of the pair distribution function connected with the correlations of the director transverse fluctuations become long-range in the zero-field limit. It is shown that such a behavior of distribution function of nematic fluid leads to dipole-like and quadrupole-like long-range asymptotes for effective interaction between colloids solved in nematic fluids, predicted before by phenomenological theories.

  6. Modulation instability and solitons in two-color nematic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Horikis, Theodoros P., E-mail: horikis@uoi.gr

    2016-10-14

    The conditions under which stable evolution of two nonlinear interacting waves are derived within the context of nematic liquid crystals. Two cases are considered: plane waves and solitons. In the first case, the modulation instability analysis reveals that while the nonlocal term suppresses the growth rates, substantially, the coupled system exhibits significantly higher growth rates than its scalar counterpart. In the soliton case, the necessary conditions are derived that lead the solitons to exhibit stable, undistorted evolution, suppressing any breathing behavior and radiation, leading to soliton mutual guiding. - Highlights: • Modulation instability analysis for two-color nematic crystals. • Stable soliton propagation for two-color nematic crystals. • Conditions for stable propagation of continuous waves and solitons in two-color nematic crystals.

  7. Defects in an active nematic confined to a toroid

    Science.gov (United States)

    Ellis, Perry; Pearce, Dan; Giomi, Luca; Fernandez-Nieves, Alberto

    Active materials are driven far from the ground state by the motion of their constituent particles, thereby making them inherently non-equilibrium materials. For an active nematic, this results in a continuous creation and annihilation of +/- 1 / 2 defect pairs. Here, we confine an active nematic to the surface of a toroid and show that the topological charge of the defects couples to the Gaussian curvature of the underlying surface. However, in our experiments this defect unbinding happens on average, illustrating that despite subtle differences, the role of activity is reminiscent of the role of temperature in conventional nematics. This is confirmed by computer simulations which clearly illustrate that defect unbinding depends on activity. Overall, our results illustrate the role of confinement and curvature on the defect behavior of active nematic liquid crystals. PWE is supported by FLAMEL under Grant NSF 1258425.

  8. Optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Durand, G.

    1977-01-01

    Liquid crystals are strongly anisotropic liquids. Their textures are stabilized by a usually weak culvature elasticity. External fields act coherently through induced torques to align the liquid crystal textures. Low fields can have large optical effects. These properties explain the interest of liquid crystals for electrooptical applications. The optical properties of liquid crystals are those of positive uniaxial or biaxial solid crystals. An important parameter is the existence of a possible regular twist, spontaneous or not, on an optical wavelength scale or larger. This results in Bragg scattering of light, a very large associated rotatory power or possibly a wave-guide regime for polarized light. Light scattering is an important source of noise close to the transmitted beam, and it is difficult to filter because of the large associated correlation time. A highly distorted texture which contains all kinds of defects can scatter light like a ground glass. All these properties are used in optical devices. Optical devices using liquid crystal displays are now commercially available. Most of them use nematic materials, in the twisted geometry, in the variable tilt mode or in the dynamic scattering mode. These passive displays are interesting for field application because of their very low power consumption. Their relatively large response time (typically in the millisecond range) is used for a multiplex-type addressing. Smectic materials are potentially interesting for optical applications. Their advantage would be a much larger resolution which is not limited to the thickness of the liquid crystal cell. The response times are also much shorter than in nematics and could soon become compatible with a standard television rate of imaging. Smectics (and cholesterics) present also a memory effect. The ferroelectric chiral smectic C opens up a new field for future investigations. (author)

  9. Post-Tanner spreading of nematic droplets

    Energy Technology Data Exchange (ETDEWEB)

    Mechkov, S; Oshanin, G [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 5 (France); Cazabat, A M, E-mail: mechkov@lptmc.jussieu.f, E-mail: anne-marie.cazabat@lps.ens.f, E-mail: oshanin@lptmc.jussieu.f [Laboratoire de Physique Statistique, Ecole Normale Superieure, 75252 Paris Cedex 5 (France)

    2009-11-18

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as Rapproxt{sup 1/10}-an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that Rapproxt{sup a}lpha with alpha significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  10. Post-Tanner spreading of nematic droplets

    International Nuclear Information System (INIS)

    Mechkov, S; Oshanin, G; Cazabat, A M

    2009-01-01

    The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.

  11. Analytical description of the Saturn-ring defect in nematic colloids.

    Science.gov (United States)

    Alama, Stan; Bronsard, Lia; Lamy, Xavier

    2016-01-01

    We derive an analytical formula for the Saturn-ring configuration around a small colloidal particle suspended in nematic liquid crystal. In particular we obtain an explicit expression for the ring radius and its dependence on the anchoring energy. We work within Landau-de Gennes theory: Nematic alignment is described by a tensorial order parameter. For nematic colloids this model had previously been used exclusively to perform numerical computations. Our method demonstrates that the tensorial theory can also be used to obtain analytical results, suggesting a different approach to the understanding of nematic colloidal interactions.

  12. Order reconstruction in inverse twisted nematic cell with an applied electric field

    Science.gov (United States)

    Sun, Yang; Ye, Wenjiang; Zhang, Zhidong

    2016-05-01

    Order reconstruction in an inverse twisted nematic (ITN) liquid crystal cell with an applied electric field is investigated based on Landau-de Gennes theory and the two-dimensional finite-difference iterative method. Twice eigenvalue exchange in three-axis layer configuration, thrice eigenvalue exchange in four-axis layer configuration, and negative order parameter uniaxial twisted state exist in this cell, which can be described by the order parameter tensor Q in equilibrium state. The twice eigenvalue exchange also has two degenerate configurations with reduced electric field E from 0.8 to 2.8 in 10ξ cell (ξ is the biaxial correlation length). Moreover, two critical cell gaps dc* * = 7 ξ and dc* = 12 ξ are included in the study of the ITN cell. When d ≤ dc* * , only the eigenvalue change state exists. When d ≥ dc*, only a positive order parameter uniaxial twisted state exists near the threshold electric field. When dc* * concept of eigenvalue exchange.

  13. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  14. Fractal nematic colloids

    Science.gov (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  15. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with γ-Alumina Nanoparticles

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Salud, Josep; Diego, José Antonio; Sellarès, Jordi; Robles-Hernández, Beatriz; de la Fuente, María Rosario; Ros, María Blanca

    2015-01-01

    In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy)-ω-(1-pyrenimine-benzylidene-4′-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  16. InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters

    Science.gov (United States)

    Roy, Aradhana; Pathak, Govind; Herman, Jakub; Inamdar, Sanjeev R.; Srivastava, Atul; Manohar, Rajiv

    2018-03-01

    The present study investigates the influence of InP/ZnS core/shell QDs on various parameters of Nematic LC sample 1832A, based on 4-(4-alkyl-cyclohexyl)benzene isothiocyanates and 4-(4-alkyl-cyclohexyl)biphenyl isothiocyanates. Observations recorded consist of distinguished functioning of birefringence phenomenon along with characteristic response time measurement. Further study of rotational viscosity and splay elastic constant portrays stupendous behavior strengthening the appositeness of the composites for low-charge consumable devices. The addition of 0.2 ml of core/shell QDs producing more than two times faster response and enhanced birefringence at low-temperature range can be employed in development of thermostable photonic devices. In addition, dielectric properties comprising of relative permittivity and conductivity have been reported supporting the outcome of the investigation in applicative LC-based technologies.

  17. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with g-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sergio Diez-Berart

    2015-06-01

    Full Text Available In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy-ω-(1-pyrenimine-benzylidene-4′-oxy undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  18. Asymmetric director structures and flexoelectricity in nematic pi-cell devices

    Science.gov (United States)

    Tartan, Chloe C.; Elston, Steve J.

    2015-08-01

    The sum of the flexoelectric coefficients in a liquid crystal material has been measured in nematic pi-cell devices, based on a method that exploits the asymmetry in the director configurations of the different states in a pi-cell, the uniform surface alignment polarities, and the influence of ions. A value of |e1 + e3| = 10 pC m-1 was measured from data-theory comparisons in the standard commercial eutectic E7 nematic liquid crystal mixture.

  19. A faster switching regime for zenithal bistable nematic displays

    International Nuclear Information System (INIS)

    Rudin, J.

    1997-01-01

    A simpler and faster switching regime for Zenithal Bistable Nematic displays is reported. A cell, based on homeotropic alignment of nematic liquid crystal over a continuous blazed monograting on one surface, can be switched using bipolar pulses an order of magnitude faster than monopolar pulses of the same voltage. We propose that this regime relies on simple dielectric coupling to drive the cell into a higher energy state with a long pulse time, and the relaxation into a lower energy state after the creation of surface defects from a shorter applied pulse. Although flexoelectric effects are observed, they do not form the basis of state selection as was proposed for the monopolar pulses

  20. Testing Machine for Biaxial Loading

    Science.gov (United States)

    Demonet, R. J.; Reeves, R. D.

    1985-01-01

    Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.

  1. Biaxial stretching of polyethylene, (2)

    International Nuclear Information System (INIS)

    Sakami, Hiroshi; Iida, Shozo

    1976-01-01

    The mechanism of oriented crystallization in mutually perpendicular direction to each other was investigated on the crosslinked linear polyethylene stretched successively and biaxially above melting point of raw material. To investigate the mechanism, the shrinkage stress, the degree of polarization and DSC of the film at the fixed length were measured on the crystallization process. The behavior observed on crystallization could be divided into that in the first period and that in the second period. The first period showed the domain of highly oriented crystallization of the crosslinked molecular chain, and in the second period the fold type crystals grew with highly oriented crystals in the first period as nuclear. Therefore, the formation of bi-component crystal structure is supposed for the crystallization. The biaxially oriented crystallization proceeded as follows: the uniaxial orientation to MD was observed in the first stretching in the initial stage, and then the further processing by the second stretching at a right angle caused the fold type crystallization of molecular chain oriented to TD. The film stretched fully and biaxially could be considered to have the oriented crystalline structure in which highly oriented fibril crystals and fold type crystals distribute at random. (auth.)

  2. Forced convection in nanoparticles doped nematics without reorientation

    International Nuclear Information System (INIS)

    Hakobyan, M.R.; Hakobyan, R.S.

    2016-01-01

    The problem of forced convection in the cell of nanoparticles doped nematic liquid crystal with both boundaries being free, plane and isotherm is discussed. These boundary conditions (offered by Rayleigh) allow to get simple and exact solution for boundary-value problem, from which its most important peculiarities can be clearly seen. Particularly, there appears a possibility to induce convection without reorientation of liquid crystal director. It was shown that nanoparticles could have significant influence on the convection

  3. Simulations of nematic homopolymer melts using particle-based models with interactions expressed through collective variables

    International Nuclear Information System (INIS)

    Daoulas, Kostas Ch; Rühle, Victor; Kremer, Kurt

    2012-01-01

    We develop a hybrid Monte Carlo approach for modelling nematic liquid crystals of homopolymer melts. The polymer architecture is described with a discrete worm-like chain model. A quadratic density functional accounts for the limited compressibility of the liquid, while an additional quadratic functional of the local orientation tensor of the segments captures the nematic ordering. The approach can efficiently address large systems parametrized according to volumetric and conformational properties, representative of real polymeric materials. The results of the simulations regarding the influence of the molecular weight on the isotropic-nematic transition are compared to predictions from a Landau-de Gennes free energy expansion. The formation of the nematic phase is addressed within Rouse-like dynamics, realized using the current model. (paper)

  4. Colloidal Mineral Liquid Crystals. Formation & Manipulation

    NARCIS (Netherlands)

    Leferink op Reinink, A.B.G.M.

    2014-01-01

    The central topic of this thesis is the formation, manipulation and characterization of colloidal mineral liquid crystals. Liquid crystals are liquids containing ordered anisometric particles. A range of liquid crystalline phases exists, from solely orientationally ordered nematic phases to

  5. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  6. Stabilisation problem in biaxial platform

    Science.gov (United States)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  7. Stabilisation problem in biaxial platform

    Directory of Open Access Journals (Sweden)

    Lindner Tymoteusz

    2016-12-01

    Full Text Available The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  8. Biaxial flexural strength of bilayered zirconia using various veneering ceramics

    OpenAIRE

    Chantranikul, Natravee; Salimee, Prarom

    2015-01-01

    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:20...

  9. Structure and Dynamics of Reentrant Nematics: Any Open Questions after Almost 40 Years?

    Directory of Open Access Journals (Sweden)

    Marco G. Mazza

    2011-08-01

    Full Text Available Liquid crystals have attracted enormous interest because of the variety of their phases and richness of their application. The interplay of general physical symmetries and specific molecular features generates a myriad of different phenomena. A surprising behavior of liquid crystals is the reentrancy of phases as temperature, pressure, or concentration are varied. Here, we review the main experimental facts and the different theoretical scenarios that have guided the understanding of bulk reentrant nematics. Recently, some computer simulations of a system confined to nanoscopic scales have found new dynamical features of the reentrant nematic phase. We discuss this prediction in relation with the available experimental evidence on reentrant nematics and with the dynamics of liquids in strongly confined environments.

  10. 3D structure of nematic and columnar phases of hard colloidal platelets

    Science.gov (United States)

    Reinink, A. B. G. M. Leferink op; Meijer, J. M.; Kleshchanok, D.; Byelov, D. V.; Vroege, G. J.; Petukhov, A. V.; Lekkerkerker, H. N. W.

    2011-05-01

    We present small angle x-ray scattering data of single-domain nematic and columnar liquid crystal phases in suspensions of sterically stabilized gibbsite platelets. The measurements are performed with different sample orientations to obtain information about the three-dimensional structure of the liquid crystalline phases. With the x-ray beam incident along the director of the nematic phase a strong correlation peak is observed corresponding to the side-to-side interparticle correlations, which suggests a columnar nematic structure. Upon sample rotation this side-to-side correlation peak of the nematic shifts to higher Q-values, suggesting the presence of strong fluctuations of small stacks of particles with different orientations, while the overall particle orientation is constant. In the hexagonal columnar phase, clear Bragg intercolumnar reflections are observed. Upon rotation, the Q-value of these reflections remains constant while their intensity monotonically decreases upon rotation. This indicates that the column orientation fluctuates together with the particle director in the columnar phase. This difference between the behaviour of the columnar and the nematic reflections upon sample rotation is used to assign the liquid crystal phase of a suspension consisting of larger platelets, where identification can be ambiguous due to resolution limitations.

  11. 3D structure of nematic and columnar phases of hard colloidal platelets

    Energy Technology Data Exchange (ETDEWEB)

    Op Reinink, A B G M Leferink; Meijer, J M; Kleshchanok, D; Byelov, D V; Vroege, G J; Petukhov, A V; Lekkerkerker, H N W, E-mail: A.B.G.M.LeferinkopReinink@uu.nl [Van' t Hoff Laboratory for Physical and Colloid Chemistry, Utrecht University, PO Box 80.051, 3508 TB Utrecht (Netherlands)

    2011-05-18

    We present small angle x-ray scattering data of single-domain nematic and columnar liquid crystal phases in suspensions of sterically stabilized gibbsite platelets. The measurements are performed with different sample orientations to obtain information about the three-dimensional structure of the liquid crystalline phases. With the x-ray beam incident along the director of the nematic phase a strong correlation peak is observed corresponding to the side-to-side interparticle correlations, which suggests a columnar nematic structure. Upon sample rotation this side-to-side correlation peak of the nematic shifts to higher Q-values, suggesting the presence of strong fluctuations of small stacks of particles with different orientations, while the overall particle orientation is constant. In the hexagonal columnar phase, clear Bragg intercolumnar reflections are observed. Upon rotation, the Q-value of these reflections remains constant while their intensity monotonically decreases upon rotation. This indicates that the column orientation fluctuates together with the particle director in the columnar phase. This difference between the behaviour of the columnar and the nematic reflections upon sample rotation is used to assign the liquid crystal phase of a suspension consisting of larger platelets, where identification can be ambiguous due to resolution limitations.

  12. Interfacial motion in flexo- and order-electric switching between nematic filled states

    International Nuclear Information System (INIS)

    Blow, M L; Telo da Gama, M M

    2013-01-01

    We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterized by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic–isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally-applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wetted by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic–isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition. (paper)

  13. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Science.gov (United States)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  14. Morphology of Colloidal Particles Dispersed in Nematic Solvent

    Science.gov (United States)

    Kumar, Anupam; Mandal, Biplab Kumar; Mishra, Pankaj

    2016-10-01

    We have studied a system of spherical colloidal particles suspended in nematic liquid crystal confined to a two-dimensional plane. The dispersed colloidal particles pervert the uniform orientation of nematic resulting in topological defects. This small change in director field induces elastic interaction in the system. Considering the system exhibiting octopolar symmetry, the interaction of the particles can be described by octopole-octopole interaction potential which on some suitable scaling has the form, βu(r) ≈ Γ/r7, where Γ is dimensionless interaction strength parameter. We have calculated the pair correlation function and radial distribution function of the system by employing Roger-Young's integral equation theory, where the mixing parameter a, is obtained by demanding the consistency in pressure via virial and compressibility routs. With the increase in interaction strength, the system is found to become more ordered.

  15. Morphology of Colloidal Particles Dispersed in Nematic Solvent

    International Nuclear Information System (INIS)

    Kumar, Anupam; Kumar Mandal, Biplab; Mishra, Pankaj

    2016-01-01

    We have studied a system of spherical colloidal particles suspended in nematic liquid crystal confined to a two-dimensional plane. The dispersed colloidal particles pervert the uniform orientation of nematic resulting in topological defects. This small change in director field induces elastic interaction in the system. Considering the system exhibiting octopolar symmetry, the interaction of the particles can be described by octopole-octopole interaction potential which on some suitable scaling has the form, βu(r) ≈ Γ/r 7 , where Γ is dimensionless interaction strength parameter. We have calculated the pair correlation function and radial distribution function of the system by employing Roger-Young's integral equation theory, where the mixing parameter a, is obtained by demanding the consistency in pressure via virial and compressibility routs. With the increase in interaction strength, the system is found to become more ordered. (paper)

  16. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching

    Science.gov (United States)

    Basu, Rajratan

    2017-07-01

    A small quantity of monolayer graphene flakes is doped in a nematic liquid crystal (LC), and the effective polar anchoring strength coefficient between the LC and the alignment substrate is found to increase by an order of magnitude. The hexagonal pattern of graphene can interact with the LC's benzene rings via π -π electron stacking, enabling the LC to anchor to the graphene surface homogeneously (i.e., planar anchoring). When the LC cell is filled with the graphene-doped LC, some graphene flakes are preferentially attached to the alignment layer and modify the substrate's anchoring property. These spontaneously deposited graphene flakes promote planar anchoring at the substrate and the polar anchoring energy at alignment layer is enhanced significantly. The enhanced anchoring energy is found to impact favorably on the electro-optic response of the LC. Additional studies reveal that the nematic electro-optic switching is significantly faster in the LC-graphene hybrid than that of the pure LC.

  17. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  18. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    International Nuclear Information System (INIS)

    Zheng Gui-Li; Xuan Li; Zhang Hui; Ye Wen-Jiang; Zhang Zhi-Dong; Song Hong-Wei

    2016-01-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and –1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and −1 defects obtained in the experiment conducted by Kumar et al. (paper)

  19. Hard-body models of bulk liquid crystals.

    Science.gov (United States)

    Mederos, Luis; Velasco, Enrique; Martínez-Ratón, Yuri

    2014-11-19

    Hard models for particle interactions have played a crucial role in the understanding of the structure of condensed matter. In particular, they help to explain the formation of oriented phases in liquids made of anisotropic molecules or colloidal particles and continue to be of great interest in the formulation of theories for liquids in bulk, near interfaces and in biophysical environments. Hard models of anisotropic particles give rise to complex phase diagrams, including uniaxial and biaxial nematic phases, discotic phases and spatially ordered phases such as smectic, columnar or crystal. Also, their mixtures exhibit additional interesting behaviours where demixing competes with orientational order. Here we review the different models of hard particles used in the theory of bulk anisotropic liquids, leaving aside interfacial properties and discuss the associated theoretical approaches and computer simulations, focusing on applications in equilibrium situations. The latter include one-component bulk fluids, mixtures and polydisperse fluids, both in two and three dimensions, and emphasis is put on liquid-crystal phase transitions and complex phase behaviour in general.

  20. The elusive thermotropic biaxial nematic phase in rigid bent-core ...

    Indian Academy of Sciences (India)

    the second optic axis lies along the secondary director m in the plane perpendicular to n. To this day, only the existence of ... diffractometer which uses the area detector X-1000 system. An in situ magnetic field of. ~2.5 kG was used ... A square wave voltage with variable amplitude was applied to create varying electric field ...

  1. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  2. Biaxial tension on polymer in thermoforming range

    Directory of Open Access Journals (Sweden)

    Billon N.

    2010-06-01

    Full Text Available This paper presents an experimental characterization of mechanical properties of a polyethylene terephtalate (PET resin classically used in stretch blow moulding process. We have applied on such a material a well established experimental protocol at CEMEF, including new and relevant biaxial tensile tests. The experimental set-up relative to biaxial tension will be presented and described in a first part of the paper. Furthermore, we will focus on the experimental DMTA preliminary tests which are required to estimate the resin sensibility to temperature and strain rate in linear viscoelasticity domain. Finally, we will be interested in the material large strain behaviour: biaxial tensile results are presented and discussed. Finally, such an experimental approach should allow a relevant modelling of polymer physics and mechanics; this point will not be discussed here because of a lack of time.

  3. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    Directory of Open Access Journals (Sweden)

    Mikhail M. Genkin

    2017-03-01

    Full Text Available Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  4. Nonlinear Optical Effects in Liquid Crystals.

    Science.gov (United States)

    1980-12-10

    nonlinear optical devices using these media 3 ,4 ,5 and more recently to use nonlinear optical measurements to study the properties of materials . However...susceptibilities Lasers, Nematic, Cholesteric, Flexoelectric , Second-harmonic generation 20M AV*--YRAc rR-r, m, revere i It nf le4U7 siad Idsiully byr... flexoelectric effect can give rise to second-harmonic generation in nematic liquid crystal and the birefringence of nematic crystal can be used to achieve

  5. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    Science.gov (United States)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  6. Polarization resolved conoscopic patterns in nematic cells: effects induced by the incident light ellipticity

    Science.gov (United States)

    Buinyi, Igor O.; Soskin, Marat S.; Vovk, Roman G.

    2008-05-01

    Topological structure of the polarization resolved conoscopic patterns, calculated theoretically and measured experimentally for nematic liquid crystal (NLC) cells, is described in terms of polarization singularities, saddle points and bifurcation lines. The parametric dynamics of the topological network, induced by the variation of the incident light ellipticity, is analyzed for the nematic cells with uniform and non-uniform director configuration. Different stages of similar dynamics are observed for homeotropically oriented NLC cell. Non-uniform director configuration within the cell results in broken central symmentry in the arrangement of the topological network. Main features of the experimentally obtained polarization resolved conoscopic patterns are the same to the theoretically predicted ones.

  7. Competition of Elasticity and Flexoelectricity for bistable alignment of nematics on patterned substrates

    Science.gov (United States)

    Atherton, Timothy; Adler, James

    2013-03-01

    We show that patterned surfaces can promote bistable configurations of nematics for reasons other than the symmetry of the surface. Numerical and analytical calculations reveal that a nematic liquid crystal in contact with a striped surface is subject to the competing aligning influences of elastic anisotropy, differing energy cost of various types of deformation, and flexoelectricity, curvature-induced spontaneous polarization. These effects favor opposing ground states where the azimuthal alignment is, respectively, parallel or perpendicular to the stripes. Material parameters for which the effect might be observed lie within the range measured for bent-core nematogens.

  8. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  9. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  10. Report on twisted nematic and supertwisted nematic device characterization program

    Science.gov (United States)

    1995-01-01

    In this study we measured the optical characteristics of normally white twisted nematic (NWTN) and super twisted nematic (STN ) cells. Though no dynamic computer model was available, the static observations were compared with computer simulated behavior. The measurements were taken as a function of both viewing angle and applied voltage and included in the static case not only luminance but also contrast ratio and chromaticity . We employed the computer model Twist Cell Optics, developed at Kent State in conjunction with this study, and whose optical modeling foundation, Iike the ViDEOS program, is the 4 x 4 matrix method of Berreman. In order to resolve discrepancies between the experimental and modeled data the optical parameters of the individual cell components, where not known, were determined using refractometry, profilometry, and various forms of ellipsometry. The resulting agreement between experiment and model is quite good due primarily to a better understanding of the structure and optics of dichroic sheet polarizers. A description of the model and test cells employed are given in section 2. Section 3 contains the experimental data gathered and section 4 gives examples of the fit between model and experiment. Also included with this report are a pair of papers which resulted from the research and which detail the polarizer properties and some of the cell characterization methods.

  11. Two-loop disorder effects on the nematic quantum criticality in d-wave superconductors

    International Nuclear Information System (INIS)

    Wang, Jing

    2015-01-01

    The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic quantum critical point that is supposed to exist in some d-wave cuprate superconductors. This non-Fermi liquid state may be turned into a disorder-dominated diffusive metal if the fermions also couple to a disordered potential that generates a relevant perturbation in the sense of renormalization group theory. It is therefore necessary to examine whether a specific disorder is relevant or not. We study the interplay between critical nematic fluctuation and random chemical potential by performing renormalization group analysis. The parameter that characterizes the strength of random chemical potential is marginal at the one-loop level, but becomes marginally relevant after including the two-loop corrections. Thus even weak random chemical potential leads to diffusive motion of nodal fermions and the significantly critical behaviors of physical implications, since the strength flows eventually to large values at low energies. - Highlights: • The gapless nodal fermions exhibit non-Fermi liquid behaviors at the nematic QCP. • The strength of random chemical potential is marginal at the one-loop level. • The strength becomes marginally relevant after including the two-loop corrections. • The diffusive metallic state is induced by the marginally relevant disorder. • The behaviors of some physical observables are presented at the nematic QCP

  12. Hidden topological constellations and polyvalent charges in chiral nematic droplets.

    Science.gov (United States)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-21

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  13. Optical solitons in liquid crystals

    International Nuclear Information System (INIS)

    Yung, Y.S.; Lam, L.

    1989-01-01

    In this paper, we will discuss theoretically the possible existence of optical solitons in the isotropic liquid and in the nematic phase. For the same compound, when heated, the nematic phase will go through a first order transition at temperature T c to the isotropic liquid phase. As temperature increases from below T c , the orientation order parameter, Q, decreases, drops to zero abruptly at T c and remains zero for T > T c . 10 refs., 1 fig

  14. Geometry of Thin Nematic Elastomer Sheets

    Science.gov (United States)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    2014-12-01

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this Letter, we describe the intrinsic geometry of such a sheet and derive an expression for the metric induced by general nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit recipe for how to construct any surface of revolution using this method. Finally, we show that by inscribing a director field gradient across the sheet's thickness, one can obtain a nontrivial hyperbolic reference curvature tensor, which together with the prescription of a reference metric allows dictation of actual configurations for a thin sheet of nematic elastomer.

  15. Self-Assembling, Stable Photonic Bend-Gap Phases in Emulsions of Chiral Nematics with Isotropic Fluids

    Science.gov (United States)

    Huang, Chien-Yueh; Petschek, R. G.

    1998-03-01

    We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.

  16. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  17. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations.

  18. Elastic and viscous properties of the nematic dimer CB7CB

    Science.gov (United States)

    Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.

    2017-12-01

    We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.

  19. Thermotropic liquid crystalline polyesters derived from 2-chloro ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 9. Thermotropic liquid crystalline polyesters derived from 2-chloro ... These polyesters exhibited thermotropic liquid crystalline behavior and showed nematic texture except decamethylene spacer. Decamethylene spacer based polyester showed marble ...

  20. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  1. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Geometry of thresholdless active flow in nematic microfluidics

    Science.gov (United States)

    Green, Richard; Toner, John; Vitelli, Vincenzo

    2017-10-01

    Active nematics are orientationally ordered but apolar fluids composed of interacting constituents individually powered by an internal source of energy. When activity exceeds a system-size-dependent threshold, spatially uniform active apolar fluids undergo a hydrodynamic instability leading to spontaneous macroscopic fluid flow. Here we show that a special class of spatially nonuniform configurations of such active apolar fluids display laminar (i.e., time-independent) flow even for arbitrarily small activity. We also show that two-dimensional active nematics confined on a surface of nonvanishing Gaussian curvature must necessarily experience a nonvanishing active force. This general conclusion follows from a key result of differential geometry: Geodesics must converge or diverge on surfaces with nonzero Gaussian curvature. We derive the conditions under which such curvature-induced active forces generate thresholdless flow for two-dimensional curved shells. We then extend our analysis to bulk systems and show how to induce thresholdless active flow by controlling the curvature of confining surfaces, external fields, or both. The resulting laminar flow fields are determined analytically in three experimentally realizable configurations that exemplify this general phenomenon: (i) toroidal shells with planar alignment, (ii) a cylinder with nonplanar boundary conditions, and (iii) a Frederiks cell that functions like a pump without moving parts. Our work suggests a robust design strategy for active microfluidic chips and could be tested with the recently discovered living liquid crystals.

  4. Simple theory of transitions between smectic, nematic, and isotropic phases

    Science.gov (United States)

    Emelyanenko, A. V.; Khokhlov, A. R.

    2015-05-01

    The transitions between smectic, nematic, and isotropic phases are investigated in the framework of a unified molecular-statistical approach. The new translational order parameter is different from the one introduced in K. Kobayashi [Phys. Lett. A 31, 125 (1970)] and W. L. McMillan [Phys. Rev. A 4, 1238 (1971)]. The variance of the square sine of intermolecular shift angle along the director is introduced to take self-consistently into account the most probable location of the molecules with respect to each other, which is unique for every liquid crystal (LC) material and is mainly responsible for the order parameters and phase sequences. The mean molecular field was treated in terms of only two parameters specific to any intermolecular potential of elongated molecules: (1) its global minimum position with respect to the shift of two interacting molecules along the director and (2) its inhomogeneity/anisotropy ratio. A simple molecular model is also introduced, where the global minimum position is determined by the linking groups elongation Δ/d, while the inhomogeneity/anisotropy ratio Gβ/Gγ is determined by the ratio of electrostatic and dispersion contributions. All possible phase sequences, including abrupt/continuous transformation between the smectic and nematic states and the direct smectic-isotropic phase transition, are predicted. The theoretical prediction is in a good agreement with experimental data for some simple materials correlating with our molecular model, but it is expected to be valid for any LC material.

  5. Biaxial behavior of plain concrete of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Sang-Keun; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f 1 =f 2 , is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension

  6. Synthesis and analysis of nickel dithiolene dyes in a nematic liquid crystal host. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Lippa, I.

    1999-03-01

    The Liquid Crystal Point Diffraction Interferometer (LCPDI) can be employed to evaluate the Omega Laser system for optimum firing capabilities. This device utilizes a nickel dithiolene infrared absorbing liquid crystal dye dissolved in a liquid crystal host medium (Merck E7). Three nickel dithiolene dyes were characterized for both their solubility in the E7 host and their infrared spectral absorption

  7. Effect of ionic charge on flexoelectric deformations in planar nematic layers

    Science.gov (United States)

    Felczak, Mariola; Derfel, Grzegorz

    2004-09-01

    Elastic deformations of nematic liquid crystal layers subjected to d.c. electric field were studied numerically. Nearly planar alignment with 1° tilt angle and with finite surface anchoring strength was assumed. The flexoelectric properties of the nematic material as well as the ionic space charge were taken into account. Perfectly blocking electrodes were adopted. The director orientation, the electric potential distribution and the space charge density were calculated. The optical transmission of the layer placed between crossed polarizers was also determined. The deformations had nearly threshold character due to the low value of the surface tilt. It was found that the threshold voltage strongly depended on the parameters of the system. When the nematic was not flexoelectric, the value of the threshold voltage was independent of the ion concentration and was equal to about 1 volt. In the case of a flexoelectric nematic, the threshold as low as a few tenths of a volt occurred when the ion concentration was sufficiently high, and given sufficiently large magnitudes of the flexoelectric coefficients. These results can be explained as the effect of the inhomogeneous electric field arising in vicinity of the surfaces created by the ionic space charge redistributed by the external voltage.

  8. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2016-01-01

    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ......) biaxial strain process, the mechanical properties of biaxial strained tubes can be further improved. This study investigated these properties in relation to their morphology and crystal orientation. Both processes yield the same mechanical strength and modulus, yet exhibit different crystal orientation....... Through further WAXS analysis it was found that the SEQ biaxial strain yields larger interplanar spacing and distorted crystals and looser packing of chains. However, this does not influence the mechanical properties negatively. A loss of orientation in SEQ biaxial strained samples at high degrees...

  9. Light-induced rewiring and winding of Saturn ring defects in photosensitive chiral nematic colloids.

    Science.gov (United States)

    Gvozdovskyy, I; Jampani, V S R; Skarabot, M; Muševič, I

    2013-09-01

    We study the winding and unwinding of Saturn ring defects around silica microspheres with homeotropic surface anchoring in a cholesteric liquid crystal with a variable pitch. We use mixtures of a nematic liquid crystal 5CB and various photoresponsive chiral dopants to vary the helical pitch and sense of the helical winding by illuminating the mixtures with UV or visible light. Upon illumination, we observe motion of the Grandjean-Cano disclination lines in wedge-like cells. When the line touches the colloidal particle, we observe topological reconstruction of the Grandjean-Cano line and the Saturn ring. The result of this topological reconstruction is either an increase or decrease of the degree of winding of the Saturn ring around the colloidal particle. This phenomenon is similar to topological rewiring of -1/2 disclination lines, observed recently in chiral nematic colloids.

  10. Particles with changeable topology in nematic colloids

    International Nuclear Information System (INIS)

    Ravnik, Miha; Čopar, Simon; Žumer, Slobodan

    2015-01-01

    We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles. (paper)

  11. Phase separation and disorder in doped nematic elastomers

    KAUST Repository

    Köpf, M. H.

    2013-10-01

    We formulate and analyse a model describing the combined effect of mechanical deformation, dynamics of the nematic order parameter, and concentration inhomogeneities in an elastomeric mixture of a mesogenic and an isotropic component. The uniform nematic state may exhibit a long-wave instability corresponding to nematic-isotropic demixing. Numerical simulations starting from either a perfectly ordered nematic state or a quenched isotropic state show that coupling between the mesogen concentration and the nematic order parameter influences the shape and orientation of the domains formed during the demixing process. © EDP Sciences/ Società Italiana di Fisica/ Springer-Verlag 2013.

  12. Direct and inverted nematic dispersions for soft matter photonics.

    Science.gov (United States)

    Muševič, I; Skarabot, M; Humar, M

    2011-07-20

    General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.

  13. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  14. Elasticity and Viscosity of a Lyotropic Chromonic Nematic Studied with Dynamic Light Scattering

    OpenAIRE

    Nastishin, Yu. A.; Neupane, K.; Baldwin, A. R.; Lavrentovich, O. D.; Sprunt, S.

    2008-01-01

    Using dynamic light scattering, we measure for the first time the temperature-dependent elastic moduli and associated orientational viscosity coefficients of the nematic phase in a self-assembled lyotropic chromonic liquid crystal. The bend K3 and splay K1 moduli are an order of magnitude higher than the twist K2 constant. The ratio K3/K1 shows an anomalous increase with temperature; we attribute this to the shortening of the aggregates as temperature increases. The viscosity coefficients als...

  15. On the role of flexoeffect in synchronization of electroconvective roll oscillations in nematics

    International Nuclear Information System (INIS)

    Batyrshin, E. S.; Krekhov, A. P.; Scaldin, O. A.; Delev, V. A.

    2012-01-01

    We describe the dynamics of zigzag oscillations in a system of convective rolls in a nematic liquid crystal above the electroconvection threshold under the action of an ac voltage with a biased position of the mean value. It is found that an increase in the contribution from the constant component leads to a substantial increase in the spatiotemporal ordering of zigzag rolls and their synchronization with the homogeneous twist mode. The results confirm the flexoelectric mechanism of locking.

  16. Pair creation, motion, and annihilation of topological defects in 2D nematics

    OpenAIRE

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2017-01-01

    We present a novel framework for the study of disclinations in two-dimensional active nematic liquid crystals, and topological defects in general. The order tensor formalism is used to calculate exact multi-particle solutions of the linearized static equations inside a uniformly aligned state. Topological charge conservation requires a fixed difference between the number of half charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parame...

  17. Hydrodynamically controlled optical propagation in a nematic fiber

    International Nuclear Information System (INIS)

    Corella-Madueno, A.; Adrian Reyes, J.

    2008-01-01

    We show that a cylindrical guide whose core is a liquid crystal (LC), having initially the escaped configuration, can be mechanically controlled. Indeed, we show how the nematic textures, distorted by a pressure gradient applied along the cylinder, are able to significantly alter the propagation of the optical fields. Above certain critical pressure, the fiber only conducts the optical beams within two coaxial but unconnected regions, where the light can propagate independently. We demonstrate this result by using two complementary formalisms. For multimodal waveguides in the small wavelength limit and by performing exact numerical calculation of the transverse magnetic (TM) modes distribution in the guide. The last calculation not only corroborates the asymptotic results of the geometrical analysis, but evinces the way in which the signals propagating in each region overlap and interact each other, when their wavelength are larger than the regions thickness

  18. Hydrodynamically controlled optical propagation in a nematic fiber

    Energy Technology Data Exchange (ETDEWEB)

    Corella-Madueno, A. [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, Hermosillo, Sonora (Mexico); Adrian Reyes, J. [Departamento de Fisica Quimica, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico D. F., Mexico C. P. 04510 (Mexico)], E-mail: adrian@fisica.unam.mx

    2008-05-01

    We show that a cylindrical guide whose core is a liquid crystal (LC), having initially the escaped configuration, can be mechanically controlled. Indeed, we show how the nematic textures, distorted by a pressure gradient applied along the cylinder, are able to significantly alter the propagation of the optical fields. Above certain critical pressure, the fiber only conducts the optical beams within two coaxial but unconnected regions, where the light can propagate independently. We demonstrate this result by using two complementary formalisms. For multimodal waveguides in the small wavelength limit and by performing exact numerical calculation of the transverse magnetic (TM) modes distribution in the guide. The last calculation not only corroborates the asymptotic results of the geometrical analysis, but evinces the way in which the signals propagating in each region overlap and interact each other, when their wavelength are larger than the regions thickness.

  19. Isotropic-nematic spinodal decomposition dynamics

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2005-01-01

    The initial stage of isotropic-nematic spinodal demixing kinetics of suspensions of very long and thin, stiff, repulsive rods is analyzed on the basis of the N -particle Smoluchowski equation. Equations of motion for the reduced probability density function of the position and orientation of a rod

  20. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  1. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  2. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  3. Orientation of liquid crystalline materials by using carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Kamanina N.V.

    2011-01-01

    Full Text Available The solution of some problems, where the initial black field is necessary for the regime of light transmission through the electrooptical organic nematic liquid crystal structures has been considered via a homeotropic alignment of liquid crystal molecules on the substrate covered by carbon nanotubes. The results of this investigation can be used to develop optical elements for displays with vertical orientations of nematic liquid crystal molecules (for example, for MVA-display technology.

  4. Periodic grating-like patterns induced by self assembly of gelator fibres in nematic gels.

    Science.gov (United States)

    Ramarao, Pratibha; Topnani, Neha Bhagwani; N, Prutha

    2018-03-15

    Periodic orientation patterns occurring in nematic gels revealed by optical and scanning electron microscopy are found to be formed by spontaneous self assembly of fibrous aggregates of a low-molecular weight organogelator in an aligned thermotropic liquid crystal (LC). The self organization into the periodic structure is also reflected in a calorimetric study which shows the occurrence of three thermoreversible states viz. isotropic liquid, nematic and nematic gel. The segregation and self assembly of the fibrous aggregates leading to the pattern formation is attributed to the highly polar LC and the hydrogen bonding between gelator molecules as shown by x-ray diffraction and vibrational spectroscopy. This study aims to investigate in detail the effect of the chemical nature and alignment of an anisotropic solvent on the morphology of the gelator fibres and the resulting gelation process. The periodic organization of the LC rich and fibre rich regions can also provide a technique of obtaining templates for positioning nanoparticle arrays in an LC matrix which can lead to novel devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bi-axial quartz as a stress indicator

    Science.gov (United States)

    Starkey, John

    2000-03-01

    Experiments confirm that stress causes quartz to become biaxial with the optical axial plane parallel to the direction of maximum applied stress. Five tectonites were studied for which published data indicate strong patterns of preferred orientation of quartz. Conoscopic investigation, using an optical universal stage, reveals that the quartz in these rocks is biaxial with the 2V as large as 22°. The optic axial planes display strong patterns of preferred orientation. In the natural tectonites the maximum stress directions deduced from the orientations of the optical axial planes cannot be correlated with the supposed tectonic framework responsible for the quartz orientation fabric. The ease with which quartz can be made biaxial experimentally suggests that the orientation of the optic axial planes may be sensitive to tectonic events which affected the rocks subsequent to the development of the quartz orientation fabrics. The analysis of the orientation of optic axial planes in biaxial quartz may provide a tool for the investigation of neotectonics.

  6. Influence of flexoelectricity above the nematic Fréedericksz transition.

    Science.gov (United States)

    Brown, C V; Mottram, N J

    2003-09-01

    Continuum theory is used to demonstrate that the presence of flexoelectricity significantly alters the response to an applied voltage of a homogeneous nematic liquid crystal cell above the ac Fréedericksz threshold voltage. In such a system there is a fitting degeneracy: we obtain very good fits between theory and experimental permittivity data using any value of the sum of flexoelectric coefficients, e(11)+e(33), between 0.0 C/m and 1.5 x 10(-11) C/m. The corresponding values of the nematic bend elastic constant show an inverse parabolic relationship with e(11)+e(33), with K33 being reduced down to 90% of its value when flexoelectricity is neglected.

  7. Static alignment states in a bistable azimuthal nematic device with blazed grating sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Evans, C R; Brown, C V [School of Science and Technology, Nottingham Trent University, Erasmus Darwin Building, Clifton Lane, Clifton, Nottingham, NG11 8NS (United Kingdom); Davidson, A J; Mottram, N J, E-mail: carl.brown@ntu.ac.u [Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)

    2010-12-15

    Bistable azimuthal alignment has been produced in channels of homogeneous nematic liquid crystal with periodic grating sidewalls. The grating morphologies included a symmetric triangular profile (blaze/pitch (b/p) = 0), an asymmetric highly blazed sawtooth profile (b/p = 0.5) and profiles with different amounts of blaze asymmetry between these two extremes. The observed optical textures and the trend in the relative frequency of occurrence of the two stable states as a function of the asymmetry were in agreement with the predictions of n-director-based Frank-Oseen nematic continuum theory. A sidewall grating morphology with an intermediate degree of blaze asymmetry, b/p = 0.3, gave the highest optical contrast between the bistable states.

  8. Spin Triplet Nematic Pairing Symmetry and Superconducting Double Transition in U1-xThxBe13

    Science.gov (United States)

    Machida, Kazushige

    2018-03-01

    Motivated by a recent experiment on U1-xThxBe13 with x = 3%, we develop a theory to narrow down the possible pair symmetry to consistently describe the double transition utilizing various theoretical tools, including group theory and Ginzburg-Landau theory. It is explained in terms of the two-dimensional representation Eu with spin triplet. Symmetry breaking causes the degenerate Tc to split into two. The low-temperature phase is identified as the cyclic p wave: d(k) = \\hat{x}kx + ɛ \\hat{y}ky + ɛ 2\\hat{z}kz with ɛ3 = 1, whereas the biaxial nematic phase: d(k) = √{3} (\\hat{x}kx - \\hat{y}ky) is the high-temperature one. This allows us to simultaneously identify the uniaxial nematic phase: d(k) = 2\\hat{z}kz - \\hat{x}kx - \\hat{y}ky for UBe13, which spontaneously breaks the cubic symmetry of the system. Those pair functions are fully consistent with this description and existing data. We comment on the accidental scenario in addition to this degeneracy scenario and the intriguing topological nature hidden in this long-known material.

  9. Active turbulence in active nematics

    Science.gov (United States)

    Thampi, S. P.; Yeomans, J. M.

    2016-07-01

    Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.

  10. Biaxial seismic behaviour of reinforced concrete columns =

    Science.gov (United States)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  11. Geometric approach to the Miesowicz coefficients at the region of the crystalline-nematic transition and a universal relation for their ratio

    Science.gov (United States)

    Simões, M.; Domiciano, S. M.

    2002-12-01

    In this work the ratios between the Miesowicz coefficients of rigid calamitic nematic liquid crystals will be studied. It will be shown that the microscopic theory that describes these coefficients, the kinetic theory [M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Press, New York, 1986)], suggests that some ratios between the Miesowicz coefficients would have a universal character, that does not depend on the nematic material being examined. A set of experimental data has been collected from the liquid crystal literature and, once these data are rescaled in a common temperature scale, they point to the existence of such a universality. Nevertheless, only in the neighborhoods of the nematic-isotropic transition, do the theoretical calculations of the kinetic theory and the experimental data predict the same profile for this universality; when the region of the crystalline-nematic transition is approached theory and experiment present severe discrepancies. The reason for this disagreement is studied and it is proposed that it results from the fact that the kinetic theory does not take into account the packing properties of the nematic medium. A different approach to the calculation of these ratios is proposed and it is shown that it describes the experimental data for all temperatures.

  12. Biaxial flexural strength of bilayered zirconia using various veneering ceramics.

    Science.gov (United States)

    Chantranikul, Natravee; Salimee, Prarom

    2015-10-01

    The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

  13. Biaxial fatigue behavior of a powder metallurgical TRIP steel

    Directory of Open Access Journals (Sweden)

    S. Ackermann

    2015-10-01

    Full Text Available Multiaxial fatigue behavior is an important topic in critical structural components. In the present study the biaxial-planar fatigue behavior of a powder metallurgical TRIP steel (Transformation Induced Plasticity was studied by taking into account martensitic phase transformation and crack growth behavior. Biaxial cyclic deformation tests were carried out on a servo hydraulic biaxial tension-compression test rig using cruciform specimens. Different states of strain were studied by varying the strain ratio between the axial strain amplitudes in the range of -1 (shear loading to 1 (equibiaxial loading. The investigated loading conditions were proportional due to fixed directions of principal strains. The studied TRIP steel exhibits martensitic phase transformation from -austenite via ε-martensite into α‘- martensite which causes pronounced cyclic hardening. The α‘-martensite formation increased with increasing plastic strain amplitude. Shear loading promoted martensite formation and caused the highest α‘-martensite volume fractions at fatigue failure in comparison to uniaxial and other biaxial states of strain. Moreover, the fatigue lives of shear tests were higher than those of uniaxial and other biaxial tests. The von Mises equivalent strain hypothesis was found to be appropriate for uniaxial and biaxial fatigue, but too conservative for shear fatigue, according to literature for torsional fatigue. The COD strain amplitude which is based on crack opening displacement gave a better correlation of the investigated fatigue lives, especially those for shear loading. Different types of major cracks were observed on the sample surfaces after biaxial cyclic deformation by using electron monitoring in an electron beam universal system and scanning electron microscopy (SEM. Specimens with strain ratios of 1, 0.5, -0.1 and -0.5 showed mode I major cracks (perpendicular to the axis of maximum principal strain. Major cracks after shear fatigue

  14. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics

    OpenAIRE

    Lucchetti, Liana; Fraccia, Tommaso P.; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-01-01

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced bi...

  15. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  16. Nuclear magnetic resonance study of epoxy- based polymer-dispersed liquid crystal droplets

    CERN Document Server

    Han, J W

    1998-01-01

    In this work, polymer-dispersed liquid crystals (PDLC) samples were prepared and studied by nuclear magnetic resonance. Proton NMR spectra and spin-lattice relaxations of 4-cyano-4'-pentylbiphenyl(5CB) and p-methoxybenzylidene-p-n-butylaniline (MBBA) liquid crystals confined in microdroplets were measured. The experimental results were compared with those of the liquid crystals in the pores of silica-gels and with those of the mixing components. The experimental results indicated that the nematic ordering in the microdroplets differed markedly from that observed in bulk nematic crystals. In addition, we examined spin-lattice relaxation mechanisms. The proton spin-lattice relaxation mechanisms in bulk nematic liquid crystals are well established. However, when nematic liquid crystals are confined in microdroplets, the relaxation mechanisms are expected to be affected. We examined possible relaxation mechanisms to explain the observed increase in the spin-lattice relaxation rate of liquid crystals confined in m...

  17. Electric-field-induced local rotation of molecules in nematic-cholesteric droplets

    Science.gov (United States)

    Timirov, Yu. I.; Skaldin, O. A.; Basyrova, E. R.; Kayumov, I. R.

    2014-07-01

    The structural dynamics of nematic-cholesteric liquid crystal (LC) droplets occurring in an isotropic environment in an alternating electric field have been studied. It is established that, above a certain threshold field strength, the conoscopic pattern of a Maltese cross becomes dynamic and begins to rotate. The threshold voltage, as well as the frequency of rotation, is almost independent of the droplet diameter. This phenomenon is related to the development of a self-consistent rotation of LC molecules in the plane perpendicular to the droplet axis. It is shown that this rotation initiates the propagation of a helicoidal wave from one pole of the droplet to another.

  18. Curvature-driven stability of defects in nematic textures over spherical disks

    Science.gov (United States)

    Duan, Xiuqing; Yao, Zhenwei

    2017-06-01

    Stabilizing defects in liquid-crystal systems is crucial for many physical processes and applications ranging from functionalizing liquid-crystal textures to recently reported command of chaotic behaviors of active matters. In this work, we perform analytical calculations to study the curvature-driven stability mechanism of defects based on the isotropic nematic disk model that is free of any topological constraint. We show that in a growing spherical disk covering a sphere the accumulation of curvature effect can prevent typical +1 and +1/2 defects from forming boojum textures where the defects are repelled to the boundary of the disk. Our calculations reveal that the movement of the equilibrium position of the +1 defect from the boundary to the center of the spherical disk occurs in a very narrow window of the disk area, exhibiting the first-order phase-transition-like behavior. For the pair of +1/2 defects by splitting a +1 defect, we find the curvature-driven alternating repulsive and attractive interactions between the two defects. With the growth of the spherical disk these two defects tend to approach and finally recombine towards a +1 defect texture. The sensitive response of defects to curvature and the curvature-driven stability mechanism demonstrated in this work in nematic disk systems may have implications towards versatile control and engineering of liquid-crystal textures in various applications.

  19. Hybrid aligned nematic based measurement of the sum (e1+e3) of the flexoelectric coefficients

    Science.gov (United States)

    Tartan, Chloe C.; Elston, Steve J.

    2015-02-01

    A new method has been established for the measurement of the sum of the flexoelectric coefficients e1+e3 in liquid crystals by exploiting the properties of highly ionic materials in order to screen out the internal bias due to the different surface alignment polarities in a Hybrid Aligned Nematic (HAN) liquid crystal device. It has been shown that responses to pulses are independent of the external offset of a signal applied to a HAN device filled with a highly ionic material. Driving the device with step changes in the offset leads to either a transient increase or transient decrease in the response, depending on the polarity of the offset, while the equilibrium response remains the same. The time constant of the transient effect is consistent with the relaxation time of the ions present in the material. Assuming these ions screen out the internal bias completely, the remaining response can be used as a measure of the flexoelectric effect. Based on this approach, a value of (10 ± 2) pC m-1 was found for the modulus of the flexoelectric sum in the standard commercial eutectic E70 nematic liquid crystal mixture.

  20. Investigation of the liquid crystal alignment layer: effect on electrical properties

    OpenAIRE

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Ouada, Hafedh Ben; Gharbi, Abdelhafidh

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane ...

  1. Measurement of refractive index of biaxial potassium titanyl ...

    Indian Academy of Sciences (India)

    The paper reports the measurement of refractive indices and anisotropic absorption coefficients of biaxial potassium titanyl phosphate (KTP) crystal in the form of thin plate using reflection ellipsometry technique. This experiment is designed in the Graduate Optics Laboratory of the Addis Ababa University and He–Ne laser ...

  2. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    linearity arising from the non-linear stress-strain relationships and the cracking of the cross-section. · As a result, the systematic production of biaxial design charts necessitates the application of numerical methods that are based on iterations.

  3. Buckling analysis and small scale effect of biaxially compressed ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, buckling analysis of biaxially compressed graphene sheets with non-local elasticity theory is reported. The equations of motion for graphene sheet are derived using non-local local elasticity theory. Levy's approach has been used to solve the governing equations for various boundary conditions of the ...

  4. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  5. Measurement of refractive index of biaxial potassium titanyl ...

    Indian Academy of Sciences (India)

    Abstract. The paper reports the measurement of refractive indices and anisotropic ab- sorption coefficients of biaxial potassium titanyl phosphate (KTP) crystal in the form of thin plate using reflection ellipsometry technique. This experiment is designed in the. Graduate Optics Laboratory of the Addis Ababa University and ...

  6. Buckling analysis and small scale effect of biaxially compressed ...

    Indian Academy of Sciences (India)

    Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory. S C PRADHAN. Department of Aerospace Engineering, Indian Institute of Technology,. Kharagpur 721 302, India e-mail: scp.aero@gmail.com. MS received 11 October 2010; revised 30 March 2012; accepted ...

  7. Anomalously temperature-independent birefringence in biaxial optical crystals

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-01

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160 0 C. (letters to the editor)

  8. Snakes on a plane: modeling flexible active nematics

    Science.gov (United States)

    Selinger, Robin

    Active soft matter systems of self-propelled rod-shaped particles exhibit ordered phases and collective behavior that are remarkably different from their passive analogs. In nature, many self-propelled rod-shaped particles, such as gliding bacteria and kinesin-driven microtubules, are flexible and can bend. We model these ``living liquid crystals'' to explore their phase behavior, dynamics, and pattern formation. We model particles as short polymers via molecular dynamics with a Langevin thermostat and various types of activity, substrate, and environments. For self-propelled polar particles gliding on a solid substrate, we map out the phase diagram as a function of particle density and flexibility. We compare simulated defect structures to those observed in colonies of gliding myxobacteria; compare spooling behavior to that observed in microtubule gliding assays; and analyze emergence of nematic and polar order. Next we explore pattern formation of self-propelled polar particles under flexible encapsulation, and on substrates with non-uniform Gaussian curvature. Lastly, we impose an activity mechanism that mimics extensile shear, study flexible particles both on solid substrates and coupled to a lipid membrane, and discuss comparisons to relevant experiments. Work performed in collaboration with Michael Varga (Kent State) and Luca Giomi (Universiteit Leiden.) Work supported by NSF DMR-1409658.

  9. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  10. Pretransitional behaviour in the vicinity of the isotropic-nematic transition of strongly polar compounds

    International Nuclear Information System (INIS)

    Sridevi, S; Krishna Prasad, S; Shankar Rao, D S; Yelamaggad, C V

    2008-01-01

    The isotropic-nematic transition, being weakly first order, exhibits pretransitional effects signifying the appearance of the nematic-like regions in the isotropic phase. In the isotropic phase, strongly polar liquid crystals, such as the popular alkyl and alkoxy cyano biphenyl behave in a non-standard fashion: whereas far away from the transition the dielectric constant ε iso has a 1/T dependence (a feature also commonly seen in polar liquids), on approaching the nematic phase the trend reverses resulting in a maximum in ε iso , at a temperature slightly above the transition, an effect explained on the basis of short-range correlations with an antiparallel association of the neighbouring molecules. Recently, there has been a revival in studies on this behaviour to possibly associate it with the order of transition. Here we report dielectric measurements carried in the vicinity of this transition for a number of compounds having different molecular structures including a bent core system, but with a common feature that the molecules possess a strong terminal polar group, nitro in one case and cyano in the rest. Surprisingly, the convex shape of the thermal variation of ε iso was more an exception than the rule. In materials that exhibit such an anomaly we find a linear correlation between δε = (ε peak -ε IN )/ε IN and δT = T peak -T IN , where ε peak is the maximum value of the dielectric constant in the isotropic phase, ε IN the value at the transition, and T peak and T IN the corresponding temperatures.

  11. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  12. The Eighth Liquid Matter Conference.

    Science.gov (United States)

    Dellago, Christoph; Kahl, Gerhard; Likos, Christos N

    2012-07-18

    Daoulas, Victor Rühle and Kurt Kremer Smectic shellsTeresa Lopez-Leon, Alberto Fernandez-Nieves, Maurizio Nobili and Christophe Blanc Intrinsic profiles and the structure of liquid surfacesP Tarazona, E Chacón and F Bresme Competing ordered structures formed by particles with a regular tetrahedral patch decorationGünther Doppelbauer, Eva G Noya, Emanuela Bianchi and Gerhard Kahl Heterogeneous crystallization in colloids and complex plasmas: the role of binary mobilitiesH Löwen, E Allahyarov, A Ivlev and G E Morfill Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamicsAnita Zeidler, Philip S Salmon, Henry E Fischer, Jörg C Neuefeind, J Mike Simonson and Thomas E Markland Confined cubic blue phases under shearO Henrich, K Stratford, D Marenduzzo, P V Coveney and M E Cates Depletion-induced biaxial nematic states of boardlike particlesS Belli, M Dijkstra and R van Roij Active Brownian motion tunable by lightIvo Buttinoni, Giovanni Volpe, Felix Kümmel, Giorgio Volpe and Clemens Bechinger Structure and stability of charged clustersMark A Miller, David A Bonhommeau, Christopher J Heard, Yuyoung Shin, Riccardo Spezia and Marie-Pierre Gaigeot Non-equilibrium relaxation and tumbling times of polymers in semidilute solutionChien-Cheng Huang, Gerhard Gompper and Roland G Winkler Thermophoresis of colloids by mesoscale simulationsDaniel Lüsebrink, Mingcheng Yang and Marisol Ripoll Computing the local pressure in molecular dynamics simulationsThomas W Lion and Rosalind J Allen Gradient-driven fluctuations in microgravityA Vailati, R Cerbino, S Mazzoni, M Giglio, C J Takacs and D S Cannell.

  13. Nanodoping: a route for enhancing electro-optic performance of bent core nematic system

    Science.gov (United States)

    Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka

    2018-03-01

    We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.

  14. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Derek G. Gray

    2015-11-01

    Full Text Available Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM. An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure.

  15. Fluid dynamics in biological active nematics

    Science.gov (United States)

    Tan, Amanda; Hirst, Linda

    We use biological materials to form a self-mixing active system that consists of microtubules driven by kinesin clusters. Microtubules are rigid biopolymers that are a part of the cytoskeleton. Kinesin motors are molecular motors that walk along microtubules to transport cellular cargo. In this system, microtubules are bundled together, and as the kinesin clusters walk along the filaments, the microtubule bundles move relative to each other. As microtubules shear against each other, they extend, bend, buckle and fracture. When confined in a 2D water-oil interface, the system becomes an active nematic that self-mixes due to the buckling and fracturing. To quantify this self-mixing, we attached beads to the microtubules, and tracked their motion. We quantify the quality of mixing using the bead trajectories. This new active material has potential applications as a self-mixing solvent. CCBM NSF-CREST, UC Merced Health Science Research Institute.

  16. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  17. Ordering in nematic liquid crystals from NMR cross-polarization ...

    Indian Academy of Sciences (India)

    dipolar splittings observed along F1 are to be suitably scaled to include the effect of VASS and the multiple pulse .... applied on-resonance corresponding to normal depolarization experiment and the other in which LG .... ADRF pulse sequence on the I spins creates a dipolar order from the I spin Zeeman or- der during the ...

  18. A linear polymerized photopolymer orienting a nematic liquid crystal ...

    Indian Academy of Sciences (India)

    polarized UV light e is along the Oy-axis. We also consider the pre-irradiated pair ... The quantum yield rate should be proportional to (e · a)2, where e and a are unit vectors describing the direction of the ..... 31, 2155 (1992). [2] M Schadt, H Seiberle, A Schuster and S M Kelly, Jpn J. Appl. Phys. Part 1 34, 3240. (1995).

  19. On a non-isothermal model for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Rocca, E.; Schimperna, G.

    2011-01-01

    Roč. 24, č. 1 (2011), s. 243-257 ISSN 0951-7715 R&D Projects: GA ČR GA201/09/0917; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes equation s * system * flows Subject RIV: BA - General Mathematics Impact factor: 1.386, year: 2011 http://iopscience.iop.org/0951-7715/24/1/012/

  20. A linear polymerized photopolymer orienting a nematic liquid crystal ...

    Indian Academy of Sciences (India)

    The distribution function of photogenerated cross-links in thin films of poly(vinyl cinnamate) or poly(vinyl 4-methoxy-cinnamate) is investigated within nonextensive statistics, in terms of the irradiation time of these films with linearly polarized UV light. The scalar order parameter is obtained from the generalized distribution ...

  1. Modelling Ferroelectric Nanoparticles in Nematic Liquid Crystals (FERNANO)

    Science.gov (United States)

    2015-02-26

    DIPARTIMENTO DI CHIMICA FISICA ED INORGANICA VIALE DEL RISORGIMENTO 4 BOLOGNA, 40136 ITALY EOARD GRANT #FA8655-11-1-3046 Report...AND ADDRESS(ES) DIPARTIMENTO DI CHIMICA FISICA ED INORGANICA VIALE DEL RISORGIMENTO 4 BOLOGNA, 40136 ITALY 8. PERFORMING ORGANIZATION

  2. Quasi-elastic neutron line broadening in nematic liquid crystals

    International Nuclear Information System (INIS)

    Cvikl, B.; Dimic, V.; Dusic, M.; Kristof, E.; Srebotnjak, E.

    1979-01-01

    On the basis of a new random walk torsional oscillations model of the amplitude φ 0 of rigid flat molecules a quasi-elastic neutron line broadening has been calculated and the results compared to the measurements obtained on the sample of cholesteryl propionate. A good agreement was obtained. (author)

  3. Crystals and liquid crystals confined to curved geometries

    OpenAIRE

    Koning, Vinzenz; Vitelli, Vincenzo

    2014-01-01

    This review introduces the elasticity theory of two-dimensional crystals and nematic liquid crystals on curved surfaces, the energetics of topological defects (disclinations, dislocations and pleats) in these ordered phases, and the interaction of defects with the underlying curvature. This chapter concludes with two cases of three-dimensional nematic phases confined to spaces with curved boundaries, namely a torus and a spherical shell.

  4. Magneto-actuated cell apoptosis by biaxial pulsed magnetic field.

    Science.gov (United States)

    Wong, De Wei; Gan, Wei Liang; Liu, Ning; Lew, Wen Siang

    2017-09-07

    We report on a highly efficient magneto-actuated cancer cell apoptosis method using a biaxial pulsed magnetic field configuration, which maximizes the induced magnetic torque. The light transmissivity dynamics show that the biaxial magnetic field configuration can actuate the magnetic nanoparticles with higher responsiveness over a wide range of frequencies as compared to uniaxial field configurations. Its efficacy was demonstrated in in vitro cell destruction experiments with a greater reduction in cell viability. Magnetic nanoparticles with high aspect ratios were also found to form a triple vortex magnetization at remanence which increases its low field susceptibility. This translates to a larger magneto-mechanical actuated force at low fields and 12% higher efficacy in cell death as compared to low aspect ratio nanoparticles.

  5. Structural deformations in liquid crystals with dispersed magnetic nano-colloids

    Directory of Open Access Journals (Sweden)

    S Shoarinejad

    2012-06-01

    Full Text Available  The stable colloidal dispersions of magnetic nano-particles in nematic liquid crystals are called ferronematics. Their behaviour in magnetic fields depends on various parameters such as anchoring energy, magnetic anisotropy, and shape and volume fraction of the particles. In the present paper, the threshold field is obtained for these colloidal nematics. Then, the influence of magnetic anisotropy, cell thickness, magnetic moment, and volume fraction of the particles are discussed . It is found that due to the influence of some effective parameters, the threshold field changes when compared to pure nematic liquid crystals. The obtained results are consistent with the reported experimental results.

  6. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  7. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  8. Design of Bioprosthetic Aortic Valves using biaxial test data.

    Science.gov (United States)

    Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K

    2015-01-01

    Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.

  9. New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media

    OpenAIRE

    Trashkeev, Sergey I.; Kudryavtsev, Alexey N.

    2012-01-01

    The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though t...

  10. Development of large area Multi-coloured Multifunctional Displays (MFA) in liquid crystal technology

    Science.gov (United States)

    Briegel, J.; Fahrenschon, K.; Keiner, H.; Marzel, O.; Schwedes, W.; Steinbeck, J.; Wiemer, W.

    1983-05-01

    Large area liquid crystal displays for automotive application including corresponding flat illumination systems and methods for integrating the driver IC's on the liquid crystal cell are discussed. Manufacturing technologies applicable for large quantity series production were worked out, and prototypes were delivered to the automotive industry, mainly the dynamic scattering mode and field effect displays (twisted nematic). The twisted nematic displays are preferred for automotive applications.

  11. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S. [European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Institucio Catalana de Reserca i Estudis Avançats (ICREA), passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  12. Electrially tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  13. Electrically tunable long-period gratings in liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Scolari, Lara; Lægsgaard, Jesper

    2007-01-01

    We demonstrate an aLl-electrically tunable long period grating in a photonic crystal fiber infiltrated with a nematic liquid crystal. The spectral dips and the resonance wavelengths are tuned electrically and thermally, respectively.......We demonstrate an aLl-electrically tunable long period grating in a photonic crystal fiber infiltrated with a nematic liquid crystal. The spectral dips and the resonance wavelengths are tuned electrically and thermally, respectively....

  14. Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber

    DEFF Research Database (Denmark)

    Haakestad, Magnus W.; Alkeskjold, Thomas Tanggaard; Nielsen, Martin Dybendal

    2005-01-01

    Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range.......Tunable bandgap guidance is obtained by filling the holes of a solid core photonic crystal fiber with a nematic liquid crystal and applying an electric field. The response times are measured and found to be in the millisecond range....

  15. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  16. Nematicity at the Hund's metal crossover in iron superconductors

    Science.gov (United States)

    Fanfarillo, L.; Giovannetti, G.; Capone, M.; Bascones, E.

    2017-04-01

    The theoretical understanding of the nematic state of iron-based superconductors and especially of FeSe is still a puzzling problem. Although a number of experiments call for a prominent role of local correlations and place iron superconductors at the entrance of a Hund's metal state, the effect of the electronic correlations on the nematic state has been theoretically poorly investigated. In this work we study the nematic phase of iron superconductors accounting for local correlations, including the effect of the Hund's coupling. We show that Hund's physics strongly affects the nematic properties of the system. It severely constrains the precise nature of the feasible orbital-ordered state and induces a differentiation in the effective masses of the z x /y z orbitals in the nematic phase. The latter effect leads to distinctive signatures in different experimental probes overlooked so far in the interpretation of experiments. As notable examples the splittings between z x and y z bands at Γ and M points are modified, with important consequences for angle-resolved photoemission spectroscopy measurements.

  17. Photopyroelectric Calorimetry Investigations of 8CB Liquid Crystal-Microemulsion System

    Science.gov (United States)

    Paoloni, S.; Zammit, U.; Mercuri, F.

    2018-02-01

    In this work, the photopyroelectric technique has been used to investigate the phase transitions in a liquid crystal microemulsion by combining the simultaneous high temperature resolution thermal diffusivity measurements and optical polarization microscopy observations. It has been found that, during the conversion from the isotropic phase into the nematic one, the micelles are expelled from the nematic domains and remain confined in islands of isotropic material which survive down to the smectic temperature range. A hysteresis in the thermal diffusivity profiles between heating and cooling run over the isotropic-nematic transition temperature range has been observed which has been ascribed to the different micelles distribution into the sample volume during cooling and heating runs. Finally, the almost bulk-like behavior of the thermal diffusivity over the nematic-smectic phase transition confirms that a significant fraction of the micelles are expelled during the nucleation of the nematic phase.

  18. Study of uniaxial nematic lyomesophases by x-ray diffraction and auxiliary techniques

    International Nuclear Information System (INIS)

    Bittencourt, D.R.S.

    1986-01-01

    The uniaxial lyotropic nematic liquid crystals made of amphiphile/water/decanol/salt have been studied. The amphiphiles sodium decyl sulphate and sodium dodecil sulphate have been used. Characterization of samples conditioned in plane and cylindrical cells has been made by orthoscopic polarized optical microscopy (OM) and X.ray diffraction (XD) by observation of orientation under surface and magnetic field effects. It was possible to determine the director orientation of uniaxial discotic (N D ) and cylindrical (N C ) samples under surface and magnetic effects by both OM and XD techniques in independent ways. The homologous amphiphilies sodium octil, decil and dodecil sulfate, in powder form, have been studied by Debye-Scherrer technique. Observed reflexions have been indexed and crystallographic parameters determined. Good agreement between calculated and measured densities has been obtained. A crysostat for temperature variation in the interval- 10 0 /60 0 has been constructed, XD diagrams has been obtained for sodium decil sulfate samples allowing determination of phase transitions of two systems. Scattering curves at room temperatures have been obtained in a small-angle X-ray diffractometer. Analysis of profiles allowed determination of short range positional order and correlation ranges. Interference function between scattering objects have been obtained using structural models for the micelles of the uniaxial nematic phases. (author) [pt

  19. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields.

    Science.gov (United States)

    Low, Jonathan; Hogan, S John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T) not equal-E(t+T2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity sigma_{a}>0 and dielectric anisotorpy _{a}<0 ) and nonstandard (sigma_{a}<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  20. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole; Womack, James [Soft Matter and Nanomaterials Laboratory, Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402 (United States)

    2016-05-14

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  1. Simulation of nuclear magnetic resonance spectra of liquid crystals, polymers liquid crystals and conventional polymers

    International Nuclear Information System (INIS)

    Gerard, H.

    1993-01-01

    The aim of this study is the simulation and the exploitation of NMR spectra of nematic liquid crystals and of polymers. The NMR forms of lines are analysed owing to two complementary models. The first (single conformation model) describes the purely molecular contribution (geometry and internal movements in the molecule), the second the contribution of collective movements (visco elastic modes). Recallings on the NMR method and the orientational order notion within the nematic phase, are given in the first part, where these two models are also described. In a second part these models are applied to data relative to nematic molecules of weak molecular mass and to nematic polymers. This application allows to obtain informations on the structure and the internal movements of the molecule, the orientational order prevailing within the phase and the visco-elastic properties of the studied material. At last it is demonstrated that extension of these models to NMR data of polymers which don't present nematic phase in pure phase allows to obtain similar informations if we consider that their amorphous phase presents locally a nematic order. 136 refs., 46 figs., 4 tabs

  2. Liquid Crystals in Decorative and Visual Arts

    Science.gov (United States)

    Makow, David

    The following sections are included: * INTRODUCTION * PIGMENT AND STRUCTURAL COLOURS AND THEIR RELEVANCE TO LIQUID CRYSTALS * LIQUID CRYSTAL MATERIALS AND TECHNIQUES FOR DECORATIVE AND VISUAL ARTS * Free cholesteric liquid crystals (FCLC's) * Encapsulated liquid crystals (ECLC's) * Nonsteroid Chiral nematics * Polymers with liquid crystalline properties (PLCs) * COLOUR PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS (CLC's) * Molecular structure and the mechanism of colour production * Dependence of perceived colours on the angle of illumination and viewing * Dependence of perceived colours on temperature * Additive colour properties * Methods of doubling the peak reflectance of cholesteric liquid crystals * Colour gamut * Colours of superimposed and pigmented coatings * Colours in transmission * ACKNOWLEDGEMENTS * REFERENCES

  3. Dynamic self-stiffening in liquid crystal elastomers

    Science.gov (United States)

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.; Verduzco, Rafael

    2013-04-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials that respond to external stresses through a permanent increase in stiffness are uncommon. Here we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a mobile nematic director, which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement.

  4. Group theoretical arguments on the Landau theory of second-order phase transitions applied to the phase transitions in some liquid crystals

    International Nuclear Information System (INIS)

    Rosciszewski, K.

    1979-01-01

    The phase transitions between liquids and several of the simplest liquid crystalline phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied from the point of view of the group-theoretical arguments of Landau theory. It was shown that the only possible candidates for second-order phase transitions are those between nematic and smectic A, between centrosymmetric nematic and smectic C and between centrosymmetric smectic A and smectic C. Simple types of density functions for liquid crystalline phases are proposed. (author)

  5. Flexoelectric instability in nematic cells with weak anchoring energy

    International Nuclear Information System (INIS)

    Lelidis, I.; Barbero, G.

    2003-01-01

    We analyze the role of weak anchoring energy boundary conditions on electric field induced structural instabilities of flexoelectric origin in a finite thickness nematic cell. It is shown that stripe-like domain patterns can appear above a rather low threshold voltage V th ∼0.3 V. V th and the wave-length of the instability at the threshold vary as the square root of the cell thickness. Our analysis is valid when the extrapolation length is large with respect to the nematic slab thickness

  6. Design optimization of cruciform specimens for biaxial fatigue loading

    Directory of Open Access Journals (Sweden)

    R. Baptista

    2014-10-01

    Full Text Available In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests.

  7. Field-Induced Rheology in Uniaxial and Biaxial Fields

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN, JAMES E.

    1999-10-22

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than {approx} 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model.

  8. Light propagation in a magneto-optical hyperbolic biaxial crystal

    Science.gov (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.

    2017-12-01

    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  9. Fabrication of dense anisotropic collagen scaffolds using biaxial compression.

    Science.gov (United States)

    Zitnay, Jared L; Reese, Shawn P; Tran, Garvin; Farhang, Niloofar; Bowles, Robert D; Weiss, Jeffrey A

    2018-01-01

    We developed a new method to manufacture dense, aligned, and porous collagen scaffolds using biaxial plastic compression of type I collagen gels. Using a novel compression apparatus that constricts like an iris diaphragm, low density collagen gels were compressed to yield a permanently densified, highly aligned collagen material. Micro-porosity scaffolds were created using hydrophilic elastomer porogens that can be selectively removed following biaxial compression, with porosity modulated by using different porogen concentrations. The resulting scaffolds exhibit collagen densities that are similar to native connective tissues (∼10% collagen by weight), pronounced collagen alignment across multiple length scales, and an interconnected network of pores, making them highly relevant for use in tissue culture, the study of physiologically relevant cell-matrix interactions, and tissue engineering applications. The scaffolds exhibited highly anisotropic material behavior, with the modulus of the scaffolds in the fiber direction over 100 times greater than the modulus in the transverse direction. Adipose-derived mesenchymal stem cells were seeded onto the biaxially compressed scaffolds with minimal cell death over seven days of culture, along with cell proliferation and migration into the pore spaces. This fabrication method provides new capabilities to manufacture structurally and mechanically relevant cytocompatible scaffolds that will enable more physiologically relevant cell culture studies. Further improvement of manufacturing techniques has the potential to produce engineered scaffolds for direct replacement of dense connective tissues such as meniscus and annulus fibrosus. In vitro studies of cell-matrix interactions and the engineering of replacement materials for collagenous connective tissues require biocompatible scaffolds that replicate the high collagen density (15-25%/wt), aligned fibrillar organization, and anisotropic mechanical properties of native

  10. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  11. Prediction of fatigue crack growth rate under biaxial low-cyclic loading

    International Nuclear Information System (INIS)

    Braude, N.Z.; Shkanov, I.N.; Galeeva, F.G.

    1991-01-01

    A new criterion of the crack growth prediction under biaxial loading based on the local stress-strained state in the crack apex, the plastic zone size and the cyclic fracture margin of safety is proposed. Predicted data are compared with experimental data presented by the authors. A satisfactory result concerning stress level effect, material behaviour and biaxial loading parameter is obtained

  12. Lie point symmetries and reductions of one-dimensional equations describing perfect Korteweg-type nematic fluids

    Science.gov (United States)

    De Matteis, Giovanni; Martina, Luigi

    2012-03-01

    A system of partial differential equations, describing one-dimensional nematic liquid crystals is studied by Lie group analysis. These equations are the Euler-Lagrange equations associated with a free energy functional that depends on the mass density and the gradient of the mass density. The group analysis is an algorithmic approach that allows us to show all the point symmetries of the system, to determine all possible symmetry reductions and, finally, to obtain invariant solutions in the form of travelling waves. The Hamiltonian formulation of the dynamical equations is also considered and the conservation laws found by exploiting the local symmetries.

  13. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Hamstad, M.A.; Leon, E.M.; Mukherjee, A.K.

    1980-01-01

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  14. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  15. Remarkable enhancement in thermoelectric performance of BiCuSeO through biaxial strain modulation

    Science.gov (United States)

    Li, Chunhong; Guo, Donglin; Li, Kejian; Shao, Bin; Chen, Dengming; Ma, Yilong; Sun, Jianchun

    2018-03-01

    We propose to further enhance the thermoelectric performance of BiCuSeO using the biaxial strain. The effect of biaxial strain on the thermoelectric property of BiCuSeO is investigated by using the first-principles calculations combined with the Semiclaasical Boltzmann theory. When the biaxial strain is applied, the Seebeck coefficient is largely enhanced by tensile strain, while the electrical conductivity can be greatly enhanced by compressive strain. The largest zT value of 1.7 at 900 K is then conservatively estimated by using the experimental thermal conductivity, which is 4 times larger than that without biaxial strain. Our results indicate that the biaxial strain could be an effect method to enhance the thermoelectric performance of BiCuSeO.

  16. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    Science.gov (United States)

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  17. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  18. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.

    2012-01-01

    present the frequency dependent index of refraction and the absorption coefficients of the nematic liquid crystal 5CB over a frequency range from 0.3 THz to 15 THz using a dispersion-free THz time-domain spectrometer system based on two-color plasma generation and air biased coherent detection (ABCD). We...

  19. Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures

    International Nuclear Information System (INIS)

    Uche, C; Elston, S J; Parry-Jones, L A

    2005-01-01

    Nematic liquid crystals have been shown to exhibit zenithal electro-optic bistability in devices containing sinusoidal and deformed sinusoidal gratings. Recently it has been shown that zenithal bistable states can also be supported at isolated edges of square gratings. In this paper, we present microscopic observations of bistability in cells containing sinusoidal gratings and long-pitch square gratings. We have also investigated a novel display based on square wells. High frame-rate video microscopy was used to obtain time-sequenced images when the devices were switched with monopolar pulses. These show that zenithal bistable switching can occur by two different processes: (i) domain growth (observed in cells containing sinusoidal gratings) and (ii) homogenous switching (observed in cells containing isolated edges

  20. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers.

    Science.gov (United States)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-07

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  1. Analysis of the sign-dependent switching observed in a hybrid aligned nematic cell

    International Nuclear Information System (INIS)

    Cornford, S L; Taphouse, T S; Sambles, J R

    2009-01-01

    An optical waveguide experiment was used to study the influence of dc electric fields on a hybrid aligned nematic liquid crystal cell. This dc switching differed from ac switching in two ways: first, the equilibrium states depended on the sign of the applied voltage, and second, there was transient activity over long (∼100 ms) timescales. To understand both of these, a numerical model of the cell's dynamics, which included both the Ericksen-Leslie theory and a drift-diffusion model of mobile ions, has been developed. Comparing modelling with observations, we find that the transients are caused by the motion of tiny concentrations of ionic impurities, and that the sign dependence is caused by an asymmetric distribution of surface charge, rather than the flexoelectric effect.

  2. Biaxial experimental and analytical characterization of a dielectric elastomer

    Science.gov (United States)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  3. Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning

    Science.gov (United States)

    Hofmann, U.; Aikio, M.; Janes, J.; Senger, F.; Stenchly, V.; Weiss, M.; Quenzer, H.-J.; Wagner, B.; Benecke, W.

    2013-03-01

    Low-cost automotive laser scanners for environment perception are needed to enable the integration of advanced driver assistant systems (ADAS) into all automotive vehicle segments, a key to reducing the number of traffic accidents on roads. An omnidirectional 360 degree laser scanning concept has been developed based on combination of an omnidirectional lens and a biaxial large aperture MEMS mirror. This omnidirectional scanning concept is the core of a small sized low-cost time-of-flight based range sensor development. This paper describes concept, design, fabrication and first measurement results of a resonant biaxial 7mm gimbal-less MEMS mirror that is electrostatically actuated by stacked vertical comb drives. Identical frequencies of the two resonant axes are necessary to enable the required circle scanning capability. A tripod suspension was chosen since it allows minimizing the frequency splitting of the two resonant axes. Low mirror curvature is achieved by a thickness of the mirror of more than 500 μm. Hermetic wafer level vacuum packaging of such large mirrors based on multiple wafer bonding has been developed to enable to achieve a large mechanical tilt angle of +/- 6.5 degrees in each axis. The 7mm-MEMS mirror demonstrates large angle circular scanning at 1.5kHz.

  4. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  5. Fractional Brownian motion of director fluctuations in nematic ordering

    DEFF Research Database (Denmark)

    Zhang, Z.; Mouritsen, Ole G.; Otnes, K.

    1993-01-01

    to determine the Hurst exponent H. Theory and experiment are in good agreement. A value of H congruent-to 1 was found for the nematic phase, characterizing fractional Brownian motion, whereas H congruent-to 0.5, reflecting ordinary Brownian motion, applies in the isotropic phase. Field-induced crossover from...

  6. Nematic and Smectic Mesophases from a Novel Triphenylene ...

    African Journals Online (AJOL)

    Salisu Abdulsalam

    phenylazo)azobenzene on to the 2,3,6,7,10,11-hexahydroxytriphenylene nucleus. The presence of a nematic and smectic A mesophases was confirmed by optical textures and ..... containing both mono- and bisazobenzene mesogene: Synthesis and properties,. Macromolecules, 38: 9526-9538. Furumi S., Kidowaki M., ...

  7. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    These were reported to lead to a variety of novel self-organized colloidal structures, such as linear chains [5,6], periodic lattices [7], anisotropic clusters [3], and cellular structures [8] that are stabilized, in general, by topological defects. More recently, two-dimensional (2D) inverted nematic emulsions were also stud- ied and ...

  8. Richness of Side-Chain Liquid-Crystal Polymers: From Isotropic Phase towards the Identification of Neglected Solid-Like Properties in Liquids

    OpenAIRE

    Noirez , Laurence; Mendil-Jakani , Hakima; Baroni , Patrick; Wendorff , Joachim H.

    2012-01-01

    International audience; Very few studies concern the isotropic phase of Side-Chain Liquid-Crystalline Polymers (SCLCPs). However, the interest for the isotropic phase appears particularly obvious in flow experiments. Unforeseen shear-induced nematic phases are revealed away from the N-I transition temperature. The non-equilibrium nematic phase in the isotropic phase of SCLCP melts challenges the conventional timescales described in theoretical approaches and reveal very long timescales, negle...

  9. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, F.; Lalli, S.; Lucchetti, L. [Dipartimento di Scienze e Ingegneria della Materia, dell' Ambiente ed Urbanistica and CNISM, Università Politecnica delle Marche, Ancona (Italy); Criante, L. [Center for Nano Science and Technology-PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Brasselet, E. [Univ. Bordeaux and CNRS, Laboratoire Ondes et Matière d' Aquitaine, UMR 5798, F-33400 Talence (France)

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  10. Liquid-crystal photonic-band-gap materials the tunable electromagnetic vacuum

    CERN Document Server

    Busch, K

    1999-01-01

    We demonstrate that when an optically birefringent nematic liquid crystal is infiltrated into the void regions of an inverse opal, photonic-band-gap (PBG) material, the resulting composite material exhibits a completely tunable PBG. $9 In particular, the three- dimensional PBG can be completely opened or closed by applying an electric field which rotates the axis of the nematic molecules relative to the inverse opal backbone. Tunable light localization effects may $9 be realized by controlling the orientational disorder in the nematic. (28 refs).

  11. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  12. A parity-breaking electronic nematic phase transition in the spin-orbit coupled correlated metal Cd2Re2O7

    Science.gov (United States)

    Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.

    Strong interactions between electrons are known to drive metallic systems toward a variety of well-known symmetry-broken phases, including superconducting, electronic liquid crystalline, and charge- and spin-density wave ordered states. In contrast, the electronic instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncover a novel multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially-resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic liquid crystalline phases, this multipolar nematic phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 K in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order parameter.

  13. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  14. Programmable Liquid Crystal Elastomers Prepared by Thiol-Ene Photopolymerization (Postprint)

    Science.gov (United States)

    2015-08-17

    hierarchical) orientation of liquid crystal polymers can be used to generate bending and torsional deflections.20 Hierarchical variation is...mercaptopropionate), which has a molecular weight per thiol of 122 g/mol. These formulations did not exhibit the required combination of a readily alignable nematic...nematic director to the long axis of the sample by 30° (Figure S1) produces torsional deformations. On heating, the sample morphs from flat to a twisted

  15. Doping a mixture of two smectogenic liquid crystals with barium titanate nanoparticles.

    Science.gov (United States)

    Lorenz, Alexander; Zimmermann, Natalie; Kumar, Satyendra; Evans, Dean R; Cook, Gary; Fernández Martínez, Manuel; Kitzerow, Heinz-S

    2013-01-24

    A mixture of two smectic liquid crystals was doped with harvested ferroelectric barium titanate nanoparticles and investigated with wide- and small-angle X-ray scattering during cooling from the isotropic phase. A decrease in the isotropic to nematic and in the nematic to partially bilayer smectic-A(d) (SmA(d)) phase transition temperatures was observed accompanied by an increase of the layer spacing in the SmA(d) phase.

  16. Nanoparticle guests in lyotropic liquid crystals

    Science.gov (United States)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  17. Non-destructive testing of biaxial stress state in ferromagnetic materials

    Science.gov (United States)

    Vengrinovich, V. L.; Vintov, D. A.; Dmitrovich, D. V.

    2014-02-01

    The technique for biaxial stress state quantitative non destructive testing using magnetic, namely Barkhausen Noise, measurements is developed and checked experimentally. The main elaboration concerns the application of uni-axial calibration data for bi-axial stress measurement in the material which treatment pre-history is not definitely known. The article is aimed to get over difficulties, accompanying factual nondestructive stress evaluation, implied from its tensor nature. The developed technique of stress calibration and measurement assumes the bi-axial stress components recovery from uni-axial magnetic and Barkhausen noise measurement results. The complete technology, based on new calibration procedure with grid diagrams is considered in the article.

  18. A resonant biaxial Helmholtz coil employing a fractal capacitor bank.

    Science.gov (United States)

    Martin, James E

    2013-09-01

    The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples.

  19. Biaxial Compressive Strain Engineering in Graphene/Boron Nitride Heterostructures

    Science.gov (United States)

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K.; Taniguchi, T.; Shi, Yi; Wang, Xinran

    2012-11-01

    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time.

  20. High temperature strength of Hastelloy XR under biaxial stress states

    International Nuclear Information System (INIS)

    Muto, Yasushi; Hada, Kazuhiko; Koikegami, Hajime; Ohno, Nobutada.

    1991-01-01

    Biaxial(tension/torsion) creep and creep-fatigue tests were conducted on Hastelloy XR at 950degC in air. Hastelloy XR is a nickel base solution-annealed heat resistant alloy. Thin-walled tubular test specimens were employed. As results of the creep tests, the von Mises' flow rule was revealed to be applicable very well. Under the torsion load, sufficient growth of voids was necessary to initiate the fracture and this resulted in longer life time compared with that under the tension load. Only a few number of small voids could be observed and very long life times were attained under the compression load. The creep-fatigue tests revealed that superposition of constant torsion load on a cyclic axial load reduced the cycles to failure significantly and the amount of reduction was consistent with the prediction by the linear life fraction rule. (author)

  1. PREFACE: The Eighth Liquid Matter Conference The Eighth Liquid Matter Conference

    Science.gov (United States)

    Dellago, Christoph; Kahl, Gerhard; Likos, Christos N.

    2012-07-01

    Daoulas, Victor Rühle and Kurt Kremer Smectic shellsTeresa Lopez-Leon, Alberto Fernandez-Nieves, Maurizio Nobili and Christophe Blanc Intrinsic profiles and the structure of liquid surfacesP Tarazona, E Chacón and F Bresme Competing ordered structures formed by particles with a regular tetrahedral patch decorationGünther Doppelbauer, Eva G Noya, Emanuela Bianchi and Gerhard Kahl Heterogeneous crystallization in colloids and complex plasmas: the role of binary mobilitiesH Löwen, E Allahyarov, A Ivlev and G E Morfill Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamicsAnita Zeidler, Philip S Salmon, Henry E Fischer, Jörg C Neuefeind, J Mike Simonson and Thomas E Markland Confined cubic blue phases under shearO Henrich, K Stratford, D Marenduzzo, P V Coveney and M E Cates Depletion-induced biaxial nematic states of boardlike particlesS Belli, M Dijkstra and R van Roij Active Brownian motion tunable by lightIvo Buttinoni, Giovanni Volpe, Felix Kümmel, Giorgio Volpe and Clemens Bechinger Structure and stability of charged clustersMark A Miller, David A Bonhommeau, Christopher J Heard, Yuyoung Shin, Riccardo Spezia and Marie-Pierre Gaigeot Non-equilibrium relaxation and tumbling times of polymers in semidilute solutionChien-Cheng Huang, Gerhard Gompper and Roland G Winkler Thermophoresis of colloids by mesoscale simulationsDaniel Lüsebrink, Mingcheng Yang and Marisol Ripoll Computing the local pressure in molecular dynamics simulationsThomas W Lion and Rosalind J Allen Gradient-driven fluctuations in microgravityA Vailati, R Cerbino, S Mazzoni, M Giglio, C J Takacs and D S Cannell

  2. Multiple Order Diffractions by laser-Injured Transient Grating in Nematic MBBA Film

    International Nuclear Information System (INIS)

    Kim, Seong Kyu; Kim, Hack Jin

    1999-01-01

    The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals

  3. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  4. Conoscopy of chiral smectic liquid crystal cells

    OpenAIRE

    VIJ, JAGDISH; SONG, JANG-KUN

    2008-01-01

    PUBLISHED The conoscopic method for investigating the optical properties of a liquid crystal cell is studied with the aim of determining the effects of the approximations used in the calculation on the results. We confirm that the chiral liquid crystal cell forming a helical structure can be regarded as a single biaxial plate for analyzing the conoscopic image only if the helical pitch is less than several multiples of the wavelength of light. This approximation implies that the square of ...

  5. Nematicity, magnetism and superconductivity in FeSe

    Science.gov (United States)

    Böhmer, Anna E.; Kreisel, Andreas

    2018-01-01

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  6. Creation and manipulation of topological states in chiral nematic microspheres

    Science.gov (United States)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  7. Nematicity, magnetism and superconductivity in FeSe.

    Science.gov (United States)

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  8. Liquid crystals of carbon nanotubes and graphene.

    Science.gov (United States)

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  9. Molecular Models of Liquid Crystal Elastomers

    Science.gov (United States)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  10. Simulation and parameter optimization of polysilicon gate biaxial strained silicon MOSFETs

    CSIR Research Space (South Africa)

    Tsague, HD

    2015-10-01

    Full Text Available and Parameter Optimization of Polysilicon Gate Biaxial Strained Silicon MOSFETs Hippolyte Djonon Tsague Council for Scientific and Industrial Research (CSIR) Modelling and Digital Science (MDS) Pretoria, South Africa hdjonontsague...

  11. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  12. Photoswitching of Dihydroazulene Derivatives in Liquid-Crystalline Host Systems

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2017-01-01

    Photoswitches and dyes in the liquid-crystalline nematic phase have the potential for use in a wide range of applications. A large order parameter is desirable to maximize the change in properties induced by an external stimulus. A set of photochromic and nonphotochromic dyes were investigated...... for these applications. It was found that a bent-shaped 7-substituted dihydroazulene (DHA) photoswitch exhibited liquid-crystalline properties. Further investigation demonstrated that this material actually followed two distinct reaction pathways on heating, to a deactivated form by a 1,5-sigmatropic shift...... and to a linear 6-substituted DHA. In addition, elimination of hydrogen cyanide from the photoactive DHA gave both bent and linear azulene dyes. In a nematic host that has no absorbance around 350nm, it was found that only the linear DHA derivative has nematic properties; however, both 6- and 7-substituted DHAs...

  13. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals.

    Science.gov (United States)

    Shamid, Shaikh M; Dhakal, Subas; Selinger, Jonathan V

    2013-05-01

    We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations. To test the predictions of Landau theory, we perform Monte Carlo simulations to find the director and polarization configurations as functions of temperature, applied electric field, and interaction parameters.

  14. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.

    Science.gov (United States)

    Greco, Cristina; Jiang, Ying; Chen, Jeff Z Y; Kremer, Kurt; Daoulas, Kostas Ch

    2016-11-14

    Self Consistent Field (SCF) theory serves as an efficient tool for studying mesoscale structure and thermodynamics of polymeric liquid crystals (LC). We investigate how some of the intrinsic approximations of SCF affect the description of the thermodynamics of polymeric LC, using a coarse-grained model. Polymer nematics are represented as discrete worm-like chains (WLC) where non-bonded interactions are defined combining an isotropic repulsive and an anisotropic attractive Maier-Saupe (MS) potential. The range of the potentials, σ, controls the strength of correlations due to non-bonded interactions. Increasing σ (which can be seen as an increase of coarse-graining) while preserving the integrated strength of the potentials reduces correlations. The model is studied with particle-based Monte Carlo (MC) simulations and SCF theory which uses partial enumeration to describe discrete WLC. In MC simulations the Helmholtz free energy is calculated as a function of strength of MS interactions to obtain reference thermodynamic data. To calculate the free energy of the nematic branch with respect to the disordered melt, we employ a special thermodynamic integration (TI) scheme invoking an external field to bypass the first-order isotropic-nematic transition. Methodological aspects which have not been discussed in earlier implementations of the TI to LC are considered. Special attention is given to the rotational Goldstone mode. The free-energy landscape in MC and SCF is directly compared. For moderate σ the differences highlight the importance of local non-bonded orientation correlations between segments, which SCF neglects. Simple renormalization of parameters in SCF cannot compensate the missing correlations. Increasing σ reduces correlations and SCF reproduces well the free energy in MC simulations.

  15. A biaxial method for inplane shear testing. [shear strain in composite materials

    Science.gov (United States)

    Bush, H. G.; Weller, T.

    1978-01-01

    A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.

  16. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    OpenAIRE

    Tsung Chieh Cheng; Chao Kai Yang; I Lin

    2016-01-01

    In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately main...

  17. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  18. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  19. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Yupeng Liu

    2015-01-01

    Full Text Available This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs. The proposed power divider uses liquid crystal (LC as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low loss, multifunction integration, continuous adjustable, miniaturization, low processing costs, low operating voltage, high phase shift, and convenient manufacture. Therefore, it has shown great potential for application.

  20. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  1. Self-assembled shape-memory fibers of triblock liquid-crystal polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ahir, S.V.; Tajbakhsh, A.R.; Terentjev, E.M. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2006-03-03

    New thermoplastic liquid-crystalline elastomers have been synthesized using the telechelic principle of microphase separation in triblock copolymers. The large central block is made of a main-chain nematic polymer renowned for its large spontaneous elongation along the nematic director. The effective crosslinking is established by small terminal blocks formed of terphenyl moieties, which phase separate into semicrystalline micelles acting as multifunctional junction points of the network. The resulting transient network retains the director alignment and shows a significant shape-memory effect, characteristic and exceeding that of covalently bonded nematic elastomers. Its plasticity at temperatures above the nematic-isotropic transition allows drawing thin well-aligned fibers from the melt. The fibers have been characterized and their thermal actuator behavior - reversible contraction of heating and elongation on cooling - has been investigated. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. De Gennes model of the nematic to smectic-A transition: dislocations and gauge properties

    International Nuclear Information System (INIS)

    Day, A.R.

    1984-01-01

    The de Gennes model is used to study the nematic to smectic-A (N-A) transition of liquid crystals. The analogy between the Ginzburg-Landau model for the normal metal to superconducting transition and the role of the splay elastic constant K 1 is stressed. It is found that, in contrast to what was previously thought, the de Gennes model is gauge invariant, irrespective of the value of k 1 . The model is studied in an arbitrary gauge, and it is shown that the renormalization group recursion relations in the epsilon expansion are independent of gauge. The critical exponent eta, with governs the power law decay of the smectic correlations at the critical point, is found to depend on the gauge, and, in the physical gauge, to diverge at the accessible fixed point, K 1 /sup XX.XX/ = 0. This is indicative of the nonpower law decay of the correlation function at the critical point. The author introduces an extension of the de Gennes model that describes a liquid crystal, with negative dielectric anisotropy, in an applied electric field. It is shown that there are at least two possible extensions to 4-epsilon dimensions and that they predict different critical behavior

  3. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  4. Research on self-calibration biaxial autocollimator based on ZYNQ

    Science.gov (United States)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui

    2018-01-01

    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  5. Experimental studies of yield phenomena in biaxially loaded metals

    International Nuclear Information System (INIS)

    Hecker, S.S.

    1976-01-01

    Realistic materials properties input represents one of the major limitations in computer stress analysis in the plastic range. Lack of data on the response of many structural materials to multiaxial loading requires modeling plastic behavior. Such models can at best predict the response of a limited class of materials for a limited range of loading. A summary of biaxial plasticity experiments on metals is presented to provide a testing ground for such models and to serve as a reference guide for materials that may be of practical interest. Most of the work has been done on materials assumed to exhibit time-and-pressure-independent plastic flow. Special attention is focused on initial and subsequent yield conditions and stress-strain relations. Some specific examples of material behavior that does not fall within the assumptions of classical plasticity theories are discussed. These include time-dependence as evidenced in creep, cyclic loading and strain-rate effects, pressure dependence, large strain behavior, microstructural changes and failure laws. 15 figures, 277 references

  6. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  7. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia.

    Science.gov (United States)

    Oh, Ju-Won; Song, Kwang-Yeob; Ahn, Seung-Geun; Park, Ju-Mi; Lee, Min-Ho; Seo, Jae-Min

    2015-10-01

    The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgroups with two different veneering methods (conventional powder/liquid layering technique and the heat-pressing technique). Tensile strength was measured using the biaxial flexural strength test based on the ISO standard 6872:2008 and Weibull analysis was conducted. Factors influencing fracture strength were analyzed through three-way ANOVA (α≤.05) and the influence of core thickness and veneering method in each core materials was assessed using two-way ANOVA (α≤.05). The biaxial flexural strength test showed that the fabrication method of veneering porcelain has the largest impact on the fracture strength followed by the core thickness and the core material. In the metal groups, both the core thickness and the fabrication method of the veneering porcelain significantly influenced on the fracture strength, while only the fabrication method affected the fracture strength in the zirconia groups. The fabrication method is more influential to the strength of a prosthesis compared to the core character determined by material and thickness of the core.

  8. Regularity of solutions to the liquid crystals systems in R2 and R3

    International Nuclear Information System (INIS)

    Dai, Mimi; Qing, Jie; Schonbek, Maria

    2012-01-01

    In this paper, we establish regularity and uniqueness for solutions to density dependent nematic liquid crystals systems. The results presented extend the regularity and uniqueness for constant density liquid crystals systems, obtained by Lin and Liu (1995 Commun. Pure Appl. Math. XLVIII 501–37)

  9. Supercontinuum generation in fibers infiltrated with liquid crystals

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Bang, Ole; Lægsgaard, Jesper

    2006-01-01

    Supercontinuum generation in a capillary tube infiltrated with a nematic liquid crystal is investigated theoretically in the near infrared region. A liquid crystal with a high electronic nonlinearity is chosen, which makes it possible to generate 100 nm wide supercontinua using IO ps pulses with ...... modulation, and therefore the dispersion of the waveguide is only of minor importance. The tuning of the dispersion is achieved by varying the temperature of the liquid crystal inside the capillary......Supercontinuum generation in a capillary tube infiltrated with a nematic liquid crystal is investigated theoretically in the near infrared region. A liquid crystal with a high electronic nonlinearity is chosen, which makes it possible to generate 100 nm wide supercontinua using IO ps pulses...

  10. Ultraviolet-pumped liquid-crystal dye-laser

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sbrolli, L.; Scudieri, F.; Papa, T.

    1981-01-01

    The possibility offered by the orientation properties of liquid crystals as a matrix for dye lasers is shown. In particular, the linear polarization of emitted light can be changed by acting with an external magnetic field on the molecular nematic director. (author)

  11. Anisotropic and Electro-Optical Effects in Liquid Crystals.

    Science.gov (United States)

    1981-08-01

    nematic-phase liquid crystals of negative dielectric anisotropy has been previously studied primarily with azoxy mixtures, such as Merck NP-V. These yellow ...of these patterns are similar to a wallpaper pattern while the ac-activated Williams domains consist of many parallel line domains. The dc-Vth

  12. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia.

    Science.gov (United States)

    Sen, Nazmiye; Sermet, Ibrahim Bülent; Cinar, Sevki

    2018-02-01

    The influences of coloring and sintering procedures on the optical and mechanical properties of monolithic zirconia have not been thoroughly investigated. The purpose of this in vitro study was to investigate the effects of the coloring procedure and of varying final sintering temperatures on the translucency parameter (TP) and biaxial flexural strength (BFS) of monolithic zirconia. Disk-shaped specimens (N=210) of 2 different monolithic zirconia brands (Vita YZ HT White [VYZa]; Vita YZ HT Color A2 [VYZb]; Prettau Zirkonzahn [PZ]; Prettau Anterior Zirkonzahn [PZA]) with a diameter of 15 mm and a thickness of 1.0 ±0.05 mm were prepared. Half of the specimens prepared from noncolored blocks (VYZa, PZ, and PZA) received coloring liquid application. Then, the specimens were divided into 3 subgroups (n=10) according to the final sintering temperatures (1350°C, 1450°C, and 1600°C). The TP was determined by using a reflection spectrophotometer, and the BFS was tested with the piston-on-3-ball method in a universal testing machine. Data were statistically analyzed by multivariate multiple regression and Bonferroni tests (α=.05). Significant differences were obtained among the groups based on the results of the TP and BFS (Papplication significantly decreased the TP of VYZa (sintered at 1350°C) but produced no significant effect on the groups PZ and PZA. Additionally, the coloring procedure had no significant effect on the BFS of tested materials (VYZa, PZ, and PZA) (P>.05). Increased sintering temperature leads to increased translucency with minimal impact on the BFS. The coloring procedure should be considered at the time of material selection to avoid possible reduction in translucency. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Determination of the refractive indices of liquid crystal elastomers

    Science.gov (United States)

    Lazo, Israel; Palffy-Muhoray, Peter

    2008-03-01

    Liquid Crystal Elastomers (LCEs) are fascinating materials due to the coupling between orientational order and mechanical strain. We investigate this coupling by studying the optical properties of LCEs. We have measured the ordinary and extraordinary refractive indices of nematic LCEs as function of strain using two different techniques. In both cases, the strain is applied along the nematic director. The first technique is a Brewster's angle measurement which is based on reflection of the incident light and the second is a conoscopic Mach-Zehnder interferometer based on transmission. We present our experimental results and methods of analysis. We compare our observations with theoretical predictions.

  14. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  15. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  16. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  17. A new bi-axial cantilever beam design for biomechanics force measurements.

    Science.gov (United States)

    Lin, Huai-Ti; Trimmer, Barry A

    2012-08-31

    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  19. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  20. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had

  1. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  2. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  3. Bent Core Liquid Crystal Polymers and Elastomers

    Science.gov (United States)

    Verduzco, Rafael; Hong, Seung Ho; Harden, John; Jakli, Antal; Sprunt, Sam; Gleeson, Jim

    2010-03-01

    Bent-core liquid crystals (LCs) have a kinked, or bent, molecular shape in contrast to the more common rod-like LCs. Due to their bent molecular shape, bent-core LCs form locally polar clusters, which result in novel LC phases and potentially useful properties such as ferroelectricity. Polymeric bent-core LCs are of particular interest because they can lead to new nanostructured soft materials with confined bent-core LCs. In this work, we investigate the synthesis, nanoscale structure, and physical properties of a variety of bent-core LCs and polymeric bent-core LCs. SAXS reveals the presence of polar clusters over a wide temperature range in the nematic phase for all materials studied, including bent-core side-group LC polymers and bent-core LC elastomers. The presence of locally polar clusters can account for the unexpected physical properties in nematic bent-core LCs, such as enhanced flexoelectricity. Direct flexoelectric measurements on pure bent-core LCs and swollen LCEs show that nematic bent-core materials have a flexoelectric coupling three orders orders of magnitude larger than calamitic LCs. Nematic clusters in bent-core LCs represent an unexpected and potentially useful phenomenon for building responsive LC devices.

  4. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film

    International Nuclear Information System (INIS)

    Zhang, Y.; Lawrence Berkeley National Laboratory; Yi, M.; Stanford University, CA; Liu, Z.-K.

    2016-01-01

    Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-T c , however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the d xz and d yz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80 meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of d xz and d yz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.

  5. Nanodrops of Discotic Liquid Crystals: A Monte Carlo Study.

    Science.gov (United States)

    Rull, Luis F; Romero-Enrique, José M

    2017-10-24

    We study the morphologies of nematic nanodrops in a vapor of a discotic nematogen by Monte Carlo simulations. The fluid interactions are modeled by a Gay-Berne model with molecular elongations of κ = 0.3 and 0.5 and different values of the energy anisotropy parameter κ' in the range of temperature T in which the nematic coexists with a vapor phase. We considered nanodrops of N = 4000 and 32 000 particles. For κ > κ', we observe that nanodrops are quite spherical (even for N = 4000 nanodrops), with a homogeneous director field for κ = 0.3 and a bipolar nematic configuration with tangential anchoring for κ = 0.5. By increasing the value of κ', nanodrops change from spherical to lens-shaped for κ = 0.3, and for κ = 0.5, spherical nanodrops with homeotropic anchoring and a disclination ring located on its equatorial plane are observed. Although no radial nanodrops are observed, isotropic liquid nanodrops with a paranematic shell and radial texture are observed for temperatures slightly above the vapor-isotropic-nematic triple point when the vapor-isotropic interface is completely wet by the nematic phase.

  6. Inorganic nanotubes and nanorods in liquid crystals

    Science.gov (United States)

    Drevenšek-Olenik, Irena

    Research efforts that focus on possible improvement of the physical properties of thermotropic liquid crystals by addition of inorganic 1D nanoparticles (inorganic nanotubes, nanorods, etc.) are reviewed. The emphasis is on modification of electro-optic switching characteristics relevant for display-related applications. In most cases the dopants generate a decrease of the threshold voltage for electrooptic switching and also a decrease of the corresponding switching times. We discuss various possible reasons for the observed effects and point out specific characteristics related to 1D nature of the dopants. We also describe investigations of inclusion of 1D nanoparticles into photo-polymerizable nematic liquid crystalline materials. Photo-polymerization in the aligned nematic phase provides a convenient way to fabricate solid polymer films with strongly anisotropic angular distribution of the nanoparticles. Investigations of structural and optical properties of some selected systems are surveyed.

  7. Evidence for a Nematic Phase in La1.75Sr0.25NiO4

    Science.gov (United States)

    Zhong, Ruidan; Winn, Barry L.; Gu, Genda; Reznik, Dmitry; Tranquada, J. M.

    2017-04-01

    Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La2 -xSrxNiO4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x =0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.

  8. Critical linear thermal expansion in the smectic-A phase near the nematic-smectic phase transition.

    Science.gov (United States)

    Anesta, E; Iannacchione, G S; Garland, C W

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient alpha// parallel to the director. Combining such data with available volume thermal expansion alpha(V) data yields the in-plane linear expansion coefficient alpha(perpendicular) . The critical behaviors of alpha// and alpha(perpendicular) are the same as those for alpha(V) and the heat capacity Cp. However, for any given liquid crystal, alpha//(crit) and alpha(perpendicular)(crit) differ in sign. Furthermore, the quantity alpha// (crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  9. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  10. Spin splitting in bulk wurtzite AlN under biaxial strain

    Science.gov (United States)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Lee, Meng-En; Wu, C. L.; Wang, W. T.; Chen, Chun-Nan; Hsu, Y. C.

    2012-05-01

    The spin-splitting energies in biaxially strained bulk wurtzite material AlN are calculated using the linear combination of atomic orbital (LCAO) method, and the equi-spin-splitting distributions in k-space near the minimum-spin-splitting (MSS) surfaces are illustrated. These data are compared with those derived analytically by two-band k . p (2KP) model. It is found that the results from these two methods are in good agreement for small k. However, the ellipsoidal MSS surface under biaxial compressive strain does not exist in the 2KP model, because the data points are far from the Γ point. Instead, three basic shapes of the MSS surface occur in the wurtzite Brillouin zone: a hyperboloid of two sheets, a hexagonal cone, and a hyperboloid of one sheet, evaluated from the LCAO method across the range of biaxial strains from compressive to tensile.

  11. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  12. Theoretical study of the slow neutron coherent scattering by nemanic liquid crystals

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Shiyanovskij, S.V.

    1982-01-01

    An exact expression is obtained for neutron coherent quasielastic scattering cross section in nematic liquid crystals. Expressions are analyzed or big and small values of scattering wave vector. In the first case scattering is occured on the separate molecules and the account of the molecule form noncylindricity is to be essential. In the second case an intermolecular correlations contribute greatly to cross sections. A connection is found for pair correlation function with fluctuation for density, dipole moment and order parameters. The performed cross section analysis allow to determine the significant microscopic parameters of the nematic liquid crystal from the experimental data of slow neutron scattering

  13. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  14. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    Wu, K.; Wang, S.S.; Meng, J.; Han, Z.

    2004-01-01

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  15. The limits of flexoelectricity in liquid crystals

    OpenAIRE

    F. Castles; S. M. Morris; H. J. Coles

    2011-01-01

    The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger tha...

  16. Note on the hydrodynamic description of thin nematic films: Strong anchoring model

    KAUST Repository

    Lin, Te-Sheng

    2013-01-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion. © 2013 AIP Publishing LLC.

  17. Conformational study of a bent-core liquid crystal: 13C NMR and DFT computation approach.

    Science.gov (United States)

    Dong, Ronald Y; Marini, Alberto

    2009-10-29

    A detailed conformational study is carried out by means of density functional theory (DFT) on a bent-core mesogen (A131) in order to shed light on its uniaxial-biaxial nematic phase transition. The most probable conformational states for this V-shaped core are found, from the potential energy surface (PES) of a five-ring model of A131, to fall into two distinct structural groups, namely, the banana-shaped and the hockey-stick-shaped forms. The chemical shielding tensors (CSTs) of the aromatic carbons, for the four prevalent conformers, have been calculated using the GIAO-DFT approach. The derived CSTs are found to compare well with the chemical shift anisotropy (CSA) tensors measured by the 2D-NMR SUPER technique. The CSA tensors are then used to aid the assignment of the aromatic carbon peaks, and the observed (13)C chemical shifts from its nematic phases are revisited to provide new structural and local orientational order parameters. In light of the conformational states found from the in vacuo DFT calculations, the "average" configuration shapes of the A131 molecule are found to be different in the nematic phases based on their new local order parameters S and D of the aromatic rings.

  18. Magnetic, electric and optic properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, St.C.

    1980-01-01

    We study the nematic liquid crystals of thermotrop type. We also studied the crystals whose mesomorphism occured both at temperature increasing and decreasing and during the supercooling phase (monotrope). Investigation results performed by us have had in view the following: clearing up and experimental support of a new mechanism of nuclear relaxation in liquid crystals, proposed by author; usage of experimental techniques and methods for to characterize and test some mesomorph media used in very important applications, such as color TV. (author)

  19. Magnetically driven suppression of nematic order in an iron-based superconductor.

    Science.gov (United States)

    Avci, S; Chmaissem, O; Allred, J M; Rosenkranz, S; Eremin, I; Chubukov, A V; Bugaris, D E; Chung, D Y; Kanatzidis, M G; Castellan, J-P; Schlueter, J A; Claus, H; Khalyavin, D D; Manuel, P; Daoud-Aladine, A; Osborn, R

    2014-05-22

    A theory of superconductivity in the iron-based materials requires an understanding of the phase diagram of the normal state. In these compounds, superconductivity emerges when stripe spin density wave (SDW) order is suppressed by doping, pressure or atomic disorder. This magnetic order is often pre-empted by nematic order, whose origin is yet to be resolved. One scenario is that nematic order is driven by orbital ordering of the iron 3d electrons that triggers stripe SDW order. Another is that magnetic interactions produce a spin-nematic phase, which then induces orbital order. Here we report the observation by neutron powder diffraction of an additional fourfold-symmetric phase in Ba1-xNaxFe2As2 close to the suppression of SDW order, which is consistent with the predictions of magnetically driven models of nematic order.

  20. Steady States and Dynamics of 2-D Nematic Polymers Driven by an Imposed Weak Shear

    National Research Council Canada - National Science Library

    Zhou, Hong; Wang, Hongyun

    2007-01-01

    ...]: in the absence of flow the isotropic-nematic phase transition occurs at U =2 where U is the normalized polymer concentration, representing the intensity of the Maier-Saupe interaction potential...