WorldWideScience

Sample records for biased parameter estimates

  1. Basic MR sequence parameters systematically bias automated brain volume estimation

    International Nuclear Information System (INIS)

    Haller, Sven; Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte; Meuli, Reto; Thiran, Jean-Philippe; Krueger, Gunnar; Lovblad, Karl-Olof; Kober, Tobias

    2016-01-01

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  2. Basic MR sequence parameters systematically bias automated brain volume estimation

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2016-11-15

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  3. BIASED BEARINGS-ONIKY PARAMETER ESTIMATION FOR BISTATIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Xu Benlian; Wang Zhiquan

    2007-01-01

    According to the biased angles provided by the bistatic sensors,the necessary condition of observability and Cramer-Rao low bounds for the bistatic system are derived and analyzed,respectively.Additionally,a dual Kalman filter method is presented with the purpose of eliminating the effect of biased angles on the state variable estimation.Finally,Monte-Carlo simulations are conducted in the observable scenario.Simulation results show that the proposed theory holds true,and the dual Kalman filter method can estimate state variable and biased angles simultaneously.Furthermore,the estimated results can achieve their Cramer-Rao low bounds.

  4. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    Science.gov (United States)

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  5. Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data

    International Nuclear Information System (INIS)

    Zhang, L.F.; Xie, M.; Tang, L.C.

    2006-01-01

    Estimation of the Weibull shape parameter is important in reliability engineering. However, commonly used methods such as the maximum likelihood estimation (MLE) and the least squares estimation (LSE) are known to be biased. Bias correction methods for MLE have been studied in the literature. This paper investigates the methods for bias correction when model parameters are estimated with LSE based on probability plot. Weibull probability plot is very simple and commonly used by practitioners and hence such a study is useful. The bias of the LS shape parameter estimator for multiple censored data is also examined. It is found that the bias can be modeled as the function of the sample size and the censoring level, and is mainly dependent on the latter. A simple bias function is introduced and bias correcting formulas are proposed for both complete and censored data. Simulation results are also presented. The bias correction methods proposed are very easy to use and they can typically reduce the bias of the LSE of the shape parameter to less than half percent

  6. Statistical Bias in Maximum Likelihood Estimators of Item Parameters.

    Science.gov (United States)

    1982-04-01

    34 a> E r’r~e r ,C Ie I# ne,..,.rVi rnd Id.,flfv b1 - bindk numb.r) I; ,t-i i-cd I ’ tiie bias in the maximum likelihood ,st i- i;, ’ t iIeiIrs in...NTC, IL 60088 Psychometric Laboratory University of North Carolina I ERIC Facility-Acquisitions Davie Hall 013A 4833 Rugby Avenue Chapel Hill, NC

  7. Correcting the bias of empirical frequency parameter estimators in codon models.

    Directory of Open Access Journals (Sweden)

    Sergei Kosakovsky Pond

    2010-07-01

    Full Text Available Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates. We propose a "corrected" empirical estimator that begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via simulation that the corrected estimates outperform the de facto standard estimates not just by providing better estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the evolutionary models. On a curated collection of sequence alignments, our estimators show a significant improvement in goodness of fit compared to the approach. Maximum likelihood estimation of the frequency parameters appears to be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification, either statistical or computational, for continued use of the -style estimators.

  8. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    Science.gov (United States)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  9. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  10. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  11. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  12. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  13. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  14. Estimation bias and bias correction in reduced rank autoregressions

    DEFF Research Database (Denmark)

    Nielsen, Heino Bohn

    2017-01-01

    This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root...

  15. Spatial Bias in Field-Estimated Unsaturated Hydraulic Properties

    Energy Technology Data Exchange (ETDEWEB)

    HOLT,ROBERT M.; WILSON,JOHN L.; GLASS JR.,ROBERT J.

    2000-12-21

    Hydraulic property measurements often rely on non-linear inversion models whose errors vary between samples. In non-linear physical measurement systems, bias can be directly quantified and removed using calibration standards. In hydrologic systems, field calibration is often infeasible and bias must be quantified indirectly. We use a Monte Carlo error analysis to indirectly quantify spatial bias in the saturated hydraulic conductivity, K{sub s}, and the exponential relative permeability parameter, {alpha}, estimated using a tension infiltrometer. Two types of observation error are considered, along with one inversion-model error resulting from poor contact between the instrument and the medium. Estimates of spatial statistics, including the mean, variance, and variogram-model parameters, show significant bias across a parameter space representative of poorly- to well-sorted silty sand to very coarse sand. When only observation errors are present, spatial statistics for both parameters are best estimated in materials with high hydraulic conductivity, like very coarse sand. When simple contact errors are included, the nature of the bias changes dramatically. Spatial statistics are poorly estimated, even in highly conductive materials. Conditions that permit accurate estimation of the statistics for one of the parameters prevent accurate estimation for the other; accurate regions for the two parameters do not overlap in parameter space. False cross-correlation between estimated parameters is created because estimates of K{sub s} also depend on estimates of {alpha} and both parameters are estimated from the same data.

  16. Optomechanical parameter estimation

    International Nuclear Information System (INIS)

    Ang, Shan Zheng; Tsang, Mankei; Harris, Glen I; Bowen, Warwick P

    2013-01-01

    We propose a statistical framework for the problem of parameter estimation from a noisy optomechanical system. The Cramér–Rao lower bound on the estimation errors in the long-time limit is derived and compared with the errors of radiometer and expectation–maximization (EM) algorithms in the estimation of the force noise power. When applied to experimental data, the EM estimator is found to have the lowest error and follow the Cramér–Rao bound most closely. Our analytic results are envisioned to be valuable to optomechanical experiment design, while the EM algorithm, with its ability to estimate most of the system parameters, is envisioned to be useful for optomechanical sensing, atomic magnetometry and fundamental tests of quantum mechanics. (paper)

  17. Ranking as parameter estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Guy, Tatiana Valentine

    2009-01-01

    Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf

  18. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  19. Systematic biases in human heading estimation.

    Directory of Open Access Journals (Sweden)

    Luigi F Cuturi

    Full Text Available Heading estimation is vital to everyday navigation and locomotion. Despite extensive behavioral and physiological research on both visual and vestibular heading estimation over more than two decades, the accuracy of heading estimation has not yet been systematically evaluated. Therefore human visual and vestibular heading estimation was assessed in the horizontal plane using a motion platform and stereo visual display. Heading angle was overestimated during forward movements and underestimated during backward movements in response to both visual and vestibular stimuli, indicating an overall multimodal bias toward lateral directions. Lateral biases are consistent with the overrepresentation of lateral preferred directions observed in neural populations that carry visual and vestibular heading information, including MSTd and otolith afferent populations. Due to this overrepresentation, population vector decoding yields patterns of bias remarkably similar to those observed behaviorally. Lateral biases are inconsistent with standard bayesian accounts which predict that estimates should be biased toward the most common straight forward heading direction. Nevertheless, lateral biases may be functionally relevant. They effectively constitute a perceptual scale expansion around straight ahead which could allow for more precise estimation and provide a high gain feedback signal to facilitate maintenance of straight-forward heading during everyday navigation and locomotion.

  20. Bias-limited extraction of cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, Meir; Itzhaki, Nissan; Rephaeli, Yoel, E-mail: meirs@wise.tau.ac.il, E-mail: nitzhaki@post.tau.ac.il, E-mail: yoelr@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-03-01

    It is known that modeling uncertainties and astrophysical foregrounds can potentially introduce appreciable bias in the deduced values of cosmological parameters. While it is commonly assumed that these uncertainties will be accounted for to a sufficient level of precision, the level of bias has not been properly quantified in most cases of interest. We show that the requirement that the bias in derived values of cosmological parameters does not surpass nominal statistical error, translates into a maximal level of overall error O(N{sup −½}) on |ΔP(k)|/P(k) and |ΔC{sub l}|/C{sub l}, where P(k), C{sub l}, and N are the matter power spectrum, angular power spectrum, and number of (independent Fourier) modes at a given scale l or k probed by the cosmological survey, respectively. This required level has important consequences on the precision with which cosmological parameters are hoped to be determined by future surveys: in virtually all ongoing and near future surveys N typically falls in the range 10{sup 6}−10{sup 9}, implying that the required overall theoretical modeling and numerical precision is already very high. Future redshifted-21-cm observations, projected to sample ∼ 10{sup 14} modes, will require knowledge of the matter power spectrum to a fantastic 10{sup −7} precision level. We conclude that realizing the expected potential of future cosmological surveys, which aim at detecting 10{sup 6}−10{sup 14} modes, sets the formidable challenge of reducing the overall level of uncertainty to 10{sup −3}−10{sup −7}.

  1. Two biased estimation techniques in linear regression: Application to aircraft

    Science.gov (United States)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  2. Biased sampling, over-identified parameter problems and beyond

    CERN Document Server

    Qin, Jing

    2017-01-01

    This book is devoted to biased sampling problems (also called choice-based sampling in Econometrics parlance) and over-identified parameter estimation problems. Biased sampling problems appear in many areas of research, including Medicine, Epidemiology and Public Health, the Social Sciences and Economics. The book addresses a range of important topics, including case and control studies, causal inference, missing data problems, meta-analysis, renewal process and length biased sampling problems, capture and recapture problems, case cohort studies, exponential tilting genetic mixture models etc. The goal of this book is to make it easier for Ph. D students and new researchers to get started in this research area. It will be of interest to all those who work in the health, biological, social and physical sciences, as well as those who are interested in survey methodology and other areas of statistical science, among others. .

  3. A MORET tool to assist code bias estimation

    International Nuclear Information System (INIS)

    Fernex, F.; Richet, Y.; Letang, E.

    2003-01-01

    This new Graphical User Interface (GUI) developed in JAVA is one of the post-processing tools for MORET4 code. It aims to help users to estimate the importance of the k eff bias due to the code in order to better define the upper safety limit. Moreover, it allows visualizing the distance between an actual configuration case and evaluated critical experiments. This tool depends on a validated experiments database, on sets of physical parameters and on various statistical tools allowing interpolating the calculation bias of the database or displaying the projections of experiments on a reduced base of parameters. The development of this tool is still in progress. (author)

  4. Improved Estimates of Thermodynamic Parameters

    Science.gov (United States)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  5. Bias Correction for the Maximum Likelihood Estimate of Ability. Research Report. ETS RR-05-15

    Science.gov (United States)

    Zhang, Jinming

    2005-01-01

    Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…

  6. Estimating Risk Parameters

    OpenAIRE

    Aswath Damodaran

    1999-01-01

    Over the last three decades, the capital asset pricing model has occupied a central and often controversial place in most corporate finance analysts’ tool chests. The model requires three inputs to compute expected returns – a riskfree rate, a beta for an asset and an expected risk premium for the market portfolio (over and above the riskfree rate). Betas are estimated, by most practitioners, by regressing returns on an asset against a stock index, with the slope of the regression being the b...

  7. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  8. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  9. Small sample GEE estimation of regression parameters for longitudinal data.

    Science.gov (United States)

    Paul, Sudhir; Zhang, Xuemao

    2014-09-28

    Longitudinal (clustered) response data arise in many bio-statistical applications which, in general, cannot be assumed to be independent. Generalized estimating equation (GEE) is a widely used method to estimate marginal regression parameters for correlated responses. The advantage of the GEE is that the estimates of the regression parameters are asymptotically unbiased even if the correlation structure is misspecified, although their small sample properties are not known. In this paper, two bias adjusted GEE estimators of the regression parameters in longitudinal data are obtained when the number of subjects is small. One is based on a bias correction, and the other is based on a bias reduction. Simulations show that the performances of both the bias-corrected methods are similar in terms of bias, efficiency, coverage probability, average coverage length, impact of misspecification of correlation structure, and impact of cluster size on bias correction. Both these methods show superior properties over the GEE estimates for small samples. Further, analysis of data involving a small number of subjects also shows improvement in bias, MSE, standard error, and length of the confidence interval of the estimates by the two bias adjusted methods over the GEE estimates. For small to moderate sample sizes (N ≤50), either of the bias-corrected methods GEEBc and GEEBr can be used. However, the method GEEBc should be preferred over GEEBr, as the former is computationally easier. For large sample sizes, the GEE method can be used. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Noise Induces Biased Estimation of the Correction Gain.

    Directory of Open Access Journals (Sweden)

    Jooeun Ahn

    Full Text Available The detection of an error in the motor output and the correction in the next movement are critical components of any form of motor learning. Accordingly, a variety of iterative learning models have assumed that a fraction of the error is adjusted in the next trial. This critical fraction, the correction gain, learning rate, or feedback gain, has been frequently estimated via least-square regression of the obtained data set. Such data contain not only the inevitable noise from motor execution, but also noise from measurement. It is generally assumed that this noise averages out with large data sets and does not affect the parameter estimation. This study demonstrates that this is not the case and that in the presence of noise the conventional estimate of the correction gain has a significant bias, even with the simplest model. Furthermore, this bias does not decrease with increasing length of the data set. This study reveals this limitation of current system identification methods and proposes a new method that overcomes this limitation. We derive an analytical form of the bias from a simple regression method (Yule-Walker and develop an improved identification method. This bias is discussed as one of other examples for how the dynamics of noise can introduce significant distortions in data analysis.

  11. Parameter estimation in plasmonic QED

    Science.gov (United States)

    Jahromi, H. Rangani

    2018-03-01

    We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to πrad, the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation.

  12. Load Estimation from Modal Parameters

    DEFF Research Database (Denmark)

    Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández

    2007-01-01

    In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF m...

  13. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  14. Automatic generation of biasing parameters for MORSE shielding problems

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1995-01-01

    It would be favourable if the biasing functions could be obtained from the Monte Carlo calculation itself. This is discussed in this paper as well as the way to obtain biasing parameters from it for splitting, Russian roulette and path length stretching. The method is demonstrated for a shielding problem solved with the MORSE-SGC/S Monte Carlo code of the SCALE-system. (K.A.)

  15. Comparison of some biased estimation methods (including ordinary subset regression) in the linear model

    Science.gov (United States)

    Sidik, S. M.

    1975-01-01

    Ridge, Marquardt's generalized inverse, shrunken, and principal components estimators are discussed in terms of the objectives of point estimation of parameters, estimation of the predictive regression function, and hypothesis testing. It is found that as the normal equations approach singularity, more consideration must be given to estimable functions of the parameters as opposed to estimation of the full parameter vector; that biased estimators all introduce constraints on the parameter space; that adoption of mean squared error as a criterion of goodness should be independent of the degree of singularity; and that ordinary least-squares subset regression is the best overall method.

  16. Estimation of satellite position, clock and phase bias corrections

    Science.gov (United States)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  17. A New Bias Corrected Version of Heteroscedasticity Consistent Covariance Estimator

    Directory of Open Access Journals (Sweden)

    Munir Ahmed

    2016-06-01

    Full Text Available In the presence of heteroscedasticity, different available flavours of the heteroscedasticity consistent covariance estimator (HCCME are used. However, the available literature shows that these estimators can be considerably biased in small samples. Cribari–Neto et al. (2000 introduce a bias adjustment mechanism and give the modified White estimator that becomes almost bias-free even in small samples. Extending these results, Cribari-Neto and Galvão (2003 present a similar bias adjustment mechanism that can be applied to a wide class of HCCMEs’. In the present article, we follow the same mechanism as proposed by Cribari-Neto and Galvão to give bias-correction version of HCCME but we use adaptive HCCME rather than the conventional HCCME. The Monte Carlo study is used to evaluate the performance of our proposed estimators.

  18. Applied parameter estimation for chemical engineers

    CERN Document Server

    Englezos, Peter

    2000-01-01

    Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam

  19. Data Handling and Parameter Estimation

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist

    2016-01-01

    ,engineers, and professionals. However, it is also expected that they will be useful both for graduate teaching as well as a stepping stone for academic researchers who wish to expand their theoretical interest in the subject. For the models selected to interpret the experimental data, this chapter uses available models from...... literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii......Modelling is one of the key tools at the disposal of modern wastewater treatment professionals, researchers and engineers. It enables them to study and understand complex phenomena underlying the physical, chemical and biological performance of wastewater treatment plants at different temporal...

  20. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    Science.gov (United States)

    Crawford, L. Elizabeth; Landy, David; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on…

  1. Bias-corrected estimation of stable tail dependence function

    DEFF Research Database (Denmark)

    Beirlant, Jan; Escobar-Bach, Mikael; Goegebeur, Yuri

    2016-01-01

    We consider the estimation of the stable tail dependence function. We propose a bias-corrected estimator and we establish its asymptotic behaviour under suitable assumptions. The finite sample performance of the proposed estimator is evaluated by means of an extensive simulation study where...

  2. How to fool cosmic microwave background parameter estimation

    International Nuclear Information System (INIS)

    Kinney, William H.

    2001-01-01

    With the release of the data from the Boomerang and MAXIMA-1 balloon flights, estimates of cosmological parameters based on the cosmic microwave background (CMB) have reached unprecedented precision. In this paper I show that it is possible for these estimates to be substantially biased by features in the primordial density power spectrum. I construct primordial power spectra which mimic to within cosmic variance errors the effect of changing parameters such as the baryon density and neutrino mass, meaning that even an ideal measurement would be unable to resolve the degeneracy. Complementary measurements are necessary to resolve this ambiguity in parameter estimation efforts based on CMB temperature fluctuations alone

  3. Large biases in regression-based constituent flux estimates: causes and diagnostic tools

    Science.gov (United States)

    Hirsch, Robert M.

    2014-01-01

    It has been documented in the literature that, in some cases, widely used regression-based models can produce severely biased estimates of long-term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven-parameter model, LOADEST five-parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST-7 and LOADEST-5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.

  4. Network Structure and Biased Variance Estimation in Respondent Driven Sampling.

    Science.gov (United States)

    Verdery, Ashton M; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.

  5. Bias in regression coefficient estimates upon different treatments of ...

    African Journals Online (AJOL)

    MS and PW consistently overestimated the population parameter. EM and RI, on the other hand, tended to consistently underestimate the population parameter under non-monotonic pattern. Keywords: Missing data, bias, regression, percent missing, non-normality, missing pattern > East African Journal of Statistics Vol.

  6. Kinetic parameter estimation from SPECT cone-beam projection measurements

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Zeng, G. Larry; Gullberg, Grant T.

    1998-01-01

    Kinetic parameters are commonly estimated from dynamically acquired nuclear medicine data by first reconstructing a dynamic sequence of images and subsequently fitting the parameters to time-activity curves generated from regions of interest overlaid upon the image sequence. Biased estimates can result from images reconstructed using inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system. If the SPECT data are acquired using cone-beam collimators wherein the gantry rotates so that the focal point of the collimators always remains in a plane, additional biases can arise from images reconstructed using insufficient, as well as truncated, projection samples. To overcome these problems we have investigated the estimation of kinetic parameters directly from SPECT cone-beam projection data by modelling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated chest image volume, kinetic parameters were estimated for simple one-compartment models for four myocardial regions of interest. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated cone-beam data had biases ranging between 3-26% and 0-28%, respectively. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Statistical uncertainties of parameter estimates for 10 000 000 events ranged between 0.2-9% for the uptake parameters and between 0.3-6% for the washout parameters. (author)

  7. Kinetic parameter estimation from attenuated SPECT projection measurements

    International Nuclear Information System (INIS)

    Reutter, B.W.; Gullberg, G.T.

    1998-01-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters

  8. Parameter Estimation in Continuous Time Domain

    Directory of Open Access Journals (Sweden)

    Gabriela M. ATANASIU

    2016-12-01

    Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.

  9. Estimates of bias and uncertainty in recorded external dose

    International Nuclear Information System (INIS)

    Fix, J.J.; Gilbert, E.S.; Baumgartner, W.V.

    1994-10-01

    A study is underway to develop an approach to quantify bias and uncertainty in recorded dose estimates for workers at the Hanford Site based on personnel dosimeter results. This paper focuses on selected experimental studies conducted to better define response characteristics of Hanford dosimeters. The study is more extensive than the experimental studies presented in this paper and includes detailed consideration and evaluation of other sources of bias and uncertainty. Hanford worker dose estimates are used in epidemiologic studies of nuclear workers. A major objective of these studies is to provide a direct assessment of the carcinogenic risk of exposure to ionizing radiation at low doses and dose rates. Considerations of bias and uncertainty in the recorded dose estimates are important in the conduct of this work. The method developed for use with Hanford workers can be considered an elaboration of the approach used to quantify bias and uncertainty in estimated doses for personnel exposed to radiation as a result of atmospheric testing of nuclear weapons between 1945 and 1962. This approach was first developed by a National Research Council (NRC) committee examining uncertainty in recorded film badge doses during atmospheric tests (NRC 1989). It involved quantifying both bias and uncertainty from three sources (i.e., laboratory, radiological, and environmental) and then combining them to obtain an overall assessment. Sources of uncertainty have been evaluated for each of three specific Hanford dosimetry systems (i.e., the Hanford two-element film dosimeter, 1944-1956; the Hanford multi-element film dosimeter, 1957-1971; and the Hanford multi-element TLD, 1972-1993) used to estimate personnel dose throughout the history of Hanford operations. Laboratory, radiological, and environmental sources of bias and uncertainty have been estimated based on historical documentation and, for angular response, on selected laboratory measurements

  10. Individuals With OCD Lack Unrealistic Optimism Bias in Threat Estimation.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Exner, Cornelia

    2015-07-01

    Overestimating the occurrence of threatening events has been highlighted as a central cognitive factor in the maintenance of obsessive-compulsive disorder (OCD). The present study examined the different facets of this cognitive bias, its underlying mechanisms, and its specificity to OCD. For this purpose, threat estimation, probabilistic classification learning (PCL) and psychopathological measures were assessed in 23 participants with OCD, 30 participants with social phobia, and 31 healthy controls. Whereas healthy participants showed an optimistic expectation bias regarding positive and negative future events, OCD participants lacked such a bias. This lack of an optimistic expectation bias was not specific to OCD. Compared to healthy controls, OCD participants overestimated their personal risk for experiencing negative events, but did not differ from controls in their risk estimation regarding other people. Finally, OCD participants' biases in the prediction of checking-related events were associated with their impairments in learning probabilistic cue-outcome associations in a disorder-relevant context. In sum, the present results add to a growing body of research demonstrating that cognitive biases in OCD are context-dependent. Copyright © 2015. Published by Elsevier Ltd.

  11. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  12. Targeted estimation of nuisance parameters to obtain valid statistical inference.

    Science.gov (United States)

    van der Laan, Mark J

    2014-01-01

    In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special

  13. Statistics of Parameter Estimates: A Concrete Example

    KAUST Repository

    Aguilar, Oscar; Allmaras, Moritz; Bangerth, Wolfgang; Tenorio, Luis

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise

  14. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.

    2013-01-01

    PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus

  15. A Method for Estimating BeiDou Inter-frequency Satellite Clock Bias

    Directory of Open Access Journals (Sweden)

    LI Haojun

    2016-02-01

    Full Text Available A new method for estimating the BeiDou inter-frequency satellite clock bias is proposed, considering the shortage of the current methods. The constant and variable parts of the inter-frequency satellite clock bias are considered in the new method. The data from 10 observation stations are processed to validate the new method. The characterizations of the BeiDou inter-frequency satellite clock bias are also analyzed using the computed results. The results of the BeiDou inter-frequency satellite clock bias indicate that it is stable in the short term. The estimated BeiDou inter-frequency satellite clock bias results are molded. The model results show that the 10 parameters of model for each satellite can express the BeiDou inter-frequency satellite clock bias well and the accuracy reaches cm level. When the model parameters of the first day are used to compute the BeiDou inter-frequency satellite clock bias of the second day, the accuracy also reaches cm level. Based on the stability and modeling, a strategy for the BeiDou satellite clock service is presented to provide the reference of our BeiDou.

  16. Estimating low-bias frequency response using random decrement

    DEFF Research Database (Denmark)

    Brincker, Rune; Brandt, Anders

    2011-01-01

    It is well known that in order to minimize the influence of leakage bias in frequency response function (FRF) estimates, smooth windows should be applied in the FFT processing. It is also normal practice to use self windowing excitation signals whenever possible. However, in many cases FRFs have...

  17. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  18. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  19. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  20. Cosmological parameter estimation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Prasad, J; Souradeep, T

    2014-01-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite

  1. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  2. Estimated time of arrival and debiasing the time saving bias.

    Science.gov (United States)

    Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars

    2015-01-01

    The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.

  3. Bias-reduced estimation of long memory stochastic volatility

    DEFF Research Database (Denmark)

    Frederiksen, Per; Nielsen, Morten Ørregaard

    We propose to use a variant of the local polynomial Whittle estimator to estimate the memory parameter in volatility for long memory stochastic volatility models with potential nonstation- arity in the volatility process. We show that the estimator is asymptotically normal and capable of obtaining...

  4. Damping parameter study of a perforated plate with bias flow

    Science.gov (United States)

    Mazdeh, Alireza

    role of LES for research studies concerned with damping properties of liners is limited to validation of other empirical or theoretical approaches. This research has shown that LES can go beyond that and can be used for performing parametric studies to characterize the sensitivity of acoustic properties of multi--perforated liners to the changes in the geometry and flow conditions and be used as a tool to design acoustic liners. The conducted research provides an insightful understanding about the contribution of different flow and geometry parameters such as perforated plate thickness, aperture radius, porosity factors and bias flow velocity. While the study agrees with previous observations obtained by analytical or experimental methods, it also quantifies the impact from these parameters on the acoustic impedance of perforated plate, a key parameter to determine the acoustic performance of any system. The conducted study has also explored the limitations and capabilities of commercial tool when are applied for performing simulation studies on damping properties of liners. The overall agreement between LES results and previous studies proves that commercial tools can be effectively used for these applications under certain conditions.

  5. Impact of relativistic effects on cosmological parameter estimation

    Science.gov (United States)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  6. Application of spreadsheet to estimate infiltration parameters

    Directory of Open Access Journals (Sweden)

    Mohammad Zakwan

    2016-09-01

    Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.

  7. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  8. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  9. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.

    Science.gov (United States)

    Vansteelandt, Stijn; Walter, Stefan; Tchetgen Tchetgen, Eric

    2018-07-01

    Mendelian randomization studies commonly focus on elderly populations. This makes the instrumental variables analysis of such studies sensitive to survivor bias, a type of selection bias. A particular concern is that the instrumental variable conditions, even when valid for the source population, may be violated for the selective population of individuals who survive the onset of the study. This is potentially very damaging because Mendelian randomization studies are known to be sensitive to bias due to even minor violations of the instrumental variable conditions. Interestingly, the instrumental variable conditions continue to hold within certain risk sets of individuals who are still alive at a given age when the instrument and unmeasured confounders exert additive effects on the exposure, and moreover, the exposure and unmeasured confounders exert additive effects on the hazard of death. In this article, we will exploit this property to derive a two-stage instrumental variable estimator for the effect of exposure on mortality, which is insulated against the above described selection bias under these additivity assumptions.

  10. A bias correction for covariance estimators to improve inference with generalized estimating equations that use an unstructured correlation matrix.

    Science.gov (United States)

    Westgate, Philip M

    2013-07-20

    Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR-1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite-sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  12. Bias analysis applied to Agricultural Health Study publications to estimate non-random sources of uncertainty.

    Science.gov (United States)

    Lash, Timothy L

    2007-11-26

    The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is

  13. Bias analysis applied to Agricultural Health Study publications to estimate non-random sources of uncertainty

    Directory of Open Access Journals (Sweden)

    Lash Timothy L

    2007-11-01

    Full Text Available Abstract Background The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. Methods For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. Results The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Conclusion Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a

  14. Statistics of Parameter Estimates: A Concrete Example

    KAUST Repository

    Aguilar, Oscar

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise levels, models, or prior knowledge. But what can we say about the validity of such estimates, and the influence of these assumptions? This paper is concerned with methods to address these questions, and for didactic purposes it is written in the context of a concrete nonlinear parameter estimation problem. We will use the results of a physical experiment conducted by Allmaras et al. at Texas A&M University [M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149-167] to illustrate the importance of validation procedures for statistical parameter estimation. We describe statistical methods and data analysis tools to check the choices of likelihood and prior distributions, and provide examples of how to compare Bayesian results with those obtained by non-Bayesian methods based on different types of assumptions. We explain how different statistical methods can be used in complementary ways to improve the understanding of parameter estimates and their uncertainties.

  15. Non-response bias in physical activity trend estimates

    Directory of Open Access Journals (Sweden)

    Bauman Adrian

    2009-11-01

    Full Text Available Abstract Background Increases in reported leisure time physical activity (PA and obesity have been observed in several countries. One hypothesis for these apparently contradictory trends is differential bias in estimates over time. The purpose of this short report is to examine the potential impact of changes in response rates over time on the prevalence of adequate PA in Canadian adults. Methods Participants were recruited in representative national telephone surveys of PA from 1995-2007. Differences in PA prevalence estimates between participants and those hard to reach were assessed using Student's t tests adjusted for multiple comparisons. Results The number of telephone calls required to reach and speak with someone in the household increased over time, as did the percentage of selected participants who initially refused during the first interview attempt. A higher prevalence of adequate PA was observed with 5-9 attempts to reach anyone in the household in 1999-2002, but this was not significant after adjustment for multiple comparisons. Conclusion No significant impact on PA trend estimates was observed due to differential non response rates. It is important for health policy makers to understand potential biases and how these may affect secular trends in all aspects of the energy balance equation.

  16. Performance of a New Restricted Biased Estimator in Logistic Regression

    Directory of Open Access Journals (Sweden)

    Yasin ASAR

    2017-12-01

    Full Text Available It is known that the variance of the maximum likelihood estimator (MLE inflates when the explanatory variables are correlated. This situation is called the multicollinearity problem. As a result, the estimations of the model may not be trustful. Therefore, this paper introduces a new restricted estimator (RLTE that may be applied to get rid of the multicollinearity when the parameters lie in some linear subspace  in logistic regression. The mean squared errors (MSE and the matrix mean squared errors (MMSE of the estimators considered in this paper are given. A Monte Carlo experiment is designed to evaluate the performances of the proposed estimator, the restricted MLE (RMLE, MLE and Liu-type estimator (LTE. The criterion of performance is chosen to be MSE. Moreover, a real data example is presented. According to the results, proposed estimator has better performance than MLE, RMLE and LTE.

  17. Parameter estimation in X-ray astronomy

    International Nuclear Information System (INIS)

    Lampton, M.; Margon, B.; Bowyer, S.

    1976-01-01

    The problems of model classification and parameter estimation are examined, with the objective of establishing the statistical reliability of inferences drawn from X-ray observations. For testing the validities of classes of models, the procedure based on minimizing the chi 2 statistic is recommended; it provides a rejection criterion at any desired significance level. Once a class of models has been accepted, a related procedure based on the increase of chi 2 gives a confidence region for the values of the model's adjustable parameters. The procedure allows the confidence level to be chosen exactly, even for highly nonlinear models. Numerical experiments confirm the validity of the prescribed technique.The chi 2 /sub min/+1 error estimation method is evaluated and found unsuitable when several parameter ranges are to be derived, because it substantially underestimates their joint errors. The ratio of variances method, while formally correct, gives parameter confidence regions which are more variable than necessary

  18. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  19. Multi-Parameter Estimation for Orthorhombic Media

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2015-01-01

    Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.

  20. Multi-Parameter Estimation for Orthorhombic Media

    KAUST Repository

    Masmoudi, Nabil

    2015-08-19

    Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.

  1. Bayesian estimation of Weibull distribution parameters

    International Nuclear Information System (INIS)

    Bacha, M.; Celeux, G.; Idee, E.; Lannoy, A.; Vasseur, D.

    1994-11-01

    In this paper, we expose SEM (Stochastic Expectation Maximization) and WLB-SIR (Weighted Likelihood Bootstrap - Sampling Importance Re-sampling) methods which are used to estimate Weibull distribution parameters when data are very censored. The second method is based on Bayesian inference and allow to take into account available prior informations on parameters. An application of this method, with real data provided by nuclear power plants operation feedback analysis has been realized. (authors). 8 refs., 2 figs., 2 tabs

  2. Iterative importance sampling algorithms for parameter estimation

    OpenAIRE

    Morzfeld, Matthias; Day, Marcus S.; Grout, Ray W.; Pau, George Shu Heng; Finsterle, Stefan A.; Bell, John B.

    2016-01-01

    In parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov Chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is ...

  3. Bayesian parameter estimation in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Siu, Nathan O.; Kelly, Dana L.

    1998-01-01

    Bayesian statistical methods are widely used in probabilistic risk assessment (PRA) because of their ability to provide useful estimates of model parameters when data are sparse and because the subjective probability framework, from which these methods are derived, is a natural framework to address the decision problems motivating PRA. This paper presents a tutorial on Bayesian parameter estimation especially relevant to PRA. It summarizes the philosophy behind these methods, approaches for constructing likelihood functions and prior distributions, some simple but realistic examples, and a variety of cautions and lessons regarding practical applications. References are also provided for more in-depth coverage of various topics

  4. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  5. MCMC for parameters estimation by bayesian approach

    International Nuclear Information System (INIS)

    Ait Saadi, H.; Ykhlef, F.; Guessoum, A.

    2011-01-01

    This article discusses the parameter estimation for dynamic system by a Bayesian approach associated with Markov Chain Monte Carlo methods (MCMC). The MCMC methods are powerful for approximating complex integrals, simulating joint distributions, and the estimation of marginal posterior distributions, or posterior means. The MetropolisHastings algorithm has been widely used in Bayesian inference to approximate posterior densities. Calibrating the proposal distribution is one of the main issues of MCMC simulation in order to accelerate the convergence.

  6. Precision Parameter Estimation and Machine Learning

    Science.gov (United States)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  7. Peak Measurement for Vancomycin AUC Estimation in Obese Adults Improves Precision and Lowers Bias.

    Science.gov (United States)

    Pai, Manjunath P; Hong, Joseph; Krop, Lynne

    2017-04-01

    Vancomycin area under the curve (AUC) estimates may be skewed in obese adults due to weight-dependent pharmacokinetic parameters. We demonstrate that peak and trough measurements reduce bias and improve the precision of vancomycin AUC estimates in obese adults ( n = 75) and validate this in an independent cohort ( n = 31). The precision and mean percent bias of Bayesian vancomycin AUC estimates are comparable between covariate-dependent ( R 2 = 0.774, 3.55%) and covariate-independent ( R 2 = 0.804, 3.28%) models when peaks and troughs are measured but not when measurements are restricted to troughs only ( R 2 = 0.557, 15.5%). Copyright © 2017 American Society for Microbiology.

  8. Parameter estimation for an expanding universe

    Directory of Open Access Journals (Sweden)

    Jieci Wang

    2015-03-01

    Full Text Available We study the parameter estimation for excitations of Dirac fields in the expanding Robertson–Walker universe. We employ quantum metrology techniques to demonstrate the possibility for high precision estimation for the volume rate of the expanding universe. We show that the optimal precision of the estimation depends sensitively on the dimensionless mass m˜ and dimensionless momentum k˜ of the Dirac particles. The optimal precision for the ratio estimation peaks at some finite dimensionless mass m˜ and momentum k˜. We find that the precision of the estimation can be improved by choosing the probe state as an eigenvector of the hamiltonian. This occurs because the largest quantum Fisher information is obtained by performing projective measurements implemented by the projectors onto the eigenvectors of specific probe states.

  9. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.; Lombard, F.

    2012-01-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal

  10. Sensor Placement for Modal Parameter Subset Estimation

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2016-01-01

    The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...

  11. Postprocessing MPEG based on estimated quantization parameters

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2009-01-01

    the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used...... in the postprocessing. We focus on deringing and present a scheme which aims at suppressing ringing artifacts, while maintaining the sharpness of the texture. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation. The performance of the new `pure......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....

  12. Estimating physiological skin parameters from hyperspectral signatures

    Science.gov (United States)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  13. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  14. Modified Moment, Maximum Likelihood and Percentile Estimators for the Parameters of the Power Function Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-10-01

    Full Text Available This paper is concerned with the modifications of maximum likelihood, moments and percentile estimators of the two parameter Power function distribution. Sampling behavior of the estimators is indicated by Monte Carlo simulation. For some combinations of parameter values, some of the modified estimators appear better than the traditional maximum likelihood, moments and percentile estimators with respect to bias, mean square error and total deviation.

  15. Statistical methods of parameter estimation for deterministically chaotic time series

    Science.gov (United States)

    Pisarenko, V. F.; Sornette, D.

    2004-03-01

    We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).

  16. Person-Independent Head Pose Estimation Using Biased Manifold Embedding

    Directory of Open Access Journals (Sweden)

    Sethuraman Panchanathan

    2008-02-01

    Full Text Available Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications. To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose angle variations at a granularity of 1∘. Since biometric applications in the real world may not contain this level of granularity in training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up to 2∘ average pose angle estimation error in the results from our experiments, which matched the best results obtained for head pose estimation using related approaches.

  17. Nonparametric estimation of location and scale parameters

    KAUST Repository

    Potgieter, C.J.

    2012-12-01

    Two random variables X and Y belong to the same location-scale family if there are constants μ and σ such that Y and μ+σX have the same distribution. In this paper we consider non-parametric estimation of the parameters μ and σ under minimal assumptions regarding the form of the distribution functions of X and Y. We discuss an approach to the estimation problem that is based on asymptotic likelihood considerations. Our results enable us to provide a methodology that can be implemented easily and which yields estimators that are often near optimal when compared to fully parametric methods. We evaluate the performance of the estimators in a series of Monte Carlo simulations. © 2012 Elsevier B.V. All rights reserved.

  18. Estimating RASATI scores using acoustical parameters

    International Nuclear Information System (INIS)

    Agüero, P D; Tulli, J C; Moscardi, G; Gonzalez, E L; Uriz, A J

    2011-01-01

    Acoustical analysis of speech using computers has reached an important development in the latest years. The subjective evaluation of a clinician is complemented with an objective measure of relevant parameters of voice. Praat, MDVP (Multi Dimensional Voice Program) and SAV (Software for Voice Analysis) are some examples of software for speech analysis. This paper describes an approach to estimate the subjective characteristics of RASATI scale given objective acoustical parameters. Two approaches were used: linear regression with non-negativity constraints, and neural networks. The experiments show that such approach gives correct evaluations with ±1 error in 80% of the cases.

  19. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators.

    Directory of Open Access Journals (Sweden)

    Manan Gupta

    Full Text Available Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates

  20. Is it feasible to estimate radiosonde biases from interlaced measurements?

    Science.gov (United States)

    Kremser, Stefanie; Tradowsky, Jordis S.; Rust, Henning W.; Bodeker, Greg E.

    2018-05-01

    Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate monitoring and climate change detection. Because of the internal variability of the climate system, many decades of measurements are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were primarily made for short-term weather forecasts and as such are seldom suitable for studying long-term climate change as they lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as temperature, pressure, and humidity, together with well-characterized and traceable estimates of the measurement uncertainty. To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strategy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However, this strategy can be prohibitively expensive at measurement sites operated by national weather services or research institutes. An alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore the

  1. Cosmological parameter estimation using particle swarm optimization

    Science.gov (United States)

    Prasad, Jayanti; Souradeep, Tarun

    2012-06-01

    Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.

  2. Parameter Estimation Analysis for Hybrid Adaptive Fault Tolerant Control

    Science.gov (United States)

    Eshak, Peter B.

    Research efforts have increased in recent years toward the development of intelligent fault tolerant control laws, which are capable of helping the pilot to safely maintain aircraft control at post failure conditions. Researchers at West Virginia University (WVU) have been actively involved in the development of fault tolerant adaptive control laws in all three major categories: direct, indirect, and hybrid. The first implemented design to provide adaptation was a direct adaptive controller, which used artificial neural networks to generate augmentation commands in order to reduce the modeling error. Indirect adaptive laws were implemented in another controller, which utilized online PID to estimate and update the controller parameter. Finally, a new controller design was introduced, which integrated both direct and indirect control laws. This controller is known as hybrid adaptive controller. This last control design outperformed the two earlier designs in terms of less NNs effort and better tracking quality. The performance of online PID has an important role in the quality of the hybrid controller; therefore, the quality of the estimation will be of a great importance. Unfortunately, PID is not perfect and the online estimation process has some inherited issues; the online PID estimates are primarily affected by delays and biases. In order to ensure updating reliable estimates to the controller, the estimator consumes some time to converge. Moreover, the estimator will often converge to a biased value. This thesis conducts a sensitivity analysis for the estimation issues, delay and bias, and their effect on the tracking quality. In addition, the performance of the hybrid controller as compared to direct adaptive controller is explored. In order to serve this purpose, a simulation environment in MATLAB/SIMULINK has been created. The simulation environment is customized to provide the user with the flexibility to add different combinations of biases and delays to

  3. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  4. Joint optimization of MIMO radar waveform and biased estimator with prior information in the presence of clutter

    Directory of Open Access Journals (Sweden)

    Liu Hongwei

    2011-01-01

    Full Text Available Abstract In this article, we consider the problem of joint optimization of multi-input multi-output (MIMO radar waveform and biased estimator with prior information on targets of interest in the presence of signal-dependent noise. A novel constrained biased Cramer-Rao bound (CRB based method is proposed to optimize the waveform covariance matrix (WCM and biased estimator such that the performance of parameter estimation can be improved. Under a simplifying assumption, the resultant nonlinear optimization problem is solved resorting to a convex relaxation that belongs to the semidefinite programming (SDP class. An optimal solution of the initial problem is then constructed through a suitable approximation to an optimal solution of the relaxed one (in a least squares (LS sense. Numerical results show that the performance of parameter estimation can be improved considerably by the proposed method compared to uncorrelated waveforms.

  5. Refining estimates of availability bias to improve assessments of the conservation status of an endangered dolphin.

    Science.gov (United States)

    Sucunza, Federico; Danilewicz, Daniel; Cremer, Marta; Andriolo, Artur; Zerbini, Alexandre N

    2018-01-01

    Estimation of visibility bias is critical to accurately compute abundance of wild populations. The franciscana, Pontoporia blainvillei, is considered the most threatened small cetacean in the southwestern Atlantic Ocean. Aerial surveys are considered the most effective method to estimate abundance of this species, but many existing estimates have been considered unreliable because they lack proper estimation of correction factors for visibility bias. In this study, helicopter surveys were conducted to determine surfacing-diving intervals of franciscanas and to estimate availability for aerial platforms. Fifteen hours were flown and 101 groups of 1 to 7 franciscanas were monitored, resulting in a sample of 248 surface-dive cycles. The mean surfacing interval and diving interval times were 16.10 seconds (SE = 9.74) and 39.77 seconds (SE = 29.06), respectively. Availability was estimated at 0.39 (SE = 0.01), a value 16-46% greater than estimates computed from diving parameters obtained from boats or from land. Generalized mixed-effects models were used to investigate the influence of biological and environmental predictors on the proportion of time franciscana groups are visually available to be seen from an aerial platform. These models revealed that group size was the main factor influencing the proportion at surface. The use of negatively biased estimates of availability results in overestimation of abundance, leads to overly optimistic assessments of extinction probabilities and to potentially ineffective management actions. This study demonstrates that estimates of availability must be computed from suitable platforms to ensure proper conservation decisions are implemented to protect threatened species such as the franciscana.

  6. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  7. Bias-corrected Pearson estimating functions for Taylor's power law applied to benthic macrofauna data

    DEFF Research Database (Denmark)

    Jørgensen, Bent; Demétrio, Clarice G. B.; Kristensen, Erik

    2011-01-01

    Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating...

  8. Variational estimates of point-kinetics parameters

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M. Jr.

    1995-01-01

    Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores

  9. ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, Jeffrey L.; Newberg, Heidi Jo [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Beers, Timothy C. [Department of Physics and JINA: Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Chen, Li; Hou, Jinliang; Smith, Martin C. [Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030 (China); Guhathakurta, Puragra [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hou, Yonghui [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Zheng, Zheng, E-mail: jeffreylcarlin@gmail.com [Department of Physics and Astronomy, University of Utah, UT 84112 (United States)

    2015-07-15

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star’s absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ∼5° diameter “plate” that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ∼20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ∼40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.

  10. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  11. How and how much does RAD-seq bias genetic diversity estimates?

    Science.gov (United States)

    Cariou, Marie; Duret, Laurent; Charlat, Sylvain

    2016-11-08

    RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity. Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3) provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic model, we confirm the previously established relationship between the true polymorphism and its RAD-based estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront the neutral and panmictic model to "ideal" empirical data (in silico RAD-sequencing) using full genomes from natural populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC corrections based on this model improve the estimations, albeit with some imprecisions. The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites becomes more pronounced when polymorphism is high. In practice, this means that in many systems where

  12. Parameter estimation in tree graph metabolic networks

    Directory of Open Access Journals (Sweden)

    Laura Astola

    2016-09-01

    Full Text Available We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  13. Parameter estimation in tree graph metabolic networks.

    Science.gov (United States)

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  14. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  15. Composite likelihood estimation of demographic parameters

    Directory of Open Access Journals (Sweden)

    Garrigan Daniel

    2009-11-01

    Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable

  16. Estimating the parameters of a generalized lambda distribution

    International Nuclear Information System (INIS)

    Fournier, B.; Rupin, N.; Najjar, D.; Iost, A.; Rupin, N.; Bigerelle, M.; Wilcox, R.; Fournier, B.

    2007-01-01

    The method of moments is a popular technique for estimating the parameters of a generalized lambda distribution (GLD), but published results suggest that the percentile method gives superior results. However, the percentile method cannot be implemented in an automatic fashion, and automatic methods, like the starship method, can lead to prohibitive execution time with large sample sizes. A new estimation method is proposed that is automatic (it does not require the use of special tables or graphs), and it reduces the computational time. Based partly on the usual percentile method, this new method also requires choosing which quantile u to use when fitting a GLD to data. The choice for u is studied and it is found that the best choice depends on the final goal of the modeling process. The sampling distribution of the new estimator is studied and compared to the sampling distribution of estimators that have been proposed. Naturally, all estimators are biased and here it is found that the bias becomes negligible with sample sizes n ≥ 2 * 10(3). The.025 and.975 quantiles of the sampling distribution are investigated, and the difference between these quantiles is found to decrease proportionally to 1/root n.. The same results hold for the moment and percentile estimates. Finally, the influence of the sample size is studied when a normal distribution is modeled by a GLD. Both bounded and unbounded GLDs are used and the bounded GLD turns out to be the most accurate. Indeed it is shown that, up to n = 10(6), bounded GLD modeling cannot be rejected by usual goodness-of-fit tests. (authors)

  17. Preliminary Estimation of Kappa Parameter in Croatia

    Science.gov (United States)

    Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep

    2017-12-01

    Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.

  18. Parameter estimation techniques for LTP system identification

    Science.gov (United States)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  19. An interactive website for analytical method comparison and bias estimation.

    Science.gov (United States)

    Bahar, Burak; Tuncel, Ayse F; Holmes, Earle W; Holmes, Daniel T

    2017-12-01

    Regulatory standards mandate laboratories to perform studies to ensure accuracy and reliability of their test results. Method comparison and bias estimation are important components of these studies. We developed an interactive website for evaluating the relative performance of two analytical methods using R programming language tools. The website can be accessed at https://bahar.shinyapps.io/method_compare/. The site has an easy-to-use interface that allows both copy-pasting and manual entry of data. It also allows selection of a regression model and creation of regression and difference plots. Available regression models include Ordinary Least Squares, Weighted-Ordinary Least Squares, Deming, Weighted-Deming, Passing-Bablok and Passing-Bablok for large datasets. The server processes the data and generates downloadable reports in PDF or HTML format. Our website provides clinical laboratories a practical way to assess the relative performance of two analytical methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Effects of censoring on parameter estimates and power in genetic modeling

    NARCIS (Netherlands)

    Derks, Eske M.; Dolan, Conor V.; Boomsma, Dorret I.

    2004-01-01

    Genetic and environmental influences on variance in phenotypic traits may be estimated with normal theory Maximum Likelihood (ML). However, when the assumption of multivariate normality is not met, this method may result in biased parameter estimates and incorrect likelihood ratio tests. We

  1. Effects of censoring on parameter estimates and power in genetic modeling.

    NARCIS (Netherlands)

    Derks, E.M.; Dolan, C.V.; Boomsma, D.I.

    2004-01-01

    Genetic and environmental influences on variance in phenotypic traits may be estimated with normal theory Maximum Likelihood (ML). However, when the assumption of multivariate normality is not met, this method may result in biased parameter estimates and incorrect likelihood ratio tests. We

  2. Statistical distributions applications and parameter estimates

    CERN Document Server

    Thomopoulos, Nick T

    2017-01-01

    This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability.  Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distribution that best fits the data in the study at hand.  Some of the distributions are well known to the general researcher and are in use in a wide variety of ways.  Other useful distributions are less understood and are not in common use.  The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study.  The distributions are for continuous, discrete, and bivariate random variables.  In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values.  In other scenarios, no sample data is available, and the researcher seeks some insight that allows the estimate of ...

  3. Statistical estimation of nuclear reactor dynamic parameters

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1962-02-01

    This report discusses the study of the noise in nuclear reactors and associated power plant. The report is divided into three distinct parts. In the first part parameters which influence the dynamic behaviour of some reactors will be specified and their effect on dynamic performance described. Methods of estimating dynamic parameters using statistical signals will be described in detail together with descriptions of the usefulness of the results, the accuracy and related topics. Some experiments which have been and which might be performed on nuclear reactors will be described. In the second part of the report a digital computer programme will be described. The computer programme derives the correlation functions and the spectra of signals. The programme will compute the frequency response both gain and phase for physical items of plant for which simultaneous recordings of input and output signal variations have been made. Estimations of the accuracy of the correlation functions and the spectra may be computed using the programme and the amplitude distribution of signals may also b computed. The programme is written in autocode for the Ferranti Mercury computer. In the third part of the report a practical example of the use of the method and the digital programme is presented. In order to eliminate difficulties of interpretation a very simple plant model was chosen i.e. a simple first order lag. Several interesting properties of statistical signals were measured and will be discussed. (author)

  4. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    Science.gov (United States)

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  5. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    Science.gov (United States)

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  6. Estimation of bias shifts in a steam-generator water-level controller

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    A method for detecting and estimating the value of sudden bias shifts in a U-tube steam-generator water-level controller is described and evaluated. Generalized likelihood ratios (GLR) are used to perform both the bias detection and bias estimation. Simulation results using a seventh-order, linear, discrete steam-generator model demonstrate the capabilities of the GLR detection/estimation approach

  7. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions.

    Science.gov (United States)

    Chaudhuri, Shomesh E; Merfeld, Daniel M

    2013-03-01

    Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.

  8. Impact of Selection Bias on Estimation of Subsequent Event Risk

    NARCIS (Netherlands)

    Hu, Yi Juan; Schmidt, Amand F.; Dudbridge, Frank; Holmes, Michael V; Brophy, James M.; Tragante, Vinicius; Li, Ziyi; Liao, Peizhou; Quyyumi, Arshed A.; McCubrey, Raymond O.; Horne, Benjamin D.; Hingorani, Aroon D; Asselbergs, Folkert W; Patel, Riyaz S.; Long, Qi; Åkerblom, Axel; Algra, Ale; Allayee, Hooman; Almgren, Peter; Anderson, Jeffrey L.; Andreassi, Maria G.; Anselmi, Chiara V.; Ardissino, Diego; Arsenault, Benoit J.; Ballantyne, Christie M.; Baranova, Ekaterina V.; Behloui, Hassan; Bergmeijer, Thomas O; Bezzina, Connie R; Bjornsson, Eythor; Body, Simon C.; Boeckx, Bram; Boersma, Eric H.; Boerwinkle, Eric; Bogaty, Peter; Braund, Peter S; Breitling, Lutz P.; Brenner, Hermann; Briguori, Carlo; Brugts, Jasper J.; Burkhardt, Ralph; Cameron, Vicky A.; Carlquist, John F.; Carpeggiani, Clara; Carruthers, Kathryn F.; Casu, Gavino; Condorelli, Gianluigi; Cresci, Sharon; Danchin, Nicolas; de Faire, Ulf; Deanfield, John; Delgado, Graciela; Deloukas, Panos; Direk, Kenan; Doughty, Robert N.; Drexel, Heinz; Duarte, Nubia E.; Dubé, Marie Pierre; Dufresne, Line; Engert, James C; Eriksson, Niclas; Fitzpatrick, Natalie; Foco, Luisa; Ford, Ian; Fox, Keith A; Gigante, Bruna; Gijsberts, Crystel M.; Girelli, Domenico; Gong, Yan; Gudbjartsson, Daniel F.; Hagström, Emil; Hartiala, Jaana; Hazen, Stanley L.; Held, Claes; Helgadottir, Anna; Hemingway, Harry; Heydarpour, Mahyar; Hoefer, Imo E.; Hovingh, G. Kees; Hubacek, Jaroslav A; James, Stefan; Johnson, Julie A; Jukema, J Wouter; Kaczor, Marcin P.; Kaminski, Karol A.; Kettner, Jiri; Kiliszek, Marek; Kleber, Marcus; Klungel, Olaf H.; Kofink, Daniel; Kohonen, Mika; Kotti, Salma; Kuukasjärvi, Pekka; Lagerqvist, Bo; Lambrechts, Diether; Lang, Chim C; Laurikka, Jari O.; Leander, Karin; Lee, Vei Vei; Lehtimäki, Terho; Leiherer, Andreas; Lenzini, Petra A.; Levin, Daniel; Lindholm, Daniel; Lokki, Marja-Liisa; Lotufo, Paulo A; Lyytikäinen, Leo-Pekka; Mahmoodi, B. Khan; Maitland-Van Der Zee, Anke H.; Martinelli, Nicola; März, Winfried; Marziliano, Nicola; McPherson, Ruth; Melander, Olle; Mons, Ute; Muehlschlegel, Jochen D.; Muhlestein, Joseph B.; Nelson, Cristopher P.; Cheh, Chris Newton; Olivieri, Oliviero; Opolski, Grzegorz; Palmer, Colin Na; Pare, Guillaume; Pasterkamp, Gerard; Pepine, Carl J; Pepinski, Witold; Pereira, Alexandre C.; Pilbrow, Anna P.; Pilote, Louise; Pitha, Jan; Ploski, Rafal; Richards, A. Mark; Saely, Christoph H.; Samani, Nilesh J; Samman-Tahhan, Ayman; Sanak, Marek; Sandesara, Pratik B.; Sattar, Naveed; Scholz, Markus; Siegbahn, Agneta; Simon, Tabassome; Sinisalo, Juha; Smith, J. Gustav; Spertus, John A.; Stefansson, Kari; Stewart, Alexandre F R; Stott, David J.; Szczeklik, Wojciech; Szpakowicz, Anna; Tanck, Michael W.T.; Tang, Wilson H.; Tardif, Jean-Claude; Ten Berg, Jur M.; Teren, Andrej; Thanassoulis, George; Thiery, Joachim; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Timmis, Adam; Trompet, Stella; Van de Werf, Frans; van der Graaf, Yolanda; Van Der Haarst, Pim; van der Laan, Sander W; Vilmundarson, Ragnar O.; Virani, Salim S.; Visseren, Frank L J; Vlachopoulou, Efthymia; Wallentin, Lars; Waltenberger, Johannes; Wauters, Els; Wilde, Arthur A M

    2017-01-01

    Background - Studies of recurrent or subsequent disease events may be susceptible to bias caused by selection of subjects who both experience and survive the primary indexing event. Currently, the magnitude of any selection bias, particularly for subsequent time-to-event analysis in genetic

  9. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  10. Approximate Bias Correction in Econometrics

    OpenAIRE

    James G. MacKinnon; Anthony A. Smith Jr.

    1995-01-01

    This paper discusses ways to reduce the bias of consistent estimators that are biased in finite samples. It is necessary that the bias function, which relates parameter values to bias, should be estimable by computer simulation or by some other method. If so, bias can be reduced or, in some cases that may not be unrealistic, even eliminated. In general, several evaluations of the bias function will be required to do this. Unfortunately, reducing bias may increase the variance, or even the mea...

  11. On the estimation of bias in post-closure performance assessment of underground radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, B.G.J.; Gralewski, Z.A.; Grindrod, P.

    1995-01-01

    This paper proposes a systematic method for recording and evaluating bias in performance assessments for underground radioactive waste disposal facilities. The bias estimation approach comprises three principal components: (1) creation of a relational database containing historical assumptions and decisions made during the assessment, (2) investigation of the impact of some identified sources of internal bias through alternative assessment calculations, and (3) investigation of the impact of some identified sources of external bias by estimating degrees of belief probability. Bias corrections may help avoid unnecessary concerns by explaining and scoping the impacts of principal differences without the need to undertake additional site investigation, research, and performance analysis

  12. Estimating Production Potentials: Expert Bias in Applied Decision Making

    International Nuclear Information System (INIS)

    Matthews, L.J.; Burggraf, L.K.; Reece, W.J.

    1998-01-01

    A study was conducted to evaluate how workers predict manufacturing production potentials given positively and negatively framed information. Findings indicate the existence of a bias toward positive information and suggest that this bias may be reduced with experience but is never the less maintained. Experts err in the same way non experts do in differentially processing negative and positive information. Additionally, both experts and non experts tend to overestimate production potentials in a positive direction. The authors propose that these biases should be addressed with further research including cross domain analyses and consideration in training, workplace design, and human performance modeling

  13. Estimation and correction of visibility bias in aerial surveys of wintering ducks

    Science.gov (United States)

    Pearse, A.T.; Gerard, P.D.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to wetland cover type (open vs. forested), group size (1?100 decoys), and interaction of these variables. Observers who detected decoy groups reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36?42%, and associated standard errors increased 38?55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of sampling problems for other locations and species.

  14. Bias in estimating food consumption of fish from stomach-content analysis

    DEFF Research Database (Denmark)

    Rindorf, Anna; Lewy, Peter

    2004-01-01

    This study presents an analysis of the bias introduced by using simplified methods to calculate food intake of fish from stomach contents. Three sources of bias were considered: (1) the effect of estimating consumption based on a limited number of stomach samples, (2) the effect of using average......, a serious positive bias was introduced by estimating food intake from the contents of pooled stomach samples. An expression is given that can be used to correct analytically for this bias. A new method, which takes into account the distribution and evacuation of individual prey types as well as the effect...... of other food in the stomach on evacuation, is suggested for estimating the intake of separate prey types. Simplifying the estimation by ignoring these factors biased estimates of consumption of individual prey types by up to 150% in a data example....

  15. Bias-corrected estimation in potentially mildly explosive autoregressive models

    DEFF Research Database (Denmark)

    Haufmann, Hendrik; Kruse, Robinson

    This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied...... that the indirect inference approach oers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical...

  16. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  17. Pollen parameters estimates of genetic variability among newly ...

    African Journals Online (AJOL)

    Pollen parameters estimates of genetic variability among newly selected Nigerian roselle (Hibiscus sabdariffa L.) genotypes. ... Estimates of some pollen parameters where used to assess the genetic diversity among ... HOW TO USE AJOL.

  18. Estimation of light transport parameters in biological media using ...

    Indian Academy of Sciences (India)

    Estimation of light transport parameters in biological media using coherent backscattering ... backscattered light for estimating the light transport parameters of biological media has been investigated. ... Pramana – Journal of Physics | News.

  19. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile

    Directory of Open Access Journals (Sweden)

    Emad Habib

    2014-07-01

    Full Text Available Results of numerous evaluation studies indicated that satellite-rainfall products are contaminated with significant systematic and random errors. Therefore, such products may require refinement and correction before being used for hydrologic applications. In the present study, we explore a rainfall-runoff modeling application using the Climate Prediction Center-MORPHing (CMORPH satellite rainfall product. The study area is the Gilgel Abbay catchment situated at the source basin of the Upper Blue Nile basin in Ethiopia, Eastern Africa. Rain gauge networks in such area are typically sparse. We examine different bias correction schemes applied locally to the CMORPH product. These schemes vary in the degree to which spatial and temporal variability in the CMORPH bias fields are accounted for. Three schemes are tested: space and time-invariant, time-variant and spatially invariant, and space and time variant. Bias-corrected CMORPH products were used to calibrate and drive the Hydrologiska Byråns Vattenbalansavdelning (HBV rainfall-runoff model. Applying the space and time-fixed bias correction scheme resulted in slight improvement of the CMORPH-driven runoff simulations, but in some instances caused deterioration. Accounting for temporal variation in the bias reduced the rainfall bias by up to 50%. Additional improvements were observed when both the spatial and temporal variability in the bias was accounted for. The rainfall bias was found to have a pronounced effect on model calibration. The calibrated model parameters changed significantly when using rainfall input from gauges alone, uncorrected, and bias-corrected CMORPH estimates. Changes of up to 81% were obtained for model parameters controlling the stream flow volume.

  20. A Modified Penalty Parameter Approach for Optimal Estimation of UH with Simultaneous Estimation of Infiltration Parameters

    Science.gov (United States)

    Bhattacharjya, Rajib Kumar

    2018-05-01

    The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.

  1. The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems

    Science.gov (United States)

    Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.

    2007-02-01

    We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.

  2. Improved sampling for airborne surveys to estimate wildlife population parameters in the African Savannah

    NARCIS (Netherlands)

    Khaemba, W.; Stein, A.

    2002-01-01

    Parameter estimates, obtained from airborne surveys of wildlife populations, often have large bias and large standard errors. Sampling error is one of the major causes of this imprecision and the occurrence of many animals in herds violates the common assumptions in traditional sampling designs like

  3. Bias correction for estimated QTL effects using the penalized maximum likelihood method.

    Science.gov (United States)

    Zhang, J; Yue, C; Zhang, Y-M

    2012-04-01

    A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed.

  4. Application of spreadsheet to estimate infiltration parameters

    OpenAIRE

    Zakwan, Mohammad; Muzzammil, Mohammad; Alam, Javed

    2016-01-01

    Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach ...

  5. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström

    2015-03-01

    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  6. Estimating demographic parameters using a combination of known-fate and open N-mixture models.

    Science.gov (United States)

    Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G

    2015-10-01

    Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.

  7. Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.

    Science.gov (United States)

    Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B

    2005-06-01

    This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.

  8. Bias Corrections for Standardized Effect Size Estimates Used with Single-Subject Experimental Designs

    Science.gov (United States)

    Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim

    2014-01-01

    A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…

  9. Estimates for the parameters of the heavy quark expansion

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Johannes; Mannel, Thomas [Universitaet Siegen (Germany)

    2015-07-01

    We give improved estimates for the non-perturbative parameters appearing in the heavy quark expansion for inclusive decays. While the parameters appearing in low orders of this expansion can be extracted from data, the number of parameters in higher orders proliferates strongly, making a determination of these parameters from data impossible. Thus, one has to rely on theoretical estimates which may be obtained from an insertion of intermediate states. We refine this method and attempt to estimate the uncertainties of this approach.

  10. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  11. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  12. Refusal bias in the estimation of HIV prevalence

    NARCIS (Netherlands)

    Janssens, Wendy; van der Gaag, Jacques; Rinke de Wit, Tobias F.; Tanović, Zlata

    2014-01-01

    In 2007, UNAIDS corrected estimates of global HIV prevalence downward from 40 million to 33 million based on a methodological shift from sentinel surveillance to population-based surveys. Since then, population-based surveys are considered the gold standard for estimating HIV prevalence. However,

  13. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    Science.gov (United States)

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  14. Counteracting estimation bias and social influence to improve the wisdom of crowds.

    Science.gov (United States)

    Kao, Albert B; Berdahl, Andrew M; Hartnett, Andrew T; Lutz, Matthew J; Bak-Coleman, Joseph B; Ioannou, Christos C; Giam, Xingli; Couzin, Iain D

    2018-04-01

    Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds. © 2018 The Author(s).

  15. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes

    DEFF Research Database (Denmark)

    Wood, Lesley; Egger, Matthias; Gluud, Lise Lotte

    2008-01-01

    To examine whether the association of inadequate or unclear allocation concealment and lack of blinding with biased estimates of intervention effects varies with the nature of the intervention or outcome....

  16. Multi-objective optimization in quantum parameter estimation

    Science.gov (United States)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  17. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    Directory of Open Access Journals (Sweden)

    Andreas Tuerk

    2017-05-01

    Full Text Available Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare", a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  18. Estimation of Poisson-Dirichlet Parameters with Monotone Missing Data

    Directory of Open Access Journals (Sweden)

    Xueqin Zhou

    2017-01-01

    Full Text Available This article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-Dirichlet process prior with grouped monotone missing data. The numerical parameters are estimated by the method of maximum likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that the estimates perform well.

  19. Structural Estimation of Expert Strategic Bias: The Case of Movie Reviewers

    OpenAIRE

    Camara, Fanny; Dupuis, Nicolas

    2014-01-01

    We develop the first structural estimation of reputational cheap-talk games using data on movie reviews released in the US between 2004 and 2013. We identify and estimate movies' priors, as well as movie reviewers' abilities and strategic biases. We find that reviewers adopt reporting strategies that are consistent with the predictions of the literature on reputational cheap-talk. The average conservatism bias for low prior movies lies between 8 and 11%, depending on the specifications of the...

  20. Parameter estimation and testing of hypotheses

    International Nuclear Information System (INIS)

    Fruhwirth, R.

    1996-01-01

    This lecture presents the basic mathematical ideas underlying the concept of random variable and the construction and analysis of estimators and test statistics. The material presented is based mainly on four books given in the references: the general exposition of estimators and test statistics follows Kendall and Stuart which is a comprehensive review of the field; the book by Eadie et al. contains selecting topics of particular interest to experimental physicist and a host of illuminating examples from experimental high-energy physics; for the presentation of numerical procedures, the Press et al. and the Thisted books have been used. The last section deals with estimation in dynamic systems. In most books the Kalman filter is presented in a Bayesian framework, often obscured by cumbrous notation. In this lecture, the link to classical least-squares estimators and regression models is stressed with the aim of facilitating the access to this less familiar topic. References are given for specific applications to track and vertex fitting and for extended exposition of these topics. In the appendix, the link between Bayesian decision rules and feed-forward neural networks is presented. (J.S.). 10 refs., 5 figs., 1 appendix

  1. Parameter estimation in tree graph metabolic networks

    NARCIS (Netherlands)

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; Eeuwijk, van Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nu- tritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme

  2. A method of estimating GPS instrumental biases with a convolution algorithm

    Science.gov (United States)

    Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua

    2018-03-01

    This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.

  3. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    Science.gov (United States)

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  4. Reducing bias in rainfall estimates from microwave links by considering variable drop size distribution

    Science.gov (United States)

    Fencl, Martin; Jörg, Rieckermann; Vojtěch, Bareš

    2015-04-01

    Commercial microwave links (MWL) are point-to-point radio systems which are used in backhaul networks of cellular operators. For several years, they have been suggested as rainfall sensors complementary to rain gauges and weather radars, because, first, they operate at frequencies where rain drops represent significant source of attenuation and, second, cellular networks almost completely cover urban and rural areas. Usually, path-average rain rates along a MWL are retrieved from the rain-induced attenuation of received MWL signals with a simple model based on a power law relationship. The model is often parameterized based on the characteristics of a particular MWL, such as frequency, polarization and the drop size distribution (DSD) along the MWL. As information on the DSD is usually not available in operational conditions, the model parameters are usually considered constant. Unfortunately, this introduces bias into rainfall estimates from MWL. In this investigation, we propose a generic method to eliminate this bias in MWL rainfall estimates. Specifically, we search for attenuation statistics which makes it possible to classify rain events into distinct groups for which same power-law parameters can be used. The theoretical attenuation used in the analysis is calculated from DSD data using T-Matrix method. We test the validity of our approach on observations from a dedicated field experiment in Dübendorf (CH) with a 1.85-km long commercial dual-polarized microwave link transmitting at a frequency of 38 GHz, an autonomous network of 5 optical distrometers and 3 rain gauges distributed along the path of the MWL. The data is recorded at a high temporal resolution of up to 30s. It is further tested on data from an experimental catchment in Prague (CZ), where 14 MWLs, operating at 26, 32 and 38 GHz frequencies, and reference rainfall from three RGs is recorded every minute. Our results suggest that, for our purpose, rain events can be nicely characterized based on

  5. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  6. Health indicators: eliminating bias from convenience sampling estimators.

    Science.gov (United States)

    Hedt, Bethany L; Pagano, Marcello

    2011-02-28

    Public health practitioners are often called upon to make inference about a health indicator for a population at large when the sole available information are data gathered from a convenience sample, such as data gathered on visitors to a clinic. These data may be of the highest quality and quite extensive, but the biases inherent in a convenience sample preclude the legitimate use of powerful inferential tools that are usually associated with a random sample. In general, we know nothing about those who do not visit the clinic beyond the fact that they do not visit the clinic. An alternative is to take a random sample of the population. However, we show that this solution would be wasteful if it excluded the use of available information. Hence, we present a simple annealing methodology that combines a relatively small, and presumably far less expensive, random sample with the convenience sample. This allows us to not only take advantage of powerful inferential tools, but also provides more accurate information than that available from just using data from the random sample alone. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    Science.gov (United States)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model

  8. Closed-form kinetic parameter estimation solution to the truncated data problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Kadrmas, Dan J; Gullberg, Grant T

    2010-01-01

    In a dedicated cardiac single photon emission computed tomography (SPECT) system, the detectors are focused on the heart and the background is truncated in the projections. Reconstruction using truncated data results in biased images, leading to inaccurate kinetic parameter estimates. This paper has developed a closed-form kinetic parameter estimation solution to the dynamic emission imaging problem. This solution is insensitive to the bias in the reconstructed images that is caused by the projection data truncation. This paper introduces two new ideas: (1) it includes background bias as an additional parameter to estimate, and (2) it presents a closed-form solution for compartment models. The method is based on the following two assumptions: (i) the amount of the bias is directly proportional to the truncated activities in the projection data, and (ii) the background concentration is directly proportional to the concentration in the myocardium. In other words, the method assumes that the image slice contains only the heart and the background, without other organs, that the heart is not truncated, and that the background radioactivity is directly proportional to the radioactivity in the blood pool. As long as the background activity can be modeled, the proposed method is applicable regardless of the number of compartments in the model. For simplicity, the proposed method is presented and verified using a single compartment model with computer simulations using both noiseless and noisy projections.

  9. School District Inputs and Biased Estimation of Educational Production Functions.

    Science.gov (United States)

    Watts, Michael

    1985-01-01

    In 1979, Eric Hanushek pointed out a potential problem in estimating educational production functions, particularly at the precollege level. He observed that it is frequently inappropriate to include school-system variables in equations using the individual student as the unit of observation. This study offers limited evidence supporting this…

  10. Neglect Of Parameter Estimation Uncertainty Can Significantly Overestimate Structural Reliability

    Directory of Open Access Journals (Sweden)

    Rózsás Árpád

    2015-12-01

    Full Text Available Parameter estimation uncertainty is often neglected in reliability studies, i.e. point estimates of distribution parameters are used for representative fractiles, and in probabilistic models. A numerical example examines the effect of this uncertainty on structural reliability using Bayesian statistics. The study reveals that the neglect of parameter estimation uncertainty might lead to an order of magnitude underestimation of failure probability.

  11. Errors and parameter estimation in precipitation-runoff modeling: 1. Theory

    Science.gov (United States)

    Troutman, Brent M.

    1985-01-01

    Errors in complex conceptual precipitation-runoff models may be analyzed by placing them into a statistical framework. This amounts to treating the errors as random variables and defining the probabilistic structure of the errors. By using such a framework, a large array of techniques, many of which have been presented in the statistical literature, becomes available to the modeler for quantifying and analyzing the various sources of error. A number of these techniques are reviewed in this paper, with special attention to the peculiarities of hydrologic models. Known methodologies for parameter estimation (calibration) are particularly applicable for obtaining physically meaningful estimates and for explaining how bias in runoff prediction caused by model error and input error may contribute to bias in parameter estimation.

  12. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    Science.gov (United States)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  13. minimum variance estimation of yield parameters of rubber tree

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... It is our opinion that Kalman filter is a robust estimator of the ... Kalman filter, parameter estimation, rubber clones, Chow failure test, autocorrelation, STAMP, data ...... Mills, T.C. Modelling Current Temperature Trends.

  14. Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction

    Directory of Open Access Journals (Sweden)

    Boulesteix Anne-Laure

    2009-12-01

    Full Text Available Abstract Background In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data, since such analyses are particularly exposed to this kind of bias. Methods In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. Results We assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case and the bias resulting from the choice of the classification method are examined both separately and jointly. Conclusions The median minimal error rate over the investigated classifiers was as low as 31% and 41% based on permuted uninformative predictors from studies on colon cancer and prostate cancer, respectively. We conclude that the strategy to present only the optimal result is not acceptable because it yields a substantial bias in error rate estimation, and suggest alternative approaches for properly reporting classification accuracy.

  15. Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals.

    Science.gov (United States)

    van Walraven, Carl; McAlister, Finlay A

    2016-01-01

    Risk estimates from Kaplan-Meier curves are well known to medical researchers, reviewers, and editors. In this study, we determined the proportion of Kaplan-Meier analyses published in prominent medical journals that are potentially biased because of competing events ("competing risk bias"). We randomly selected 100 studies that had at least one Kaplan-Meier analysis and were recently published in prominent medical journals. Susceptibility to competing risk bias was determined by examining the outcome and potential competing events. In susceptible studies, bias was quantified using a previously validated prediction model when the number of outcomes and competing events were given. Forty-six studies (46%) contained Kaplan-Meier analyses susceptible to competing risk bias. Sixteen studies (34.8%) susceptible to competing risk cited the number of outcomes and competing events; in six of these studies (6/16, 37.5%), the outcome risk from the Kaplan-Meier estimate (relative to the true risk) was biased upward by 10% or more. Almost half of Kaplan-Meier analyses published in medical journals are susceptible to competing risk bias and may overestimate event risk. This bias was found to be quantitatively important in a third of such studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Estimating Population Parameters using the Structured Serial Coalescent with Bayesian MCMC Inference when some Demes are Hidden

    Directory of Open Access Journals (Sweden)

    Allen Rodrigo

    2006-01-01

    Full Text Available Using the structured serial coalescent with Bayesian MCMC and serial samples, we estimate population size when some demes are not sampled or are hidden, ie ghost demes. It is found that even with the presence of a ghost deme, accurate inference was possible if the parameters are estimated with the true model. However with an incorrect model, estimates were biased and can be positively misleading. We extend these results to the case where there are sequences from the ghost at the last time sample. This case can arise in HIV patients, when some tissue samples and viral sequences only become available after death. When some sequences from the ghost deme are available at the last sampling time, estimation bias is reduced and accurate estimation of parameters associated with the ghost deme is possible despite sampling bias. Migration rates for this case are also shown to be good estimates when migration values are low.

  17. Estimation of a collision impact parameter

    International Nuclear Information System (INIS)

    Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    We demonstrate that the nuclear collision geometry (i.e. impact parameter) can be determined in an event-by-event analysis by measuring the transverse energy flow in the pseudorapidity region 3≤|η|≤5 with a minimal dependence on collision dynamics details at the LHC energy scale. Using the HIJING model we have illustrated our calculation by a simulation of events of nucleus-nucleus interactions at the c.m.s. energy from 1 up to 5.5 TeV per nucleon and various types of nuclei

  18. Novel Method for 5G Systems NLOS Channels Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Vladeta Milenkovic

    2017-01-01

    Full Text Available For the development of new 5G systems to operate in mm bands, there is a need for accurate radio propagation modelling at these bands. In this paper novel approach for NLOS channels parameter estimation will be presented. Estimation will be performed based on LCR performance measure, which will enable us to estimate propagation parameters in real time and to avoid weaknesses of ML and moment method estimation approaches.

  19. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  20. Parameter Estimation for Improving Association Indicators in Binary Logistic Regression

    Directory of Open Access Journals (Sweden)

    Mahdi Bashiri

    2012-02-01

    Full Text Available The aim of this paper is estimation of Binary logistic regression parameters for maximizing the log-likelihood function with improved association indicators. In this paper the parameter estimation steps have been explained and then measures of association have been introduced and their calculations have been analyzed. Moreover a new related indicators based on membership degree level have been expressed. Indeed association measures demonstrate the number of success responses occurred in front of failure in certain number of Bernoulli independent experiments. In parameter estimation, existing indicators values is not sensitive to the parameter values, whereas the proposed indicators are sensitive to the estimated parameters during the iterative procedure. Therefore, proposing a new association indicator of binary logistic regression with more sensitivity to the estimated parameters in maximizing the log- likelihood in iterative procedure is innovation of this study.

  1. Estimation of gloss from rough surface parameters

    Science.gov (United States)

    Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin

    2005-12-01

    Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.

  2. A new Bayesian recursive technique for parameter estimation

    Science.gov (United States)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  3. Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates

    Science.gov (United States)

    Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2008-01-01

    Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.

  4. Control and Estimation of Distributed Parameter Systems

    CERN Document Server

    Kappel, F; Kunisch, K

    1998-01-01

    Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

  5. Gravity Field Parameter Estimation Using QR Factorization

    Science.gov (United States)

    Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.

    2007-12-01

    This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.

  6. Attitude and gyro bias estimation by the rotation of an inertial measurement unit

    International Nuclear Information System (INIS)

    Wu, Zheming; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2015-01-01

    In navigation applications, the presence of an unknown bias in the measurement of rate gyros is a key performance-limiting factor. In order to estimate the gyro bias and improve the accuracy of attitude measurement, we proposed a new method which uses the rotation of an inertial measurement unit, which is independent from rigid body motion. By actively changing the orientation of the inertial measurement unit (IMU), the proposed method generates sufficient relations between the gyro bias and tilt angle (roll and pitch) error via ridge body dynamics, and the gyro bias, including the bias that causes the heading error, can be estimated and compensated. The rotation inertial measurement unit method makes the gravity vector measured from the IMU continuously change in a body-fixed frame. By theoretically analyzing the mathematic model, the convergence of the attitude and gyro bias to the true values is proven. The proposed method provides a good attitude estimation using only measurements from an IMU, when other sensors such as magnetometers and GPS are unreliable. The performance of the proposed method is illustrated under realistic robotic motions and the results demonstrate an improvement in the accuracy of the attitude estimation. (paper)

  7. Local linear density estimation for filtered survival data, with bias correction

    DEFF Research Database (Denmark)

    Nielsen, Jens Perch; Tanggaard, Carsten; Jones, M.C.

    2009-01-01

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods...... within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided....

  8. Local Linear Density Estimation for Filtered Survival Data with Bias Correction

    DEFF Research Database (Denmark)

    Tanggaard, Carsten; Nielsen, Jens Perch; Jones, M.C.

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a ‘pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias correction methods...... within our framework. The multiplicative bias correction method proves to be best in a simulation study comparing the performance of the considered estimators. An example concerning old age mortality demonstrates the importance of the improvements provided....

  9. Adjusting forest density estimates for surveyor bias in historical tree surveys

    Science.gov (United States)

    Brice B. Hanberry; Jian Yang; John M. Kabrick; Hong S. He

    2012-01-01

    The U.S. General Land Office surveys, conducted between the late 1700s to early 1900s, provide records of trees prior to widespread European and American colonial settlement. However, potential and documented surveyor bias raises questions about the reliability of historical tree density estimates and other metrics based on density estimated from these records. In this...

  10. Online State Space Model Parameter Estimation in Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Z. Gallehdari

    2014-06-01

    The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.

  11. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  12. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  13. Bayesian Parameter Estimation for Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Eric; Konan, Arnaud; Duran, Adam

    2017-03-28

    Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.

  14. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  15. Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health.

    Science.gov (United States)

    Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wright, Robert O; Wright, Rosalind J; Coull, Brent A

    2017-12-01

    Evidence supports an association between maternal exposure to air pollution during pregnancy and children's health outcomes. Recent interest has focused on identifying critical windows of vulnerability. An analysis based on a distributed lag model (DLM) can yield estimates of a critical window that are different from those from an analysis that regresses the outcome on each of the 3 trimester-average exposures (TAEs). Using a simulation study, we assessed bias in estimates of critical windows obtained using 3 regression approaches: 1) 3 separate models to estimate the association with each of the 3 TAEs; 2) a single model to jointly estimate the association between the outcome and all 3 TAEs; and 3) a DLM. We used weekly fine-particulate-matter exposure data for 238 births in a birth cohort in and around Boston, Massachusetts, and a simulated outcome and time-varying exposure effect. Estimates using separate models for each TAE were biased and identified incorrect windows. This bias arose from seasonal trends in particulate matter that induced correlation between TAEs. Including all TAEs in a single model reduced bias. DLM produced unbiased estimates and added flexibility to identify windows. Analysis of body mass index z score and fat mass in the same cohort highlighted inconsistent estimates from the 3 methods. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Parameter estimation and prediction of nonlinear biological systems: some examples

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2006-01-01

    Rearranging and reparameterizing a discrete-time nonlinear model with polynomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model linear in its (new) parameters. As a result, the parameter estimation problem becomes a so-called errors-in-variables problem for which

  17. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  18. Robust Parameter and Signal Estimation in Induction Motors

    DEFF Research Database (Denmark)

    Børsting, H.

    This thesis deals with theories and methods for robust parameter and signal estimation in induction motors. The project originates in industrial interests concerning sensor-less control of electrical drives. During the work, some general problems concerning estimation of signals and parameters...... in nonlinear systems, have been exposed. The main objectives of this project are: - analysis and application of theories and methods for robust estimation of parameters in a model structure, obtained from knowledge of the physics of the induction motor. - analysis and application of theories and methods...... for robust estimation of the rotor speed and driving torque of the induction motor based only on measurements of stator voltages and currents. Only contimuous-time models have been used, which means that physical related signals and parameters are estimated directly and not indirectly by some discrete...

  19. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  20. Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters

    Science.gov (United States)

    Shi, L.

    2015-12-01

    This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  1. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers

    Science.gov (United States)

    Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Hongxing; Li, Min

    2018-04-01

    Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite-receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73-96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.

  2. Accurate halo-galaxy mocks from automatic bias estimation and particle mesh gravity solvers

    Science.gov (United States)

    Vakili, Mohammadjavad; Kitaura, Francisco-Shu; Feng, Yu; Yepes, Gustavo; Zhao, Cheng; Chuang, Chia-Hsun; Hahn, ChangHoon

    2017-12-01

    Reliable extraction of cosmological information from clustering measurements of galaxy surveys requires estimation of the error covariance matrices of observables. The accuracy of covariance matrices is limited by our ability to generate sufficiently large number of independent mock catalogues that can describe the physics of galaxy clustering across a wide range of scales. Furthermore, galaxy mock catalogues are required to study systematics in galaxy surveys and to test analysis tools. In this investigation, we present a fast and accurate approach for generation of mock catalogues for the upcoming galaxy surveys. Our method relies on low-resolution approximate gravity solvers to simulate the large-scale dark matter field, which we then populate with haloes according to a flexible non-linear and stochastic bias model. In particular, we extend the PATCHY code with an efficient particle mesh algorithm to simulate the dark matter field (the FASTPM code), and with a robust MCMC method relying on the EMCEE code for constraining the parameters of the bias model. Using the haloes in the BigMultiDark high-resolution N-body simulation as a reference catalogue, we demonstrate that our technique can model the bivariate probability distribution function (counts-in-cells), power spectrum and bispectrum of haloes in the reference catalogue. Specifically, we show that the new ingredients permit us to reach percentage accuracy in the power spectrum up to k ∼ 0.4 h Mpc-1 (within 5 per cent up to k ∼ 0.6 h Mpc-1) with accurate bispectra improving previous results based on Lagrangian perturbation theory.

  3. Measurement Error in Income and Schooling and the Bias of Linear Estimators

    DEFF Research Database (Denmark)

    Bingley, Paul; Martinello, Alessandro

    2017-01-01

    and Retirement in Europe data with Danish administrative registers. Contrary to most validation studies, we find that measurement error in income is classical once we account for imperfect validation data. We find nonclassical measurement error in schooling, causing a 38% amplification bias in IV estimators......We propose a general framework for determining the extent of measurement error bias in ordinary least squares and instrumental variable (IV) estimators of linear models while allowing for measurement error in the validation source. We apply this method by validating Survey of Health, Ageing...

  4. Measurement error in income and schooling, and the bias of linear estimators

    DEFF Research Database (Denmark)

    Bingley, Paul; Martinello, Alessandro

    The characteristics of measurement error determine the bias of linear estimators. We propose a method for validating economic survey data allowing for measurement error in the validation source, and we apply this method by validating Survey of Health, Ageing and Retirement in Europe (SHARE) data...... with Danish administrative registers. We find that measurement error in surveys is classical for annual gross income but non-classical for years of schooling, causing a 21% amplification bias in IV estimators of returns to schooling. Using a 1958 Danish schooling reform, we contextualize our result...

  5. Practical estimate of gradient nonlinearity for implementation of apparent diffusion coefficient bias correction.

    Science.gov (United States)

    Malkyarenko, Dariya I; Chenevert, Thomas L

    2014-12-01

    To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.

  6. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  7. State Estimation-based Transmission line parameter identification

    Directory of Open Access Journals (Sweden)

    Fredy Andrés Olarte Dussán

    2010-01-01

    Full Text Available This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%.

  8. Estimation of the reliability function for two-parameter exponentiated Rayleigh or Burr type X distribution

    Directory of Open Access Journals (Sweden)

    Anupam Pathak

    2014-11-01

    Full Text Available Abstract: Problem Statement: The two-parameter exponentiated Rayleigh distribution has been widely used especially in the modelling of life time event data. It provides a statistical model which has a wide variety of application in many areas and the main advantage is its ability in the context of life time event among other distributions. The uniformly minimum variance unbiased and maximum likelihood estimation methods are the way to estimate the parameters of the distribution. In this study we explore and compare the performance of the uniformly minimum variance unbiased and maximum likelihood estimators of the reliability function R(t=P(X>t and P=P(X>Y for the two-parameter exponentiated Rayleigh distribution. Approach: A new technique of obtaining these parametric functions is introduced in which major role is played by the powers of the parameter(s and the functional forms of the parametric functions to be estimated are not needed.  We explore the performance of these estimators numerically under varying conditions. Through the simulation study a comparison are made on the performance of these estimators with respect to the Biasness, Mean Square Error (MSE, 95% confidence length and corresponding coverage percentage. Conclusion: Based on the results of simulation study the UMVUES of R(t and ‘P’ for the two-parameter exponentiated Rayleigh distribution found to be superior than MLES of R(t and ‘P’.

  9. Bias correction for the estimation of sensitivity indices based on random balance designs

    International Nuclear Information System (INIS)

    Tissot, Jean-Yves; Prieur, Clémentine

    2012-01-01

    This paper deals with the random balance design method (RBD) and its hybrid approach, RBD-FAST. Both these global sensitivity analysis methods originate from Fourier amplitude sensitivity test (FAST) and consequently face the main problems inherent to discrete harmonic analysis. We present here a general way to correct a bias which occurs when estimating sensitivity indices (SIs) of any order – except total SI of single factor or group of factors – by the random balance design method (RBD) and its hybrid version, RBD-FAST. In the RBD case, this positive bias has been recently identified in a paper by Xu and Gertner [1]. Following their work, we propose a bias correction method for first-order SIs estimates in RBD. We then extend the correction method to the SIs of any order in RBD-FAST. At last, we suggest an efficient strategy to estimate all the first- and second-order SIs using RBD-FAST. - Highlights: ► We provide a bias correction method for the global sensitivity analysis methods: RBD and RBD-FAST. ► In RBD, first-order sensitivity estimates are corrected. ► In RBD-FAST, sensitivity indices of any order and closed sensitivity indices are corrected. ► We propose an efficient strategy to estimate all the first- and second-order indices of a model.

  10. A variational approach to parameter estimation in ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Kaschek Daniel

    2012-08-01

    Full Text Available Abstract Background Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. Results The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. Conclusions The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  11. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    Science.gov (United States)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  12. A variational approach to parameter estimation in ordinary differential equations.

    Science.gov (United States)

    Kaschek, Daniel; Timmer, Jens

    2012-08-14

    Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  13. REML estimates of genetic parameters of sexual dimorphism for ...

    Indian Academy of Sciences (India)

    Administrator

    Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals ... studies. Thus, the aim of this study was to estimate genetic parameters of sexual dimorphism in isofemale lines using ..... Muscovy ducks. Genet.

  14. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  15. Kalman filter data assimilation: targeting observations and parameter estimation.

    Science.gov (United States)

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  16. Kalman filter data assimilation: Targeting observations and parameter estimation

    International Nuclear Information System (INIS)

    Bellsky, Thomas; Kostelich, Eric J.; Mahalov, Alex

    2014-01-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation

  17. Kalman filter estimation of RLC parameters for UMP transmission line

    Directory of Open Access Journals (Sweden)

    Mohd Amin Siti Nur Aishah

    2018-01-01

    Full Text Available This paper present the development of Kalman filter that allows evaluation in the estimation of resistance (R, inductance (L, and capacitance (C values for Universiti Malaysia Pahang (UMP short transmission line. To overcome the weaknesses of existing system such as power losses in the transmission line, Kalman Filter can be a better solution to estimate the parameters. The aim of this paper is to estimate RLC values by using Kalman filter that in the end can increase the system efficiency in UMP. In this research, matlab simulink model is developed to analyse the UMP short transmission line by considering different noise conditions to reprint certain unknown parameters which are difficult to predict. The data is then used for comparison purposes between calculated and estimated values. The results have illustrated that the Kalman Filter estimate accurately the RLC parameters with less error. The comparison of accuracy between Kalman Filter and Least Square method is also presented to evaluate their performances.

  18. National HIV prevalence estimates for sub-Saharan Africa: controlling selection bias with Heckman-type selection models

    Science.gov (United States)

    Hogan, Daniel R; Salomon, Joshua A; Canning, David; Hammitt, James K; Zaslavsky, Alan M; Bärnighausen, Till

    2012-01-01

    Objectives Population-based HIV testing surveys have become central to deriving estimates of national HIV prevalence in sub-Saharan Africa. However, limited participation in these surveys can lead to selection bias. We control for selection bias in national HIV prevalence estimates using a novel approach, which unlike conventional imputation can account for selection on unobserved factors. Methods For 12 Demographic and Health Surveys conducted from 2001 to 2009 (N=138 300), we predict HIV status among those missing a valid HIV test with Heckman-type selection models, which allow for correlation between infection status and participation in survey HIV testing. We compare these estimates with conventional ones and introduce a simulation procedure that incorporates regression model parameter uncertainty into confidence intervals. Results Selection model point estimates of national HIV prevalence were greater than unadjusted estimates for 10 of 12 surveys for men and 11 of 12 surveys for women, and were also greater than the majority of estimates obtained from conventional imputation, with significantly higher HIV prevalence estimates for men in Cote d'Ivoire 2005, Mali 2006 and Zambia 2007. Accounting for selective non-participation yielded 95% confidence intervals around HIV prevalence estimates that are wider than those obtained with conventional imputation by an average factor of 4.5. Conclusions Our analysis indicates that national HIV prevalence estimates for many countries in sub-Saharan African are more uncertain than previously thought, and may be underestimated in several cases, underscoring the need for increasing participation in HIV surveys. Heckman-type selection models should be included in the set of tools used for routine estimation of HIV prevalence. PMID:23172342

  19. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  20. Fat fraction bias correction using T1 estimates and flip angle mapping.

    Science.gov (United States)

    Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A

    2014-01-01

    To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.

  1. An empirical study on memory bias situations and correction strategies in ERP effort estimation

    NARCIS (Netherlands)

    Erasmus, I.P.; Daneva, Maia; Amrahamsson, Pekka; Corral, Luis; Olivo, Markku; Russo, Barbara

    2016-01-01

    An Enterprise Resource Planning (ERP) project estimation process often relies on experts of various backgrounds to contribute judgments based on their professional experience. Such expert judgments however may not be biasfree. De-biasing techniques therefore have been proposed in the software

  2. A forecasting method to reduce estimation bias in self-reported cell phone data.

    Science.gov (United States)

    Redmayne, Mary; Smith, Euan; Abramson, Michael J

    2013-01-01

    There is ongoing concern that extended exposure to cell phone electromagnetic radiation could be related to an increased risk of negative health effects. Epidemiological studies seek to assess this risk, usually relying on participants' recalled use, but recall is notoriously poor. Our objectives were primarily to produce a forecast method, for use by such studies, to reduce estimation bias in the recalled extent of cell phone use. The method we developed, using Bayes' rule, is modelled with data we collected in a cross-sectional cluster survey exploring cell phone user-habits among New Zealand adolescents. Participants recalled their recent extent of SMS-texting and retrieved from their provider the current month's actual use-to-date. Actual use was taken as the gold standard in the analyses. Estimation bias arose from a large random error, as observed in all cell phone validation studies. We demonstrate that this seriously exaggerates upper-end forecasts of use when used in regression models. This means that calculations using a regression model will lead to underestimation of heavy-users' relative risk. Our Bayesian method substantially reduces estimation bias. In cases where other studies' data conforms to our method's requirements, application should reduce estimation bias, leading to a more accurate relative risk calculation for mid-to-heavy users.

  3. Bias Errors due to Leakage Effects When Estimating Frequency Response Functions

    Directory of Open Access Journals (Sweden)

    Andreas Josefsson

    2012-01-01

    Full Text Available Frequency response functions are often utilized to characterize a system's dynamic response. For a wide range of engineering applications, it is desirable to determine frequency response functions for a system under stochastic excitation. In practice, the measurement data is contaminated by noise and some form of averaging is needed in order to obtain a consistent estimator. With Welch's method, the discrete Fourier transform is used and the data is segmented into smaller blocks so that averaging can be performed when estimating the spectrum. However, this segmentation introduces leakage effects. As a result, the estimated frequency response function suffers from both systematic (bias and random errors due to leakage. In this paper the bias error in the H1 and H2-estimate is studied and a new method is proposed to derive an approximate expression for the relative bias error at the resonance frequency with different window functions. The method is based on using a sum of real exponentials to describe the window's deterministic autocorrelation function. Simple expressions are derived for a rectangular window and a Hanning window. The theoretical expressions are verified with numerical simulations and a very good agreement is found between the results from the proposed bias expressions and the empirical results.

  4. When celibacy matters: incorporating non-breeders improves demographic parameter estimates.

    Science.gov (United States)

    Pardo, Deborah; Weimerskirch, Henri; Barbraud, Christophe

    2013-01-01

    In long-lived species only a fraction of a population breeds at a given time. Non-breeders can represent more than half of adult individuals, calling in doubt the relevance of estimating demographic parameters from the sole breeders. Here we demonstrate the importance of considering observable non-breeders to estimate reliable demographic traits: survival, return, breeding, hatching and fledging probabilities. We study the long-lived quasi-biennial breeding wandering albatross (Diomedea exulans). In this species, the breeding cycle lasts almost a year and birds that succeed a given year tend to skip the next breeding occasion while birds that fail tend to breed again the following year. Most non-breeders remain unobservable at sea, but still a substantial number of observable non-breeders (ONB) was identified on breeding sites. Using multi-state capture-mark-recapture analyses, we used several measures to compare the performance of demographic estimates between models incorporating or ignoring ONB: bias (difference in mean), precision (difference is standard deviation) and accuracy (both differences in mean and standard deviation). Our results highlight that ignoring ONB leads to bias and loss of accuracy on breeding probability and survival estimates. These effects are even stronger when studied in an age-dependent framework. Biases on breeding probabilities and survival increased with age leading to overestimation of survival at old age and thus actuarial senescence and underestimation of reproductive senescence. We believe our study sheds new light on the difficulties of estimating demographic parameters in species/taxa where a significant part of the population does not breed every year. Taking into account ONB appeared important to improve demographic parameter estimates, models of population dynamics and evolutionary conclusions regarding senescence within and across taxa.

  5. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    Science.gov (United States)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  6. State and parameter estimation in biotechnical batch reactors

    NARCIS (Netherlands)

    Keesman, K.J.

    2000-01-01

    In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in

  7. On the Nature of SEM Estimates of ARMA Parameters.

    Science.gov (United States)

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  8. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  9. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  10. Estimation of genetic parameters for body weights of Kurdish sheep ...

    African Journals Online (AJOL)

    Genetic parameters and (co)variance components were estimated by restricted maximum likelihood (REML) procedure, using animal models of kind 1, 2, 3, 4, 5 and 6, for body weight in birth, three, six, nine and 12 months of age in a Kurdish sheep flock. Direct and maternal breeding values were estimated using the best ...

  11. Aircraft parameter estimation ± A tool for development of ...

    Indian Academy of Sciences (India)

    In addition, actuator performance and controller gains may be flight condition dependent. Moreover, this approach may result in open-loop parameter estimates with low accuracy. 6. Aerodynamic databases for high fidelity flight simulators. Estimation of a comprehensive aerodynamic model suitable for a flight simulator is an.

  12. A Note On the Estimation of the Poisson Parameter

    Directory of Open Access Journals (Sweden)

    S. S. Chitgopekar

    1985-01-01

    distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.

  13. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  14. Multiple-hit parameter estimation in monolithic detectors.

    Science.gov (United States)

    Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S

    2013-02-01

    We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.

  15. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  16. Parameter Estimation of Damped Compound Pendulum Using Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Saad Mohd Sazli

    2016-01-01

    Full Text Available In this study, the parameter identification of the damped compound pendulum system is proposed using one of the most promising nature inspired algorithms which is Bat Algorithm (BA. The procedure used to achieve the parameter identification of the experimental system consists of input-output data collection, ARX model order selection and parameter estimation using bat algorithm (BA method. PRBS signal is used as an input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the autoregressive with exogenous input (ARX model. The performance of the model is validated using mean squares error (MSE between the actual and predicted output responses of the models. Finally, comparative study is conducted between BA and the conventional estimation method (i.e. Least Square. Based on the results obtained, MSE produce from Bat Algorithm (BA is outperformed the Least Square (LS method.

  17. Iterative methods for distributed parameter estimation in parabolic PDE

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R. [Montana State Univ., Bozeman, MT (United States); Wade, J.G. [Bowling Green State Univ., OH (United States)

    1994-12-31

    The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

  18. Method for Estimating the Parameters of LFM Radar Signal

    Directory of Open Access Journals (Sweden)

    Tan Chuan-Zhang

    2017-01-01

    Full Text Available In order to obtain reliable estimate of parameters, it is very important to protect the integrality of linear frequency modulation (LFM signal. Therefore, in the practical LFM radar signal processing, the length of data frame is often greater than the pulse width (PW of signal. In this condition, estimating the parameters by fractional Fourier transform (FrFT will cause the signal to noise ratio (SNR decrease. Aiming at this problem, we multiply the data frame by a Gaussian window to improve the SNR. Besides, for a further improvement of parameters estimation precision, a novel algorithm is derived via Lagrange interpolation polynomial, and we enhance the algorithm by a logarithmic transformation. Simulation results demonstrate that the derived algorithm significantly reduces the estimation errors of chirp-rate and initial frequency.

  19. SIMULTANEOUS ESTIMATION OF PHOTOMETRIC REDSHIFTS AND SED PARAMETERS: IMPROVED TECHNIQUES AND A REALISTIC ERROR BUDGET

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Raichoor, Anand; Gawiser, Eric

    2015-01-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties in the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the multi-dimensional probability distribution function in SED fitting + z parameter space, including all correlations. While the performance of joint SED fitting and photo-z estimation might be hindered by template incompleteness, we demonstrate that the latter is “flagged” by a large fraction of outliers in redshift, and that significant improvements can be achieved by using flexible stellar populations synthesis models and more realistic star formation histories. In all cases, we find that the median stellar age is better recovered than the time elapsed from the onset of star formation. Finally, we show that using a photometric redshift code such as EAZY to obtain redshift probability distributions that are then used as priors for SED fitting codes leads to only a modest bias in the SED fitting parameters and is thus a viable alternative to the simultaneous estimation of SED parameters and photometric redshifts

  20. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  1. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  2. Estimating the residential demand function for natural gas in Seoul with correction for sample selection bias

    International Nuclear Information System (INIS)

    Yoo, Seung-Hoon; Lim, Hea-Jin; Kwak, Seung-Jun

    2009-01-01

    Over the last twenty years, the consumption of natural gas in Korea has increased dramatically. This increase has mainly resulted from the rise of consumption in the residential sector. The main objective of the study is to estimate households' demand function for natural gas by applying a sample selection model using data from a survey of households in Seoul. The results show that there exists a selection bias in the sample and that failure to correct for sample selection bias distorts the mean estimate, of the demand for natural gas, downward by 48.1%. In addition, according to the estimation results, the size of the house, the dummy variable for dwelling in an apartment, the dummy variable for having a bed in an inner room, and the household's income all have positive relationships with the demand for natural gas. On the other hand, the size of the family and the price of gas negatively contribute to the demand for natural gas. (author)

  3. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    International Nuclear Information System (INIS)

    Steinhardt, Charles L.

    2011-01-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from the host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.

  4. A study of two estimation approaches for parameters of Weibull distribution based on WPP

    International Nuclear Information System (INIS)

    Zhang, L.F.; Xie, M.; Tang, L.C.

    2007-01-01

    Least-squares estimation (LSE) based on Weibull probability plot (WPP) is the most basic method for estimating the Weibull parameters. The common procedure of this method is using the least-squares regression of Y on X, i.e. minimizing the sum of squares of the vertical residuals, to fit a straight line to the data points on WPP and then calculate the LS estimators. This method is known to be biased. In the existing literature the least-squares regression of X on Y, i.e. minimizing the sum of squares of the horizontal residuals, has been used by the Weibull researchers. This motivated us to carry out this comparison between the estimators of the two LS regression methods using intensive Monte Carlo simulations. Both complete and censored data are examined. Surprisingly, the result shows that LS Y on X performs better for small, complete samples, while the LS X on Y performs better in other cases in view of bias of the estimators. The two methods are also compared in terms of other model statistics. In general, when the shape parameter is less than one, LS Y on X provides a better model; otherwise, LS X on Y tends to be better

  5. Parameter Estimation in Stochastic Grey-Box Models

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2004-01-01

    An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....

  6. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification

    Directory of Open Access Journals (Sweden)

    Davis Matthew P

    2013-02-01

    Full Text Available Abstract Background There has been a considerable increase in studies investigating rates of diversification and character evolution, with one of the promising techniques being the BiSSE method (binary state speciation and extinction. This study uses simulations under a variety of different sample sizes (number of tips and asymmetries of rate (speciation, extinction, character change to determine BiSSE’s ability to test hypotheses, and investigate whether the method is susceptible to confounding effects. Results We found that the power of the BiSSE method is severely affected by both sample size and high tip ratio bias (one character state dominates among observed tips. Sample size and high tip ratio bias also reduced accuracy and precision of parameter estimation, and resulted in the inability to infer which rate asymmetry caused the excess of a character state. In low tip ratio bias scenarios with appropriate tip sample size, BiSSE accurately estimated the rate asymmetry causing character state excess, avoiding the issue of confounding effects. Conclusions Based on our findings, we recommend that future studies utilizing BiSSE that have fewer than 300 terminals and/or have datasets where high tip ratio bias is observed (i.e., fewer than 10% of species are of one character state should be extremely cautious with the interpretation of hypothesis testing results.

  7. Traveltime approximations and parameter estimation for orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2016-05-30

    Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters Building anisotropy models is necessary for seismic modeling and imaging. However, anisotropy estimation is challenging due to the trade-off between inhomogeneity and anisotropy. Luckily, we can estimate the anisotropy parameters if we relate them analytically to traveltimes. Using perturbation theory, we have developed traveltime approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2, and Δχ in inhomogeneous background media. The parameter Δχ is related to Tsvankin-Thomsen notation and ensures easier computation of traveltimes in the background model. Specifically, our expansion assumes an inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. We have used the Shanks transform to enhance the accuracy of the formulas. A homogeneous medium simplification of the traveltime expansion provided a nonhyperbolic moveout description of the traveltime that was more accurate than other derived approximations. Moreover, the formulation provides a computationally efficient tool to solve the eikonal equation of an orthorhombic medium, without any constraints on the background model complexity. Although, the expansion is based on the factorized representation of the perturbation parameters, smooth variations of these parameters (represented as effective values) provides reasonable results. Thus, this formulation provides a mechanism to estimate the three effective parameters η1, η2, and Δχ. We have derived Dix-type formulas for orthorhombic medium to convert the effective parameters to their interval values.

  8. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    Science.gov (United States)

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  9. Assumptions of the primordial spectrum and cosmological parameter estimation

    International Nuclear Information System (INIS)

    Shafieloo, Arman; Souradeep, Tarun

    2011-01-01

    The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)

  10. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  11. Pattern statistics on Markov chains and sensitivity to parameter estimation

    Directory of Open Access Journals (Sweden)

    Nuel Grégory

    2006-10-01

    Full Text Available Abstract Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,.... Results: In the particular case where pattern statistics (overlap counting only computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  12. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  13. Considerations about expected a posteriori estimation in adaptive testing: adaptive a priori, adaptive correction for bias, and adaptive integration interval.

    Science.gov (United States)

    Raiche, Gilles; Blais, Jean-Guy

    2009-01-01

    In a computerized adaptive test, we would like to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Unfortunately, decreasing the number of items is accompanied by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. The authors suggest that it is possible to reduced the bias, and even the standard error of the estimate, by applying to each provisional estimation one or a combination of the following strategies: adaptive correction for bias proposed by Bock and Mislevy (1982), adaptive a priori estimate, and adaptive integration interval.

  14. Parameter Estimation of Damped Compound Pendulum Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Saad Mohd Sazli

    2016-01-01

    Full Text Available This paper present the parameter identification of damped compound pendulum using differential evolution algorithm. The procedure used to achieve the parameter identification of the experimental system consisted of input output data collection, ARX model order selection and parameter estimation using conventional method least square (LS and differential evolution (DE algorithm. PRBS signal is used to be input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the ARX model. The residual error between the actual and predicted output responses of the models is validated using mean squares error (MSE. Analysis showed that, MSE value for LS is 0.0026 and MSE value for DE is 3.6601×10-5. Based results obtained, it was found that DE have lower MSE than the LS method.

  15. CTER—Rapid estimation of CTF parameters with error assessment

    Energy Technology Data Exchange (ETDEWEB)

    Penczek, Pawel A., E-mail: Pawel.A.Penczek@uth.tmc.edu [Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054 (United States); Fang, Jia [Department of Biochemistry and Molecular Biology, The University of Texas Medical School, 6431 Fannin MSB 6.220, Houston, TX 77054 (United States); Li, Xueming; Cheng, Yifan [The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158 (United States); Loerke, Justus; Spahn, Christian M.T. [Institut für Medizinische Physik und Biophysik, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2014-05-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300 kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03 Å without, and 3.85 Å with, inclusion of astigmatism parameters. - Highlights: • We describe methodology for estimation of CTF parameters with error assessment. • Error estimates provide means for automated elimination of inferior micrographs. • High computational efficiency allows real-time monitoring of EM data quality. • Accurate CTF estimation yields structure of the 80S human ribosome at 3.85 Å.

  16. An approach of parameter estimation for non-synchronous systems

    International Nuclear Information System (INIS)

    Xu Daolin; Lu Fangfang

    2005-01-01

    Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems

  17. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  18. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  19. Application of genetic algorithms for parameter estimation in liquid chromatography

    International Nuclear Information System (INIS)

    Hernandez Torres, Reynier; Irizar Mesa, Mirtha; Tavares Camara, Leoncio Diogenes

    2012-01-01

    In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography

  20. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  1. Maximum likelihood estimation and EM algorithm of Copas-like selection model for publication bias correction.

    Science.gov (United States)

    Ning, Jing; Chen, Yong; Piao, Jin

    2017-07-01

    Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization...... and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  3. Mean size estimation yields left-side bias: Role of attention on perceptual averaging.

    Science.gov (United States)

    Li, Kuei-An; Yeh, Su-Ling

    2017-11-01

    The human visual system can estimate mean size of a set of items effectively; however, little is known about whether information on each visual field contributes equally to the mean size estimation. In this study, we examined whether a left-side bias (LSB)-perceptual judgment tends to depend more heavily on left visual field's inputs-affects mean size estimation. Participants were instructed to estimate the mean size of 16 spots. In half of the trials, the mean size of the spots on the left side was larger than that on the right side (the left-larger condition) and vice versa (the right-larger condition). Our results illustrated an LSB: A larger estimated mean size was found in the left-larger condition than in the right-larger condition (Experiment 1), and the LSB vanished when participants' attention was effectively cued to the right side (Experiment 2b). Furthermore, the magnitude of LSB increased with stimulus-onset asynchrony (SOA), when spots on the left side were presented earlier than the right side. In contrast, the LSB vanished and then induced a reversed effect with SOA when spots on the right side were presented earlier (Experiment 3). This study offers the first piece of evidence suggesting that LSB does have a significant influence on mean size estimation of a group of items, which is induced by a leftward attentional bias that enhances the prior entry effect on the left side.

  4. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  5. Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter

    Directory of Open Access Journals (Sweden)

    V. R. N. Pauwels

    2013-09-01

    Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  6. SCoPE: an efficient method of Cosmological Parameter Estimation

    International Nuclear Information System (INIS)

    Das, Santanu; Souradeep, Tarun

    2014-01-01

    Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of the chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data

  7. Thermophysical Property Estimation by Transient Experiments: The Effect of a Biased Initial Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Federico Scarpa

    2015-01-01

    Full Text Available The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the inverse solution of the associated heat conduction problem (IHCP. The inverse technique demands the knowledge of the initial temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all are arranged inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty, together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect. Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of the identified thermophysical property values is highly improved.

  8. Estimation of Compaction Parameters Based on Soil Classification

    Science.gov (United States)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  9. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah

    2015-10-05

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms is directly affected by the size of the grid: increasing the number of points will enhance the resolution of the algorithm but exponentially increase its complexity. In this work, to estimate the parameters of a target, a reduced complexity super resolution algorithm is proposed. For off-the-grid targets, it uses a low order two dimensional fast Fourier transform to determine a suboptimal solution and then an iterative algorithm to jointly estimate the spatial location and Doppler shift. Simulation results show that the mean square estimation error of the proposed estimators achieve the Cram\\'er-Rao lower bound. © 2015 IEEE.

  10. Estimation of object motion parameters from noisy images.

    Science.gov (United States)

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  11. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  12. A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Badiu, Mihai Alin; Fleury, Bernard Henri

    2014-01-01

    This paper concerns sparse decomposition of a noisy signal into atoms which are specified by unknown continuous-valued parameters. An example could be estimation of the model order, frequencies and amplitudes of a superposition of complex sinusoids. The common approach is to reduce the continuous...

  13. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  14. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  15. Parameter extraction and estimation based on the PV panel outdoor ...

    African Journals Online (AJOL)

    The experimental data obtained are validated and compared with the estimated results obtained through simulation based on the manufacture's data sheet. The simulation is based on the Newton-Raphson iterative method in MATLAB environment. This approach aids the computation of the PV module's parameters at any ...

  16. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  17. MPEG2 video parameter and no reference PSNR estimation

    DEFF Research Database (Denmark)

    Li, Huiying; Forchhammer, Søren

    2009-01-01

    MPEG coded video may be processed for quality assessment or postprocessed to reduce coding artifacts or transcoded. Utilizing information about the MPEG stream may be useful for these tasks. This paper deals with estimating MPEG parameter information from the decoded video stream without access t...

  18. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  19. Estimates Of Genetic Parameters Of Body Weights Of Different ...

    African Journals Online (AJOL)

    four (44) farrowings were used to estimate the genetic parameters (heritability and repeatability) of body weight of pigs. Results obtained from the study showed that the heritability (h2) of birth and weaning weights were moderate (0.33±0.16 ...

  20. Estimation of stature from facial parameters in adult Abakaliki people ...

    African Journals Online (AJOL)

    This study is carried out in order to estimate the height of adult Igbo people of Abakaliki ethnic group in South-Eastern Nigeria from their facial Morphology. The parameters studied include Facial Length, Bizygomatic Diameter, Bigonial Diameter, Nasal Length, and Nasal Breadth. A total of 1000 subjects comprising 669 ...

  1. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  2. Measuring, calculating and estimating PEP's parasitic mode loss parameters

    International Nuclear Information System (INIS)

    Weaver, J.N.

    1981-01-01

    This note discusses various ways the parasitic mode losses from a bunched beam to a vacuum chamber can be measured, calculated or estimated. A listing of the parameter, k, for the various PEP ring components is included. A number of formulas for calculating multiple and single pass losses are discussed and evaluated for several cases. 25 refs., 1 fig., 1 tab

  3. Visco-piezo-elastic parameter estimation in laminated plate structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.

    2009-01-01

    A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...

  4. Estimates of genetic parameters and genetic gains for growth traits ...

    African Journals Online (AJOL)

    Estimates of genetic parameters and genetic gains for growth traits of two Eucalyptus ... In South Africa, Eucalyptus urophylla is an important species due to its ... as hybrid parents to cross with E. grandis was 59.8% over the population mean.

  5. Estimation of riverbank soil erodibility parameters using genetic ...

    Indian Academy of Sciences (India)

    Tapas Karmaker

    2017-11-07

    Nov 7, 2017 ... process. Therefore, this is a study to verify the applicability of inverse parameter ... successful modelling of the riverbank erosion, precise estimation of ..... For this simulation, about 40 iterations are found to attain the convergence. ..... rithm for function optimization: a Matlab implementation. NCSU-IE TR ...

  6. estimation of shear strength parameters of lateritic soils using

    African Journals Online (AJOL)

    user

    ... a tool to estimate the. Nigerian Journal of Technology (NIJOTECH). Vol. ... modeling tools for the prediction of shear strength parameters for lateritic ... 2.2 Geotechnical Analysis of the Soils ... The back propagation learning algorithm is the most popular and ..... [10] Alsaleh, M. I., Numerical modeling for strain localization in ...

  7. Estimation of genetic parameters for carcass traits in Japanese quail ...

    African Journals Online (AJOL)

    The aim of this study was to estimate genetic parameters of some carcass characteristics in the Japanese quail. For this aim, carcass weight (Cw), breast weight (Bw), leg weight (Lw), abdominal fat weight (AFw), carcass yield (CP), breast percentage (BP), leg percentage (LP) and abdominal fat percentage (AFP) were ...

  8. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  9. Dual ant colony operational modal analysis parameter estimation method

    Science.gov (United States)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  10. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    Science.gov (United States)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  11. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-07

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.

  12. Improving RNA-Seq expression estimates by correcting for fragment bias

    Science.gov (United States)

    2011-01-01

    The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed within the transcripts they represent. This non-uniformity must be accounted for when estimating expression levels, and we show how to perform the needed corrections using a likelihood based approach. We find improvements in expression estimates as measured by correlation with independently performed qRT-PCR and show that correction of bias leads to improved replicability of results across libraries and sequencing technologies. PMID:21410973

  13. Estimation of Parameters in Mean-Reverting Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Tianhai Tian

    2014-01-01

    Full Text Available Stochastic differential equation (SDE is a very important mathematical tool to describe complex systems in which noise plays an important role. SDE models have been widely used to study the dynamic properties of various nonlinear systems in biology, engineering, finance, and economics, as well as physical sciences. Since a SDE can generate unlimited numbers of trajectories, it is difficult to estimate model parameters based on experimental observations which may represent only one trajectory of the stochastic model. Although substantial research efforts have been made to develop effective methods, it is still a challenge to infer unknown parameters in SDE models from observations that may have large variations. Using an interest rate model as a test problem, in this work we use the Bayesian inference and Markov Chain Monte Carlo method to estimate unknown parameters in SDE models.

  14. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    International Nuclear Information System (INIS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-01-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  15. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in [Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  16. Using Genetic Algorithm to Estimate Hydraulic Parameters of Unconfined Aquifers

    Directory of Open Access Journals (Sweden)

    Asghar Asghari Moghaddam

    2009-03-01

    Full Text Available Nowadays, optimization techniques such as Genetic Algorithms (GA have attracted wide attention among scientists for solving complicated engineering problems. In this article, pumping test data are used to assess the efficiency of GA in estimating unconfined aquifer parameters and a sensitivity analysis is carried out to propose an optimal arrangement of GA. For this purpose, hydraulic parameters of three sets of pumping test data are calculated by GA and they are compared with the results of graphical methods. The results indicate that the GA technique is an efficient, reliable, and powerful method for estimating the hydraulic parameters of unconfined aquifer and, further, that in cases of deficiency in pumping test data, it has a better performance than graphical methods.

  17. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  18. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences.

    Science.gov (United States)

    Duchêne, David; Duchêne, Sebastian; Ho, Simon Y W

    2015-07-01

    Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance. © 2014 John Wiley & Sons Ltd.

  19. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  1. Influence of measurement errors and estimated parameters on combustion diagnosis

    International Nuclear Information System (INIS)

    Payri, F.; Molina, S.; Martin, J.; Armas, O.

    2006-01-01

    Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors

  2. Semiparametric efficient and robust estimation of an unknown symmetric population under arbitrary sample selection bias

    KAUST Repository

    Ma, Yanyuan

    2013-09-01

    We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice. © 2013 American Statistical Association.

  3. Stable Parameter Estimation for Autoregressive Equations with Random Coefficients

    Directory of Open Access Journals (Sweden)

    V. B. Goryainov

    2014-01-01

    Full Text Available In recent yearsthere has been a growing interest in non-linear time series models. They are more flexible than traditional linear models and allow more adequate description of real data. Among these models a autoregressive model with random coefficients plays an important role. It is widely used in various fields of science and technology, for example, in physics, biology, economics and finance. The model parameters are the mean values of autoregressive coefficients. Their evaluation is the main task of model identification. The basic method of estimation is still the least squares method, which gives good results for Gaussian time series, but it is quite sensitive to even small disturbancesin the assumption of Gaussian observations. In this paper we propose estimates, which generalize the least squares estimate in the sense that the quadratic objective function is replaced by an arbitrary convex and even function. Reasonable choice of objective function allows you to keep the benefits of the least squares estimate and eliminate its shortcomings. In particular, you can make it so that they will be almost as effective as the least squares estimate in the Gaussian case, but almost never loose in accuracy with small deviations of the probability distribution of the observations from the Gaussian distribution.The main result is the proof of consistency and asymptotic normality of the proposed estimates in the particular case of the one-parameter model describing the stationary process with finite variance. Another important result is the finding of the asymptotic relative efficiency of the proposed estimates in relation to the least squares estimate. This allows you to compare the two estimates, depending on the probability distribution of innovation process and of autoregressive coefficients. The results can be used to identify an autoregressive process, especially with nonGaussian nature, and/or of autoregressive processes observed with gross

  4. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates

  5. The importance of estimating selection bias on prevalence estimates shortly after a disaster.

    NARCIS (Netherlands)

    Grievink, Linda; Velden, Peter G van der; Yzermans, C Joris; Roorda, Jan; Stellato, Rebecca K

    2006-01-01

    PURPOSE: The aim was to study selective participation and its effect on prevalence estimates in a health survey of affected residents 3 weeks after a man-made disaster in The Netherlands (May 13, 2000). METHODS: All affected adult residents were invited to participate. Survey (questionnaire) data

  6. The importance of estimating selection bias on prevalence estimates, shortly after a disaster.

    NARCIS (Netherlands)

    Grievink, L.; Velden, P.G. van der; Yzermans, C.J.; Roorda, J.; Stellato, R.K.

    2006-01-01

    PURPOSE: The aim was to study selective participation and its effect on prevalence estimates in a health survey of affected residents 3 weeks after a man-made disaster in The Netherlands (May 13, 2000). METHODS: All affected adult residents were invited to participate. Survey (questionnaire) data

  7. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  8. Robust and efficient parameter estimation in dynamic models of biological systems.

    Science.gov (United States)

    Gábor, Attila; Banga, Julio R

    2015-10-29

    Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance. Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior knowledge in a systematic way. We illustrate the performance of the presented method with seven case studies of different nature and increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We show how our method ensures improved estimations with faster and more stable convergence. We also show how the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a wide variety of calibration problems. Here we provide a parameter estimation strategy which combines efficient global optimization with a regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively fighting overfitting and allowing the incorporation of prior information.

  9. Consistent Parameter and Transfer Function Estimation using Context Free Grammars

    Science.gov (United States)

    Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a

  10. METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and

  11. Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters

    Directory of Open Access Journals (Sweden)

    A. Elsonbaty

    2014-10-01

    Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.

  12. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  13. Estimation of common cause failure parameters with periodic tests

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Anne [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Grall, Antoine [Institut Charles Delaunay - Universite de technologie de Troyes - FRE CNRS 2848, 12, rue Marie Curie - BP 2060 -10010 Troyes cedex (France); Vasseur, Dominique [Electricite de France, EDF R and D - Industrial Risk Management Department 1, av. du General de Gaulle- 92141 Clamart (France)

    2009-04-15

    In the specific case of safety systems, CCF parameters estimators for standby components depend on the periodic test schemes. Classically, the testing schemes are either staggered (alternation of tests on redundant components) or non-staggered (all components are tested at the same time). In reality, periodic tests schemes performed on safety components are more complex and combine staggered tests, when the plant is in operation, to non-staggered tests during maintenance and refueling outage periods of the installation. Moreover, the CCF parameters estimators described in the US literature are derived in a consistent way with US Technical Specifications constraints that do not apply on the French Nuclear Power Plants for staggered tests on standby components. Given these issues, the evaluation of CCF parameters from the operating feedback data available within EDF implies the development of methodologies that integrate the testing schemes specificities. This paper aims to formally propose a solution for the estimation of CCF parameters given two distinct difficulties respectively related to a mixed testing scheme and to the consistency with EDF's specific practices inducing systematic non-simultaneity of the observed failures in a staggered testing scheme.

  14. Nonlinear Parameter Estimation in Microbiological Degradation Systems and Statistic Test for Common Estimation

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik

    1995-01-01

    Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...... and the growth of the biomass are described by the Monod model consisting of two nonlinear coupled first-order differential equations. The objective of this study was to estimate the kinetic parameters in the Monod model and to test whether the parameters from the three identical experiments have the same values....... Estimation of the parameters was obtained using an iterative maximum likelihood method and the test used was an approximative likelihood ratio test. The test showed that the three sets of parameters were identical only on a 4% alpha level....

  15. PWR system simulation and parameter estimation with neural networks

    International Nuclear Information System (INIS)

    Akkurt, Hatice; Colak, Uener

    2002-01-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within ±0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected

  16. PWR system simulation and parameter estimation with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice; Colak, Uener E-mail: uc@nuke.hacettepe.edu.tr

    2002-11-01

    A detailed nonlinear model for a typical PWR system has been considered for the development of simulation software. Each component in the system has been represented by appropriate differential equations. The SCILAB software was used for solving nonlinear equations to simulate steady-state and transient operational conditions. Overall system has been constructed by connecting individual components to each other. The validity of models for individual components and overall system has been verified. The system response against given transients have been analyzed. A neural network has been utilized to estimate system parameters during transients. Different transients have been imposed in training and prediction stages with neural networks. Reactor power and system reactivity during the transient event have been predicted by the neural network. Results show that neural networks estimations are in good agreement with the calculated response of the reactor system. The maximum errors are within {+-}0.254% for power and between -0.146 and 0.353% for reactivity prediction cases. Steam generator parameters, pressure and water level, are also successfully predicted by the neural network employed in this study. The noise imposed on the input parameters of the neural network deteriorates the power estimation capability whereas the reactivity estimation capability is not significantly affected.

  17. Tracking of nuclear reactor parameters via recursive non linear estimation

    International Nuclear Information System (INIS)

    Pages Fita, J.; Alengrin, G.; Aguilar Martin, J.; Zwingelstein, M.

    1975-01-01

    The usefulness of nonlinear estimation in the supervision of nuclear reactors, as well for reactivity determination as for on-line modelisation in order to detect eventual and unwanted changes in working operation is illustrated. It is dealt with the reactivity estimation using an a priori dynamical model under the hypothesis of one group of delayed neutrons (measurements were done with an ionisation chamber). The determination of the reactivity using such measurements appears as a nonlinear estimation procedure derived from a particular form of nonlinear filter. Observed inputs being demand of power and inside temperature, and output being the reactivity balance, a recursive algorithm is derived for the estimation of the parameters that define the actual behavior of the reactor. Example of treatment of real data is given [fr

  18. Parameter Estimation as a Problem in Statistical Thermodynamics.

    Science.gov (United States)

    Earle, Keith A; Schneider, David J

    2011-03-14

    In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.

  19. Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine

    Directory of Open Access Journals (Sweden)

    Jeremy T. Howard

    2018-02-01

    Full Text Available In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198 that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope. The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite was 0.15 (0.18 and 0.31 (0.40, respectively. For the parent drug (metabolite, the mean heritability across time was 0.27 (0.60 and 0.14 (0.44 for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug

  20. Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine

    Science.gov (United States)

    Howard, Jeremy T.; Ashwell, Melissa S.; Baynes, Ronald E.; Brooks, James D.; Yeatts, James L.; Maltecca, Christian

    2018-01-01

    In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug

  1. Detectability of migrating raptors and its effect on bias and precision of trend estimates

    Directory of Open Access Journals (Sweden)

    Eric G. Nolte

    2016-12-01

    Full Text Available Annual counts of migrating raptors at fixed observation points are a widespread practice, and changes in numbers counted over time, adjusted for survey effort, are commonly used as indices of trends in population size. Unmodeled year-to-year variation in detectability may introduce bias, reduce precision of trend estimates, and reduce power to detect trends. We conducted dependent double-observer surveys at the annual fall raptor migration count at Lucky Peak, Idaho, in 2009 and 2010 and applied Huggins closed-capture removal models and information-theoretic model selection to determine the relative importance of factors affecting detectability. The most parsimonious model included effects of observer team identity, distance, species, and day of the season. We then simulated 30 years of counts with heterogeneous individual detectability, a population decline (λ = 0.964, and unexplained random variation in the number of available birds. Imperfect detectability did not bias trend estimation, and increased the time required to achieve 80% power by less than 11%. Results suggested that availability is a greater source of variance in annual counts than detectability; thus, efforts to account for availability would improve the monitoring value of migration counts. According to our models, long-term trends in observer efficiency or migratory flight distance may introduce substantial bias to trend estimates. Estimating detectability with a novel count protocol like our double-observer method is just one potential means of controlling such effects. The traditional approach of modeling the effects of covariates and adjusting the index may also be effective if ancillary data is collected consistently.

  2. Bayesian Parameter Estimation via Filtering and Functional Approximations

    KAUST Repository

    Matthies, Hermann G.

    2016-11-25

    The inverse problem of determining parameters in a model by comparing some output of the model with observations is addressed. This is a description for what hat to be done to use the Gauss-Markov-Kalman filter for the Bayesian estimation and updating of parameters in a computational model. This is a filter acting on random variables, and while its Monte Carlo variant --- the Ensemble Kalman Filter (EnKF) --- is fairly straightforward, we subsequently only sketch its implementation with the help of functional representations.

  3. Bayesian Parameter Estimation via Filtering and Functional Approximations

    KAUST Repository

    Matthies, Hermann G.; Litvinenko, Alexander; Rosic, Bojana V.; Zander, Elmar

    2016-01-01

    The inverse problem of determining parameters in a model by comparing some output of the model with observations is addressed. This is a description for what hat to be done to use the Gauss-Markov-Kalman filter for the Bayesian estimation and updating of parameters in a computational model. This is a filter acting on random variables, and while its Monte Carlo variant --- the Ensemble Kalman Filter (EnKF) --- is fairly straightforward, we subsequently only sketch its implementation with the help of functional representations.

  4. Parameter and state estimation in nonlinear dynamical systems

    Science.gov (United States)

    Creveling, Daniel R.

    This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling

  5. Estimation of Medium Voltage Cable Parameters for PD Detection

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Holbøll, Joachim T.; Henriksen, Mogens

    1998-01-01

    Medium voltage cable characteristics have been determined with respect to the parameters having influence on the evaluation of results from PD-measurements on paper/oil and XLPE-cables. In particular, parameters essential for discharge quantification and location were measured. In order to relate...... and phase constants. A method to estimate this propagation constant, based on high frequency measurements, will be presented and will be applied to different cable types under different conditions. The influence of temperature and test voltage was investigated. The relevance of the results for cable...

  6. Estimating parameters for probabilistic linkage of privacy-preserved datasets.

    Science.gov (United States)

    Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H

    2017-07-10

    Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher

  7. Correcting estimators of theta and Tajima's D for ascertainment biases caused by the single-nucleotide polymorphism discovery process

    DEFF Research Database (Denmark)

    Ramírez-Soriano, Anna; Nielsen, Rasmus

    2009-01-01

    Most single-nucleotide polymorphism (SNP) data suffer from an ascertainment bias caused by the process of SNP discovery followed by SNP genotyping. The final genotyped data are biased toward an excess of common alleles compared to directly sequenced data, making standard genetic methods of analysis...... the variances and covariances of these estimators and provide a corrected version of Tajima's D statistic. We reanalyze a human genomewide SNP data set and find substantial differences in the results with or without ascertainment bias correction....

  8. Estimation of economic parameters of U.S. hydropower resources

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Reeves, Kelly S. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Carroll, Greg R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  9. Probabilistic estimation of the constitutive parameters of polymers

    Directory of Open Access Journals (Sweden)

    Siviour C.R.

    2012-08-01

    Full Text Available The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.

  10. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  11. PARAMETER ESTIMATION OF THE HYBRID CENSORED LOMAX DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Samir Kamel Ashour

    2010-12-01

    Full Text Available Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. The two most common censoring schemes used in life testing experiments are Type-I and Type-II censoring schemes. Hybrid censoring scheme is mixture of Type-I and Type-II censoring scheme. In this paper we consider the estimation of parameters of Lomax distribution based on hybrid censored data. The parameters are estimated by the maximum likelihood and Bayesian methods. The Fisher information matrix has been obtained and it can be used for constructing asymptotic confidence intervals.

  12. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  13. CosmoSIS: A System for MC Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zuntz, Joe [Manchester U.; Paterno, Marc [Fermilab; Jennings, Elise [Chicago U., EFI; Rudd, Douglas [U. Chicago; Manzotti, Alessandro [Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Bridle, Sarah [Manchester U.; Sehrish, Saba [Fermilab; Kowalkowski, James [Fermilab

    2015-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.

  14. Estimating parameters of chaotic systems synchronized by external driving signal

    International Nuclear Information System (INIS)

    Wu Xiaogang; Wang Zuxi

    2007-01-01

    Noise-induced synchronization (NIS) has evoked great research interests recently. Two uncoupled identical chaotic systems can achieve complete synchronization (CS) by feeding a common noise with appropriate intensity. Actually, NIS belongs to the category of external feedback control (EFC). The significance of applying EFC in secure communication lies in fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase space reconstruction attack fails. In this paper, however, we propose an approach that can accurately estimate the parameters of the chaotic systems synchronized by external driving signal through chaotic transmitted signal, driving signal and their derivatives. Numerical simulation indicates that this approach can estimate system parameters and external coupling strength under two driving modes in a very rapid manner, which implies that EFC is not superior to other methods in secure communication

  15. On Using Exponential Parameter Estimators with an Adaptive Controller

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  16. Basic Earth's Parameters as estimated from VLBI observations

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    2017-11-01

    Full Text Available The global Very Long Baseline Interferometry observation for measuring the Earth rotation's parameters was launched around 1970s. Since then the precision of the measurements is continuously improving by taking into account various instrumental and environmental effects. The MHB2000 nutation model was introduced in 2002, which is constructed based on a revised nutation series derived from 20 years VLBI observations (1980–1999. In this work, we firstly estimated the amplitudes of all nutation terms from the IERS-EOP-C04 VLBI global solutions w.r.t. IAU1980, then we further inferred the BEPs (Basic Earth's Parameters by fitting the major nutation terms. Meanwhile, the BEPs were obtained from the same nutation time series using a BI (Bayesian Inversion. The corrections to the precession rate and the estimated BEPs are in an agreement, independent of which methods have been applied.

  17. Bias and efficiency loss in regression estimates due to duplicated observations: a Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Francesco Sarracino

    2017-04-01

    Full Text Available Recent studies documented that survey data contain duplicate records. We assess how duplicate records affect regression estimates, and we evaluate the effectiveness of solutions to deal with duplicate records. Results show that the chances of obtaining unbiased estimates when data contain 40 doublets (about 5% of the sample range between 3.5% and 11.5% depending on the distribution of duplicates. If 7 quintuplets are present in the data (2% of the sample, then the probability of obtaining biased estimates ranges between 11% and 20%. Weighting the duplicate records by the inverse of their multiplicity, or dropping superfluous duplicates outperform other solutions in all considered scenarios. Our results illustrate the risk of using data in presence of duplicate records and call for further research on strategies to analyze affected data.

  18. Estimation of parameters of interior permanent magnet synchronous motors

    International Nuclear Information System (INIS)

    Hwang, C.C.; Chang, S.M.; Pan, C.T.; Chang, T.Y.

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement

  19. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....

  20. Fundamental limits of radio interferometers: calibration and source parameter estimation

    OpenAIRE

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.

    2012-01-01

    We use information theory to derive fundamental limits on the capacity to calibrate next-generation radio interferometers, and measure parameters of point sources for instrument calibration, point source subtraction, and data deconvolution. We demonstrate the implications of these fundamental limits, with particular reference to estimation of the 21cm Epoch of Reionization power spectrum with next-generation low-frequency instruments (e.g., the Murchison Widefield Array -- MWA, Precision Arra...

  1. Robust estimation of track parameters in wire chambers

    International Nuclear Information System (INIS)

    Bogdanova, N.B.; Bourilkov, D.T.

    1988-01-01

    The aim of this paper is to compare numerically the possibilities of the least square fit (LSF) and robust methods for modelled and real track data to determine the linear regression parameters of charged particles in wire chambers. It is shown, that Tukey robust estimate is superior to more standard (versions of LSF) methods. The efficiency of the method is illustrated by tables and figures for some important physical characteristics

  2. Factorized Estimation of Partially Shared Parameters in Diffusion Networks

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2017-01-01

    Roč. 65, č. 19 (2017), s. 5153-5163 ISSN 1053-587X R&D Projects: GA ČR(CZ) GP14-06678P; GA ČR GA16-09848S Institutional support: RVO:67985556 Keywords : Diffusion network * Diffusion estimation * Heterogeneous parameters * Multitask networks Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 4.300, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/dedecius-0477044.pdf

  3. Estimation of parameters of interior permanent magnet synchronous motors

    CERN Document Server

    Hwang, C C; Pan, C T; Chang, T Y

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement.

  4. CTER-rapid estimation of CTF parameters with error assessment.

    Science.gov (United States)

    Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T

    2014-05-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Estimation of solid earth tidal parameters and FCN with VLBI

    International Nuclear Information System (INIS)

    Krásná, H.

    2012-01-01

    Measurements of a space-geodetic technique VLBI (Very Long Baseline Interferometry) are influenced by a variety of processes which have to be modelled and put as a priori information into the analysis of the space-geodetic data. The increasing accuracy of the VLBI measurements allows access to these parameters and provides possibilities to validate them directly from the measured data. The gravitational attraction of the Moon and the Sun causes deformation of the Earth's surface which can reach several decimetres in radial direction during a day. The displacement is a function of the so-called Love and Shida numbers. Due to the present accuracy of the VLBI measurements the parameters have to be specified as complex numbers, where the imaginary parts describe the anelasticity of the Earth's mantle. Moreover, it is necessary to distinguish between the single tides within the various frequency bands. In this thesis, complex Love and Shida numbers of twelve diurnal and five long-period tides included in the solid Earth tidal displacement modelling are estimated directly from the 27 years of VLBI measurements (1984.0 - 2011.0). In this work, the period of the Free Core Nutation (FCN) is estimated which shows up in the frequency dependent solid Earth tidal displacement as well as in a nutation model describing the motion of the Earth's axis in space. The FCN period in both models is treated as a single parameter and it is estimated in a rigorous global adjustment of the VLBI data. The obtained value of -431.18 ± 0.10 sidereal days differs slightly from the conventional value -431.39 sidereal days given in IERS Conventions 2010. An empirical FCN model based on variable amplitude and phase is determined, whose parameters are estimated in yearly steps directly within VLBI global solutions. (author) [de

  6. Estimating cellular parameters through optimization procedures: elementary principles and applications

    Directory of Open Access Journals (Sweden)

    Akatsuki eKimura

    2015-03-01

    Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  7. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  8. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    International Nuclear Information System (INIS)

    Albers, D.J.; Hripcsak, George

    2012-01-01

    Highlights: ► Time-delayed mutual information for irregularly sampled time-series. ► Estimation bias for the time-delayed mutual information calculation. ► Fast, simple, PDF estimator independent, time-delayed mutual information bias estimate. ► Quantification of data-set-size limits of the time-delayed mutual calculation. - Abstract: A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database.

  9. Applicability of genetic algorithms to parameter estimation of economic models

    Directory of Open Access Journals (Sweden)

    Marcel Ševela

    2004-01-01

    Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.

  10. Comparison of sampling techniques for Bayesian parameter estimation

    Science.gov (United States)

    Allison, Rupert; Dunkley, Joanna

    2014-02-01

    The posterior probability distribution for a set of model parameters encodes all that the data have to tell us in the context of a given model; it is the fundamental quantity for Bayesian parameter estimation. In order to infer the posterior probability distribution we have to decide how to explore parameter space. Here we compare three prescriptions for how parameter space is navigated, discussing their relative merits. We consider Metropolis-Hasting sampling, nested sampling and affine-invariant ensemble Markov chain Monte Carlo (MCMC) sampling. We focus on their performance on toy-model Gaussian likelihoods and on a real-world cosmological data set. We outline the sampling algorithms themselves and elaborate on performance diagnostics such as convergence time, scope for parallelization, dimensional scaling, requisite tunings and suitability for non-Gaussian distributions. We find that nested sampling delivers high-fidelity estimates for posterior statistics at low computational cost, and should be adopted in favour of Metropolis-Hastings in many cases. Affine-invariant MCMC is competitive when computing clusters can be utilized for massive parallelization. Affine-invariant MCMC and existing extensions to nested sampling naturally probe multimodal and curving distributions.

  11. Automatic estimation of elasticity parameters in breast tissue

    Science.gov (United States)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  12. Rapid estimation of high-parameter auditory-filter shapes

    Science.gov (United States)

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  13. Chloramine demand estimation using surrogate chemical and microbiological parameters.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (F m ) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.

  14. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    1997-01-01

    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  15. A parameter tree approach to estimating system sensitivities to parameter sets

    International Nuclear Information System (INIS)

    Jarzemba, M.S.; Sagar, B.

    2000-01-01

    A post-processing technique for determining relative system sensitivity to groups of parameters and system components is presented. It is assumed that an appropriate parametric model is used to simulate system behavior using Monte Carlo techniques and that a set of realizations of system output(s) is available. The objective of our technique is to analyze the input vectors and the corresponding output vectors (that is, post-process the results) to estimate the relative sensitivity of the output to input parameters (taken singly and as a group) and thereby rank them. This technique is different from the design of experimental techniques in that a partitioning of the parameter space is not required before the simulation. A tree structure (which looks similar to an event tree) is developed to better explain the technique. Each limb of the tree represents a particular combination of parameters or a combination of system components. For convenience and to distinguish it from the event tree, we call it the parameter tree. To construct the parameter tree, the samples of input parameter values are treated as either a '+' or a '-' based on whether or not the sampled parameter value is greater than or less than a specified branching criterion (e.g., mean, median, percentile of the population). The corresponding system outputs are also segregated into similar bins. Partitioning the first parameter into a '+' or a '-' bin creates the first level of the tree containing two branches. At the next level, realizations associated with each first-level branch are further partitioned into two bins using the branching criteria on the second parameter and so on until the tree is fully populated. Relative sensitivities are then inferred from the number of samples associated with each branch of the tree. The parameter tree approach is illustrated by applying it to a number of preliminary simulations of the proposed high-level radioactive waste repository at Yucca Mountain, NV. Using a

  16. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  17. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  18. Estimating unknown parameters in haemophilia using expert judgement elicitation.

    Science.gov (United States)

    Fischer, K; Lewandowski, D; Janssen, M P

    2013-09-01

    The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.

  19. Effects of Initial Values and Convergence Criterion in the Two-Parameter Logistic Model When Estimating the Latent Distribution in BILOG-MG 3.

    Directory of Open Access Journals (Sweden)

    Ingo W Nader

    Full Text Available Parameters of the two-parameter logistic model are generally estimated via the expectation-maximization algorithm, which improves initial values for all parameters iteratively until convergence is reached. Effects of initial values are rarely discussed in item response theory (IRT, but initial values were recently found to affect item parameters when estimating the latent distribution with full non-parametric maximum likelihood. However, this method is rarely used in practice. Hence, the present study investigated effects of initial values on item parameter bias and on recovery of item characteristic curves in BILOG-MG 3, a widely used IRT software package. Results showed notable effects of initial values on item parameters. For tighter convergence criteria, effects of initial values decreased, but item parameter bias increased, and the recovery of the latent distribution worsened. For practical application, it is advised to use the BILOG default convergence criterion with appropriate initial values when estimating the latent distribution from data.

  20. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    Science.gov (United States)

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  1. NEWBOX: A computer program for parameter estimation in diffusion problems

    International Nuclear Information System (INIS)

    Nestor, C.W. Jr.; Godbee, H.W.; Joy, D.S.

    1989-01-01

    In the analysis of experiments to determine amounts of material transferred form 1 medium to another (e.g., the escape of chemically hazardous and radioactive materials from solids), there are at least 3 important considerations. These are (1) is the transport amenable to treatment by established mass transport theory; (2) do methods exist to find estimates of the parameters which will give a best fit, in some sense, to the experimental data; and (3) what computational procedures are available for evaluating the theoretical expressions. The authors have made the assumption that established mass transport theory is an adequate model for the situations under study. Since the solutions of the diffusion equation are usually nonlinear in some parameters (diffusion coefficient, reaction rate constants, etc.), use of a method of parameter adjustment involving first partial derivatives can be complicated and prone to errors in the computation of the derivatives. In addition, the parameters must satisfy certain constraints; for example, the diffusion coefficient must remain positive. For these reasons, a variant of the constrained simplex method of M. J. Box has been used to estimate parameters. It is similar, but not identical, to the downhill simplex method of Nelder and Mead. In general, they calculate the fraction of material transferred as a function of time from expressions obtained by the inversion of the Laplace transform of the fraction transferred, rather than by taking derivatives of a calculated concentration profile. With the above approaches to the 3 considerations listed at the outset, they developed a computer program NEWBOX, usable on a personal computer, to calculate the fractional release of material from 4 different geometrical shapes (semi-infinite medium, finite slab, finite circular cylinder, and sphere), accounting for several different boundary conditions

  2. Bias correction of daily precipitation projected by the CORDEX-Africa ensemble for a sparsely gauged region in West Africa with regionalized distribution parameters

    Science.gov (United States)

    Lorenz, Manuel; Bliefernicht, Jan; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Reliable estimates of future climatic conditions are indispensable for the sustainable planning of agricultural activities in West Africa. Precipitation time series of regional climate models (RCMs) typically exhibit a bias in the distribution of both rainfall intensities and wet day frequencies. Furthermore, the annual and monthly sums of precipitation may remarkably vary from the observations in this region. As West Africa experiences a distinct rainy season, sowing dates are oftentimes planned based on the beginning of this rainfall period. A biased representation of the annual cycle of precipitation in the uncorrected RCMs can therefore lead to crop failure. The precipitation ensemble, obtained from the Coordinated Downscaling Experiment CORDEX-Africa, was bias-corrected for the study region in West Africa (extending approximately 343,358 km2) which covers large parts of Burkina Faso, Ghana and Benin. In oder to debias the RCM precipitation simulations, a Quantile-Mapping method was applied to the historical period 1950-2005. For the RCM future projections (2006-2100), the Double-Quantile-Mapping procedure was chosen. This method makes use of the shift in the distribution function of the future precipitation values which allows to incorporate the climate change signal of the RCM projections into the bias correction. As large areas of the study region are ungauged, the assignment of the information from the nearest station to the ungauged location would lead to sharp changes in the estimated statistics from one location to another. Thus, the distribution parameters needed for the Quantile-Mapping were estimated by Kriging the distribution parameters of the available measurement stations. This way it is possible to obtain reasonable estimates of the expected distribution of precipitation at ungauged locations. The presentation will illustrate some aspects and trade-offs in the distribution parameter interpolation as well as an analysis of the uncertainties of the

  3. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    Science.gov (United States)

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  4. PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    S. Kalaivani

    2012-07-01

    Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.

  5. Sensitivity and parameter-estimation precision for alternate LISA configurations

    International Nuclear Information System (INIS)

    Vallisneri, Michele; Crowder, Jeff; Tinto, Massimo

    2008-01-01

    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of √2 at low frequencies, and by up to ∼2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available

  6. Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Manoela Ojeda

    2014-01-01

    Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.

  7. Codon Deviation Coefficient: A novel measure for estimating codon usage bias and its statistical significance

    KAUST Repository

    Zhang, Zhang

    2012-03-22

    Background: Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB). Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis.Results: Here we propose a novel measure--Codon Deviation Coefficient (CDC)--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance.Conclusions: As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions. 2012 Zhang et al; licensee BioMed Central Ltd.

  8. Estimate of Radiosonde Dry Bias From Far-Infrared Measurements on the Antarctic Plateau

    Science.gov (United States)

    Rizzi, R.; Maestri, T.; Arosio, C.

    2018-03-01

    The experimental data set of downwelling radiance spectra measured at the ground in clear conditions during 2013 by a Far-Infrared Fourier Transform Spectrometer at Dome-C, Antarctica, presented in Rizzi et al. (2016, https://doi.org/10.1002/2016JD025341) is used to estimate the effect of solar heating of the radiosonde humidity sensor, called dry bias. The effect is quite evident comparing residuals for the austral summer and winter clear cases and can be modeled by an increase of the water vapor concentration at all levels by about 15%. Such an estimate has become possible only after a new version of the simulation code and spectroscopic data has become available, which has substantially improved the modeling of water vapor absorption in the far infrared. The negative yearly spectral bias reported in Rizzi et al. (2016, https://doi.org/10.1002/2016JD025341) is in fact greatly reduced when compared to the same measurement data set.

  9. Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates.

    Science.gov (United States)

    Thompson, Wesley K; Holland, Dominic

    2011-07-01

    A series of reports have recently appeared using tensor based morphometry statistically-defined regions of interest, Stat-ROIs, to quantify longitudinal atrophy in structural MRIs from the Alzheimer's Disease Neuroimaging Initiative (ADNI). This commentary focuses on one of these reports, Hua et al. (2010), but the issues raised here are relevant to the others as well. Specifically, we point out a temporal pattern of atrophy in subjects with Alzheimer's disease and mild cognitive impairment whereby the majority of atrophy in two years occurs within the first 6 months, resulting in overall elevated estimated rates of change. Using publicly-available ADNI data, this temporal pattern is also found in a group of identically-processed healthy controls, strongly suggesting that methodological bias is corrupting the measures. The resulting bias seriously impacts the validity of conclusions reached using these measures; for example, sample size estimates reported by Hua et al. (2010) may be underestimated by a factor of five to sixteen. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2012-03-01

    Full Text Available Abstract Background Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB. Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis. Results Here we propose a novel measure--Codon Deviation Coefficient (CDC--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance. Conclusions As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions.

  11. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  12. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  14. Ecient Parameter Estimation and Control Based on a Modified LOS Guidance System of an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Elías Revestido Herrero

    2017-12-01

    Full Text Available In this work, a methodology is proposed for the improvement of the parameter estimation effciency of a non-linear manoeuvring model of a torpedo shaped unmanned underwater vehicle. For this purpose, data from different tests, were carried out with the aforementioned vehicle at the facilities of the Canal de Experiencias Hidrodinámicas del Pardo, Madrid. In the proposed methodology, the following aspects are taken into account in order to improve the parameter estimation effciency: selection of the sampling period, smoothing of the data acquired in the tests considering a compromise between variance and bias of the smoothing filter to be applied, analysis of the classical linear regression model proposed in each trial, from the statistical point of view for the estimation of the parameters. Improvements in effciency are verified by graphical and statistical methods. In addition, a modification of the conventional LOS method is proposed which provides satisfactory results in the presence of ocean currents by performing a simple procedure.

  15. Transport parameter estimation from lymph measurements and the Patlak equation.

    Science.gov (United States)

    Watson, P D; Wolf, M B

    1992-01-01

    Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.

  16. Averaging models: parameters estimation with the R-Average procedure

    Directory of Open Access Journals (Sweden)

    S. Noventa

    2010-01-01

    Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.

  17. Synchronization and parameter estimations of an uncertain Rikitake system

    International Nuclear Information System (INIS)

    Aguilar-Ibanez, Carlos; Martinez-Guerra, Rafael; Aguilar-Lopez, Ricardo; Mata-Machuca, Juan L.

    2010-01-01

    In this Letter we address the synchronization and parameter estimation of the uncertain Rikitake system, under the assumption the state is partially known. To this end we use the master/slave scheme in conjunction with the adaptive control technique. Our control approach consists of proposing a slave system which has to follow asymptotically the uncertain Rikitake system, refereed as the master system. The gains of the slave system are adjusted continually according to a convenient adaptation control law, until the measurable output errors converge to zero. The convergence analysis is carried out by using the Barbalat's Lemma. Under this context, uncertainty means that although the system structure is known, only a partial knowledge of the corresponding parameter values is available.

  18. Multivariate phase type distributions - Applications and parameter estimation

    DEFF Research Database (Denmark)

    Meisch, David

    The best known univariate probability distribution is the normal distribution. It is used throughout the literature in a broad field of applications. In cases where it is not sensible to use the normal distribution alternative distributions are at hand and well understood, many of these belonging...... and statistical inference, is the multivariate normal distribution. Unfortunately only little is known about the general class of multivariate phase type distribution. Considering the results concerning parameter estimation and inference theory of univariate phase type distributions, the class of multivariate...... projects and depend on reliable cost estimates. The Successive Principle is a group analysis method primarily used for analyzing medium to large projects in relation to cost or duration. We believe that the mathematical modeling used in the Successive Principle can be improved. We suggested a novel...

  19. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  20. Estimation of Aircraft Nonlinear Unsteady Parameters From Wind Tunnel Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    Aerodynamic equations were formulated for an aircraft in one-degree-of-freedom large amplitude motion about each of its body axes. The model formulation based on indicial functions separated the resulting aerodynamic forces and moments into static terms, purely rotary terms and unsteady terms. Model identification from experimental data combined stepwise regression and maximum likelihood estimation in a two-stage optimization algorithm that can identify the unsteady term and rotary term if necessary. The identification scheme was applied to oscillatory data in two examples. The model identified from experimental data fit the data well, however, some parameters were estimated with limited accuracy. The resulting model was a good predictor for oscillatory and ramp input data.

  1. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  2. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  3. Estimation of modal parameters using bilinear joint time frequency distributions

    Science.gov (United States)

    Roshan-Ghias, A.; Shamsollahi, M. B.; Mobed, M.; Behzad, M.

    2007-07-01

    In this paper, a new method is proposed for modal parameter estimation using time-frequency representations. Smoothed Pseudo Wigner-Ville distribution which is a member of the Cohen's class distributions is used to decouple vibration modes completely in order to study each mode separately. This distribution reduces cross-terms which are troublesome in Wigner-Ville distribution and retains the resolution as well. The method was applied to highly damped systems, and results were superior to those obtained via other conventional methods.

  4. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  5. Properties of parameter estimation techniques for a beta-binomial failure model. Final technical report

    International Nuclear Information System (INIS)

    Shultis, J.K.; Buranapan, W.; Eckhoff, N.D.

    1981-12-01

    Of considerable importance in the safety analysis of nuclear power plants are methods to estimate the probability of failure-on-demand, p, of a plant component that normally is inactive and that may fail when activated or stressed. Properties of five methods for estimating from failure-on-demand data the parameters of the beta prior distribution in a compound beta-binomial probability model are examined. Simulated failure data generated from a known beta-binomial marginal distribution are used to estimate values of the beta parameters by (1) matching moments of the prior distribution to those of the data, (2) the maximum likelihood method based on the prior distribution, (3) a weighted marginal matching moments method, (4) an unweighted marginal matching moments method, and (5) the maximum likelihood method based on the marginal distribution. For small sample sizes (N = or < 10) with data typical of low failure probability components, it was found that the simple prior matching moments method is often superior (e.g. smallest bias and mean squared error) while for larger sample sizes the marginal maximum likelihood estimators appear to be best

  6. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    Science.gov (United States)

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  7. Partial verification bias and incorporation bias affected accuracy estimates of diagnostic studies for biomarkers that were part of an existing composite gold standard.

    Science.gov (United States)

    Karch, Annika; Koch, Armin; Zapf, Antonia; Zerr, Inga; Karch, André

    2016-10-01

    To investigate how choice of gold standard biases estimates of sensitivity and specificity in studies reassessing the diagnostic accuracy of biomarkers that are already part of a lifetime composite gold standard (CGS). We performed a simulation study based on the real-life example of the biomarker "protein 14-3-3" used for diagnosing Creutzfeldt-Jakob disease. Three different types of gold standard were compared: perfect gold standard "autopsy" (available in a small fraction only; prone to partial verification bias), lifetime CGS (including the biomarker under investigation; prone to incorporation bias), and "best available" gold standard (autopsy if available, otherwise CGS). Sensitivity was unbiased when comparing 14-3-3 with autopsy but overestimated when using CGS or "best available" gold standard. Specificity of 14-3-3 was underestimated in scenarios comparing 14-3-3 with autopsy (up to 24%). In contrast, overestimation (up to 20%) was observed for specificity compared with CGS; this could be reduced to 0-10% when using the "best available" gold standard. Choice of gold standard affects considerably estimates of diagnostic accuracy. Using the "best available" gold standard (autopsy where available, otherwise CGS) leads to valid estimates of specificity, whereas sensitivity is estimated best when tested against autopsy alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Parameter Estimation And Hypothesis Testing In A Two Epoch Dam ...

    African Journals Online (AJOL)

    Also computed along with the least square solution and statistical testing were the minimum detectable Bias (MDB) and the Bias to Noise Ratio (BNR). All tests and adjustments were carried out using MOVE 3 software along with the LEICA SKI Pro 2.1. From the results of the tests, only observation to Rover station RF 8 ...

  9. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  10. Parameter Sensitivity of Shallow-Bias Tunnel with a Clear Distance Located in Rock

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2018-01-01

    Full Text Available In order to obtain the seismic internal force response laws of a shallow-bias tunnel with a small clear distance, the reliability of the numerical simulation is verified by the shaking table model test. The parameter sensitivity of the tunnel is studied by using MIDAS-NX finite element software. The effects of seismic wave peak (0.1 g, 0.2 g, 0.3 g, 0.4 g, 0.5 g, and 0.6 g, existing slope angle (30°, 45°, 60°, and 90°, clear distance (1.0 D, 1.5 D, 2.0 D, and 3.0 D, and excitation mode (X direction, Z direction, XY direction, and XYZ direction on the internal force response law of the tunnel are studied, respectively. The results show that (1 the shear force gradually increases with the increasing of seismic peak. The amplification is different with different measuring points. (2 Under different existing slope-angle conditions, the variation trend of shear force of the tunnel is similar, but the shear force is different. The existing slope has significant effect on the shear force response of the tunnel, and the degree is different with different slope angles. (3 Under the conditions of 1.5 D and 2.0 D, the shear force response of the tunnel is stronger, but the response of other conditions is relatively weak. The tunnel with 1.5 D to 2.0 D clear distance should be avoided. Different excitation modes have a significant effect on the shear force response of the tunnel. (4 Under the same excitation mode, the different excitation directions also have a significant effect on the shear force response. (5 The shear force response of the tunnel crosssection shows nonlinear variation trend. The shear force response is strongest at the arch shoulder and arch foot of the tunnel. The research results provide a useful reference for the design of antishock and vibration resistance of the tunnel.

  11. Analytic continuation by duality estimation of the S parameter

    International Nuclear Information System (INIS)

    Ignjatovic, S. R.; Wijewardhana, L. C. R.; Takeuchi, T.

    2000-01-01

    We investigate the reliability of the analytic continuation by duality (ACD) technique in estimating the electroweak S parameter for technicolor theories. The ACD technique, which is an application of finite energy sum rules, relates the S parameter for theories with unknown particle spectra to known OPE coefficients. We identify the sources of error inherent in the technique and evaluate them for several toy models to see if they can be controlled. The evaluation of errors is done analytically and all relevant formulas are provided in appendixes including analytical formulas for approximating the function 1/s with a polynomial in s. The use of analytical formulas protects us from introducing additional errors due to numerical integration. We find that it is very difficult to control the errors even when the momentum dependence of the OPE coefficients is known exactly. In realistic cases in which the momentum dependence of the OPE coefficients is only known perturbatively, it is impossible to obtain a reliable estimate. (c) 2000 The American Physical Society

  12. A robust methodology for modal parameters estimation applied to SHM

    Science.gov (United States)

    Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio

    2017-10-01

    The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.

  13. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  14. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  15. Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts.

    Science.gov (United States)

    Gosho, Masahiko; Hirakawa, Akihiro; Noma, Hisashi; Maruo, Kazushi; Sato, Yasunori

    2017-10-01

    In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications

  16. Bayesian Estimation of Two-Parameter Weibull Distribution Using Extension of Jeffreys' Prior Information with Three Loss Functions

    Directory of Open Access Journals (Sweden)

    Chris Bambey Guure

    2012-01-01

    Full Text Available The Weibull distribution has been observed as one of the most useful distribution, for modelling and analysing lifetime data in engineering, biology, and others. Studies have been done vigorously in the literature to determine the best method in estimating its parameters. Recently, much attention has been given to the Bayesian estimation approach for parameters estimation which is in contention with other estimation methods. In this paper, we examine the performance of maximum likelihood estimator and Bayesian estimator using extension of Jeffreys prior information with three loss functions, namely, the linear exponential loss, general entropy loss, and the square error loss function for estimating the two-parameter Weibull failure time distribution. These methods are compared using mean square error through simulation study with varying sample sizes. The results show that Bayesian estimator using extension of Jeffreys' prior under linear exponential loss function in most cases gives the smallest mean square error and absolute bias for both the scale parameter α and the shape parameter β for the given values of extension of Jeffreys' prior.

  17. Using Perturbed Physics Ensembles and Machine Learning to Select Parameters for Reducing Regional Biases in a Global Climate Model

    Science.gov (United States)

    Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.

    2017-12-01

    This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.

  18. Periodic orbits of hybrid systems and parameter estimation via AD

    International Nuclear Information System (INIS)

    Guckenheimer, John; Phipps, Eric Todd; Casey, Richard

    2004-01-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method (GM00, Phi03). Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  19. Nonlinear Parameter Estimation in Microbiological Degradation Systems and Statistic Test for Common Estimation

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Holst, Helle; Spliid, Henrik

    1995-01-01

    Three identical microbiological experiments were carried out and analysed in order to examine the variability of the parameter estimates. The microbiological system consisted of a substrate (toluene) and a biomass (pure culture) mixed together in an aquifer medium. The degradation of the substrate...

  20. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    Science.gov (United States)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  1. Estimation of Parameters of CCF with Staggered Testing

    International Nuclear Information System (INIS)

    Kim, Myung-Ki; Hong, Sung-Yull

    2006-01-01

    Common cause failures are extremely important in reliability analysis and would be dominant to risk contributor in a high reliable system such as a nuclear power plant. Of particular concern is common cause failure (CCF) that degrades redundancy or diversity implemented to improve a reliability of systems. Most of analyses of parameters of CCF models such as beta factor model, alpha factor model, and MGL(Multiple Greek Letters) model deal a system with a nonstaggered testing strategy. Non-staggered testing is that all components are tested at the same time (or at least the same shift) and staggered testing is that if there is a failure in the first component, all the other components are tested immediately, and if it succeeds, no more is done until the next scheduled testing time. Both of them are applied in the nuclear power plants. The strategy, however, is not explicitly described in the technical specifications, but implicitly in the periodic test procedure. For example, some redundant components particularly important to safety are being tested with staggered testing strategy. Others are being performed with non-staggered testing strategy. This paper presents the parameter estimator of CCF model such as beta factor model, MGL model, and alpha factor model with staggered testing strategy. In addition, a new CCF model, rho factor model, is proposed and its parameter is presented with staggered testing strategy

  2. Estimating negative binomial parameters from occurrence data with detection times.

    Science.gov (United States)

    Hwang, Wen-Han; Huggins, Richard; Stoklosa, Jakub

    2016-11-01

    The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Estimation Parameters And Modelling Zero Inflated Negative Binomial

    Directory of Open Access Journals (Sweden)

    Cindy Cahyaning Astuti

    2016-11-01

    Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.

  4. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    Science.gov (United States)

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    Science.gov (United States)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to

  6. Learn-as-you-go acceleration of cosmological parameter estimates

    International Nuclear Information System (INIS)

    Aslanyan, Grigor; Easther, Richard; Price, Layne C.

    2015-01-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly

  7. Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    Science.gov (United States)

    Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer

    2012-01-01

    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.

  8. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    Energy Technology Data Exchange (ETDEWEB)

    Teuho, J., E-mail: jarmo.teuho@tyks.fi [Turku PET Centre, Turku (Finland); Johansson, J. [Turku PET Centre, Turku (Finland); Linden, J. [Turku PET Centre, Turku (Finland); Department of Mathematics and Statistics, University of Turku, Turku (Finland); Saunavaara, V.; Tolvanen, T.; Teräs, M. [Turku PET Centre, Turku (Finland)

    2014-01-11

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template. -- Highlights: • Comparison between PET, PET/CT and PET/MR was performed with a novel brain phantom. • The performance of reconstruction and attenuation correction in PET/MR was studied. • A recently developed brain phantom was found feasible for PET/MR imaging. • Contrast reduction

  9. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    Science.gov (United States)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  10. An Improved BeiDou-2 Satellite-Induced Code Bias Estimation Method

    Directory of Open Access Journals (Sweden)

    Jingyang Fu

    2018-04-01

    Full Text Available Different from GPS, GLONASS, GALILEO and BeiDou-3, it is confirmed that the code multipath bias (CMB, which originate from the satellite end and can be over 1 m, are commonly found in the code observations of BeiDou-2 (BDS IGSO and MEO satellites. In order to mitigate their adverse effects on absolute precise applications which use the code measurements, we propose in this paper an improved correction model to estimate the CMB. Different from the traditional model which considering the correction values are orbit-type dependent (estimating two sets of values for IGSO and MEO, respectively and modeling the CMB as a piecewise linear function with a elevation node separation of 10°, we estimate the corrections for each BDS IGSO + MEO satellite on one hand, and a denser elevation node separation of 5° is used to model the CMB variations on the other hand. Currently, the institutions such as IGS-MGEX operate over 120 stations which providing the daily BDS observations. These large amounts of data provide adequate support to refine the CMB estimation satellite by satellite in our improved model. One month BDS observations from MGEX are used for assessing the performance of the improved CMB model by means of precise point positioning (PPP. Experimental results show that for the satellites on the same orbit type, obvious differences can be found in the CMB at the same node and frequency. Results show that the new correction model can improve the wide-lane (WL ambiguity usage rate for WL fractional cycle bias estimation, shorten the WL and narrow-lane (NL time to first fix (TTFF in PPP ambiguity resolution (AR as well as improve the PPP positioning accuracy. With our improved correction model, the usage of WL ambiguity is increased from 94.1% to 96.0%, the WL and NL TTFF of PPP AR is shorten from 10.6 to 9.3 min, 67.9 to 63.3 min, respectively, compared with the traditional correction model. In addition, both the traditional and improved CMB model have

  11. Eliminating bias in rainfall estimates from microwave links due to antenna wetting

    Science.gov (United States)

    Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch

    2014-05-01

    Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced

  12. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  13. Estimation of the Alpha Factor Parameters Using the ICDE Database

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Hwang, M. J.; Han, S. H

    2007-04-15

    Detailed common cause failure (CCF) analysis generally need for the data for CCF events of other nuclear power plants because the CCF events rarely occur. KAERI has been participated at the international common cause failure data exchange (ICDE) project to get the data for the CCF events. The operation office of the ICDE project sent the CCF event data for EDG to the KAERI at December 2006. As a pilot study, we performed the detailed CCF analysis of EDGs for Yonggwang Units 3 and 4 and Ulchin Units 3 and 4 using the ICDE database. There are two onsite EDGs for each NPP. When an offsite power and the two onsite EDGs are not available, one alternate AC (AAC) diesel generator (hereafter AAC) is provided. Two onsite EDGs and the AAC are manufactured by the same company, but they are designed differently. We estimated the Alpha Factor and the CCF probability for the cases where three EDGs were assumed to be identically designed, and for those were assumed to be not identically designed. For the cases where three EDGs were assumed to be identically designed, double CCF probabilities of Yonggwang Units 3/4 and Ulchin Units 3/4 for 'fails to start' were estimated as 2.20E-4 and 2.10E-4, respectively. Triple CCF probabilities of those were estimated as 2.39E-4 and 2.42E-4, respectively. As each NPP has no experience for 'fails to run', Yonggwang Units 3/4 and Ulchin Units 3/4 have the same CCF probability. The estimated double and triple CCF probabilities for 'fails to run' are 4.21E-4 and 4.61E-4, respectively. Quantification results show that the system unavailability for the cases where the three EDGs are identical is higher than that where the three EDGs are different. The estimated system unavailability of the former case was increased by 3.4% comparing with that of the latter. As a future study, a computerization work for the estimations of the CCF parameters will be performed.

  14. Estimation of genetic parameters for reproductive traits in Shall sheep.

    Science.gov (United States)

    Amou Posht-e-Masari, Hesam; Shadparvar, Abdol Ahad; Ghavi Hossein-Zadeh, Navid; Hadi Tavatori, Mohammad Hossein

    2013-06-01

    The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (Psheep.

  15. Multiphase flow parameter estimation based on laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  16. Estimating Phenomenological Parameters in Multi-Assets Markets

    Science.gov (United States)

    Raffaelli, Giacomo; Marsili, Matteo

    Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.

  17. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  18. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  19. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  20. Review of methods for level density estimation from resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-01-01

    A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)

  1. MANOVA, LDA, and FA criteria in clusters parameter estimation

    Directory of Open Access Journals (Sweden)

    Stan Lipovetsky

    2015-12-01

    Full Text Available Multivariate analysis of variance (MANOVA and linear discriminant analysis (LDA apply such well-known criteria as the Wilks’ lambda, Lawley–Hotelling trace, and Pillai’s trace test for checking quality of the solutions. The current paper suggests using these criteria for building objectives for finding clusters parameters because optimizing such objectives corresponds to the best distinguishing between the clusters. Relation to Joreskog’s classification for factor analysis (FA techniques is also considered. The problem can be reduced to the multinomial parameterization, and solution can be found in a nonlinear optimization procedure which yields the estimates for the cluster centers and sizes. This approach for clustering works with data compressed into covariance matrix so can be especially useful for big data.

  2. Transient analysis of intercalation electrodes for parameter estimation

    Science.gov (United States)

    Devan, Sheba

    An essential part of integrating batteries as power sources in any application, be it a large scale automotive application or a small scale portable application, is an efficient Battery Management System (BMS). The combination of a battery with the microprocessor based BMS (called "smart battery") helps prolong the life of the battery by operating in the optimal regime and provides accurate information regarding the battery to the end user. The main purposes of BMS are cell protection, monitoring and control, and communication between different components. These purposes are fulfilled by tracking the change in the parameters of the intercalation electrodes in the batteries. Consequently, the functions of the BMS should be prompt, which requires the methodology of extracting the parameters to be efficient in time. The traditional transient techniques applied so far may not be suitable due to reasons such as the inability to apply these techniques when the battery is under operation, long experimental time, etc. The primary aim of this research work is to design a fast, accurate and reliable technique that can be used to extract parameter values of the intercalation electrodes. A methodology based on analysis of the short time response to a sinusoidal input perturbation, in the time domain is demonstrated using a porous electrode model for an intercalation electrode. It is shown that the parameters associated with the interfacial processes occurring in the electrode can be determined rapidly, within a few milliseconds, by measuring the response in the transient region. The short time analysis in the time domain is then extended to a single particle model that involves bulk diffusion in the solid phase in addition to interfacial processes. A systematic procedure for sequential parameter estimation using sensitivity analysis is described. Further, the short time response and the input perturbation are transformed into the frequency domain using Fast Fourier Transform

  3. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  4. Project Parameter Estimation on the Basis of an Erp Database

    Directory of Open Access Journals (Sweden)

    Relich Marcin

    2013-12-01

    Full Text Available Nowadays, more and more enterprises are using Enterprise Resource Planning (EPR systems that can also be used to plan and control the development of new products. In order to obtain a project schedule, certain parameters (e.g. duration have to be specified in an ERP system. These parameters can be defined by the employees according to their knowledge, or can be estimated on the basis of data from previously completed projects. This paper investigates using an ERP database to identify those variables that have a significant influence on the duration of a project phase. In the paper, a model of knowledge discovery from an ERP database is proposed. The presented method contains four stages of the knowledge discovery process such as data selection, data transformation, data mining and interpretation of patterns in the context of new product development. Among data mining techniques, a fuzzy neural system is chosen to seek relationships on the basis of data from completed projects stored in an ERP system.

  5. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  6. Estimation of fracture parameters using elastic full-waveform inversion

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution and suffer from uncertainties in the inverted parameters. Here, we propose to estimate the spatial distribution and physical properties of fractures using full-waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. A shape regularization term is added to the objective function to improve the estimation of the fracture azimuth, which is otherwise poorly constrained. The cracks are assumed to be penny-shaped to reduce the nonuniqueness in the inverted fracture weaknesses and achieve a faster convergence. To better understand the inversion results, we analyze the radiation patterns induced by the perturbations in the fracture weaknesses and orientation. Due to the high-resolution potential of elastic FWI, the developed algorithm can recover the spatial fracture distribution and identify localized “sweet spots” of intense fracturing. However, the fracture azimuth can be resolved only using long-offset data.

  7. Moment and maximum likelihood estimators for Weibull distributions under length- and area-biased sampling

    Science.gov (United States)

    Jeffrey H. Gove

    2003-01-01

    Many of the most popular sampling schemes used in forestry are probability proportional to size methods. These methods are also referred to as size biased because sampling is actually from a weighted form of the underlying population distribution. Length- and area-biased sampling are special cases of size-biased sampling where the probability weighting comes from a...

  8. Estimation of genetic parameters for reproductive traits in alpacas.

    Science.gov (United States)

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2015-12-01

    One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Choice of the parameters of the cusum algorithms for parameter estimation in the markov modulated poisson process

    OpenAIRE

    Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich

    2016-01-01

    CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.

  10. Affective state influences perception by affecting decision parameters underlying bias and sensitivity.

    Science.gov (United States)

    Lynn, Spencer K; Zhang, Xuan; Barrett, Lisa Feldman

    2012-08-01

    Studies of the effect of affect on perception often show consistent directional effects of a person's affective state on perception. Unpleasant emotions have been associated with a "locally focused" style of stimulus evaluation, and positive emotions with a "globally focused" style. Typically, however, studies of affect and perception have not been conducted under the conditions of perceptual uncertainty and behavioral risk inherent to perceptual judgments outside the laboratory. We investigated the influence of perceivers' experienced affect (valence and arousal) on the utility of social threat perception by combining signal detection theory and behavioral economics. We compared 3 perceptual decision environments that systematically differed with respect to factors that underlie uncertainty and risk: the base rate of threat, the costs of incorrect identification threat, and the perceptual similarity of threats and nonthreats. We found that no single affective state yielded the best performance on the threat perception task across the 3 environments. Unpleasant valence promoted calibration of response bias to base rate and costs, high arousal promoted calibration of perceptual sensitivity to perceptual similarity, and low arousal was associated with an optimal adjustment of bias to sensitivity. However, the strength of these associations was conditional upon the difficulty of attaining optimal bias and high sensitivity, such that the effect of the perceiver's affective state on perception differed with the cause and/or level of uncertainty and risk.

  11. Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration

    Directory of Open Access Journals (Sweden)

    Shifei Yuan

    2015-07-01

    Full Text Available Accurate estimation of model parameters and state of charge (SoC is crucial for the lithium-ion battery management system (BMS. In this paper, the stability of the model parameters and SoC estimation under measurement uncertainty is evaluated by three different factors: (i sampling periods of 1/0.5/0.1 s; (ii current sensor precisions of ±5/±50/±500 mA; and (iii voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the numerical model stability analysis and parametric sensitivity analysis for battery model parameters are conducted under sampling frequency of 1–50 Hz. The perturbation analysis is theoretically performed of current/voltage measurement uncertainty on model parameter variation. Secondly, the impact of three different factors on the model parameters and SoC estimation was evaluated with the federal urban driving sequence (FUDS profile. The bias correction recursive least square (CRLS and adaptive extended Kalman filter (AEKF algorithm were adopted to estimate the model parameters and SoC jointly. Finally, the simulation results were compared and some insightful findings were concluded. For the given battery model and parameter estimation algorithm, the sampling period, and current/voltage sampling accuracy presented a non-negligible effect on the estimation results of model parameters. This research revealed the influence of the measurement uncertainty on the model parameter estimation, which will provide the guidelines to select a reasonable sampling period and the current/voltage sensor sampling precisions in engineering applications.

  12. Genetic parameter estimation of reproductive traits of Litopenaeus vannamei

    Science.gov (United States)

    Tan, Jian; Kong, Jie; Cao, Baoxiang; Luo, Kun; Liu, Ning; Meng, Xianhong; Xu, Shengyu; Guo, Zhaojia; Chen, Guoliang; Luan, Sheng

    2017-02-01

    In this study, the heritability, repeatability, phenotypic correlation, and genetic correlation of the reproductive and growth traits of L. vannamei were investigated and estimated. Eight traits of 385 shrimps from forty-two families, including the number of eggs (EN), number of nauplii (NN), egg diameter (ED), spawning frequency (SF), spawning success (SS), female body weight (BW) and body length (BL) at insemination, and condition factor (K), were measured,. A total of 519 spawning records including multiple spawning and 91 no spawning records were collected. The genetic parameters were estimated using an animal model, a multinomial logit model (for SF), and a sire-dam and probit model (for SS). Because there were repeated records, permanent environmental effects were included in the models. The heritability estimates for BW, BL, EN, NN, ED, SF, SS, and K were 0.49 ± 0.14, 0.51 ± 0.14, 0.12 ± 0.08, 0, 0.01 ± 0.04, 0.06 ± 0.06, 0.18 ± 0.07, and 0.10 ± 0.06, respectively. The genetic correlation was 0.99 ± 0.01 between BW and BL, 0.90 ± 0.19 between BW and EN, 0.22 ± 0.97 between BW and ED, -0.77 ± 1.14 between EN and ED, and -0.27 ± 0.36 between BW and K. The heritability of EN estimated without a covariate was 0.12 ± 0.08, and the genetic correlation was 0.90 ± 0.19 between BW and EN, indicating that improving BW may be used in selection programs to genetically improve the reproductive output of L. vannamei during the breeding. For EN, the data were also analyzed using body weight as a covariate (EN-2). The heritability of EN-2 was 0.03 ± 0.05, indicating that it is difficult to improve the reproductive output by genetic improvement. Furthermore, excessive pursuit of this selection is often at the expense of growth speed. Therefore, the selection of high-performance spawners using BW and SS may be an important strategy to improve nauplii production.

  13. Gear and seasonal bias associated with abundance and size structure estimates for lentic freshwater fishes

    Science.gov (United States)

    Fischer, Jesse R.; Quist, Michael C.

    2014-01-01

    All freshwater fish sampling methods are biased toward particular species, sizes, and sexes and are further influenced by season, habitat, and fish behavior changes over time. However, little is known about gear-specific biases for many common fish species because few multiple-gear comparison studies exist that have incorporated seasonal dynamics. We sampled six lakes and impoundments representing a diversity of trophic and physical conditions in Iowa, USA, using multiple gear types (i.e., standard modified fyke net, mini-modified fyke net, sinking experimental gill net, bag seine, benthic trawl, boat-mounted electrofisher used diurnally and nocturnally) to determine the influence of sampling methodology and season on fisheries assessments. Specifically, we describe the influence of season on catch per unit effort, proportional size distribution, and the number of samples required to obtain 125 stock-length individuals for 12 species of recreational and ecological importance. Mean catch per unit effort generally peaked in the spring and fall as a result of increased sampling effectiveness in shallow areas and seasonal changes in habitat use (e.g., movement offshore during summer). Mean proportional size distribution decreased from spring to fall for white bass Morone chrysops, largemouth bass Micropterus salmoides, bluegill Lepomis macrochirus, and black crappie Pomoxis nigromaculatus, suggesting selectivity for large and presumably sexually mature individuals in the spring and summer. Overall, the mean number of samples required to sample 125 stock-length individuals was minimized in the fall with sinking experimental gill nets, a boat-mounted electrofisher used at night, and standard modified nets for 11 of the 12 species evaluated. Our results provide fisheries scientists with relative comparisons between several recommended standard sampling methods and illustrate the effects of seasonal variation on estimates of population indices that will be critical to

  14. The Effectiveness of Using Limited Gauge Measurements for Bias Adjustment of Satellite-Based Precipitation Estimation over Saudi Arabia

    Science.gov (United States)

    Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2018-01-01

    Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.

  15. Comparing Different Approaches of Bias Correction for Ability Estimation in IRT Models. Research Report. ETS RR-08-13

    Science.gov (United States)

    Lee, Yi-Hsuan; Zhang, Jinming

    2008-01-01

    The method of maximum-likelihood is typically applied to item response theory (IRT) models when the ability parameter is estimated while conditioning on the true item parameters. In practice, the item parameters are unknown and need to be estimated first from a calibration sample. Lewis (1985) and Zhang and Lu (2007) proposed the expected response…

  16. AUTOMATIC ESTIMATION OF SIZE PARAMETERS USING VERIFIED COMPUTERIZED STEREOANALYSIS

    Directory of Open Access Journals (Sweden)

    Peter R Mouton

    2011-05-01

    Full Text Available State-of-the-art computerized stereology systems combine high-resolution video microscopy and hardwaresoftware integration with stereological methods to assist users in quantifying multidimensional parameters of importance to biomedical research, including volume, surface area, length, number, their variation and spatial distribution. The requirement for constant interactions between a trained, non-expert user and the targeted features of interest currently limits the throughput efficiency of these systems. To address this issue we developed a novel approach for automatic stereological analysis of 2-D images, Verified Computerized Stereoanalysis (VCS. The VCS approach minimizes the need for user interactions with high contrast [high signal-to-noise ratio (S:N] biological objects of interest. Performance testing of the VCS approach confirmed dramatic increases in the efficiency of total object volume (size estimation, without a loss of accuracy or precision compared to conventional computerized stereology. The broad application of high efficiency VCS to high-contrast biological objects on tissue sections could reduce labor costs, enhance hypothesis testing, and accelerate the progress of biomedical research focused on improvements in health and the management of disease.

  17. Estimating the price elasticity of beer: meta-analysis of data with heterogeneity, dependence, and publication bias.

    Science.gov (United States)

    Nelson, Jon P

    2014-01-01

    Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cognitive constraints increase estimation biases: Cognitive load and delay in judgments

    OpenAIRE

    Allred, Sarah; Crawford, L. Elizabeth; Duffy, Sean; Smith, John

    2014-01-01

    Previous work has demonstrated that memory for simple stimuli can be biased by information about the category of which the stimulus is a member. These biases have been interpreted as optimally integrating noisy sensory information with category information. A separate literature has demonstrated that cognitive load can lead to biases in social cognition. Here we link the two, asking whether delay (Experiment 1) and cognitive load (Experiment 2) affect the extent to which observers' memories f...

  19. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions

    Directory of Open Access Journals (Sweden)

    Quentin Noirhomme

    2014-01-01

    Full Text Available Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain–computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation.

  20. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions.

    Science.gov (United States)

    Noirhomme, Quentin; Lesenfants, Damien; Gomez, Francisco; Soddu, Andrea; Schrouff, Jessica; Garraux, Gaëtan; Luxen, André; Phillips, Christophe; Laureys, Steven

    2014-01-01

    Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain-computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation.

  1. Uncertainty estimation with bias-correction for flow series based on rating curve

    Science.gov (United States)

    Shao, Quanxi; Lerat, Julien; Podger, Geoff; Dutta, Dushmanta

    2014-03-01

    Streamflow discharge constitutes one of the fundamental data required to perform water balance studies and develop hydrological models. A rating curve, designed based on a series of concurrent stage and discharge measurements at a gauging location, provides a way to generate complete discharge time series with a reasonable quality if sufficient measurement points are available. However, the associated uncertainty is frequently not available even though it has a significant impact on hydrological modelling. In this paper, we identify the discrepancy of the hydrographers' rating curves used to derive the historical discharge data series and proposed a modification by bias correction which is also in the form of power function as the traditional rating curve. In order to obtain the uncertainty estimation, we propose a further both-side Box-Cox transformation to stabilize the regression residuals as close to the normal distribution as possible, so that a proper uncertainty can be attached for the whole discharge series in the ensemble generation. We demonstrate the proposed method by applying it to the gauging stations in the Flinders and Gilbert rivers in north-west Queensland, Australia.

  2. Automated Modal Parameter Estimation of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Goursat, Maurice

    In this paper the problems of doing automatic modal parameter extraction of ambient excited civil engineering structures is considered. Two different approaches for obtaining the modal parameters automatically are presented: The Frequency Domain Decomposition (FDD) technique and a correlation...

  3. Estimation of uranium migration parameters in sandstone aquifers.

    Science.gov (United States)

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  4. Estimation of Community Land Model parameters for an improved assessment of net carbon fluxes at European sites

    Science.gov (United States)

    Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2017-03-01

    The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.

  5. Estimation and correction of surface wind-stress bias in the Tropical Pacific with the Ensemble Kalman Filter

    NARCIS (Netherlands)

    Leeuwenburgh, O.

    2008-01-01

    The assimilation of high-quality in situ data into ocean models is known to lead to imbalanced analyses and spurious circulations when the model dynamics or the forcing contain systematic errors. Use of a bias estimation and correction scheme has been shown to significantly improve the balance of

  6. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study

    DEFF Research Database (Denmark)

    Wood, L.; Egger, M.; Gluud, L.L.

    2008-01-01

    OBJECTIVE: To examine whether the association of inadequate or unclear allocation concealment and lack of blinding with biased estimates of intervention effects varies with the nature of the intervention or outcome. DESIGN: Combined analysis of data from three meta-epidemiological studies based o...

  7. The impact of response bias on estimates of health care utilization in a metropolitan area: The use of administrative data

    NARCIS (Netherlands)

    Reijneveld, S.A.; Stronks, K.

    1999-01-01

    Background. Surveys among the general population are an important method for collecting epidemiological data on health and utilization of health care in that population. Selective non-response may affect the validity of these data. This study examines the impact of response bias on estimates of

  8. Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.

    2018-01-01

    In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.

  9. Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India

    Science.gov (United States)

    Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.

    2018-06-01

    Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections

  10. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    Science.gov (United States)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  11. Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Seo, Dong-Jun; Siddique, Ridwan; Zhang, Yu; Kim, Dongsoo

    2014-11-01

    A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme precipitation is described and evaluated. The technique is based on a novel extension of classical optimal linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estimator, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended conditional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a trivial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS's Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper describes the technique, summarizes the results and shares ideas for future research.

  12. Recursive Parameter Identification for Estimating and Displaying Maneuvering Vessel Path

    National Research Council Canada - National Science Library

    Pullard, Stephen

    2003-01-01

    ...). The extended least squares (ELS) parameter identification approach allows the system to be installed on most platforms without prior knowledge of system dynamics provided vessel states are available...

  13. Efficiency versus bias: the role of distributional parameters in count contingent behaviour models

    Science.gov (United States)

    Joseph Englin; Arwin Pang; Thomas Holmes

    2011-01-01

    One of the challenges facing many applications of non-market valuations is to find data with enough variation in the variable(s) of interest to estimate econometrically their effects on the quantity demanded. A solution to this problem was the introduction of stated preference surveys. These surveys can introduce variation into variables where there is no natural...

  14. Bias-correction in vector autoregressive models

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard

    2014-01-01

    We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study......, we show that when the model is stationary this simple bias formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean squared error. In non-stationary models, the analytical bias formula performs noticeably worse than bootstrapping. Both methods yield a notable...... improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find...

  15. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Science.gov (United States)

    Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide

    2017-12-01

    This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  16. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Directory of Open Access Journals (Sweden)

    T. Ogura

    2017-12-01

    Full Text Available This study discusses how much of the biases in top-of-atmosphere (TOA radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5 generation. We used output of a perturbed parameter ensemble (PPE experiment conducted with an atmosphere–ocean general circulation model (AOGCM without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5 was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude–longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  17. Single-Channel Blind Estimation of Reverberation Parameters

    DEFF Research Database (Denmark)

    Doire, C.S.J.; Brookes, M. D.; Naylor, P. A.

    2015-01-01

    The reverberation of an acoustic channel can be characterised by two frequency-dependent parameters: the reverberation time and the direct-to-reverberant energy ratio. This paper presents an algorithm for blindly determining these parameters from a single-channel speech signal. The algorithm uses...

  18. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders

    In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param...

  19. Estimation of source parameters of Chamoli Earthquake, India

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    meter studies, in different parts of the world. Singh et al (1979) and Sharma and Wason (1994, 1995) have calculated source parameters for Himalayan and nearby regions. To the best of this authors' knowledge, the source parameter studies using strong motion data have not been carried out in India so far, though similar ...

  20. The carbon dioxide production rate assumption biases gastric emptying parameters in healthy adults.

    Science.gov (United States)

    Markey, Oonagh; Shafat, Amir

    2013-02-28

    An altered gastric emptying (GE) rate has been implicated in the aetiology of obesity. The (13)C-octanoic acid breath test (OBT) is frequently used to measure GE, and the cumulative percentage of (13)C recovered (cPDR) is a common outcome measure. However, true cPDR in breath is dependent on accurate measurement of carbon dioxide production rate (VCO(2)). The current study aimed to quantify differences in the (13)C OBT results obtained using directly measured VCO(2) (VCO(2DM)) compared with (i) predicted from resting VCO(2) (VCO(2PR)) and (ii) predicted from body surface area VCO(2) (VCO(2BSA)). The GE rate of a high-fat test meal was assessed in 27 lean subjects using the OBT. Breath samples were gathered during the fasted state and at regular intervals throughout the 6-h postprandial period for determination of (13)C-isotopic enrichment by continuous-flow isotope-ratio mass spectrometry. The VCO(2) was measured directly from exhaled air samples and the PDR calculated by three methods. The bias and the limits of agreement were calculated using Bland-Altman plots. Compared with the VCO(2DM), the cPDR was underestimated by VCO(2PR) (4.8%; p = 0.0001) and VCO(2BSA) (2.7%; p = 0.02). The GE T(half) was underestimated by VCO(2PR) (13 min; p = 0.0001) and VCO(2BSA) (10 min; p = 0.01), compared with VCO(2DM). The findings highlight the importance of directly measuring VCO(2)production rates throughout the (13)C OBT and could partly explain the conflicting evidence regarding the effect of obesity on GE rates. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    Science.gov (United States)

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the

  2. Estimation of the petrophysical parameters of sediments from Chad ...

    African Journals Online (AJOL)

    Porosity was estimated from three methods, and polynomial trends having fits ranging between 0.0604 and 0.478 describe depth - porosity variations. Interpretation of the trends revealed lithology trend that agree with the trends of shaliness. Estimates of average effective porosities of formations favorably compared with ...

  3. Approximate effect of parameter pseudonoise intensity on rate of convergence for EKF parameter estimators. [Extended Kalman Filter

    Science.gov (United States)

    Hill, Bryon K.; Walker, Bruce K.

    1991-01-01

    When using parameter estimation methods based on extended Kalman filter (EKF) theory, it is common practice to assume that the unknown parameter values behave like a random process, such as a random walk, in order to guarantee their identifiability by the filter. The present work is the result of an ongoing effort to quantitatively describe the effect that the assumption of a fictitious noise (called pseudonoise) driving the unknown parameter values has on the parameter estimate convergence rate in filter-based parameter estimators. The initial approach is to examine a first-order system described by one state variable with one parameter to be estimated. The intent is to derive analytical results for this simple system that might offer insight into the effect of the pseudonoise assumption for more complex systems. Such results would make it possible to predict the estimator error convergence behavior as a function of the assumed pseudonoise intensity, and this leads to the natural application of the results to the design of filter-based parameter estimators. The results obtained show that the analytical description of the convergence behavior is very difficult.

  4. ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION

    International Nuclear Information System (INIS)

    Pankow, Chris; Sampson, Laura; Perri, Leah; Chase, Eve; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki

    2017-01-01

    The detection of electromagnetic counterparts to gravitational waves (GWs) has great promise for the investigation of many scientific questions. While it is well known that certain orientation parameters can reduce uncertainty in other related parameters, it was also hoped that the detection of an electromagnetic signal in conjunction with a GW could augment the measurement precision of the mass and spin from the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters that are intrinsic to the binary. In this paper, we investigate this issue by assuming perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. We recover similar gains in extrinsic recovery to earlier work; however, we find only modest improvements in a few intrinsic parameters—namely the primary component’s spin. We thus conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.

  5. ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION

    Energy Technology Data Exchange (ETDEWEB)

    Pankow, Chris; Sampson, Laura; Perri, Leah; Chase, Eve; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-01-10

    The detection of electromagnetic counterparts to gravitational waves (GWs) has great promise for the investigation of many scientific questions. While it is well known that certain orientation parameters can reduce uncertainty in other related parameters, it was also hoped that the detection of an electromagnetic signal in conjunction with a GW could augment the measurement precision of the mass and spin from the gravitational signal itself. That is, knowledge of the sky location, inclination, and redshift of a binary could break degeneracies between these extrinsic, coordinate-dependent parameters and the physical parameters that are intrinsic to the binary. In this paper, we investigate this issue by assuming perfect knowledge of extrinsic parameters, and assessing the maximal impact of this knowledge on our ability to extract intrinsic parameters. We recover similar gains in extrinsic recovery to earlier work; however, we find only modest improvements in a few intrinsic parameters—namely the primary component’s spin. We thus conclude that, even in the best case, the use of additional information from electromagnetic observations does not improve the measurement of the intrinsic parameters significantly.

  6. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

    Institute of Scientific and Technical Information of China (English)

    Xueping PAN; Ping JU; Feng WU; Yuqing JIN

    2017-01-01

    A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper.Firstly,the parameters of the DFIG and the drive train are estimated locally under different types of disturbances.Secondly,a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results.The main benefit of the proposed scheme is the improved estimation accuracy.Estimation results confirm the applicability of the proposed estimation technique.

  7. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    1990-01-01

    In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....

  8. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Meliopoulos, Sakis [Georgia Inst. of Technology, Atlanta, GA (United States); Cokkinides, George [Georgia Inst. of Technology, Atlanta, GA (United States); Fardanesh, Bruce [New York Power Authority, NY (United States); Hedrington, Clinton [U.S. Virgin Islands Water and Power Authority (WAPA), St. Croix (U.S. Virgin Islands)

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  9. Identifyability measures to select the parameters to be estimated in a solid-state fermentation distributed parameter model.

    Science.gov (United States)

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2016-07-08

    Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.

  10. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-01-01

    parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while

  11. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-01

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a

  12. A novel parameter estimation method for metal oxide surge arrester ...

    Indian Academy of Sciences (India)

    the program, which is based on MAPSO algorithm and can determine the fitness and parameters .... to solve many optimization problems (Kennedy & Eberhart 1995; Eberhart & Shi 2001; Gaing. 2003 ... describe the content of this concept. V el.

  13. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...

  14. MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template.

    Science.gov (United States)

    Fletcher, E; Carmichael, O; Decarli, C

    2012-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.

  15. MRI Non-Uniformity Correction Through Interleaved Bias Estimation and B-Spline Deformation with a Template*

    Science.gov (United States)

    Fletcher, E.; Carmichael, O.; DeCarli, C.

    2013-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843

  16. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    Science.gov (United States)

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  17. Stellar atmospheric parameter estimation using Gaussian process regression

    Science.gov (United States)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  18. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  19. Bootstrap confidence intervals and bias correction in the estimation of HIV incidence from surveillance data with testing for recent infection.

    Science.gov (United States)

    Carnegie, Nicole Bohme

    2011-04-15

    The incidence of new infections is a key measure of the status of the HIV epidemic, but accurate measurement of incidence is often constrained by limited data. Karon et al. (Statist. Med. 2008; 27:4617–4633) developed a model to estimate the incidence of HIV infection from surveillance data with biologic testing for recent infection for newly diagnosed cases. This method has been implemented by public health departments across the United States and is behind the new national incidence estimates, which are about 40 per cent higher than previous estimates. We show that the delta method approximation given for the variance of the estimator is incomplete, leading to an inflated variance estimate. This contributes to the generation of overly conservative confidence intervals, potentially obscuring important differences between populations. We demonstrate via simulation that an innovative model-based bootstrap method using the specified model for the infection and surveillance process improves confidence interval coverage and adjusts for the bias in the point estimate. Confidence interval coverage is about 94–97 per cent after correction, compared with 96–99 per cent before. The simulated bias in the estimate of incidence ranges from −6.3 to +14.6 per cent under the original model but is consistently under 1 per cent after correction by the model-based bootstrap. In an application to data from King County, Washington in 2007 we observe correction of 7.2 per cent relative bias in the incidence estimate and a 66 per cent reduction in the width of the 95 per cent confidence interval using this method. We provide open-source software to implement the method that can also be extended for alternate models.

  20. Design-related bias in estimates of accuracy when comparing imaging tests: examples from breast imaging research

    International Nuclear Information System (INIS)

    Houssami, Nehmat; Ciatto, Stefano

    2010-01-01

    This work highlights concepts on the potential for design-related factors to bias estimates of test accuracy in comparative imaging research. We chose two design factors, selection of eligible subjects and the reference standard, to examine the effect of design limitations on estimates of accuracy. Estimates of sensitivity in a study of the comparative accuracy of mammography and ultrasound differed according to how subjects were selected. Comparison of a new imaging test with an existing test should distinguish whether the new test is to be used as a replacement for, or as an adjunct to, the conventional test, to guide the method for subject selection. Quality of the reference standard, examined in a meta-analysis of preoperative breast MRI, varied across studies and was associated with estimates of incremental accuracy. Potential solutions to deal with the reference standard are outlined where an ideal reference standard may not be available in all subjects. These examples of breast imaging research demonstrate that design-related bias, when comparing a new imaging test with a conventional imaging test, may bias accuracy in a direction that favours the new test by overestimating the accuracy of the new test or by underestimating that of the conventional test. (orig.)

  1. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2015-01-01

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms

  2. Development of simple kinetic models and parameter estimation for ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-09-28

    Sep 28, 2016 ... estimation for simulation of recombinant human serum albumin ... and recombinant protein production by P. pastoris without requiring complex models. Key words: ..... SDS-PAGE and showed the same molecular size as.

  3. The effect of selection on genetic parameter estimates

    African Journals Online (AJOL)

    Unknown

    The South African Journal of Animal Science is available online at ... A simulation study was carried out to investigate the effect of selection on the estimation of genetic ... The model contained a fixed effect, random genetic and random.

  4. (Co) variance Components and Genetic Parameter Estimates for Re

    African Journals Online (AJOL)

    Mapula

    The magnitude of heritability estimates obtained in the current study ... traits were recently introduced to supplement progeny testing programmes or for usage as sole source of ..... VCE-5 User's Guide and Reference Manual Version 5.1.

  5. Cosmological Parameter Estimation Using the Genus Amplitude—Application to Mock Galaxy Catalogs

    Science.gov (United States)

    Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan

    2018-01-01

    We study the topology of the matter density field in two-dimensional slices and consider how we can use the amplitude A of the genus for cosmological parameter estimation. Using the latest Horizon Run 4 simulation data, we calculate the genus of the smoothed density field constructed from light cone mock galaxy catalogs. Information can be extracted from the amplitude of the genus by considering both its redshift evolution and magnitude. The constancy of the genus amplitude with redshift can be used as a standard population, from which we derive constraints on the equation of state of dark energy {w}{de}—by measuring A at z∼ 0.1 and z∼ 1, we can place an order {{Δ }}{w}{de}∼ { O }(15 % ) constraint on {w}{de}. By comparing A to its Gaussian expectation value, we can potentially derive an additional stringent constraint on the matter density {{Δ }}{{{Ω }}}{mat}∼ 0.01. We discuss the primary sources of contamination associated with the two measurements—redshift space distortion (RSD) and shot noise. With accurate knowledge of galaxy bias, we can successfully remove the effect of RSD, and the combined effect of shot noise and nonlinear gravitational evolution is suppressed by smoothing over suitably large scales {R}{{G}}≥slant 15 {Mpc}/h. Without knowledge of the bias, we discuss how joint measurements of the two- and three-dimensional genus can be used to constrain the growth factor β =f/b. The method can be applied optimally to redshift slices of a galaxy distribution generated using the drop-off technique.

  6. Empirical estimation of school siting parameter towards improving children's safety

    Science.gov (United States)

    Aziz, I. S.; Yusoff, Z. M.; Rasam, A. R. A.; Rahman, A. N. N. A.; Omar, D.

    2014-02-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation.

  7. Effect of indium low doping in ZnO based TFTs on electrical parameters and bias stress stability

    Energy Technology Data Exchange (ETDEWEB)

    Cheremisin, Alexander B., E-mail: acher612@gmail.com; Kuznetsov, Sergey N.; Stefanovich, Genrikh B. [Physico-Technical Department, Petrozavodsk State University, Petrozavodsk 185910 (Russian Federation)

    2015-11-15

    Some applications of thin film transistors (TFTs) need the bottom-gate architecture and unpassivated channel backside. We propose a simple routine to fabricate indium doped ZnO-based TFT with satisfactory characteristics and acceptable stability against a bias stress in ambient room air. To this end, a channel layer of 15 nm in thickness was deposited on cold substrate by DC reactive magnetron co-sputtering of metal Zn-In target. It is demonstrated that the increase of In concentration in ZnO matrix up to 5% leads to negative threshold voltage (V{sub T}) shift and an increase of field effect mobility (μ) and a decrease of subthreshold swing (SS). When dopant concentration reaches the upper level of 5% the best TFT parameters are achieved such as V{sub T} = 3.6 V, μ = 15.2 cm{sup 2}/V s, SS = 0.5 V/dec. The TFTs operate in enhancement mode exhibiting high turn on/turn off current ratio more than 10{sup 6}. It is shown that the oxidative post-fabrication annealing at 250{sup o}C in pure oxygen and next ageing in dry air for several hours provide highly stable operational characteristics under negative and positive bias stresses despite open channel backside. A possible cause of this effect is discussed.

  8. Weak-lensing shear estimates with general adaptive moments, and studies of bias by pixellation, PSF distortions, and noise

    Science.gov (United States)

    Simon, Patrick; Schneider, Peter

    2017-08-01

    In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this

  9. Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly

    Science.gov (United States)

    Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.

    2013-01-01

    Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…

  10. Efficient estimates of cochlear hearing loss parameters in individual listeners

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Jepsen, Morten Løve; Dau, Torsten

    2013-01-01

    It has been suggested that the level corresponding to the knee-point of the basilar membrane (BM) input/output (I/O) function can be used to estimate the amount of inner- and outer hair-cell loss (IHL, OHL) in listeners with a moderate cochlear hearing impairment Plack et al. (2004). According...... to Jepsen and Dau (2011) IHL + OHL = HLT [dB], where HLT stands for total hearing loss. Hence having estimates of the total hearing loss and OHC loss, one can estimate the IHL. In the present study, results from forward masking experiments based on temporal masking curves (TMC; Nelson et al., 2001...... estimates of the knee-point level. Further, it is explored whether it is possible to estimate the compression ratio using only on-frequency TMCs. 10 normal-hearing and 10 hearing-impaired listeners (with mild-to-moderate sensorineural hearing loss) were tested at 1, 2 and 4 kHz. The results showed...

  11. Limited-sampling strategy models for estimating the pharmacokinetic parameters of 4-methylaminoantipyrine, an active metabolite of dipyrone

    Directory of Open Access Journals (Sweden)

    Suarez-Kurtz G.

    2001-01-01

    Full Text Available Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS models for estimating the area under the plasma concentration versus time curve (AUC and the peak plasma concentration (Cmax of 4-methylaminoantipyrine (MAA, an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336, measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC0-¥ and the Cmax of MAA can be accurately predicted (R²>0.95, bias 0.85 of the AUC0-¥ or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h, but using different coefficients for AUC0-¥ and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R²>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4% as well as for plasma concentration data sets generated by simulation (R²>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%. Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC0-¥ and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.

  12. Sugarcane maturity estimation through edaphic-climatic parameters

    Directory of Open Access Journals (Sweden)

    Scarpari Maximiliano Salles

    2004-01-01

    Full Text Available Sugarcane (Saccharum officinarum L. grows under different weather conditions directly affecting crop maturation. Raw material quality predicting models are important tools in sugarcane crop management; the goal of these models is to provide productivity estimates during harvesting, increasing the efficiency of strategical and administrative decisions. The objective of this work was developing a model to predict Total Recoverable Sugars (TRS during harvesting, using data related to production factors such as soil water storage and negative degree-days. The database of a sugar mill for the crop seasons 1999/2000, 2000/2001 and 2001/2002 was analyzed, and statistical models were tested to estimate raw material. The maturity model for a one-year old sugarcane proved to be significant, with a coefficient of determination (R² of 0.7049*. No differences were detected between measured and estimated data in the simulation (P < 0.05.

  13. An Introduction to Goodness of Fit for PMU Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Riepnieks, Artis; Kirkham, Harold

    2017-10-01

    New results of measurements of phasor-like signals are presented based on our previous work on the topic. In this document an improved estimation method is described. The algorithm (which is realized in MATLAB software) is discussed. We examine the effect of noisy and distorted signals on the Goodness of Fit metric. The estimation method is shown to be performing very well with clean data and with a measurement window as short as a half a cycle and as few as 5 samples per cycle. The Goodness of Fit decreases predictably with added phase noise, and seems to be acceptable even with visible distortion in the signal. While the exact results we obtain are specific to our method of estimation, the Goodness of Fit method could be implemented in any phasor measurement unit.

  14. Response-Based Estimation of Sea State Parameters

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence...... calculated by a 3-D time domain code and by closed-form (analytical) expressions, respectively. Based on comparisons with wave radar measurements and satellite measurements it is seen that the wave estimations based on closedform expressions exhibit a reasonable energy content, but the distribution of energy...

  15. Application of Parameter Estimation for Diffusions and Mixture Models

    DEFF Research Database (Denmark)

    Nolsøe, Kim

    The first part of this thesis proposes a method to determine the preferred number of structures, their proportions and the corresponding geometrical shapes of an m-membered ring molecule. This is obtained by formulating a statistical model for the data and constructing an algorithm which samples...... with the posterior score function. From an application point of view this methology is easy to apply, since the optimal estimating function G(;Xt1 ; : : : ;Xtn ) is equal to the classical optimal estimating function, plus a correction term which takes into account the prior information. The methology is particularly...

  16. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    Science.gov (United States)

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2004-01-01

    The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....

  18. parameter extraction and estimation based on the pv panel outdoor

    African Journals Online (AJOL)

    userpc

    The five parameters in Equation (1) depend on the incident solar irradiance, the cell temperature, and on their reference values. These reference values are generally provided by manufacturers of PV modules for specified operating condition such as STC (Standard Test Conditions) for which the irradiance is 1000 and the.

  19. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Chacón, M; Nuñez, N; Henríquez, C; Panerai, R B

    2008-01-01

    Measurement of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to changes in arterial blood pressure (ABP), has been performed with an index of autoregulation (ARI), related to the parameters of a second-order differential equation model, namely gain (K), damping factor (D) and time constant (T). Limitations of the ARI were addressed by increasing its numerical resolution and generalizing the parameter space. In 16 healthy subjects, recordings of ABP (Finapres) and CBF velocity (ultrasound Doppler) were performed at rest, before, during and after 5% CO 2 breathing, and for six repeated thigh cuff maneuvers. The unconstrained model produced lower predictive error (p < 0.001) than the original model. Unconstrained parameters (K'–D'–T') were significantly different from K–D–T but were still sensitive to different measurement conditions, such as the under-regulation induced by hypercapnia. The intra-subject variability of K' was significantly lower than that of the ARI and this parameter did not show the unexpected occurrences of zero values as observed with the ARI and the classical value of K. These results suggest that K' could be considered as a more stable and reliable index of dynamic autoregulation than ARI. Further studies are needed to validate this new index under different clinical conditions

  20. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.