WorldWideScience

Sample records for biased galaxy formation

  1. Galaxy formation and physical bias

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  2. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  3. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  4. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  5. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  6. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  7. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  8. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  9. Galaxy bias and non-linear structure formation in general relativity

    International Nuclear Information System (INIS)

    Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias

    2011-01-01

    Length scales probed by the large scale structure surveys are becoming closer and closer to the horizon scale. Further, it has been recently understood that non-Gaussianity in the initial conditions could show up in a scale dependence of the bias of galaxies at the largest possible distances. It is therefore important to take General Relativistic effects into account. Here we provide a General Relativistic generalization of the bias that is valid both for Gaussian and for non-Gaussian initial conditions. The collapse of objects happens on very small scales, while long-wavelength modes are always in the quasi linear regime. Around every small collapsing region, it is therefore possible to find a reference frame that is valid for arbitrary times and where the space time is almost flat: the Fermi frame. Here the Newtonian approximation is applicable and the equations of motion are the ones of the standard N-body codes. The effects of long-wavelength modes are encoded in the mapping from the cosmological frame to the local Fermi frame. At the level of the linear bias, the effect of the long-wavelength modes on the dynamics of the short scales is all encoded in the local curvature of the Universe, which allows us to define a General Relativistic generalization of the bias in the standard Newtonian setting. We show that the bias due to this effect goes to zero as the square of the ratio between the physical wavenumber and the Hubble scale for modes longer than the horizon, confirming the intuitive picture that modes longer than the horizon do not have any dynamical effect. On the other hand, the bias due to non-Gaussianities does not need to vanish for modes longer than the Hubble scale, and for non-Gaussianities of the local kind it goes to a constant. As a further application of our setup, we show that it is not necessary to perform large N-body simulations to extract information about long-wavelength modes: N-body simulations can be done on small scales and long

  10. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  11. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Rees, M.J.

    1977-01-01

    Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references

  12. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  13. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  14. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  15. The formation of galaxies

    International Nuclear Information System (INIS)

    Gunn, J.E.

    1983-01-01

    The presently fashionable ideas for galaxy formation are reviewed briefly, and it is concluded that the standard isothermal heirarchy fits the available data best. A simple infall picture is presented which explains many of the observed properties of disk galaxies. (orig.)

  16. Cosmic strings and galaxy formation: Current status

    International Nuclear Information System (INIS)

    Stebbins, A.

    1987-04-01

    Successes and remaining problems with cosmic string theories of galaxy formation are outlined. Successes of the theory include predictions for the correct amplitude of initial inhomogeneities leading to galaxy formation, the distribution of observed inhomogeneities, the observed correlation function of clusters, and the density profiles of dark matter halos. Potentially serious problems which have been raised are the biased galaxy production (why do galaxies occur in clusters?), the core radius problem (density profiles of galactic halos do not match predictions), the maximal rotation velocity problem (why is there a sharp cutoff in observed rotational velocity of galaxies?), the small galaxy problem (why are all the galaxies relatively small structures?), the angular momentum problem (where do baryons acquire their angular momentum in order to form spirals), and the large-scale structure problem (why do most galaxies appear to lie on surfaces surrounding voids?). Possible approaches to each of these problems are suggested and the future of cosmic string theory is discussed. 25 refs

  17. Superclusters and galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Einasto, J; Joeveer, M; Saar, E [Tartu Astrophysical Observatory, Toravere, Estonia (USSR)

    1980-01-03

    A study of the structure of superclusters in the Southern galactic hemisphere using Zwicky clusters as principal tracers of the large-scale structure of the Universe is reported. The data presented suggest that the formation of galaxies was a two stage process involving larger spatial dimensions than earlier workers have postulated. In the first stage proto-superclusters and big holes had to form from the non-dissipative dark matter while in the second hot gas, by cooling and settling down into the potential wells caused by dark matter, will form galaxies and clusters of galaxies.

  18. Galaxy bias and primordial non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  19. Galaxy bias and primordial non-Gaussianity

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian

    2015-01-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation

  20. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  1. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  2. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  3. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  4. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  5. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  6. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Gonzalez, E.M.

    1985-05-01

    The aim of the present series of lectures is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. (orig./WL)

  7. Formation of Triaxial Galaxy

    Directory of Open Access Journals (Sweden)

    Jang-Hyeon Park

    1987-06-01

    Full Text Available Results of N-body simulation of dissipationless cold collapse of spherical gravitating system are presented. We compared the results with properties of elliptical galaxies. The system gradually evolved to triaxial system. The projected density profile is in good agreement with observations. In addition to triaxial instability, it seems that there is another instability.

  8. The Road to Galaxy Formation

    CERN Document Server

    Keel, William C

    2007-01-01

    The formation of galaxies is one of the greatest puzzles in astronomy, the solution is shrouded in the depths of space and time, but has profound implications for the universe we observe today. The book discusses the beginnings of the process from cosmological observations and calculations, considers the broad features of galaxies that we need to explain and what we know of their later history. The author compares the competing theories for galaxy formation and considers the progress expected from new generations of powerful telescopes both on earth and in space. In this second edition the author has retained the observationally-based approach of the first edition, a feature which was particularly well-reviewed: Writing in Nature, Carlton Baugh noted in February 2003 that “It is refreshing, in a market dominated by theorists, to come across a book on galaxy formation written from an observational perspective. The Road to Galaxy Formation should prove to be a handy primer on observations for graduate student...

  9. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups

    Science.gov (United States)

    Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu

    2017-07-01

    We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.

  10. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.

    2016-09-26

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2biases at the 10-20% level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. (2016) we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  11. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  12. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  13. Selection bias in dynamically measured supermassive black hole samples: scaling relations and correlations between residuals in semi-analytic galaxy formation models

    Science.gov (United States)

    Barausse, Enrico; Shankar, Francesco; Bernardi, Mariangela; Dubois, Yohan; Sheth, Ravi K.

    2017-07-01

    Recent work has confirmed that the scaling relations between the masses of supermassive black holes and host-galaxy properties such as stellar masses and velocity dispersions may be biased high. Much of this may be caused by the requirement that the black hole sphere of influence must be resolved for the black hole mass to be reliably estimated. We revisit this issue with a comprehensive galaxy evolution semi-analytic model. Once tuned to reproduce the (mean) correlation of black hole mass with velocity dispersion, the model cannot account for the correlation with stellar mass. This is independent of the model's parameters, thus suggesting an internal inconsistency in the data. The predicted distributions, especially at the low-mass end, are also much broader than observed. However, if selection effects are included, the model's predictions tend to align with the observations. We also demonstrate that the correlations between the residuals of the scaling relations are more effective than the relations themselves at constraining models for the feedback of active galactic nuclei (AGNs). In fact, we find that our model, while in apparent broad agreement with the scaling relations when accounting for selection biases, yields very weak correlations between their residuals at fixed stellar mass, in stark contrast with observations. This problem persists when changing the AGN feedback strength, and is also present in the hydrodynamic cosmological simulation Horizon-AGN, which includes state-of-the-art treatments of AGN feedback. This suggests that current AGN feedback models are too weak or simply not capturing the effect of the black hole on the stellar velocity dispersion.

  14. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  15. Magnification bias corrections to galaxy-lensing cross-correlations

    International Nuclear Information System (INIS)

    Ziour, Riad; Hui, Lam

    2008-01-01

    Galaxy-galaxy or galaxy-quasar lensing can provide important information on the mass distribution in the Universe. It consists of correlating the lensing signal (either shear or magnification) of a background galaxy/quasar sample with the number density of a foreground galaxy sample. However, the foreground galaxy density is inevitably altered by the magnification bias due to the mass between the foreground and the observer, leading to a correction to the observed galaxy-lensing signal. The aim of this paper is to quantify this correction. The single most important determining factor is the foreground redshift z f : the correction is small if the foreground galaxies are at low redshifts but can become non-negligible for sufficiently high redshifts. For instance, we find that for the multipole l=1000, the correction is above 1%x(5s f -2)/b f for z f > or approx. 0.37, and above 5%x(5s f -2)/b f for z f > or approx. 0.67, where s f is the number count slope of the foreground sample and b f its galaxy bias. These considerations are particularly important for geometrical measures, such as the Jain and Taylor ratio or its generalization by Zhang et al. Assuming (5s f -2)/b f =1, we find that the foreground redshift should be limited to z f < or approx. 0.45 in order to avoid biasing the inferred dark energy equation of state w by more than 5%, and that even for a low foreground redshift (<0.45), the background samples must be well separated from the foreground to avoid incurring a bias of similar magnitude. Lastly, we briefly comment on the possibility of obtaining these geometrical measures without using galaxy shapes, using instead magnification bias itself.

  16. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  17. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  18. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  19. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    -M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.

  20. The early ISM and galaxy formation

    Science.gov (United States)

    White, Simon D. M.

    1990-01-01

    Current ideas about galaxy formation are reviewed, with particular attention to when and how it occurred, and what it might have looked like. It is argued that galaxy formation is more recent than originally predicted. Suggestions are presented as to how current observations of distant objects may be interpreted within the cold dark matter theory for the origin of structure.

  1. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  2. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  3. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  4. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  5. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  6. Galaxies interactions and induced star formation

    CERN Document Server

    Kennicutt Jr, Robert C; Barnes, JE

    1998-01-01

    The papers that make up this volume present a comprehensive review of the field of galaxy interaction. Galaxies are dynamic forces that evolve, interact, merge, blaze and reshape. This book offers a historical perspective and studies such topics as induced star formation.

  7. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  8. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  9. Recent star formation in interacting galaxies

    International Nuclear Information System (INIS)

    Joseph, R.D.; Wright, G.S.

    1985-01-01

    The subset of galaxy-galaxy interactions which have resulted in a merger are, as a class, ultraluminous IR galaxies. Their IR luminosities span a narrow range which overlaps with the most luminous Seyfert galaxies. However, in contrast with Seyfert galaxies, the available optical, IR, and radio properties of mergers show no evidence for a compact non-thermal central source, and are easily understood in terms of a burst of star formation of extraordinary intensity and spatial extent; they are 'super starbursts'. We argue that super starbursts occur in the evolution of most mergers, and discuss the implications of super starbursts for the suggestion that mergers evolve into elliptical galaxies. Finally, we note that merger-induced shocks are likely to leave the gas from both galaxies in dense molecular form which will rapidly cool, collapse, and fragment. Thus a merger might in fact be expected to result in a burst of star formation of exceptional intensity and spatial extent, i.e. a super starburst. (author)

  10. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  11. Monolithic View of Galaxy Formation and Evolution

    Directory of Open Access Journals (Sweden)

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  12. Star Formation Histories of Dwarf Irregular Galaxies

    Science.gov (United States)

    Skillman, Evan

    1995-07-01

    We propose to obtain deep WFPC2 `BVI' color-magnitude diagrams {CMDs} for the dwarf irregular {dI} Local Group galaxies GR 8, Leo A, Pegasus, and Sextans A. In addition to resolved stars, we will use star clusters, and especially any globulars, to probe the history of intense star formation. These data will allow us to map the Pop I and Pop II stellar components, and thereby construct the first detailed star formation histories for non-interacting dI galaxies. Our results will bear on a variety of astrophysical problems, including the evolution of small galaxies, distances in the Local Group, age-metallicity distributions in small galaxies, ages of dIs, and the physics of star formation. The four target galaxies are typical dI systems in terms of luminosity, gas content, and H II region abundance, and represent a range in current star forming activity. They are sufficiently near to allow us to reach to stars at M_V = 0, have 0.1 of the luminosity of the SMC and 0.25 of its oxygen abundance. Unlike the SMC, these dIs are not near giant galaxies. This project will allow the extension of our knowledge of stellar populations in star forming galaxies from the spirals in the Local Group down to its smallest members. We plan to take maximum advantage of the unique data which this project will provide. Our investigator team brings extensive and varied experience in studies of dwarf galaxies, stellar populations, imaging photometry, and stellar evolution to this project.

  13. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  14. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  15. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  16. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence

    OpenAIRE

    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel

    2014-01-01

    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  17. Multiwavelength Mapping of Galaxy Formation and Evolution

    CERN Document Server

    Renzini, Alvio; ESO Workshop

    2005-01-01

    The possibilities of astronomical observation have dramatically increased over the last decade. Major satellites, like the Hubble Space Telescope, Chandra and XMM Newton, are complemented by numerous large ground-based observatories, from 8m-10m optical telescopes to sub-mm and radio facilities. As a result, observational astronomy has access to virtually the whole electromagnetic spectrum of galaxies, even at high redshifts. Theoretical models of galaxy formation and cosmological evolution now face a serious challenge to match the plethora of observational data. In October 2003, over 170 astronomers from 15 countries met for a 4-day workshop to extensively illustrate and discuss all major observational projects and ongoing theoretical efforts to model galaxy formation and evolution. This volume contains the complete proceedings of this meeting and is therefore a unique and timely overview of the current state of research in this rapidly evolving field.

  18. Analysis of the star formation histories of galaxies in different environments: from low to high density

    Science.gov (United States)

    Ortega-Minakata, René A.

    2015-11-01

    In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six

  19. Galaxy Formation from the Primordial Black Holes

    Science.gov (United States)

    Morikawa, Masahiro

    2017-12-01

    Supermassive black hole (SMBH) of size MBH = 106-10M⊙ is common in the Universe and it defines the center of the galaxy. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift z > 6. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at z ⪆ 10 before stars and galaxies. The SMBH forms energetic jets and out-flows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized criticality.

  20. Galaxy Formation from the Primordial Black Holes

    Directory of Open Access Journals (Sweden)

    Morikawa Masahiro

    2017-01-01

    Full Text Available Supermassive black hole (SMBH of size MBH = 106-10M⊙ is common in the Universe and it defines the center of the galaxy. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift z > 6. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at z ⪆ 10 before stars and galaxies. The SMBH forms energetic jets and out-flows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized criticality.

  1. Statistical problems of a galaxies formation theory

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Shandarin, S.F.

    1978-01-01

    Some problems of galaxies and galaxy clusters formation from random adiabatic disturbances are discussed. Disturbances grow according to the nonlinear theory of gravitational instability. In this theory maxima of the largest characteristic values of a strain tensor have a particular significance as they are just the points of the formation of dense flattened structures - ''pancakes'' which then transform into galaxies and galaxy clusters. It is shown that parameters of a ''pancake'' such as time of the origin, mass, temperature etc. are determined by the lambda 11 largest characteristic value of the strain tensor in the centre of the ''pancake''. The lambda 11 distribution function the rate of mass condensation into ''pancakes'', the rate of production and the spatial density of ''pancakes'' are given. Some statistic properties of a single ''pancake'' such as a mean displacement and dispersion of a displacement in the vicinity of centre of a ''pancake'' were found. The possibility of connection between young galaxies and quasars is discussed in the framework of this theory

  2. Galaxy formation with radiative and chemical feedback

    NARCIS (Netherlands)

    Graziani, L.; Salvadori, S.; Schneider, R.; Kawata, D.; de Bennassuti, M.; Maselli, A.

    Here we introduce GAMESH, a novel pipeline that implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post-process realistic outputs of

  3. The effect of anisotropy on galaxy formation

    International Nuclear Information System (INIS)

    Burkert, A.; Hensler, G.

    1987-01-01

    Two-dimensional calculations of galaxy formation are presented. Gas and stars are taken into account as two distinct components interacting by star formation and stellar mass loss. While the gas is described by means of the Eulerian equation, the authors allow for an anisotropic velocity distribution among the stars by applying the collisionless Boltzmann equation. In the first model, the authors succeed in developing totally different stellar populations forming a halo and a disc. (author)

  4. The formation of galaxies from pregalactic stars

    International Nuclear Information System (INIS)

    Jones, Janet

    1982-01-01

    A knowledge of how and when the first stars formed is vital for our understanding of the formation and early evolution of galaxies. Evidence is given that the first stars were pregalactic: indeed, that at least two generations of stars had formed before galaxies collapsed. A model is presented describing the effects of pregalactic stars on galaxy evolution. The first generation -primordial stars- were massive and few in number. A brief description is given for the formation of such a star. The second generation included stars of all masses and involved widespread star formation. Gas ejected from these stars on timescales of 6 x 10 7 to 6 x 10 8 years induced a qualitative change into the dynamics of collapsing perturbations, leading to a characteristic mass of galaxies of 10 10 - 10 12 M 0 . Variations in the rate of gas ejection were responsible for different morphological structures - elliptical and spirals. A few comments are made on some other implications of the model

  5. THE NONLINEAR BIASING OF THE zCOSMOS GALAXIES UP TO z ∼ 1 FROM THE 10k SAMPLE

    International Nuclear Information System (INIS)

    Kovac, K.; Porciani, C.; Lilly, S. J.; Oesch, P.; Peng, Y.; Carollo, C. M.; Marinoni, C.; Guzzo, L.; Iovino, A.; Cucciati, O.; Kneib, J.-P.; Le Fevre, O.; Zamorani, G.; Bolzonella, M.; Zucca, E.; Bardelli, S.; Meneux, B.; Contini, T.; Mainieri, V.; Renzini, A.

    2011-01-01

    We use the zCOSMOS galaxy overdensity field to study the biasing of galaxies in the COSMOS field. By comparing the probability distribution function of the galaxy density contrast δ g to the lognormal approximation of the mass density contrast δ, we obtain the mean biasing function b(δ, z, R) between the galaxy and matter overdensity fields and its second moments b-hat and b-tilde. Over the redshift interval 0.4 g |δ) = b(δ, z, R)δ is of a characteristic shape, requiring nonlinear biasing in the most overdense and underdense regions. Taking into account the uncertainties due to cosmic variance, we do not detect any significant evolution in the (δ g |δ) function, but we do detect a significant redshift evolution in the linear biasing parameter b-hat from 1.23 ± 0.11 at z ∼ 0.55 to 1.62 ± 0.14 at z ∼ 0.75, for a luminosity-complete sample of M B -1 Mpc, but increases systematically with luminosity (at 2σ-3σ significance between the M B B B 12 M sun with a small dependence on the adopted bias-mass relation. Our detailed error analysis and comparison with previous studies lead us to conclude that cosmic variance is the main contributor to the differences in the linear bias measured from different surveys. While our results support the general picture of biased galaxy formation up to z ∼ 1, the fine-tuning of the galaxy formation models is still limited by the restrictions of the current spectroscopic surveys at these redshifts.

  6. Star formation and substructure in galaxy clusters

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M r 0.1 <−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  7. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    Science.gov (United States)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  8. Imprint of galaxy formation and evolution on globular cluster properties

    OpenAIRE

    Bekki, Kenji

    2006-01-01

    We discuss the origin of physical properties of globular cluster systems (GCSs) in galaxies in terms of galaxy formation and evolution processes. Based on numerical simulations of dynamical evolution of GCSs in galaxies, we particularly discuss (1) the origin of radial density profiles of GCSs, (2) kinematics of GCSs in elliptical galaxies, (3) transformation from nucleated dwarf galaxies into GCs (e.g., omega Centauri), and (4) the origin of GCSs in the Large Magellanic Cloud (LMC).

  9. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2016-04-15

    We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$\\sigma$ error bars in 4 photometric redshift bins to be 1.33$\\pm$0.18 (z=0.2-0.4), 1.19$\\pm$0.23 (z=0.4-0.6), 0.99$\\pm$0.36 ( z=0.6-0.8), and 1.66$\\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$\\sigma$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $\\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

  10. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    OpenAIRE

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; Bosch, Frank C. van den

    2014-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy ...

  11. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  12. DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P. G.; Donley, J. L.; Alonso-Herrero, A.; Blaylock, M.; Marcillac, D.

    2009-01-01

    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ∼ 10 10 L sun range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M sun yr -1 ) = 7.8 x 10 -10 L(24 μm, L sun ) from L(TIR) = 5x 10 9 L sun to 10 11 L sun and SFR = 7.8 x 10 -10 L(24 μm, L sun )(7.76 x 10 -11 L(24)) 0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10 10 L sun , these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10 11 L sun , we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5x 10 9 to 10 13 L sun . All of these templates are made available online.

  13. Faint galaxies - Bounds on the epoch of galaxy formation and the cosmological deceleration parameter

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Peterson, B.A.

    1991-01-01

    Models of galaxy luminosity evolution are used to interpret the observed color distributions, redshift distributions, and number counts of faint galaxies. It is found from the color distributions that the redshift corresponding to the epoch of galaxy formation must be greater than three, and that the number counts of faint galaxies, which are sensitive to the slope of the faint end of the luminosity function, are incompatible with q0 = 1/2 and indicate a smaller value. The models assume that the sequence of galaxy types is due to different star-formation rates, that the period of galaxy formation can be characterized by a single epoch, and that after formation, galaxies change in luminosity by star formation and stellar evolution, maintaining a constant comoving space density. 40 refs

  14. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  15. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  16. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-01-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  17. Bar Formation in Milky Way type Galaxies

    Directory of Open Access Journals (Sweden)

    Polyachenko E. V.

    2016-12-01

    Full Text Available Many barred galaxies, possibly including the Milky Way, have cusps in their centers. There is a widespread belief, however, that the usual bar instability, which occurs in bulgeless galaxy models, is impossible for cuspy models because of the presence of the inner Lindblad resonance for any pattern speed. At the same time, there is numerical evidence that the bar instability can form a bar. We analyze this discrepancy by performing accurate and diverse N-body simulations and calculating the normal modes. We show that bar formation in cuspy galaxies can be explained by taking into account the disk thickness. The exponential growth time is moderate (about 250 Myr for typical current disk masses, but it increases considerably (by a factor of two or more if the live halo and bulge are substituted by a rigid halo/bulge potential; the pattern speeds remain almost the same. Normal mode analysis with different disk mass favors a young bar hypothesis, according to which the bar instability has saturated only recently.

  18. Formation of galaxies from massive neutrinos

    International Nuclear Information System (INIS)

    Davis, M.; Lecar, M.; Pryor, C.; Witten, E.

    1981-01-01

    Neutrinos with nonzero rest mass strongly influence galaxy formation in the early universe. If stable neutrinos have rest masses on the order of 100 eV, they close the universe, but they erase initial perturbations on mass scales less than 4 x 10 15 M/sub sun/. However, if in addition there exist unstable neutrinos with rest masses on the order of 100 keV, they preserve and amplify initial perturbations on galactic mass scales (10 12 M/sub sun/). These perturbations are picked up and further amplified by the lighter, stable neutrinos, as long as the heavy neutrinos decay somewhat after the lighter neutrinos go nonrelativistic. If the heavy neutrinos decay into light neutrinos, the decay products contribute about one-half of the present mass density in a hot unclustered background. The only alternative method of retaining initial perturbations until the light neutrinos become nonrelativistic is to introduce large amplitude initial fluctuations such as primordial black holes. If the light neutrinos close the universe, black hole seeds of size 10 9 M/sub sun/ would be required for galaxies of 10 12 M/sub sun/ to form. We point out that the neutrino damping mass is a steep function of the present neutrino temperature and that galaxy sized fluctuations would be preserved if T/sub ν/ <1.0 K. However, the only model we can devise to effect this cooling is shown to be in serious violation of astrophysical constraints

  19. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    Science.gov (United States)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  20. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  1. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  2. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  3. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-07-29

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  4. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Stephanie K.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Schiavon, Ricardo [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Graves, Genevieve [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Damjanov, Ivana [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Newman, Jeffrey [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Simard, Luc [National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  5. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  6. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    International Nuclear Information System (INIS)

    Saitoh, Takayuki R.

    2017-01-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  7. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Takayuki R., E-mail: saitoh@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo, 152-8551 (Japan)

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  8. Elemental abundances in Milky Way-like galaxies from a hierarchical galaxy formation model

    NARCIS (Netherlands)

    De Lucia, Gabriella; Tornatore, Luca; Frenk, Carlos S.; Helmi, Amina; Navarro, Julio F.; White, Simon D. M.

    We develop a new method to account for the finite lifetimes of stars and trace individual abundances within a semi-analytic model of galaxy formation. At variance with previous methods, based on the storage of the (binned) past star formation history of model galaxies, our method projects the

  9. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  10. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    Science.gov (United States)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  11. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  12. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  13. MEASUREMENT OF THE HALO BIAS FROM STACKED SHEAR PROFILES OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Covone, Giovanni [Dipartimento di Fisica, Università di Napoli " Federico II," Via Cinthia, I-80126 Napoli (Italy); Sereno, Mauro [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Kilbinger, Martin [CEA/Irfu/SAp Saclay, Laboratoire AIM, F-91191 Gif-sur-Yvette (France); Cardone, Vincenzo F. [I.N.A.F.-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy)

    2014-04-01

    We present observational evidence of the two-halo term in the stacked shear profile of a sample of ∼1200 optically selected galaxy clusters based on imaging data and the public shear catalog from the CFHTLenS. We find that the halo bias, a measure of the correlated distribution of matter around galaxy clusters, has amplitude and correlation with galaxy cluster mass in very good agreement with the predictions based on the LCDM standard cosmological model. The mass-concentration relation is flat but higher than theoretical predictions. We also confirm the close scaling relation between the optical richness of galaxy clusters and their mass.

  14. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  15. Modelling the star formation histories of nearby elliptical galaxies

    Science.gov (United States)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  16. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ on ρtot/. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function

  17. Galaxy Formation by Cosmic Strings and Cooling of Baryonic Matter

    OpenAIRE

    Mizuo, IZAWA; Humitaka, SATO; Department of Physics, University of Tokyo; Department of Physics, Kyoto University

    1987-01-01

    Cooling and contraction of baryonic matter are investigated ina galaxy formation scenario by string loops. It is found that ~3% of virialized baryonic matter has cooled down and contracted. This virialized object may have a disk-halo structure and be considered a galaxy.

  18. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  20. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  1. Stellar chemical signatures and hierarchical galaxy formation

    NARCIS (Netherlands)

    Venn, KA; Irwin, M; Shetrone, MD; Tout, CA; Hill, [No Value; Tolstoy, E

    To compare the chemistries of stars in the Milky Way dwarf spheroidal (dSph) satellite galaxies with stars in the Galaxy, we have compiled a large sample of Galactic stellar abundances from the literature. When kinematic information is available, we have assigned the stars to standard Galactic

  2. Colors of galaxies with continuing star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.; Demin, V.V.

    1979-01-01

    A position of non-elliptical galaxies on a two-colour diagram (B-V)-(U-B) is considered from the data on the RC2 catalogue. Correction was made for internal reddening of light in galaxies. A sequence of colour indices on a two-colour diagram is compared with theoretical sequences for the Salpeter's initial mass function of stars (IMF). To reach the best agreement between calculated and observed colours of galaxies it is demanded that IMF change systematically along a morphological Hubble's sequence of galaxies and IMF in most of spiral galaxies of early types must have a deficiency of massive stars with respect to the Salpeter's IMF. A difference between colour indices of inner and outer parts of spiral galaxies shows that internal light absorption is possibly stronger in the inner regions of galaxies. A relation between dust content of galaxies and their IMF is in qualitative agreement with the Kahn's theory which gives an upper limit of mass of young stars

  3. Induced star formation and colors of binary and interacting galaxies

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Komberg, B.V.; Moskovskij Gosudarstvennyj Univ.

    1980-01-01

    The colours of 208 galaxies in pairs and groups are compared (on colour-colour diagram) with those of single galaxies of the same morphological type. Different colours of galaxies in pairs and groups can be explained if one assumes that in some of them the star formation is slowed down, while in others it is speeded up. The latter is the most conspicuous in E, SO, and Ir2 galaxies when they are accompanied by brighter spirals. The relation of abundance rate to the rate of star formation in galaxies and to the activity level of their nuclei is discussed. This relation is particularly conspicuous in the galaxies of early morphological types (E, SO, Sa) and in systems of the type Ir2 where the relative abundance of gas is significantly above the normal. It is noted that such galaxies as well as galaxies with UV excess, Seyfertlike objects, emission-line galaxies and quasars - avoid regions occupied with rich clusters and frequently occur in pairs and small groups

  4. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  5. Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    International Nuclear Information System (INIS)

    Mehta, Kushal T.; Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-01-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  6. GALAXY BIAS AND ITS EFFECTS ON THE BARYON ACOUSTIC OSCILLATION MEASUREMENTS

    International Nuclear Information System (INIS)

    Mehta, Kushal T.; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu Xiaoying; Seo, Hee-Jong

    2011-01-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the nonlinear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. For the less biased HOD models (b 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields, achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  7. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  8. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    Energy Technology Data Exchange (ETDEWEB)

    Arnalte-Mur, Pablo; Martínez, Vicent J. [Observatori Astronòmic de la Universitat de València, C/ Catedràtic José Beltrán, 2, 46980 Paterna, València (Spain); Vielva, Patricio; Sanz, José L. [Instituto de Física de Cantabria (CSIC-UC), Avda. de Los Castros s/n, E-39005—Santander (Spain); Saar, Enn [Cosmology Department, Tartu Observatory, Observatooriumi 1, Tõravere (Estonia); Paredes, Silvestre, E-mail: pablo.arnalte@uv.es, E-mail: vielva@ifca.unican.es, E-mail: martinez@uv.es, E-mail: sanz@ifca.unican.es, E-mail: saar@to.ee, E-mail: silvestre.paredes@upct.es [Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, C/Dr. Fleming s/n, 30203 Cartagena (Spain)

    2016-03-01

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.

  9. Joint constraints on galaxy bias and σ8 through the N-pdf of the galaxy number density

    International Nuclear Information System (INIS)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio; Sanz, José L.; Saar, Enn; Paredes, Silvestre

    2016-01-01

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ 8 ). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M r  ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar 8  = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h −1 Mpc. Different model selection criteria show that galaxy biasing is clearly favoured

  10. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  11. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  12. PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES

    International Nuclear Information System (INIS)

    Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan; Bryan, Greg L.

    2015-01-01

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state

  13. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  14. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  15. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3

    International Nuclear Information System (INIS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Bongiovanni, Angel; Cepa, Jordi; Garcia, Ana Perez; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-01-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z ∼ 3 in the GOODS-South field. Our analysis uniquely combines U to 8 μm photometry from FIREWORKS, MIPS 24 μm and PACS 70, 100, and 160 μm photometry from the PEP, and Hα spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 μm to total infrared luminosity yields estimates of L IR that are in the median consistent with the L IR derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR IR /SFR UV ratios, typically occuring at the highest SFRs (SFR UV+ I R ∼> 100 M sun yr -1 ) and redshifts (z ∼> 2.5) probed. Finally, we confirm that Hα-based SFRs at 1.5 SED and SFR UV+IR provided extra attenuation toward H II regions is taken into account (A V,neb = A V,continuum /0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  16. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    International Nuclear Information System (INIS)

    Harwit, Martin; Brisbin, Drew

    2015-01-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10 9 to 6 × 10 10 M ☉ . This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established

  17. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Harwit, Martin; Brisbin, Drew, E-mail: harwit@verizon.net [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  18. The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao-Yi; Rozo, Eduardo; Wechsler, Risa H.

    2008-08-07

    Self-calibration techniques for analyzing galaxy cluster counts utilize the abundance and the clustering amplitude of dark matter halos. These properties simultaneously constrain cosmological parameters and the cluster observable-mass relation. It was recently discovered that the clustering amplitude of halos depends not only on the halo mass, but also on various secondary variables, such as the halo formation time and the concentration; these dependences are collectively termed 'assembly bias'. Applying modified Fisher matrix formalism, we explore whether these secondary variables have a significant impact on the study of dark energy properties using the self-calibration technique in current (SDSS) and the near future (DES, SPT, and LSST) cluster surveys. The impact of the secondary dependence is determined by (1) the scatter in the observable-mass relation and (2) the correlation between observable and secondary variables. We find that for optical surveys, the secondary dependence does not significantly influence an SDSS-like survey; however, it may affect a DES-like survey (given the high scatter currently expected from optical clusters) and an LSST-like survey (even for low scatter values and low correlations). For an SZ survey such as SPT, the impact of secondary dependence is insignificant if the scatter is 20% or lower but can be enhanced by the potential high scatter values introduced by a highly-correlated background. Accurate modeling of the assembly bias is necessary for cluster self-calibration in the era of precision cosmology.

  19. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    Science.gov (United States)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  20. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  1. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  2. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  3. Galaxy And Mass Assembly (GAMA): The mechanisms for quiescent galaxy formation at z < 1

    Science.gov (United States)

    Rowlands, K.; Wild, V.; Bourne, N.; Bremer, M.; Brough, S.; Driver, S. P.; Hopkins, A. M.; Owers, M. S.; Phillipps, S.; Pimbblet, K.; Sansom, A. E.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Taylor, E. N.

    2018-01-01

    One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies. We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8 Gyr, the quiescent population has grown more slowly in number density at high masses ({M}_\\ast >10^{11}{M_{⊙}) than at intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times. At intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ∼ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10^{11}{M_{⊙}), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation.

  4. Formation of massive clouds and dwarf galaxies during tidal encounters

    Science.gov (United States)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  5. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  6. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  7. Fred Hoyle: Contributions to the Theory of Galaxy Formation

    OpenAIRE

    Efstathiou, G.

    2003-01-01

    I review two fundamental contributions that Fred Hoyle made to the theory of galaxy formation. Hoyle was the first to propose that protogalaxies acquired their angular momentum via tidal torques from neighbouring perturbations during a period of gravitational instability. To my knowledge, he was also the first to suggest that the masses of galaxies could be explained by the requirement that primordial gas clouds cool radiatively on a suitable timescale. Tidal torques and cooling arguments pla...

  8. REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E. [Cerrada del Rey 40-A, Chimalcoyoc Tlalpan, Ciudad de México, C.P. 14630, México (Mexico); González-Lópezlira, Rosa A.; Bruzual A, Gustavo [Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, C.P. 58089, México (Mexico); Magris C, Gladis, E-mail: martinezgarciaeric@gmail.com [Centro de Investigaciones de Astronomía, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-01-20

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms. The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.

  9. Star Formation in the Milky Way Galaxy

    Indian Academy of Sciences (India)

    Swarna Kanti Ghosh

    How much Inter Stellar Matter (ISM) is there in our Galaxy ? ~ 10% of the total mass (concentrated in the Galactic plane). ~ 99% of ISM mass in the GAS component. ~ 1% in the DUST component. (dust grains : size ~ 0.01 - 0.2 micron). DUST plays a crucial role by interaction with the local radiation field (absorption ...

  10. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    Science.gov (United States)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  11. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    Science.gov (United States)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z small angular and physical sizes {d POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  12. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  13. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  14. Observing the epoch of galaxy formation.

    Science.gov (United States)

    Steidel, C C

    1999-04-13

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

  15. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  16. Strong magnetic fields, galaxy formation, and the Galactic engine

    International Nuclear Information System (INIS)

    Greyber, H.D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed. 27 refs

  17. A mathematical model of star formation in the Galaxy

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2012-06-01

    Full Text Available This paper is generally concerned with star formation in the Galaxy, especially blue stars. Blue stars are the most luminous, massive and the largest in radius. A simple mathematical model of the formation of the stars is established and put in computational algorithm. This algorithm enables us to know more about the formation of the star. Some real and artificial examples had been used to justify this model.

  18. Enriched gas in clusters and the dynamics of galaxies and clusters: implications for theories of galaxy formation

    International Nuclear Information System (INIS)

    Binney, J.; Silk, J.

    1978-01-01

    Recent developments in relation to the origin of galaxies are cited: the discovery that the intergalactic medium which seems to pervade rich clusters of galaxies has an iron abundance that lies within an order of magnitude of the solar value; the discovery that elliptical galaxies rotate much more slowly than the models of these galaxies had predicted; and the results of studies of cosmological infall in the context of the formation of galaxies and galaxy clusters, which have shown that the resulting density profile is fairly insensitive to initial conditions. After discussing the implications of these recent observations of X-ray clusters and of the rotation of elliptical galaxies, an attempt is made to construct a picture of the formation of elliptical and spiral galaxies in which galaxies form continuously from redshift z approximately 100 onwards. It is suggested that at a redshift z of roughly 5, a fundamental change occurred in the manner in which the cosmic material fragmented into stellar objects. It seems possible that explanations of a variety of puzzling aspects of galactic evolution, including the formation of Population I disks, the origin of the hot intracluster gas, the mass-to-light ratio stratification of galaxies, and the nature of the galaxy luminosity function, should all be sought in the context of this change of regime. Some remarks are made about gas in poor groups of galaxies and the interaction of disk galaxies with their environments. (U.K.)

  19. Relativistic effects and primordial non-Gaussianity in the galaxy bias

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2011-01-01

    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated

  20. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  1. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  2. POX 186: A Dwarf Galaxy in the Process of Formation?

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.

    2002-12-01

    We present deep U-, V-, and I-band images of the ``ultracompact'' blue dwarf galaxy POX 186 obtained with the Planetary Camera 2 of the Hubble Space Telescope. We have also obtained a near-ultraviolet spectrum of the object with the Space Telescope Imaging Spectrograph and combine this with a new ground-based optical spectrum. The images confirm the galaxy to be extremely small, with a maximum extent of only 300 pc, a luminosity of ~10-4L*, and an estimated mass of ~107 Msolar. Its morphology is highly asymmetric, with a tail of material on its western side that may be tidal in origin. The U-band image shows this tail to be part of a stream of material in which stars have recently formed. Most of the star formation in the galaxy is, however, concentrated in a central, compact (d~10-15 pc) star cluster. We estimate this cluster to have a total mass of ~105 Msolar, to be forming stars at a rate of less than 0.05 yr-1, and to have a maximum age of a few million years. The outer regions of the galaxy are significantly redder than the cluster, with V-I colors consistent with a population dominated by K and M stars. From our analysis of the optical spectrum we find the galaxy to have a metallicity Z~=0.06 Zsolar and to contain a significant amount of internal dust [E(B-V)~=0.28] both values agree with previous estimates. While these results rule out earlier speculation that POX 186 is a protogalaxy, its morphology, mass, and active star formation suggest that it represents a recent (within ~108 yr) collision between two clumps of stars of subgalactic size (~100 pc). POX 186 may thus be a very small dwarf galaxy that, dynamically speaking, is still in the process of formation. This interpretation is supported by the fact that it resides in a void, so its morphology cannot be explained as the result of an encounter with a more massive galaxy. Clumps of stars this small may represent the building blocks required by hierarchical models of galaxy formation, and these results

  3. NGC 5291: Implications for the Formation of Dwarf Galaxies

    Science.gov (United States)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  4. BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,

    International Nuclear Information System (INIS)

    Kormendy, John; Cornell, Mark E.; Drory, Niv; Bender, Ralf

    2010-01-01

    To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R ≡ λ/FWHM ≅ 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s -1 in the nucleus of M 33 to 78 ± 2 km s -1 in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M . ∼ 6 M sun in M 101 and M . ∼ 6 M sun in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up ∼ circ > 150 km s -1 , including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

  5. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  6. Fred Hoyle: contributions to the theory of galaxy formation

    Science.gov (United States)

    Efstathiou, George

    I review two fundamental contributions that Fred Hoyle made to the theory of galaxy formation. Hoyle was the first to propose that protogalaxies acquired their angular momentum via tidal torques from neighbouring perturbations during a period of gravitational instability. To my knowldege, he was also the first to suggest that the masses of galaxies could be explained by the requirement that primordial gas clouds cool radiatively on a suitable timescale. Tidal torques and cooling arguments play a central role in the modern theory of galaxy formation. It is a measure of Hoyle's breadth and inventiveness that he recognized the importance of these processes at such an early stage in the history of the subject.

  7. Stochastic star formation and the evolution of galaxies

    International Nuclear Information System (INIS)

    Seiden, P.E.; Schulman, L.S.; Gerola, H.

    1979-01-01

    The mechanism of stochastic self-propagating star formation has previously been invoked to explain the origin of spiral arms in galaxies. In this paper we extend the application of this mechanism to account for the diversity of morphological types and the evolution of galaxies. The new property that arises from consideration of this mechanism is that the rate of star formation exhibits the critical behavior of a phase transition. This is a general property of the system and is not strongly dependent on the details of the star--interstellar gas interaction. Examination of the properties of this phase transition provides a general scenario for the evolution of galaxies and the origin of the various morphological types

  8. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    Science.gov (United States)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  9. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  10. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    Science.gov (United States)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  11. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  12. Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy formation model

    Science.gov (United States)

    Rong, Yu; Jing, Yingjie; Gao, Liang; Guo, Qi; Wang, Jie; Sun, Shuangpeng; Wang, Lin; Pan, Jun

    2017-10-01

    We take advantage of the statistical power of the large-volume dark-matter-only Millennium simulation (MS), combined with a sophisticated semi-analytic galaxy formation model, to explore whether the recently reported z = 3.7 quiescent galaxy ZF-COSMOS-20115 (ZF) can be accommodated in current galaxy formation models. In our model, a population of quiescent galaxies with stellar masses and star formation rates comparable to those of ZF naturally emerges at redshifts z 3.5 massive QGs are rare (about 2 per cent of the galaxies with the similar stellar masses), the existing AGN feedback model implemented in the semi-analytic galaxy formation model can successfully explain the formation of the high-redshift QGs as it does on their lower redshift counterparts.

  13. Current star formation in S0 galaxies: NGC 4710

    International Nuclear Information System (INIS)

    Wrobel, J.M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data

  14. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  15. The Role Of Mergers In Galaxy Formation And Transformations

    Science.gov (United States)

    Conselice, Christopher J.; Mundy, Carl; Duncan, Kenneth

    2017-06-01

    Baryonic assembly of galaxies is one of the largest questions in extragalactic studies, which relates to many other issues, including environment, feedback, star formation, gas accretion and merging. In fact, all of these processes are related and must be accounted for and understood to paint a full picture of galaxy assembly. Perhaps the most straightforward of these processes to measure are the merging and star formation histories. I will present results of combining in a new reanalysis of the three deepest and large NIR surveys take to date: UDS, Ultra-VISTA and VIDEO as part of the REFINE project. Using consistently measured stellar masses and photometric redshifts for galaxies in these fields up to z =3, I will show how the major and minor merger rate can consistently be measured across these fields. Our new method involves a full use of the PDF for photo-zs and stellar masses. We show how the merger fraction and rate are lower than previous results and the implications for this for other methods of galaxy assembly and feedback mechanisms. Invited Talk presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France

  16. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  17. Reionization and Galaxy Formation in Warm Dark Matter Cosmologies

    NARCIS (Netherlands)

    Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.

    2017-01-01

    We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization

  18. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  19. The formation and evolution of galaxies in an expanding universe

    Science.gov (United States)

    Ceverino-Rodriguez, Daniel

    This PhD thesis is part of an ongoing effort in improving the theory of galaxy formation in a LCDM Universe. We include more realistic models of radiative cooling, star formation, and stellar feedback. A special attention has been given to the role of supernova explosions and stellar winds in the galaxy assembly. These processes happen at very small scales (parsecs), but they affect the inter-stellar medium (ISM) at Kpc-scales and regulate the formation of a whole galaxy. Previous attempts of mimicking these effects in simulations of galaxy formation use very simplified assumptions. We develop a much more realistic prescription for modeling the feedback, which minimizes any ad hoc sub-grid physics. We start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of a multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. We find that this can be achieved only by doing what the real Universe does: formation of dense (> 10 H atoms cm -3 ), cold ( T [approximate] 100 K) molecular phase, where star formation happens, and which young stars disrupt. Another important ingredient is the effect of runaway stars: massive binary stars ejected from molecular clouds when one of the companions becomes a supernova. These stars can move to 10-100 parsecs away from molecular clouds before exploding themselves as supernovae. This greatly facilitates the feedback. Once those effects are implemented into cosmological simulations, galaxy formation proceeds more realistically. For example, we do not have the overcooling problem. The angular momentum problem (resulting in a too massive bulge) is also reduced substantially: the rotation curves are nearly flat. The galaxy formation also becomes more violent. Just as often observed in absorption lines studies, there are substantial outflows from forming and active galaxies. At high redshifts we routinely find gas

  20. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  1. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.

    2014-01-01

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  2. Galaxy Formation in Sterile Neutrino Dark Matter Models

    Science.gov (United States)

    Menci, N.; Grazian, A.; Lamastra, A.; Calura, F.; Castellano, M.; Santini, P.

    2018-02-01

    We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) with active neutrinos, we focus on models with {m}ν =7 {keV}, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider (1) two resonant production models with {\\sin }2(2θ )=5 × {10}-11 and {\\sin }2(2θ )=2 × {10}-10, to cover the range of mixing parameters consistent with the 3.5 keV line; (2) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal warm DM with particle mass {m}X=3 {keV}. Using a semianalytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way–like galaxies, and the global star formation history of galaxies with observations does not allow us to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z≳ 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the DM scenarios considered. We discuss how future observations with upcoming facilities will enable us to rule out or to strongly support DM models based on sterile neutrinos.

  3. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Stierwalt, Sabrina [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Neff, Susan G., E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl, E-mail: sabrina@ipac.caltech.edu, E-mail: susan.g.neff@nasa.gov [NASA GSFC, Code 665, Observational Cosmology Lab, Greenbelt, MD 20771 (United States)

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  4. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    International Nuclear Information System (INIS)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses 7.7 M ☉ and H I line widths –1 . Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M * ) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M * obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M * ∼ 8 M ☉ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M * than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  5. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  6. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    NARCIS (Netherlands)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-01-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may

  7. STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Salim, Samir; Rich, R. Michael

    2010-01-01

    In recent years, an argument has been made that a high fraction of early-type galaxies (ETGs) in the local universe experience low levels (∼ sun yr -1 ) of star formation (SF) that causes strong excess in UV flux, yet leaves the optical colors red. Many of these studies were based on Galaxy Evolution Explorer imaging of Sloan Digital Sky Survey (SDSS) galaxies (z ∼ 0.1), and were thus limited by its 5'' FWHM. Poor UV resolution left other possibilities for UV excess open, such as the old populations or an active galactic nucleus (AGN). Here, we study high-resolution far-ultraviolet HST/ACS images of optically quiescent early-type galaxies with strong UV excess. The new images show that three-quarters of these moderately massive (∼5 x 10 10 M sun ) ETGs shows clear evidence of extended SF, usually in form of wide or concentric UV rings, and in some cases, striking spiral arms. SDSS spectra probably miss these features due to small fiber size. UV-excess ETGs have on average less dust and larger UV sizes (D > 40 kpc) than other green-valley galaxies, which argues for an external origin for the gas that is driving the SF. Thus, most of these galaxies appear 'rejuvenated' (e.g., through minor gas-rich mergers or intergalactic medium accretion). For a smaller subset of the sample, the declining SF (from the original internal gas) cannot be ruled out. SF is rare in very massive early-types (M * > 10 11 M sun ), a possible consequence of AGN feedback. In addition to extended UV emission, many galaxies show a compact central source, which may be a weak, optically inconspicuous AGN.

  8. Physics of star formation in galaxies

    CERN Document Server

    Palla, F

    2002-01-01

    Begining with a historical introduction, ""Star Formation: The Early History"", this text then presents two long articles on ""Pre-Main-Sequence Evolution of Stars and Young Clusters"" and ""Observations of Young Stellar Objects"".

  9. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  10. EVOLUTION OF THE MERGER-INDUCED HYDROSTATIC MASS BIAS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Rudd, Douglas H.; Shaw, Laurie

    2012-01-01

    In this work, we examine the effects of mergers on the hydrostatic mass estimate of galaxy clusters using high-resolution Eulerian cosmological simulations. We utilize merger trees to isolate the last merger for each cluster in our sample and follow the time evolution of the hydrostatic mass bias as the systems relax. We find that during a merger, a shock propagates outward from the parent cluster, resulting in an overestimate in the hydrostatic mass bias. After the merger, as a cluster relaxes, the bias in hydrostatic mass estimate decreases but remains at a level of –5%-10% with 15%-20% scatter within r 500 . We also investigate the post-merger evolution of the pressure support from bulk motions, a dominant cause of this residual mass bias. At r 500 , the contribution from random motions peaks at 30% of the total pressure during the merger and quickly decays to ∼10%-15% as a cluster relaxes. Additionally, we use a measure of the random motion pressure to correct the hydrostatic mass estimate. We discover that 4 Gyr after mergers, the direct effects of the merger event on the hydrostatic mass bias have become negligible. Thereafter, the mass bias is primarily due to residual bulk motions in the gas which are not accounted for in the hydrostatic equilibrium equation. We present a hydrostatic mass bias correction method that can recover the unbiased cluster mass for relaxed clusters with 9% scatter at r 500 and 11% scatter in the outskirts, within r 200 .

  11. Accurate halo-galaxy mocks from automatic bias estimation and particle mesh gravity solvers

    Science.gov (United States)

    Vakili, Mohammadjavad; Kitaura, Francisco-Shu; Feng, Yu; Yepes, Gustavo; Zhao, Cheng; Chuang, Chia-Hsun; Hahn, ChangHoon

    2017-12-01

    Reliable extraction of cosmological information from clustering measurements of galaxy surveys requires estimation of the error covariance matrices of observables. The accuracy of covariance matrices is limited by our ability to generate sufficiently large number of independent mock catalogues that can describe the physics of galaxy clustering across a wide range of scales. Furthermore, galaxy mock catalogues are required to study systematics in galaxy surveys and to test analysis tools. In this investigation, we present a fast and accurate approach for generation of mock catalogues for the upcoming galaxy surveys. Our method relies on low-resolution approximate gravity solvers to simulate the large-scale dark matter field, which we then populate with haloes according to a flexible non-linear and stochastic bias model. In particular, we extend the PATCHY code with an efficient particle mesh algorithm to simulate the dark matter field (the FASTPM code), and with a robust MCMC method relying on the EMCEE code for constraining the parameters of the bias model. Using the haloes in the BigMultiDark high-resolution N-body simulation as a reference catalogue, we demonstrate that our technique can model the bivariate probability distribution function (counts-in-cells), power spectrum and bispectrum of haloes in the reference catalogue. Specifically, we show that the new ingredients permit us to reach percentage accuracy in the power spectrum up to k ∼ 0.4 h Mpc-1 (within 5 per cent up to k ∼ 0.6 h Mpc-1) with accurate bispectra improving previous results based on Lagrangian perturbation theory.

  12. Lyα EMITTING GALAXIES AS EARLY STAGES IN GALAXY FORMATION

    International Nuclear Information System (INIS)

    Cowie, Lennox L.; Barger, Amy J.; Hu, Esther M.

    2011-01-01

    We present optical spectroscopy of two samples of Galaxy Evolution Explorer grism selected Lyα emitters (LAEs): one at z = 0.195-0.44 and the other at z = 0.65-1.25. We have also observed a comparison sample of galaxies in the same redshift intervals with the same UV magnitude distributions but with no detected Lyα. We use the optical spectroscopy to eliminate active galactic nuclei and to obtain the optical emission-line properties of the samples. We compare the luminosities of the LAEs in the two redshift intervals and show that there is dramatic evolution in the maximum Lyα luminosity over z = 0-1. Focusing on the z = 0.195-0.44 samples alone, we show that there are tightly defined relations between all of the galaxy parameters and the rest-frame equivalent width (EW) of Hα. The higher EW(Hα) sources all have lower metallicities, bluer colors, smaller sizes, and less extinction, consistent with their being in the early stages of the galaxy formation process. We find that 75% ± 12% of the LAEs have EW(Hα) >100 A and, conversely, that 31% ± 13% of galaxies with EW(Hα) >100 A are LAEs. We correct the broadband magnitudes for the emission-line contributions and use spectral synthesis fits to estimate the ages of the galaxies. We find a median age of 1.1 x 10 8 yr for the LAE sample and 1.4 x 10 9 yr for the UV-continuum sample without detected Lyα. The median metallicity of the LAE sample is 12 + log (O/H) = 8.24, or about 0.4 dex lower than the UV-continuum sample.

  13. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  14. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  15. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  16. MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, David [Statistical and Applied Mathematical Sciences Institute (United States); Budavári, Tamás [Dept. of Applied Mathematics and Statistics, The Johns Hopkins University (United States); Mahoney, Michael W. [International Computer Science Institute (United States)

    2016-12-10

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors . Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  17. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    Science.gov (United States)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  18. MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES

    International Nuclear Information System (INIS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-01-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors . Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  19. The Formation and Evolution of Star Clusters in Interacting Galaxies

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2017-08-01

    Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.

  20. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  1. Structure and Formation of Elliptical and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong

  2. Formation des etoiles massives dans les galaxies spirales

    Science.gov (United States)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue qu'en incluant la densité des étoiles vieilles présentes, on arrive à mieux contraindre le rayon à partir duquel aucune formation d'étoiles ne devrait se produire dans les galaxies.

  3. Scale dependence of halo and galaxy bias: Effects in real space

    International Nuclear Information System (INIS)

    Smith, Robert E.; Scoccimarro, Roman; Sheth, Ravi K.

    2007-01-01

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01 -1 ] -1 ] -1 ], and only show amplification on smaller scales, whereas low mass haloes show strong, ∼5%-10%, suppression over the range 0.05 -1 ]<0.15. These results were primarily established through the use of the cross-power spectrum of dark matter and haloes, which circumvents the thorny issue of shot-noise correction. The halo-halo power spectrum, however, is highly sensitive to the shot-noise correction; we show that halo exclusion effects make this sub-Poissonian and a new correction is presented. Our results have special relevance for studies of the baryon acoustic oscillation features in the halo power spectra. Nonlinear mode-mode coupling: (i) damps these features on progressively larger scales as halo mass increases; (ii) produces small shifts in the positions of the peaks and troughs which depend on halo mass. We show that these effects on halo clustering are important over the redshift range relevant to such studies (0< z<2), and so will need to be accounted for when extracting information from precision measurements of galaxy clustering. Our analytic model is described in the language of the ''halo model.'' The halo-halo clustering term is propagated into the nonlinear regime using ''1-loop'' perturbation theory and a nonlinear halo bias model. Galaxies are then inserted into haloes through the halo occupation distribution. We show that, with nonlinear bias parameters derived from simulations, this model produces predictions that are qualitatively in agreement with our numerical results. We then use it to show that the power spectra of red and blue galaxies depend differently on scale, thus underscoring the fact that proper modeling of nonlinear bias parameters will be crucial to derive reliable cosmological constraints. In addition to showing that the bias on very large scales is not simply linear, the model also shows that the halo-halo and halo

  4. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    Science.gov (United States)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  5. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  6. The ACS LCID Project: On the Origin of Dwarf Galaxy Types—A Manifestation of the Halo Assembly Bias?

    NARCIS (Netherlands)

    Gallart, Carme; Monelli, Matteo; Mayer, Lucio; Aparicio, Antonio; Battaglia, Giuseppina; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Navarro, Julio F.; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B.; Weisz, Daniel R.

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than

  7. Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination

    Science.gov (United States)

    Sanders, Ryan L.; Shapley, Alice E.; Zhang, Kai; Yan, Renbin

    2017-12-01

    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of H II and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for H II regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the H II region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single H II regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.

  8. Galaxy formation-a condensation process just after recombination

    International Nuclear Information System (INIS)

    Lessner, G.

    1998-01-01

    A scenario of galaxy formation is put forward which is a process of sudden condensation just after recombination. It is essentially based on the fact that the cosmic-matter gas after recombination is a general relativistic Boltzmann gas which runs within a few 10 6 years into a tate very close to collision-dominated equilibrium. The mass spectrum of axially symmetric condensation 'drops' extends from the lower limit M ≅ 10 5 M to the upper limit M ≅ 10 12 M. The lower-limit masses are spheres whereas the upper-limit masses are thin pancakes. These pancakes contract within a time of about 2.5 · 10 9 y to rotating spiral galaxies with ordinary proportions. In this final state they have a redshift z ≅ 3. At an earlier time during their contraction they are highly active and are observed with a redshift z ≅ 5

  9. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  10. Hot model of formation of galaxies: galaxy sizes and the origin of the stellar component

    International Nuclear Information System (INIS)

    Suchkov, A.A.

    1988-01-01

    Within the framework of the ''hot'' model of the formation of galaxies, a mechanism proposed is by which a protogalaxy transforms into a stellar system. It gives a quantitative relation between the mass and size of galaxy which well fits in with the observational relation; also it specifies two characteristic values of mass which coincide with masses of stars and globular clusters. It is shown that a ''hot protogalaxy'' (T ∼ 10 7 K) contracting under the gravity of a massive dark halo attains a critical size and fragments into separate clouds via thermal instability. The clouds form a collisionless system which collapses quasiadiabatically and reaches the equilibrium after its size decreases approximately by a factor of two. This defines the final zero of the system:R S ∼ 10 (M S /10 11 M sun ) 1/2 kpc. It is close to the sizes of elliptical galaxies and halos of spiral galaxies, and agree with the Faber-Jackson relation. The instability forms clouds with temperatures T c ' ∼ 10 4 K and T c ∼ (10-10 2 ) K. The sharp temperature and density change caused by the cloud formation leads to a sharp change of the Jeans mass. It value drops to M J ∼ 10 5 M sun for the clouds with T c ∼ 10 4 K, and to M J ' ∼ (10 -1 -10) M sun for the clouds with T c ' ∼ (10-10 2 ) K. This may explain why the mass spectrum of galactic objects is rather sharply peaked at two values corresponding to stellar mass and globular cluster mass

  11. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rujopakarn, W.; Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rieke, G. H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cibinel, A. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Nyland, K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Jagannathan, P.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Straße 2, Garching (Germany); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Elbaz, D. [CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Geach, J. E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayward, C. C. [Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010 (United States); Kirkpatrick, A., E-mail: wiphu.rujopakarn@ipmu.jp [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); and others

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.

  12. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    International Nuclear Information System (INIS)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J.; Rieke, G. H.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Bhatnagar, S.; Alexander, D. M.; Biggs, A. D.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.

    2016-01-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr −1 kpc −2 , sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M ⊙ yr −1 ) above which a significant population of more compact SFGs appears to emerge.

  13. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  14. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  15. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    Science.gov (United States)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  16. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gonçalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude, Rio de Janeiro-RJ 20080-090 (Brazil); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2017-06-10

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  17. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Science.gov (United States)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  18. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark; Gonçalves, Thiago S.; Schiminovich, David

    2017-01-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  19. Approximations to galaxy star formation rate histories: properties and uses of two examples

    Science.gov (United States)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  20. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  1. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Hill, Vanessa; Tosi, Monica; Blandford, R; Kormendy, J; VanDishoeck, E

    2009-01-01

    Within the Local Universe galaxies can be studied in great detail star by star, and here we review the results of quantitative studies in nearby dwarf galaxies. The color-magnitude diagram synthesis method is well established as the most accurate way to determine star-formation histories of galaxies

  2. SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Benjamin; Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-05-10

    We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2} density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.

  3. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    International Nuclear Information System (INIS)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-01-01

    We compare molecular gas traced by 12 CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ mol and Σ SFR but also find important second-order systematic variations in the apparent molecular gas depletion time, τ dep mol =Σ mol /Σ SFR . At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α CO equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ dep mol =Σ mol /Σ SFR ∼2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, Σ SFR ∝Σ mol N . We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ dep mol and other local and global quantities. The strongest of these are a decreased τ dep mol in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ dep mol with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H 2 conversion factor (α CO ) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ dep mol trends. After applying a D/G-dependent α CO , some weak correlations between τ dep mol and local conditions persist. In particular, we observe lower τ dep mol and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the

  4. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    Science.gov (United States)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  5. Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.

    2017-12-01

    In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.

  6. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Dolphin, Andrew E., E-mail: kmcquinn@astro.umn.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  7. Cosmic shear as a probe of galaxy formation physics

    International Nuclear Information System (INIS)

    Foreman, Simon; Becker, Matthew R.

    2016-01-01

    Here, we evaluate the potential for current and future cosmic shear measurements from large galaxy surveys to constrain the impact of baryonic physics on the matter power spectrum. We do so using a model-independent parametrization that describes deviations of the matter power spectrum from the dark-matter-only case as a set of principal components that are localized in wavenumber and redshift. We perform forecasts for a variety of current and future data sets, and find that at least ~90 per cent of the constraining power of these data sets is contained in no more than nine principal components. The constraining power of different surveys can be quantified using a figure of merit defined relative to currently available surveys. With this metric, we find that the final Dark Energy Survey data set (DES Y5) and the Hyper Suprime-Cam Survey will be roughly an order of magnitude more powerful than existing data in constraining baryonic effects. Upcoming Stage IV surveys (Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope) will improve upon this by a further factor of a few. We show that this conclusion is robust to marginalization over several key systematics. The ultimate power of cosmic shear to constrain galaxy formation is dependent on understanding systematics in the shear measurements at small (sub-arcminute) scales. Lastly, if these systematics can be sufficiently controlled, cosmic shear measurements from DES Y5 and other future surveys have the potential to provide a very clean probe of galaxy formation and to strongly constrain a wide range of predictions from modern hydrodynamical simulations.

  8. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  9. Star formation suppression and bar ages in nearby barred galaxies

    Science.gov (United States)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  10. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  11. Cosmic CARNage I: on the calibration of galaxy formation models

    Science.gov (United States)

    Knebe, Alexander; Pearce, Frazer R.; Gonzalez-Perez, Violeta; Thomas, Peter A.; Benson, Andrew; Asquith, Rachel; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J.; Cattaneo, Andrea; Cora, Sofía A.; Croton, Darren J.; Cui, Weiguang; Cunnama, Daniel; Devriendt, Julien E.; Elahi, Pascal J.; Font, Andreea; Fontanot, Fabio; Gargiulo, Ignacio D.; Helly, John; Henriques, Bruno; Lee, Jaehyun; Mamon, Gary A.; Onions, Julian; Padilla, Nelson D.; Power, Chris; Pujol, Arnau; Ruiz, Andrés N.; Srisawat, Chaichalit; Stevens, Adam R. H.; Tollet, Edouard; Vega-Martínez, Cristian A.; Yi, Sukyoung K.

    2018-04-01

    We present a comparison of nine galaxy formation models, eight semi-analytical, and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of comoving width 125h-1 Mpc, with a dark-matter particle mass of 1.24 × 109h-1M⊙) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some `memory' of any previous calibration that served as the starting point (especially for the manually tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3σ. The second calibration extended the observational data to include the z = 2 SMF alongside the z ˜ 0 star formation rate function, cold gas mass, and the black hole-bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models, we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available.

  12. Dynamical Treatment of Virialization Heating in Galaxy Formation

    Science.gov (United States)

    Wang, Peng; Abel, Tom

    2008-01-01

    In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously, allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semianalytical models of galaxy formation. Our method explicitly conserves energy, unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semianalytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

  13. Learning the Relationship between Galaxy Spectra and Star Formation Histories

    Science.gov (United States)

    Lovell, Christopher; Acquaviva, Viviana; Iyer, Kartheik; Gawiser, Eric

    2018-01-01

    We explore novel approaches to the problem of predicting a galaxy’s star formation history (SFH) from its Spectral Energy Distribution (SED). Traditional approaches to SED template fitting use constant or exponentially declining SFHs, and are known to incur significant bias in the inferred SFHs, which are typically skewed toward younger stellar populations. Machine learning approaches, including tree ensemble methods and convolutional neural networks, would not be affected by the same bias, and may work well in recovering unbiased and multi-episodic star formation histories. We use a supervised approach whereby models are trained using synthetic spectra, generated from three state of the art hydrodynamical simulations, including nebular emission. We explore how SED feature maps can be used to highlight areas of the spectrum with the highest predictive power and discuss the limitations of the approach when applied to real data.

  14. Modeling for Stellar Feedback in Galaxy Formation Simulations

    Science.gov (United States)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.

  15. Early-Type Galaxy Star Formation Histories in Different Environments

    Science.gov (United States)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  16. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  17. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  18. The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models

    Science.gov (United States)

    Tweed, D. P.; Mamon, G. A.; Thuan, T. X.; Cattaneo, A.; Dekel, A.; Menci, N.; Calura, F.; Silk, J.

    2018-06-01

    In the local Universe, the existence of very young galaxies (VYGs), having formed at least half their stellar mass in the last 1 Gyr, is debated. We predict the present-day fraction of VYGs among central galaxies as a function of galaxy stellar mass. For this, we apply to high mass resolution Monte Carlo halo merger trees (MCHMTs) three (one) analytical models of galaxy formation, where the ratio of stellar to halo mass (mass growth rate) is a function of halo mass and redshift. Galaxy merging is delayed until orbital decay by dynamical friction. With starbursts associated with halo mergers, our models predict typically 1 per cent of VYGs up to galaxy masses of m = 1010 M⊙, falling rapidly at higher masses, and VYGs are usually associated with recent major mergers of their haloes. Without these starbursts, two of the models have VYG fractions reduced by 1 or 2 dex at low or intermediate stellar masses, and VYGs are rarely associated with major halo mergers. In comparison, the state-of-the-art semi-analytical model (SAM) of Henriques et al. produces only 0.01 per cent of VYGs at intermediate masses. Finally, the Menci et al. SAM run on MCHMTs with Warm Dark Matter cosmology generates 10 times more VYGs at m < 108 M⊙ than when run with Cold Dark Matter. The wide range in these VYG fractions illustrates the usefulness of VYGs to constrain both galaxy formation and cosmological models.

  19. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    International Nuclear Information System (INIS)

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  20. DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Madau, Piero; Shen, Sijing; Governato, Fabio

    2014-01-01

    We present more results from a fully cosmological ΛCDM simulation of a group of isolated dwarf galaxies that has been shown to reproduce the observed stellar mass and cold gas content, resolved star formation histories, and metallicities of dwarfs in the Local Volume. Here we investigate the energetics and timetable of the cusp-core transformation. As suggested by previous work, supernova-driven gas outflows remove dark matter (DM) cusps and create kiloparsec-size cores in all systems having a stellar mass M * > 10 6 M ☉ . The D M core mass removal efficiency — dark mass ejected per unit stellar mass—ranges today from a few to a dozen, and increases with decreasing host mass. Because dwarfs form the bulk of their stars prior to redshift 1 and the amount of work required for DM heating and core formation scales approximately as M vir 5/3 , the unbinding of the DM cusp starts early and the formation of cored profiles is not as energetically onerous as previously claimed. DM particles in the cusp typically migrate to 2-3 core radii after absorbing a few percent of the energy released by supernovae. The present-day slopes of the inner DM mass profiles, Γ ≡ dlog M/dlog R ≅ 2.5-3, of the simulated ''Bashful'' and ''Doc'' dwarfs are similar to those measured in the luminous Fornax and Sculptor dwarf spheroidals. None of the simulated galaxies has a circular velocity profile exceeding 20 km s –1 in the inner 1 kpc, implying that supernova feedback is key to solve the ''too-big-to-fail'' problem for Milky Way subhalos

  1. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  2. Tidal Dwarf Galaxies: Disc Formation at \\(z\\simeq0\\

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2015-11-01

    Full Text Available Collisional debris around interacting and post-interacting galaxies often display condensations of gas and young stars that can potentially form gravitationally bound objects: Tidal Dwarf Galaxies (TDGs. We summarise recent results on TDGs, which are originally published in Lelli et al. (2015, A&A.We study a sample of six TDGs around three different interacting systems, using high-resolution HI observations from the Very Large Array. We find that the HI emission associated to TDGs can be described by rotating disc models. These discs, however, would have undergone less than one orbit since the time of the TDG formation, raising the question of whether they are in dynamical equilibrium. Assuming that TDGs are in dynamical equilibrium, we find that the ratio of dynamical mass to baryonic mass is consistent with one, implying that TDGs are devoid of dark matter. This is in line with the results of numerical simulations where tidal forces effectively segregate dark matter in the halo from baryonic matter in the disc, which ends up forming tidal tails and TDGs.

  3. Formation of families of twin galaxies by string loops

    International Nuclear Information System (INIS)

    Cowie, L.L.; Hu, E.M.

    1987-01-01

    It is argued that if strings are responsible for many of the quasar lens systems and for galaxy formation, then nearby string loops should produce a substantial number of groups of near-identical twin galaxies with near-constant separations. Groups with a few twin members should present a striking doubled appearance and should be easily recognizable. One example of this type of object (found serendipitously in a CCD frame of a distant quasar) is discussed which contains four such identical twins with separation from 2.0 to 2.5 arcsecs, lying in a region about 20 x 20 arcsecs. Morphologically it presents the appearance expected from a string-lensed region. However, the accurate velocity splittings between the pairs which would be required to distinguish this from a chance concatenation of binary pairs are not yet available. The latter is an implausible explanation but may be possible if there is a very high incidence of binaryism in a substantial fraction of distant groups. 20 references

  4. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  5. EMERGE - an empirical model for the formation of galaxies since z ˜ 10

    Science.gov (United States)

    Moster, Benjamin P.; Naab, Thorsten; White, Simon D. M.

    2018-06-01

    We present EMERGE, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ˜ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Galaxies that are quenched at z = 0 typically have a higher peak star formation rate compared to their star-forming counterparts. EMERGE predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intracluster mass in massive haloes can be up to eight times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.

  6. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    International Nuclear Information System (INIS)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mayer, Lucio; Bernard, Edouard J.; Cassisi, Santi; Cole, Andrew A.; Dolphin, Andrew E.; Navarro, Julio F.; Salvadori, Stefania; Skillman, Evan D.; Stetson, Peter B.; Weisz, Daniel R.

    2015-01-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation

  7. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    Energy Technology Data Exchange (ETDEWEB)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L. [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7005 (Australia); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada); Salvadori, Stefania [Kapteyn Astronomical Institute, Landleven 12, NL-9747 AD Groningen (Netherlands); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Stetson, Peter B. [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Weisz, Daniel R., E-mail: monelli@iac.es [Astronomy Department, University of Washington, Box 351580, Seattle, WA (United States)

    2015-10-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.

  8. Recent progress in simulating galaxy formation from the largest to the smallest scales

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-05-01

    Galaxy formation simulations are an essential part of the modern toolkit of astrophysicists and cosmologists alike. Astrophysicists use the simulations to study the emergence of galaxy populations from the Big Bang, as well as the formation of stars and supermassive black holes. For cosmologists, galaxy formation simulations are needed to understand how baryonic processes affect measurements of dark matter and dark energy. Owing to the extreme dynamic range of galaxy formation, advances are driven by novel approaches using simulations with different tradeoffs between volume and resolution. Large-volume but low-resolution simulations provide the best statistics, while higher-resolution simulations of smaller cosmic volumes can be evolved with self-consistent physics and reveal important emergent phenomena. I summarize recent progress in galaxy formation simulations, including major developments in the past five years, and highlight some key areas likely to drive further advances over the next decade.

  9. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas [California Institute for Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bigiel, Frank [Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bolatto, Alberto [Department of Astronomy, University of Maryland, College Park, MD (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); De Blok, W. J. G. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Rosolowsky, Erik [University of British Columbia, Okanagan Campus, Kelowna, BC (Canada); Schuster, Karl-Friedrich [IRAM, 300 rue de la Piscine, F-38406 St. Martin d' Heres (France); Usero, Antonio [Observatorio Astronomico Nacional, C/ Alfonso XII, 3, E-28014 Madrid (Spain)

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  10. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  11. Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the EAGLE simulation

    Science.gov (United States)

    Tagore, Amitpal S.; Barnes, David J.; Jackson, Neal; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2018-03-01

    Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyse strong lenses from the largest EAGLE hydrodynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5 per cent with an intrinsic scatter of 10 per cent, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source-lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6 per cent and 10 per cent, respectively, while quad lenses show bias and intrinsic scatter of 0.5 per cent and 10 per cent, respectively. For lenses with a reduced χ2 > 1, a power-law dependence of the χ2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.

  12. cD galaxy formation and dissipationless collapse

    International Nuclear Information System (INIS)

    Rhee, G.; Roos, N.

    1990-01-01

    There is strong new evidence that first-ranked galaxies are aligned with their parent cluster and with the direction of the nearest neighbour cluster (scale 15 h -1 Mpc) and that the average ellipticity of first-ranked ellipticals is a strongly increasing function of radius. The alignment effect is limited to first-ranked galaxies and is stronger for cD and gE galaxies than for first-ranked galaxies of later type. In hierarchical clustering scenarios like the cold dark matter theory, clusters of galaxies are expected to have moderate asphericity. We present numerical results of a study of the dissipationless collapse of moderately aspherical systems. (author)

  13. The rotation of galaxies: clues to their formation

    International Nuclear Information System (INIS)

    Fall, S.M.

    1982-01-01

    The rotation of galaxies of different morphological types is closely linked with their structural features and therefore with the processes by which they formed. In this context, the most important distinction is between galaxies that are dominated by a spheroid or bulge component - the ellipticals and some lenticulars - and galaxies that are dominated by a disk component - some lenticulars, the spirals and some irregulars. As the result of improvements in spectroscopic techniques, we now have reliable kinematic data for galaxies of most types in a wide range of masses and sizes. The author discusses the observational results and their implications for several views of the origin and evolution of galaxies. (Auth.)

  14. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  15. Binary pairs of supermassive black holes - Formation in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  16. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  17. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  18. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    Science.gov (United States)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  19. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  20. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  1. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Einasto, Maret; Vennik, Jaan [Tartu Observatory, 61602 Tõravere (Estonia)

    2017-01-20

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f {sub SF}) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h {sup −1} Mpc (D8). The slope of f {sub SF} versus D8 is −0.008 ± 0.002. The f {sub SF} of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f {sub SF} and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f {sub SF} in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  2. STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2017-01-01

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f SF ) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h −1 Mpc (D8). The slope of f SF versus D8 is −0.008 ± 0.002. The f SF of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f SF and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f SF in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  3. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  4. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  5. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  6. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  7. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  8. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  9. The impact of individual biases on consensus formation.

    Directory of Open Access Journals (Sweden)

    Marta Sales-Pardo

    Full Text Available Social groups of interacting agents display an ability to coordinate in the absence of a central authority, a phenomenon that has been recently amplified by the widespread availability of social networking technologies. Models of opinion formation in a population of agents have proven a very useful tool to investigate these phenomena that arise independently of the heterogeneities across individuals and can be used to identify the factors that determine whether widespread consensus on an initial small majority is reached. Recently, we introduced a model in which individual agents can have conservative and partisan biases. Numerical simulations for finite populations showed that while the inclusion of conservative agents in a population enhances the population's efficiency in reaching consensus on the initial majority opinion, even a small fraction of partisans leads the population to converge on the opinion initially held by a minority. To further understand the mechanisms leading to our previous numerical results, we investigate analytically the noise driven transition from a regime in which the population reaches a majority consensus (efficient, to a regime in which the population settles in deadlock (non-efficient. We show that the mean-field solution captures what we observe in model simulations. Populations of agents with no opinion bias show a continuous transition to a deadlock regime, while populations with an opinion bias, show a discontinuous transition between efficient and partisan regimes. Furthermore, the analytical solution reveals that populations with an increasing fraction of conservative agents are more robust against noise than a population of naive agents because in the efficient regime there are relatively more conservative than naive agents holding the majority opinion. In contrast, populations with partisan agents are less robust to noise with an increasing fraction of partisans, because in the efficient regime there are

  10. On the Relationship between Star Formation and Activity in Galaxies

    Science.gov (United States)

    Gonzalez Delgado, Rosa M.

    1995-11-01

    This thesis is made of three main parts. In the first one a sample of 55 galaxies with an active nucleus (Seyfert 1, Seyfert2 and LINERs) is analysed; these were observed with the 4.2m WHT and 1m JKT in CCD narrow band H-alpha +[NII] and [OIII] to map the distribution of HII regions and the morphology of the circumnuclear extended emission associated with the active nucleus. The analysis of the extended emission and HII regions is carried out, as a function of the level of activity and of the Hubble type. One third of the sample shows circumnuclear HII regions, but only 9% of these are S1. The number surface density of the star forming sites and the location of the brightest HII region, indicates that in S2 the star formation is more important in the inner disk; however, in S1 the distribution of the star forming sites is more uniform with distance, and the brighest HII regions are farther away from the nucleus than in S2. The luminosity function, size distribution, the relationship between the Ha flux and the size, the emission measure, and the radial distribution of the HII regions in 27 out of the 55 galaxies of the sample are studied. This comprises a statistical analysis of more than 2000 HII regions. In the second part of this thesis the giant extragalactic HII region NGC 2363 and the starburst galaxy NGC 7714 are studied; they were observed in narrow band CCD H-alpha image with the JKT and spectroscopically from 3700 to 9600 A with the WHT. Both objects are experiencing intense star formation activity. Evidence of this comes from the detection of WC and WN emission features in NGC 2363 and in NGC 7714 respectively; this suggests an age of the present burst between 3 and 5 Myr. However, evidence for the existence of a previous burst in NGC 7714 comes from the detection of the infrared CaII triplet in absorption. The physical conditions and chemical composition of the gas are derived. In both cases, the metallicity is low (12+log O/H=7.89 for NGC 2363) and

  11. Baryon bias and structure formation in an accelerating universe

    International Nuclear Information System (INIS)

    Amendola, Luca; Tocchini-Valentini, Domenico

    2002-01-01

    In most models of dark energy the structure formation stops after the accelerated expansion begins. In contrast, we show that the coupling of dark energy to dark matter may induce the growth of perturbations even in the accelerated regime. In particular, we show that this occurs in the models proposed to solve the cosmic coincidence problem, in which the ratio of dark energy to dark matter is constant. Depending on the parameters, the growth may be much faster than in a standard matter-dominated era. Moreover, if the dark energy couples only to dark matter and not to baryons, as requested by the constraints imposed by local gravity measurements, the baryon fluctuations develop a constant, scale-independent, large-scale bias which is in principle directly observable. We find that a lower limit to the baryon bias b>0.5 requires the total effective parameter of state w e =1+p/ρ to be larger than 0.6 while a limit b>0.73 would rule out the model

  12. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  13. A Variation of the Present Star Formation Activity of Spiral Galaxies

    OpenAIRE

    Tomita, Akihiko; Tomita, Yoshio; Saito, Mamoru

    1996-01-01

    The star formation rate in spiral galaxies is considered to be decreasing continuously with time in a time scale of $10^{9}$ yr. The present star formation activity, on the other hand, shows various degrees among galaxies. We make a new data set of 1681 nearby spiral galaxies from available databases and study the statistics of the present star formation activity. We analyze far-infrared and optical B-band surface brightnesses of the H II regions and the non-H II regions in M~31 and show that...

  14. Non-equilibrium chemistry and cooling in simulations of galaxy formation

    NARCIS (Netherlands)

    Richings, Alexander James

    2015-01-01

    In this thesis we used numerical simulations to explore the role that chemistry plays in galaxy formation. Simulations of galaxies often assume chemical equilibrium, where the chemical reactions between ions and molecules have reached a steady state. However, this assumption may not be valid if the

  15. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  16. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  17. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION

    International Nuclear Information System (INIS)

    Stark, Daniel P.; Ellis, Richard S.; Targett, Tom; Benson, Andrew; Bunker, Andrew; Bundy, Kevin; Lacy, Mark

    2009-01-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z ≅ 4 and z ≅ 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ∼ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z ∼> 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z ≅ 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 ∼ 11 M sun ) z ≅ 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 ∼ 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z ≅ 2.

  18. Gravitational instability theory of galaxy formation and clustering - Some recent developments

    International Nuclear Information System (INIS)

    Fall, S.M.; Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.)

    1980-01-01

    Some recent developments in the gravitational instability theory of galaxy formation and clustering are discussed including a comparison with observational data. On the theoretical side, N-body computer simulations have helped to sharpen the predictions of the theory and several new ideas have emerged on the roles of dissipation in protogalactic fragmentation and in galaxy collisions. On the observational side, the clustering properties of galaxies have been analyzed in new ways that demand a detailed comparison with theory. More and better measurements of the sizes, masses, and rotations of galaxies continue to accumulate

  19. Galaxy Collisions, Gas Stripping and Star Formation in the Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2006-01-01

    Roč. 18, - (2006), s. 125-146 ISSN 0941-1445. [From Cosmological Structures to the Milky Way. Praha, 20.09.2004-25.09.2004] Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxies * evolution of galaxies * interstellar matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  1. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  2. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  3. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0 galaxies in galaxy clusters with log M * ≲ 10.0 M ☉ .

  4. Embedded star formation in S4G galaxy dust lanes

    International Nuclear Information System (INIS)

    Elmegreen, Debra M.; Teich, Yaron; Popinchalk, Mark; Elmegreen, Bruce G.; Erroz-Ferrer, Santiago; Knapen, Johan H.; Athanassoula, E.; Bosma, Albert; Comerón, Sébastien; Laine, Jarkko; Laurikainen, Eija; Efremov, Yuri N.; Gadotti, Dimitri A.; Kim, Taehyun; De Paz, Armando Gil; Hinz, Joannah L.; Ho, Luis C.; Holwerda, Benne; Menéndez-Delmestre, Karín; Mizusawa, Trisha

    2014-01-01

    Star-forming regions that are visible at 3.6 μm and Hα but not in the u, g, r, i, z bands of the Sloan Digital Sky Survey are measured in five nearby spiral galaxies to find extinctions averaging ∼3.8 mag and stellar masses averaging ∼5 × 10 4 M ☉ . These regions are apparently young star complexes embedded in dark filamentary shock fronts connected with spiral arms. The associated cloud masses are ∼10 7 M ☉ . The conditions required to make such complexes are explored, including gravitational instabilities in spiral-shocked gas and compression of incident clouds. We find that instabilities are too slow for a complete collapse of the observed spiral filaments, but they could lead to star formation in the denser parts. Compression of incident clouds can produce a faster collapse but has difficulty explaining the semi-regular spacing of some regions along the arms. If gravitational instabilities are involved, then the condensations have the local Jeans mass. Also in this case, the near-simultaneous appearance of equally spaced complexes suggests that the dust lanes, and perhaps the arms too, are relatively young.

  5. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  6. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  7. THE RELATION BETWEEN DYNAMICS AND STAR FORMATION IN BARRED GALAXIES

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.

    2011-01-01

    We analyze optical and near-infrared data of a sample of 11 barred spiral galaxies, in order to establish a connection between star formation and bar/spiral dynamics. We find that 22 regions located in the bars and 20 regions in the spiral arms beyond the end of the bar present azimuthal color/age gradients that may be attributed to star formation triggering. Assuming a circular motion dynamic model, we compare the observed age gradient candidates with stellar population synthesis models. A link can then be established with the disk dynamics that allows us to obtain parameters like the pattern speed of the bar or spiral as well as the positions of resonance radii. We subsequently compare the derived pattern speeds with those expected from theoretical and observational results in the literature (e.g., bars ending near corotation). We find a tendency to overestimate bar pattern speeds derived from color gradients in the bar at small radii, away from corotation; this trend can be attributed to non-circular motions of the young stars born in the bar region. In spiral regions, we find that ∼50% of the color gradient candidates are 'inverse', i.e., with the direction of stellar aging contrary to that of rotation. The other half of the gradients found in spiral arms have stellar ages that increase in the same sense as rotation. Of the nine objects with gradients in both bars and spirals, six (67%) appear to have a bar and a spiral with similar Ω p , while three (33%) do not.

  8. Global and radial variations in the efficiency of massive star formation among galaxies

    International Nuclear Information System (INIS)

    Allen, L.E.; Young, J.S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well

  9. Structure formation from non-Gaussian initial conditions: Multivariate biasing, statistics, and comparison with N-body simulations

    International Nuclear Information System (INIS)

    Giannantonio, Tommaso; Porciani, Cristiano

    2010-01-01

    We study structure formation in the presence of primordial non-Gaussianity of the local type with parameters f NL and g NL . We show that the distribution of dark-matter halos is naturally described by a multivariate bias scheme where the halo overdensity depends not only on the underlying matter density fluctuation δ but also on the Gaussian part of the primordial gravitational potential φ. This corresponds to a non-local bias scheme in terms of δ only. We derive the coefficients of the bias expansion as a function of the halo mass by applying the peak-background split to common parametrizations for the halo mass function in the non-Gaussian scenario. We then compute the halo power spectrum and halo-matter cross spectrum in the framework of Eulerian perturbation theory up to third order. Comparing our results against N-body simulations, we find that our model accurately describes the numerical data for wave numbers k≤0.1-0.3h Mpc -1 depending on redshift and halo mass. In our multivariate approach, perturbations in the halo counts trace φ on large scales, and this explains why the halo and matter power spectra show different asymptotic trends for k→0. This strongly scale-dependent bias originates from terms at leading order in our expansion. This is different from what happens using the standard univariate local bias where the scale-dependent terms come from badly behaved higher-order corrections. On the other hand, our biasing scheme reduces to the usual local bias on smaller scales, where |φ| is typically much smaller than the density perturbations. We finally discuss the halo bispectrum in the context of multivariate biasing and show that, due to its strong scale and shape dependence, it is a powerful tool for the detection of primordial non-Gaussianity from future galaxy surveys.

  10. The Cold Side of Galaxy Formation: Dense Gas Through Cosmic Time

    Science.gov (United States)

    Riechers, Dominik A.; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The processes that lead to the formation and evolution of galaxies throughout the history of the Universe involve the complex interplay between hierarchical merging of dark matter halos, accretion of primordial and recycled gas, transport of gas within galaxy disks, accretion onto central super-massive black holes, and the formation of molecular clouds which subsequently collapse and fragment. The resulting star formation and black hole accretion provide large sources of energy and momentum that light up galaxies and lead to feedback. The ngVLA will be key to further understand how gas is accreted onto galaxies, and the processes that regulate the growth of galaxies through cosmic history. It will reveal how and on which timescales star formation and black hole accretion impact the gas in galaxies, and how the physical properties and chemical state of the gas change as gas cycles between different phases for different galaxy populations over a broad range in redshifts. The ngVLA will have the capability to carry out unbiased, large cosmic volume surveys at virtually any redshift down to an order of magnitude lower gas masses than currently possible in the critical low-level CO lines, thus exposing the evolution of gaseous reservoirs from the earliest epochs to the peak of the cosmic history of star formation. It will also image routinely and systematically the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts. The ngVLA thus is poised to revolutionize our understanding of galaxy evolution through cosmic time.

  11. GALAXY FORMATION WITH COLD GAS ACCRETION AND EVOLVING STELLAR INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Kang Xi; Lin, W. P.; Skibba, Ramin; Chen, D. N.

    2010-01-01

    The evolution of the galaxy stellar mass function is especially useful to test the current model of galaxy formation. Observational data have revealed a few inconsistencies with predictions from the ΛCDM model. For example, most massive galaxies have already been observed at very high redshifts, and they have experienced only mild evolution since then. In conflict with this, semi-analytical models (SAMs) of galaxy formation predict an insufficient number of massive galaxies at high redshift and a rapid evolution between redshift 1 and 0. In addition, there is a strong correlation between star formation rate (SFR) and stellar mass for star-forming galaxies, which can be roughly reproduced with the model, but with a normalization that is too low at high redshift. Furthermore, the stellar mass density obtained from the integral of the cosmic star formation history is higher than the measured one by a factor of 2. In this paper, we study these issues using an SAM that includes (1) cold gas accretion in massive halos at high redshift; (2) tidal stripping of stellar mass from satellite galaxies; and (3) an evolving stellar initial mass function (IMF; bottom-light) with a higher gas recycle fraction. Our results show that the combined effects from (1) and (2) can predict sufficiently massive galaxies at high redshifts and reproduce their mild evolution at low redshift, while the combined effects of (1) and (3) can reproduce the correlation between SFR and stellar mass for star-forming galaxies across a wide range of redshifts. A bottom-light/top-heavy stellar IMF could partly resolve the conflict between the stellar mass density and cosmic star formation history.

  12. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  13. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  14. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  15. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    Science.gov (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  16. Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

    International Nuclear Information System (INIS)

    Bournaud, F.

    2011-01-01

    Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in 'resolved' modeling of star formation, aiming at explicitly capturing star-foul-ling instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero. (authors)

  17. The IRX-β dust attenuation relation in cosmological galaxy formation simulations

    Science.gov (United States)

    Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James

    2018-02-01

    We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.

  18. The Impact of Star Formation Histories on Stellar Mass Estimation: Implications from the Local Group Dwarf Galaxies

    Science.gov (United States)

    Zhang, Hong-Xin; Puzia, Thomas H.; Weisz, Daniel R.

    2017-11-01

    Building on the relatively accurate star formation histories (SFHs) and metallicity evolution of 40 Local Group (LG) dwarf galaxies derived from resolved color-magnitude diagram modeling, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-near-IR color-mass-to-light ratio (color-{log}{{{\\Upsilon }}}\\star (λ)) distributions and M ⋆ estimation of local universe galaxies. We find that (1) the LG galaxies follow color-{log}{{{\\Upsilon }}}\\star (λ) relations that fall in between the ones calibrated by previous studies; (2) optical color-{log}{{{\\Upsilon }}}\\star (λ) relations at higher [M/H] are generally broader and steeper; (3) the SFH “concentration” does not significantly affect the color-{log}{{{\\Upsilon }}}\\star (λ) relations; (4) light-weighted ages }λ and metallicities }λ together constrain {log}{{{\\Upsilon }}}\\star (λ) with uncertainties ranging from ≲0.1 dex for the near-IR up to 0.2 dex for the optical passbands; (5) metallicity evolution induces significant uncertainties to the optical but not near-IR {{{\\Upsilon }}}\\star (λ) at a given }λ and }λ ; (6) the V band is the ideal luminance passband for estimating {{{\\Upsilon }}}\\star (λ) from single colors, because the combinations of {{{\\Upsilon }}}\\star (V) and optical colors such as B - V and g - r exhibit the weakest systematic dependences on SFHs, metallicities, and dust extinction; and (7) without any prior assumption on SFHs, M ⋆ is constrained with biases ≲0.3 dex by the optical-to-near-IR SED fitting. Optical passbands alone constrain M ⋆ with biases ≲0.4 dex (or ≲0.6 dex) when dust extinction is fixed (or variable) in SED fitting. SED fitting with monometallic SFH models tends to underestimate M ⋆ of real galaxies. M ⋆ tends to be overestimated (or underestimated) at the youngest (or oldest) }{mass}.

  19. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    Science.gov (United States)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  20. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Science.gov (United States)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  1. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    Science.gov (United States)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  2. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  3. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  4. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  5. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    Science.gov (United States)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  6. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  7. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Peng-Fei; Yuan, Qi-Rong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Zhang, Li [QuFu Education Bureau, QuFu 273100 (China); Zhou, Xu, E-mail: pfyan0822@sina.com, E-mail: yuanqirong@njnu.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have

  8. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  9. Star-formation rates in the nuclei of violently interacting galaxies

    International Nuclear Information System (INIS)

    Bushouse, H.A.

    1986-01-01

    Spectrophotometry has been obtained of the nuclear regions of a large sample of violently interacting spiral galaxies. The sample galaxies were chosen to include only those systems having tails, plumes, or other morphological features consistent with strong tidal interactions involving disk galaxies. The interacting galaxies are found to exhibit a wide range of nuclear optical emission-line strengths, but show a significantly higher overall level in both Hα emission-line equivalent width and luminosity than samples of field spirals observed in a similar fashion. While galaxy-galaxy interactions can lead to large nuclear star-formation bursts, this is not a ubiquitous phenomenon. A large fraction (approx.30%) of the nuclei show only weak or no detectable optical emission lines and are characterized by stellar absorption spectra of old, elliptical galaxy-like stellar populations, thus indicating little recent or continuing star-formation activity. These circumstances can occur even in instances where the nucleus of the other component has a large population of young stars. While exhaustion of a galaxy's gas supply during the later phases of interaction can account for post-burst systems, it cannot explain systems that have experienced no significant star-formation activity throughout the entire interaction process. Seyfert and low-ionization nuclei also are rare in violently interacting systems which, coupled with the large number of nuclei found to have little star-formation activity, suggests either an initial lack of near-nuclear gas or that gas is present but in inappropriate forms to support star formation or fuel nuclear activity

  10. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  11. Stellar population in star formation regions of galaxies

    Science.gov (United States)

    Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.

    2018-05-01

    We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.

  12. Gasdynamics and star formation in interacting and merging galaxies

    International Nuclear Information System (INIS)

    Olson, K.M.; Kwan, J.

    1990-01-01

    The effects of various parameters on the interaction of two galaxies and on the gas cloud collisions which are induced to occur are considered by examining several simulations of an interaction with different impact parameters, similar to the simulations described by Olson and Kwan (1990). The results of the present calculations are consistent with those obtained earlier by Olson and Kwan. They show that the interaction of two galaxies can lead to an increase in the rate at which gas clouds collide, and that these collisions are of sufficient kinetic energy to disrupt the clouds and prevent the buildup of a large number of massive clouds. It was found that, as the inclination of the interaction is increased, the perturbation of the cloud system is decreased. It was also found that unbound orbits produce a smaller perturbation than bound orbits, and that decreasing the mass of the perturbing galaxy decreases the perturbation. 21 refs

  13. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  14. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  15. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    OpenAIRE

    Tolstoy, Eline

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and ev...

  16. Star Formation in Galaxies: Proceedings of a Conference Held in Pasadena, California

    Science.gov (United States)

    1987-05-01

    Spirals of the Virgo Cluster B. Guiderdoni 283 - 286 Molecular Gas and Star Formation in HI-Deficient Virgo Cluster Galaxies J.D. Kenney and J.S. Young...in developing the image processing tasks. The research described in this paper was carried out in part at the Jet Propul- sion Laboratory, California...of 34 SO galaxies in the Virgo cluster were detected by IRAS. The 60Pin/lOOPm color temperatures of these galaxies are similar to those of normal

  17. Study on the formation and dynamics of galaxies

    International Nuclear Information System (INIS)

    Fillmore, J.A.

    1985-01-01

    The first half of this thesis is a study on the growth of perturbations in the early universe that might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data

  18. Study on the formation and dynamics of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fillmore, J.A.

    1985-01-01

    The first half of this thesis is a study on the growth of perturbations in the early universe that might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  19. A study of the formation and dynamics of galaxies

    Science.gov (United States)

    Fillmore, J. A.

    The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  20. A NEW METHOD FOR OBTAINING THE STAR FORMATION LAW IN GALAXIES

    International Nuclear Information System (INIS)

    Heiner, Jonathan S.; Allen, Ronald J.; Van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in the gas clouds surrounding an OB association are determined with a simple model which considers the atomic hydrogen as a photodissociation product on the cloud surfaces. The photodissociating photon flux incident on the cloud is computed from the far-UV luminosity of the OB association and the geometry. As an example, we have applied this 'PDR Method' to a sample of star-forming regions in M33 using Very Large Array (VLA) 21 cm data for the H I and Galaxy Evolution Explorer (GALEX) imagery in the far-UV. With these two observables, our approach provides an estimate of the total volume density of hydrogen (atomic + molecular) in the gas clouds surrounding the young star cluster. A graph in logarithmic coordinates of the cluster UV luminosity versus the total density in the surrounding gas provides a direct measure of the exponent of the star formation law. However, we show that this plot is severely affected by observational selection, which renders large areas of the diagram inaccessible to the data. An ordinary least-squares regression fit to a straight line, therefore, gives a strongly biased result. In the present case, the slope of such a fit primarily reflects the boundary defined when the 21 cm line becomes optically thick and is no longer a reliable measure of the H I column density. We use a maximum likelihood statistical approach which can deal with truncated and skewed data, and also takes account of the large uncertainties in the total gas densities which we derive. The exponent we obtain for the Schmidt law in M33 is 1.4 ± 0.2.

  1. Cosmic web and star formation activity in galaxies at z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Darvish, B.; Mobasher, B.; Sales, L. V. [University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Sobral, D. [Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT 1349-018 Lisboa (Portugal); Scoville, N. Z. [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Best, P. [SUPA, Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Smail, I., E-mail: bdarv001@ucr.edu [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  2. Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Norberg, P.; Robotham, A. S. G.; Liske, J.; Andrae, E.; Baldry, I. K.; Gunawardhana, M.; Kelvin, L. S.; Madore, B. F.; Seibert, M.; Taylor, E. N.; Alpaslan, M.; Brown, M. J. I.; Cluver, M. E.; Driver, S. P.; Bland-Hawthorn, J.; Holwerda, B. W.; Hopkins, A. M.; Lopez-Sanchez, A. R.; Loveday, J.; Rushton, M.

    2017-03-01

    We quantify the effect of the galaxy group environment (for group masses of 1012.5-1014.0 M ⊙) on the current star formation rate (SFR) of a pure, morphologically selected sample of disk-dominated (I.e., late-type spiral) galaxies with redshift ≤0.13. The sample embraces a full representation of quiescent and star-forming disks with stellar mass M * ≥ 109.5 M ⊙. We focus on the effects on SFR of interactions between grouped galaxies and the putative intrahalo medium (IHM) of their host group dark matter halos, isolating these effects from those induced through galaxy-galaxy interactions, and utilizing a radiation transfer analysis to remove the inclination dependence of derived SFRs. The dependence of SFR on M * is controlled for by measuring offsets Δlog(ψ *) of grouped galaxies about a single power-law relation in specific SFR, {\\psi }* \\propto {M}* -0.45+/- 0.01, exhibited by non-grouped “field” galaxies in the sample. While a small minority of the group satellites are strongly quenched, the group centrals and a large majority of satellites exhibit levels of ψ * statistically indistinguishable from their field counterparts, for all M *, albeit with a higher scatter of 0.44 dex about the field reference relation (versus 0.27 dex for the field). Modeling the distributions in Δlog(ψ *), we find that (I) after infall into groups, disk-dominated galaxies continue to be characterized by a similar rapid cycling of gas into and out of their interstellar medium shown prior to infall, with inflows and outflows of ˜1.5-5 x SFR and ˜1-4 x SFR, respectively; and (II) the independence of the continuity of these gas flow cycles on M * appears inconsistent with the required fueling being sourced from gas in the circumgalactic medium on scales of ˜100 kpc. Instead, our data favor ongoing fueling of satellites from the IHM of the host group halo on ˜Mpc scales, I.e., from gas not initially associated with the galaxies upon infall. Consequently, the color

  3. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  4. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2

    International Nuclear Information System (INIS)

    Lee, Bomee; Giavalisco, Mauro; Williams, Christina C.; Guo Yicheng; Faber, S. M.; Lotz, Jennifer; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Van der Wel, Arjen; Kocevski, Dale; Conselice, Christopher J.; Wuyts, Stijn; Dekel, Avishai; Kartaltepe, Jeyhan; Bell, Eric F.

    2013-01-01

    We discuss the state of the assembly of the Hubble sequence in the mix of bright galaxies at redshift 1.4 AB ∼ 26, selected from the HST/ACS and WFC3 images of the GOODS-South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sérsic light profile, Gini (G), M 20 , concentration (C), asymmetry (A), and multiplicity (Ψ) parameters. Our sample clearly separates into massive, red, and passive galaxies versus less massive, blue, and star-forming ones, and this dichotomy correlates very well with the galaxies' morphological properties. Star-forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today's spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z ∼ 2 galaxies in a G-M 20 plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z ∼ 2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z ∼ 2

  5. STAR FORMATION AND DUST OBSCURATION AT z ∼ 2: GALAXIES AT THE DAWN OF DOWNSIZING

    International Nuclear Information System (INIS)

    Pannella, M.; Carilli, C. L.; Owen, F. N.; Strazzullo, V.; Daddi, E.; Aussel, H.; McCracken, H. J.; Mellier, Y.; Renzini, A.; Civano, F.; Koekemoer, A. M.; Schinnerer, E.; Scoville, N.; Smolcic, V.; Salvato, M.; Taniguchi, Y.; Kneib, J. P.; Ilbert, O.; Thompson, D.; Willott, C. J.

    2009-01-01

    We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ∼ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ∼4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ∼40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.

  6. SDSS-IV MaNGA: constraints on the conditions for star formation in galaxy discs

    Science.gov (United States)

    Stark, David V.; Bundy, Kevin A.; Orr, Matthew E.; Hopkins, Philip F.; Westfall, Kyle; Bershady, Matthew; Li, Cheng; Bizyaev, Dmitry; Masters, Karen L.; Weijmans, Anne-Marie; Lacerna, Ivan; Thomas, Daniel; Drory, Niv; Yan, Renbin; Zhang, Kai

    2018-02-01

    Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.

  7. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  8. Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans

    Science.gov (United States)

    Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy

    2016-01-01

    Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.

  9. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    International Nuclear Information System (INIS)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna; Henriques, Bruno M. B.

    2017-01-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  10. The Star Formation History of read and dead galaxies at z=[1.0--1.5

    Science.gov (United States)

    Domínguez Sánchez, H.; Pérez González, P.; Esquej, P.; Eliche Moral, C.; Alcalde Pampliega, B.; SHARDS Team

    2015-05-01

    We analyse the star formation histories (SFH) of M > 10^{10} M_⊙ read and dead galaxies at intermediate redshift (z=1.0-1.5). Current hierarchical models of galaxy formation predict many less massive high-z systems than observed. By combining SHARDS deep spectro-photometric optical data (25 contiguous OSIRIS/GTC medium band filters with R ˜ 50 at 4500-900 nm) with HST-WFC3 grism in the NIR (G141, 1.1-1.6 μm) and broad-band photometry (from FUV to FIR) we construct well-sampled optical SEDs with up to 150 photometric points and sufficient spectral resolution to obtain reliable stellar population parameters such as ages, star formation timescales, dust extinctions and metallicities. We define a complete and uncontaminated sample of red & dead galaxies by combining the color-color UVJ selection with a cut in sSFR (SFR/Mass). We check the robustness of the results depending on different stellar population models (Bruzual & Charlot 2003, Maraston 2005), SED fitting-codes (synthesizer, FAST) or star formation histories (exp{-t/τ}, t exp{-t/τ}). Finally, the dependence of the SFH with the galaxy stellar mass will be studied, to actually measure if more massive galaxies are formed earlier and more rapidly as downsizing suggests.

  11. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  12. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Terrazas, Bryan A.; Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Woo, Joanna; Henriques, Bruno M. B. [Department of Physics, Institute for Astronomy, ETH Zurich, 8093 Zurich (Switzerland)

    2017-08-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  13. Star Formation Histories of Local Group Dwarf Galaxies. (Ludwig Biermann Award Lecture 1996)

    Science.gov (United States)

    Grebel, E. K.

    The star formation histories of dwarf galaxies in the Local Group are reviewed. First the question of Local Group membership is considered based on various criteria. The properties of 31 (36) galaxies are consistent with likely (potential) Local Group membership. To study the star formation histories of these galaxies, a multi-parameter problem needs to be solved: Ages, metallicities, population fractions, and spatial variations must be determined, which depend crucially on the knowledge of reddening and distance. The basic methods for studying resolvable stellar populations are summarized. One method is demonstrated using the Fornax dwarf spheroidal galaxy. A comprehensive compilation of the star formation histories of dwarf irregulars, dwarf ellipticals, and dwarf spheroidals in the Local Group is presented and visualized through Hodge's population boxes. All galaxies appear to have differing fractions of old and intermediate-age populations, and those sufficiently massive and undisturbed to retain and recycle their gas are still forming stars today. Star formation has occurred either in distinct episodes or continuously over long periods of time. Metallicities and enrichment vary widely. Constraints on merger and remnant scenarios are discussed, and a unified picture based on the current knowledge is presented. Primary goals for future observations are: accurate age determinations based on turnoff photometry, detection of subpopulations distinct in age, metallicity, and/or spatial distribution; improved distances; and astrometric studies to derive orbits and constrain past and future interactions.

  14. The formation of galaxies and quasars in a texture-seeded cold dark matter cosmogony

    International Nuclear Information System (INIS)

    Gooding, A.K.; Turok, N.; Spergel, D.N.

    1991-01-01

    The nonGaussian perturbations produced by global texture lead to the early formation of stars, quasars, and galaxies. Growth of the density fluctuation in cold dark matter induced by the unwinding of a texture 'knot' is calculated and the evolution of the mass multiplicity function in this galaxy formation model is determined. By z of about 50, about 3 percent of the mass of the universe has formed nonlinear objects of mass greater than 10 to the 6th solar masses - these objects may have reionized the universe. Most objects larger than 10 to the 12th solar masses form by z about 2-3, consistent with the observed epoch of QSO formation. Today, about 35 percent of the mass of the universe is in bound objects of mass greater than 10 to the 12th solar masses. It is found that the slope and the amplitude of the multiplicity function is consistent with the observed galaxy luminosity function. 24 refs

  15. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    Science.gov (United States)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  16. CONSTRAINTS ON FEEDBACK PROCESSES DURING THE FORMATION OF EARLY-TYPE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, M. [Departamento de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo/IAG, Sao Paulo (Brazil); Ferreras, I. [MSSL, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); De La Rosa, I. G. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); La Barbera, F. [INAF-Osservatorio Astronomico di Capodimonte, Napoli (Italy); De Carvalho, R. R., E-mail: trevisan@astro.iag.usp.br [Instituto Nacional de Pesquisas Espaciais/MCT, S. J. dos Campos (Brazil)

    2012-06-20

    Galaxies are found to obey scaling relations between a number of observables. These relations follow different trends at the low- and high-mass ends. The processes driving the curvature of scaling relations remain uncertain. In this Letter, we focus on the specific family of early-type galaxies, deriving the star formation histories of a complete sample of visually classified galaxies from Sloan Digital Sky Survey DR7 over the redshift range 0.01 < z < 0.025, covering a stellar mass interval from 10{sup 9} to 3 Multiplication-Sign 10{sup 11} M{sub Sun }. Our sample features the characteristic 'knee' in the surface brightness versus mass distribution at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} . We find a clear difference between the age and metallicity distributions of the stellar populations above and beyond this knee, which suggests a sudden transition from a constant, highly efficient mode of star formation in high-mass galaxies, gradually decreasing toward the low-mass end of the sample. At fixed mass, our early-type sample is more efficient in building up the stellar content at early times in comparison to the general population of galaxies, with half of the stars already in place by redshift z {approx} 2 for all masses. The metallicity-age trend in low-mass galaxies is not compatible with infall of metal-poor gas, suggesting instead an outflow-driven relation.

  17. A multiwavelength survey of H I-excess galaxies with surprisingly inefficient star formation

    Science.gov (United States)

    Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.

    2018-05-01

    We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction versus NUV-r colour and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the Giant Metrewave Radio Telescope, Keck optical long-slit spectroscopy, and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disc that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disc, where a large specific angular momentum has to be invoked to explain the extreme M_{H I}/M⋆ ratio of 166 per cent. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells, and streams) in these systems suggests that these gas-rich discs have been built several Gyr ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.

  18. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  19. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    Science.gov (United States)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  20. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  1. THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS

    International Nuclear Information System (INIS)

    Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E.

    2009-01-01

    A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that ∼92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.

  2. Hydrodynamical simulations and semi-analytic models of galaxy formation: two sides of the same coin

    Science.gov (United States)

    Neistein, Eyal; Khochfar, Sadegh; Dalla Vecchia, Claudio; Schaye, Joop

    2012-04-01

    In this work we develop a new method to turn a state-of-the-art hydrodynamical cosmological simulation of galaxy formation (HYD) into a simple semi-analytic model (SAM). This is achieved by summarizing the efficiencies of accretion, cooling, star formation and feedback given by the HYD, as functions of the halo mass and redshift. The SAM then uses these functions to evolve galaxies within merger trees that are extracted from the same HYD. Surprisingly, by turning the HYD into a SAM, we conserve the mass of individual galaxies, with deviations at the level of 0.1 dex, on an object-by-object basis, with no significant systematics. This is true for all redshifts, and for the mass of stars and gas components, although the agreement reaches 0.2 dex for satellite galaxies at low redshift. We show that the same level of accuracy is obtained even in case the SAM uses only one phase of gas within each galaxy. Moreover, we demonstrate that the formation history of one massive galaxy provides sufficient information for the SAM to reproduce the population of galaxies within the entire cosmological box. The reasons for the small scatter between the HYD and SAM galaxies are as follows. (i) The efficiencies are matched as functions of the halo mass and redshift, meaning that the evolution within merger trees agrees on average. (ii) For a given galaxy, efficiencies fluctuate around the mean value on time-scales of 0.2-2 Gyr. (iii) The various mass components of galaxies are obtained by integrating the efficiencies over time, averaging out these fluctuations. We compare the efficiencies found here to standard SAM recipes and find that they often deviate significantly. For example, here the HYD shows smooth accretion that is less effective for low-mass haloes, and is always composed of hot or dilute gas; cooling is less effective at high redshift, and star formation changes only mildly with cosmic time. The method developed here can be applied in general to any HYD, and can thus

  3. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    International Nuclear Information System (INIS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian; Holtzman, Jon

    2010-01-01

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D 100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the Hα emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the Hα emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the Hα emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  4. The disk averaged star formation relation for Local Volume dwarf galaxies

    Science.gov (United States)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  5. Large Area Survey for z = 7 Galaxies in SDF and GOODS-N: Implications for Galaxy Formation and Cosmic Reionization

    Science.gov (United States)

    Ouchi, Masami; Mobasher, Bahram; Shimasaku, Kazuhiro; Ferguson, Henry C.; Fall, S. Michael; Ono, Yoshiaki; Kashikawa, Nobunari; Morokuma, Tomoki; Nakajima, Kimihiko; Okamura, Sadanori; Dickinson, Mark; Giavalisco, Mauro; Ohta, Kouji

    2009-12-01

    We present results of our large area survey for z'-band dropout galaxies at z = 7 in a 1568 arcmin2 sky area covering the SDF and GOODS-N fields. Combining our ultra-deep Subaru/Suprime-Cam z'- and y-band (λeff = 1 μm) images with legacy data of Subaru and Hubble Space Telescope, we have identified 22 bright z-dropout galaxies down to y = 26, one of which has a spectroscopic redshift of z = 6.96 determined from Lyα emission. The z = 7 luminosity function yields the best-fit Schechter parameters of phi* = 0.69+2.62 -0.55 × 10-3 Mpc-3, M*UV = -20.10 ± 0.76 mag, and α = -1.72 ± 0.65, and indicates a decrease from z = 6 at a >95% confidence level. This decrease is beyond the cosmic variance in our two fields, which is estimated to be a factor of lsim2. We have found that the cosmic star formation rate density drops from the peak at z = 2-3 to z = 7 roughly by a factor of ~10 but not larger than ~100. A comparison with the reionization models suggests either that the universe could not be totally ionized by only galaxies at z = 7, or more likely that properties of galaxies at z = 7 are different from those at low redshifts having, e.g., a larger escape fraction (gsim0.2), a lower metallicity, and/or a flatter initial mass function. Our SDF z-dropout galaxies appear to form 60 Mpc long filamentary structures, and the z = 6.96 galaxy with Lyα emission is located at the center of an overdense region consisting of four UV bright dropout candidates, which might suggest an existence of a well-developed ionized bubble at z = 7. Based on data obtained with the Subaru Telescope, the NASA/ESA Hubble Space Telescope (HST), and Spitzer Space Telescope. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. HST is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a

  6. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  7. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  8. The formation of the first stars and galaxies.

    Science.gov (United States)

    Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F

    2009-05-07

    Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.

  9. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    International Nuclear Information System (INIS)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-01-01

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E ∼> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ∼ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ∼ 1. This allows for a larger rms amplitude of the density power

  10. Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions

    Science.gov (United States)

    Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.

    2018-02-01

    We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

  11. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  12. Estimatining biases in the stellar dynamical black hole mass measurements in barred galaxies and prospects for measuring SMBH masses with JWST

    Science.gov (United States)

    Valluri, Monica; Vasiliev, Eugene; Bentz, Misty; Shen, Juntai

    2018-04-01

    Although 60% of disk galaxies are barred, stellar dynamical measurements of the masses of supermassive black holes (SMBH) in barred galaxies have always been obtained under the assumption that the bulges are axisymmetric. We use N-body simulations with self-consistently grown SMBHs in barred and unbarred galaxies to create a suite of mock Integral Field Spectrographic (IFS) datasets for galaxies with various observed orientations. We then apply an axisymmetric orbit superposition code to these mock IFS datasets to assess the reliability with which SMBH masses can be recovered. We also assess which disk and bar orientations give rise to biases. We use these simulations to assess whether or not existing SMBH measurements in barred galaxies are likely to be biased. We also present a brief preview of our JWST Early Release Science proposal to study the nuclear dynamics of nearby Seyfert I galaxy NGC 4151 with the NIRSpec Integral Field Spectrograph and describe how simulations of disk galaxies will used to create mock NIRSpec data to prepare for the real data.

  13. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  14. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, A. J.; Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Johnson, B. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Elbaz, D., E-mail: abattist@astro.umass.edu [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu, CNRS, Université Paris Diderot, Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France)

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.

  15. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    Science.gov (United States)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt

  16. On the Formation of Ultra-Difuse Galaxies as Tidally-Stripped Systems

    Science.gov (United States)

    Carleton, Timothy; Cooper, Michael; Kaplinghat, Manoj; Errani, Raphael; Penarrubia, Jorge

    2018-01-01

    The recent identification of a large population of so-called 'Ultra-Diffuse' Galaxies (UDGs), with stellar masses ~108 M⊙, but half light radii over 1.5 kpc, has challenged our understanding of galaxy evolution. Motivated by the environmental dependence of UDG properties and abundance, I present a model for the formation of UDGs through tidal-stripping of dwarf galaxies in cored dark matter halos. To test this scenario, I utilize results from simulations of tidal stripping, which demonstrate that changes in the stellar profile of a tidally stripped galaxy can be written as a function of the amount of tidal stripping experienced by the halo (tidal tracks). These tracks, however, are different for cored and cuspy halos. Additional simulations show how the halo responds to tidal interactions given the halo orbit within a cluster.In particular, dwarf elliptical galaxies, born in 1010-10.5 M⊙ halos, expand significantly as a result of tidal stripping and produce UDGs. Applying these models to the population of halos in the Bolshoi simulation, I am able to follow the effects of tidal stripping on the dwarf galaxy population in clusters. Using tidal tracks for cuspy halos does not reproduce the observed properties of UDGs. However, using the tidal tracks for cored halos, I reproduce the distribution of sizes, stellar masses, and abundance of UDGs in clusters remarkably well.

  17. A Multiwavelength Approach to the Star Formation Rate Estimation in Galaxies at Intermediate Redshifts

    Science.gov (United States)

    Cardiel, N.; Elbaz, D.; Schiavon, R. P.; Willmer, C. N. A.; Koo, D. C.; Phillips, A. C.; Gallego, J.

    2003-02-01

    We use a sample of seven starburst galaxies at intermediate redshifts (z~0.4 and 0.8) with observations ranging from the observed ultraviolet to 1.4 GHz, to compare the star formation rate (SFR) estimators that are used in the different wavelength regimes. We find that extinction-corrected Hα underestimates the SFR, and the degree of this underestimation increases with the infrared luminosity of the galaxies. Galaxies with very different levels of dust extinction as measured with SFRIR/SFR(Hα, uncorrected for extinction) present a similar attenuation A[Hα], as if the Balmer lines probed a different region of the galaxy than the one responsible for the bulk of the IR luminosity for large SFRs. In addition, SFR estimates derived from [O II] λ3727 match very well those inferred from Hα after applying the metallicity correction derived from local galaxies. SFRs estimated from the UV luminosities show a dichotomic behavior, similar to that previously reported by other authors in galaxies at zfinancial support of the W. M. Keck Foundation. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Based in part on observations with the Infrared Space Observatory (ISO), an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, Netherlands, and United Kingdom) with the participation of ISAS and NASA.

  18. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    Science.gov (United States)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  19. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  20. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z ∼ 8

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-01-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y 105 -dropouts (Y 105 - J 125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y 105 -dropouts since the [O III] λ5007 emission line is redshifted into the J 125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 x 10 -4 Z sun ) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  1. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  2. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  3. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  4. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    Science.gov (United States)

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  5. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    Science.gov (United States)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  6. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  7. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    International Nuclear Information System (INIS)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.; Alatalo, Katherine

    2016-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H 2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H 2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  8. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0-8

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-01-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10 12 M ☉ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ∼ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ∼ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  9. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    Science.gov (United States)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  10. THE STAR FORMATION HISTORIES OF z ∼ 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M * ) of two populations of Spitzer-selected ULIRGs that have extremely red R – [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ( b ump DOGs ) , while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ( p ower-law DOGs ) . We measure M * by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M * /M ☉ ) = 10.42 +0.42 –0.36 , 10.62 +0.36 –0.32 , and 10.71 +0.40 –0.34 , respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ∼ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ∼ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M * , a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  11. The Formation of Supermassive Black Holes in the First Galaxies

    NARCIS (Netherlands)

    Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya; Glover, Simon C. O.; Spaans, Marco; Klessen, Ralf S.

    2010-01-01

    We discuss the formation of supermassive black holes in the early universe, and how to probe their subsequent evolution with the upcoming mm/sub-mm telescope ALMA. We first focus on the chemical and radiative conditions for black hole formation, in particular considering radiation trapping and

  12. The Formation of Supermassive Black Holes in the First Galaxies

    NARCIS (Netherlands)

    Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya; Glover, Simon C. O.; Spaans, Marco; Klessen, Ralf S.

    We discuss the formation of supermassive black holes in the early universe, and how to probe their subsequent evolution with the upcoming mm/sub-mm telescope ALMA. We first focus on the chemical and radiative conditions for black hole formation, in particular considering radiation trapping and

  13. Dynamical effects in the formation and evolution of galaxies and clusters

    International Nuclear Information System (INIS)

    White, S.D.M.

    1977-01-01

    The development of computer programs capable of simulating the self-consistent evolution of systems of a thousand or more self-gravitating particles has opened to experiment many aspects of problems concerning the dissipationless formation of galaxies and galaxy clusters which could previously only be treated at the cost of extreme oversimplification. As a result of experiments now being carried out, the range of validity, the inadequacies and the mistaken emphasis of many previous analyses are becoming evident. The applications of numerical experiments are discussed and illustrated. (U.K.)

  14. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    International Nuclear Information System (INIS)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; Jay GaBany, R.

    2011-01-01

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  15. The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony

    Science.gov (United States)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-12-01

    We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  16. Environmental effects on star formation in dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment.Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. Finally, we consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  17. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  18. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  19. NGC2403: a flocculent galaxy with two principal centres of star formation

    International Nuclear Information System (INIS)

    Beckman, J.; Cepa, J.; Prieto, M.; Munoz Tunon, C.

    1987-01-01

    We have mapped the nearby flocculent spiral galaxy in the visible U, B and V bands, as well as in the near infrared J, H and K bands, with a linear resolution of 900 pc. The galaxy, which does not show marked spiral structure in visible photographs (Tammann and Sandage, 1968) nor in the 21 cm line of HI (Wevers, 1984) is found to have two principal current centres of large-scale star formation, signposted by centres of ultraviolet and blue flux. One is in the nucleus, defined by the geometrical centre of the HI emission, and the other at some 1.5 kpc radial distance away. The outer star-forming region is the more intense and the younger of the two, and corresponds to a local peak in the HI surface density. We use the colours of the star-forming regions and of the integrated galaxy to make a first order estimate of the stellar population distribution. (Author)

  20. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    Science.gov (United States)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  1. Cosmology and galaxy formation: An introduction to some recent ideas

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Martinez, E.

    1985-01-01

    The aim of the present series of papers is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. There have in the past been a number of fine ''summer schools'', workshops and conferences on various aspects of cosmology and there is little point in re-iterating what has been said so well there. There have, however, been a number of recent developments in our thinking about cosmology which are worth putting in perspective. The most recent impetus to the subject has come from high energy physics. High energy physics has also introduced us to a remarkable zoo of exotic elementary particles, some of which may be of importance in understanding how the structure of our universe has evolved. These particles go by names such as ''axions'', ''paraphotons'', ''massive neutrinos'', ''gravitinos'', and ''photinos''. With the possible exception of the massive neutrino, we have no direct evidence for the existence of any of these particles and it may even be that cosmology provides the only laboratory in which the consequences of their existence may be observed

  2. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  3. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    Science.gov (United States)

    Chiang, Yi-Kuan; Overzier, Roderik A.; Gebhardt, Karl; Henriques, Bruno

    2017-08-01

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ˜ 10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ˜ 5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.

  4. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi-Kuan [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Overzier, Roderik A. [Observatório Nacional, Rua José Cristino, 77, São Cristóvão, Rio de Janeiro-RJ, 20921-400 (Brazil); Gebhardt, Karl [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Henriques, Bruno, E-mail: ykchiang@jhu.edu [Department of Physics, Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological context using a set of N -body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z = 0 to z = 7. We show that (proto)cluster galaxies are an important and even dominant population at high redshift, as their expected contribution to the cosmic star formation rate density rises (from 1% at z = 0) to 20% at z = 2 and 50% at z = 10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z ∼ 10–5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the universe; at z ∼ 5–1.5, rapid star formation occurred within the entire 10–20 Mpc structures, forming most of their present-day stellar mass; at z ≲ 1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during cosmic noon, and their connection to reionization during cosmic dawn.

  5. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio; Tamburello, Valentina [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Lupi, Alessandro; Madau, Piero [Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, 98 bis bd Arago, F-75014 Paris (France); Keller, Ben; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  6. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  7. New evidence from the Lyman-alpha forest concerning the formation of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A M

    1986-12-17

    A new type of survey for galaxies with z > 2 is described. The idea is to search for the spectroscopic imprint that the H1 disc of a foreground galaxy leaves on radiation emitted by a background QSO; namely, a Lyman-..cap alpha.. absorption line broadened by radiation damping. A continuing survey has revealed the presence of 15 damped L..cap alpha.. lines with redshifts between 1.8 and 2.8 in the spectra of 68 QSOs. In comparison, no more than three discs with the properties of nearby galaxies should have been detected. Furthermore, the mean column density of the 15 absorbers, = 1.4 x 10/sup 21/cm/sup -2/, is much larger than expected for the outskirts of H1 discs. The statistical and physical evidence accumulated suggests that the damped L..cap alpha.. systems are a distinct population of absorbers with properties reminiscent of H1 discs. It is concluded that the progenitors of the baryon content of nearby galaxies have been detected. The implications for theories of galaxy formations of the discovery of this damped population of absorbers are explained.

  8. Formation and early evolution of galaxies: Constraints on the properties of hot protogalaxies

    International Nuclear Information System (INIS)

    Berman, V.G.; Suchkov, A.A.

    1989-01-01

    In the framework of the hot model of galaxy formation, the following results are obtained: (1) to explain the mass and chemical composition of the intergalactic medium, the mass of the stellar component, and the mass of the x-ray coronas of giant elliptical and spiral galaxies (M s ∼ 10 11 Mass Sun ) the protogalaxies must have been heated to temperatures approximately five times greater than the virial temperature; (2) the x-ray luminosities of the coronas of models of spiral galaxies are less than for the analogous models of elliptical galaxies. Moreover, for unit potential of hidden mass the stellar mass of spiral galaxies is an order of magnitude greater; (3) if a hot protogalaxy is initially compact (R ∼ 20 kpc), then the stellar component is formed rapidly, during a time t ∼ 1 x 10 9 yr; but if the protogalaxy is diffuse (R ∼ 100 kpc), then t ∼ (5-7) x 10 9 yr; (4) coronas are not formed in models of heat-conducting protogalaxies; (5) hidden mass cannot be formed by low-mass stars formed in cooling flows - such flows do not arise if hidden mass is not present from the beginning. 23 refs., 4 figs., 2 tabs

  9. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  10. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    International Nuclear Information System (INIS)

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D.

    2009-01-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M * > 5 x 10 10 M sun ) galaxies at 1.5 PSF ∼ 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z ∼ 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 ± 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z ∼ 3-4, in contrast to star-forming galaxies at z ∼ 2 which are extended and dominated by distributed star formation.

  11. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  12. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    Science.gov (United States)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  13. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  14. Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation

    Science.gov (United States)

    Keel, William C.; Borne, Kirk D.

    2003-09-01

    We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Ruszkowski, M.; Springel, V.

    2009-01-01

    Using a resimulation technique, we perform high-resolution cosmological simulations of dry mergers in a massive (10 15 M sun ) galaxy cluster identified in the Millennium Run. Our initial conditions include well resolved compound galaxy models consisting of dark matter halos and stellar bulges that are used to replace the most massive cluster progenitor halos at redshift z = 3, allowing us to follow the subsequent dry merger processes that build up the cluster galaxies in a self-consistent cosmological setting. By construction, our galaxy models obey the stellar mass-size relation initially. Also, we study both galaxy models with adiabatically contracted and uncompressed halos. We demonstrate that the brightest cluster galaxy (BCG) evolves away from the Kormendy relation as defined by the smaller mass galaxies (i.e., the relation bends). This is accompanied by a significantly faster dark matter mass growth within the half-light radius of the BCG compared to the increase in the stellar mass inside the same radius. As a result of the comparatively large number of mergers the BCG experiences, its total mass-to-light ratio becomes significantly higher than in typical elliptical galaxies. We also show that the mixing processes between dark matter and stars lead to a small but numerically robust tilt in the fundamental plane and that the BCG lies on the tilted plane. Our model is consistent with the observed steepening of the logarithmic mass-to-light gradient as a function of the stellar mass. As we have not included effects from gas dynamics or star formation, these trends are exclusively due to N-body and stellar dynamical effects. Surprisingly, we find only tentative weak distortion in the Faber-Jackson relation that depends on the aperture size, unlike expected based on studies of isolated merger simulations. This may be due to differences in the distribution of galaxy orbits, which is given in our approach directly by the cosmological context while it has to be

  16. The nature of the ISM in galaxies during the star-formation activity peak of the Universe

    NARCIS (Netherlands)

    Popping, G.; Pérez-Beaupuits, J. P.; Spaans, M.; Trager, S. C.; Somerville, R. S.

    2014-01-01

    We combine a semi-analytic model of galaxy formation, tracking atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from atomic and molecular species (CO, HCN, [C I], [C II], [O I]) in galaxies. We compare the physics

  17. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    Science.gov (United States)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  18. Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies

    Science.gov (United States)

    Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.

    2018-04-01

    Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.

  19. A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF S0 AND SPHEROIDAL GALAXIES

    International Nuclear Information System (INIS)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ('Sph') galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural 'home' for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its 'bulge' plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a 'missing link' between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  20. A Revised Parallel-sequence Morphological Classification of Galaxies: Structure and Formation of S0 and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ("Sph") galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural "home" for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its "bulge" plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a "missing link" between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  1. Hubble space telescope grism spectroscopy of extreme starbursts across cosmic time: The role of dwarf galaxies in the star formation history of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Atek, Hakim; Kneib, Jean-Paul [Laboratoire d' Astrophysique, EPFL, CH-1290 Sauverny (Switzerland); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Malkan, Matthew; Ross, Nathaniel [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Charlot, Stephane; Lehnert, Matthew [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Lee, Janice [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bedregal, Alejandro [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bunker, Andrew J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, OX13RH (United Kingdom); Colbert, James W.; Rafelski, Marc [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dressler, Alan; McCarthy, Patrick [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Hathi, Nimish [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Siana, Brian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Near infrared slitless spectroscopy with the Wide Field Camera 3, on board the Hubble Space Telescope, offers a unique opportunity to study low-mass galaxy populations at high redshift (z ∼ 1-2). While most high-z surveys are biased toward massive galaxies, we are able to select sources via their emission lines that have very faint continua. We investigate the star formation rate (SFR)-stellar mass (M{sub *}) relation for about 1000 emission line galaxies identified over a wide redshift range of 0.3 ≲ z ≲ 2.3. We use the Hα emission as an accurate SFR indicator and correct the broadband photometry for the strong nebular contribution to derive accurate stellar masses down to M{sub *} ∼10{sup 7} M{sub ☉}. We focus here on a subsample of galaxies that show extremely strong emission lines (EELGs) with rest-frame equivalent widths ranging from 200 to 1500 Å. This population consists of outliers to the normal SFR-M{sub *} sequence with much higher specific SFRs (>10 Gyr{sup –1}). While on-sequence galaxies follow continuous star formation processes, EELGs are thought to be caught during an extreme burst of star formation that can double their stellar mass in a period of less than 100 Myr. The contribution of the starburst population to the total star formation density appears to be larger than what has been reported for more massive galaxies in previous studies. In the complete mass range 8.2 < log(M{sub *}/M{sub ☉}) <10 and a SFR lower completeness limit of about 2 M{sub ☉} yr{sup –1} (10 M{sub ☉} yr{sup –1}) at z ∼ 1 (z ∼ 2), we find that starbursts having EW{sub rest}(Hα) > 300, 200, and 100 Å contribute up to ∼13%, 18%, and 34%, respectively, to the total SFR of emission-line-selected sample at z ∼ 1-2. The comparison with samples of massive galaxies shows an increase in the contribution of starbursts toward lower masses.

  2. STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256

    Energy Technology Data Exchange (ETDEWEB)

    Mulia, A. J.; Chandar, R. [Physics and Astronomy Department, University of Toledo, Toledo, OH 43606-3390 (United States); Whitmore, B. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-07-20

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  3. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    International Nuclear Information System (INIS)

    Niino, Yuu

    2012-01-01

    We investigate the relation between stellar mass (M * ), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M * and SFR are sampled from different redshifts, and there is degeneracy between M * /SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  4. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  5. The star formation history of redshift z ∼ 2 galaxies: the role of the infrared prior

    International Nuclear Information System (INIS)

    Fan Lu-Lu; Lapi Andrea; Bressan Alessandro; De Zotti Gianfranco; Danese Luigi; Nonino Mario

    2014-01-01

    We build a sample of 298 spectroscopically-confirmed galaxies at redshift z ∼ 2, selected in the z 850 -band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 μm luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable R V . Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 10 3 M ⊙ yr −1 , the masses from 10 9 to 4 × 10 11 M ⊙ , and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at ≤100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known ‘downsizing’ scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M * /L ratios. (research papers)

  6. The star formation history of redshift z ~ 2 galaxies: the role of the infrared prior

    Science.gov (United States)

    Fan, Lu-Lu; Lapi, Andrea; Bressan, Alessandro; Nonino, Mario; De Zotti, Gianfranco; Danese, Luigi

    2014-01-01

    We build a sample of 298 spectroscopically-confirmed galaxies at redshift z ~ 2, selected in the z850-band from the GOODS-MUSIC catalog. By utilizing the rest frame 8 μm luminosity as a proxy of the star formation rate (SFR), we check the accuracy of the standard SED-fitting technique, finding it is not accurate enough to provide reliable estimates of the physical parameters of galaxies. We then develop a new SED-fitting method that includes the IR luminosity as a prior and a generalized Calzetti law with a variable RV. Then we exploit the new method to re-analyze our galaxy sample, and to robustly determine SFRs, stellar masses and ages. We find that there is a general trend of increasing attenuation with the SFR. Moreover, we find that the SFRs range between a few to 103 Msolar yr-1, the masses from 109 to 4 × 1011 Msolar, and the ages from a few tens of Myr to more than 1 Gyr. We discuss how individual age measurements of highly attenuated objects indicate that dust must have formed within a few tens of Myr and already been copious at <=100 Myr. In addition, we find that low luminosity galaxies harbor, on average, significantly older stellar populations and are also less massive than brighter ones; we discuss how these findings and the well known ‘downsizing’ scenario are consistent in a framework where less massive galaxies form first, but their star formation lasts longer. Finally, we find that the near-IR attenuation is not scarce for luminous objects, contrary to what is customarily assumed; we discuss how this affects the interpretation of the observed M*/L ratios.

  7. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    Science.gov (United States)

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  8. REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?

    International Nuclear Information System (INIS)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-01-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe

  9. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  10. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  11. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?

    Science.gov (United States)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  12. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  13. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  14. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    Science.gov (United States)

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  15. DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS

    International Nuclear Information System (INIS)

    Kennicutt, Robert C.; Hao, C.-N.; Johnson, Benjamin D.; Calzetti, Daniela; Moustakas, John; Dale, Daniel A.; Bendo, George; Engelbracht, Charles W.; Lee, Janice C.

    2009-01-01

    We combine Hα emission-line and infrared (IR) continuum measurements of two samples of nearby galaxies to derive dust attenuation-corrected star formation rates (SFRs). We use a simple energy balance based method that has been applied previously to H II regions in the Spitzer Infrared Nearby Galaxies Survey, and extend the methodology to integrated measurements of galaxies. We find that our composite Hα + IR based SFRs are in excellent agreement with attenuation-corrected SFRs derived from integrated spectrophotometry, over the full range of SFRs (0.01-80 M sun yr -1 ) and attenuations (0-2.5 mag) studied. We find that the combination of Hα and total IR luminosities provides the most robust SFR measurements, but combinations of Hα measurements with monochromatic luminosities at 24 μm and 8 μm perform nearly as well. The calibrations differ significantly from those obtained for H II regions, with the difference attributable to a more evolved population of stars heating the dust. Our results are consistent with a significant component of diffuse dust (the 'IR cirrus' component) that is heated by a non-star-forming population. The same methodology can be applied to [O II]λ3727 emission-line measurements, and the radio continuum fluxes of galaxies can be applied in place of IR fluxes when the latter are not available. We assess the precision and systematic reliability of all of these composite methods.

  16. ENHANCED STAR FORMATION OF LESS MASSIVE GALAXIES IN A PROTOCLUSTER AT z = 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masao; Kodama, Tadayuki [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Tanaka, Ichi; Koyama, Yusei [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Shimakawa, Rhythm; Suzuki, Tomoko L.; Yamamoto, Moegi [Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), Mitaka, Tokyo 181-8588 (Japan); Tadaki, Ken-ichi, E-mail: masao.hayashi@nao.ac.jp [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany)

    2016-08-01

    We investigate a correlation between star formation rate (SFR) and stellar mass for H α emission-line galaxies (HAEs) in one of the richest protoclusters ever known at z∼2.5, the USS 1558-003 protocluster. This study is based on a 9.7 hr narrowband imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample in combination with additional H -band data taken with WFC3 on the Hubble Space Telescope , of 100 HAEs reaching the dust-corrected SFRs down to 3 M {sub ⊙} yr{sup −1} and the stellar masses down to 10{sup 8.0} M {sub ⊙}. We find that while the star-forming galaxies with ≳10{sup 9.3} M {sub ⊙} are located on the universal SFR-mass main sequence (MS) irrespective of the environment, less massive star-forming galaxies with ≲10{sup 9.3} M {sub ⊙} show a significant upward scatter from the MS in this protocluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.

  17. A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Schruba, Andreas; Walter, Fabian; Dumas, Gaelle; Sandstrom, Karin; Leroy, Adam K.; Bigiel, Frank; Brinks, Elias; De Blok, W. J. G.; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl; Usero, Antonio; Weiss, Axel; Wiesemeyer, Helmut

    2011-01-01

    We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using 21 cm line atomic hydrogen (H I) data, mostly from THINGS, we predict the local mean CO velocity based on the mean H I velocity. By re-normalizing the CO velocity axis so that zero corresponds to the local mean H I velocity we are able to stack spectra coherently over large regions. This enables us to measure CO intensities with high significance as low as I CO ∼ 0.3 K km s -1 (Σ H 2 ∼1 M sun pc -2 ), an improvement of about one order of magnitude over previous studies. We detect CO out to galactocentric radii r gal ∼ r 25 and find the CO radial profile to follow a remarkably uniform exponential decline with a scale length of ∼0.2 r 25 . Here we focus on stacking as a function of radius, comparing our sensitive CO profiles to matched profiles of H I, Hα, far-UV (FUV), and Infrared (IR) emission at 24 μm and 70 μm. We observe a tight, roughly linear relationship between CO and IR intensity that does not show any notable break between regions that are dominated by molecular gas (Σ H 2 >Σ H i ) and those dominated by atomic gas (Σ H 2 H i ). We use combinations of FUV+24 μm and Hα+24 μm to estimate the recent star formation rate (SFR) surface density, Σ SFR , and find approximately linear relations between Σ SFR and Σ H 2 . We interpret this as evidence of stars forming in molecular gas with little dependence on the local total gas surface density. While galaxies display small internal variations in the SFR-to-H 2 ratio, we do observe systematic galaxy-to-galaxy variations. These galaxy-to-galaxy variations dominate the scatter in relationships between CO and SFR tracers measured at large scales. The variations have the sense that less massive galaxies exhibit larger ratios of SFR-to-CO than massive galaxies. Unlike the SFR-to-CO ratio, the balance between atomic and molecular gas depends strongly on the total gas surface density

  18. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  19. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers

    Science.gov (United States)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.

    2018-04-01

    We present the first self-consistent prediction for the distribution of formation time-scales for close supermassive black hole (SMBH) pairs following galaxy mergers. Using ROMULUS25, the first large-scale cosmological simulation to accurately track the orbital evolution of SMBHs within their host galaxies down to sub-kpc scales, we predict an average formation rate density of close SMBH pairs of 0.013 cMpc-3 Gyr-1. We find that it is relatively rare for galaxy mergers to result in the formation of close SMBH pairs with sub-kpc separation and those that do form are often the result of Gyr of orbital evolution following the galaxy merger. The likelihood and time-scale to form a close SMBH pair depends strongly on the mass ratio of the merging galaxies, as well as the presence of dense stellar cores. Low stellar mass ratio mergers with galaxies that lack a dense stellar core are more likely to become tidally disrupted and deposit their SMBH at large radii without any stellar core to aid in their orbital decay, resulting in a population of long-lived `wandering' SMBHs. Conversely, SMBHs in galaxies that remain embedded within a stellar core form close pairs in much shorter time-scales on average. This time-scale is a crucial, though often ignored or very simplified, ingredient to models predicting SMBH mergers rates and the connection between SMBH and star formation activity.

  20. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  1. A magnified view of star formation at z = 0.9 from two lensed galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Alice; Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rigby, Jane R. [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Swinbank, Mark [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2014-10-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  2. Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA

    Science.gov (United States)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-04-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  3. A magnified view of star formation at z = 0.9 from two lensed galaxies

    International Nuclear Information System (INIS)

    Olmstead, Alice; Veilleux, Sylvain; Rigby, Jane R.; Swinbank, Mark

    2014-01-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  4. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    Science.gov (United States)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 model. Once considered as a whole, the Virgo cluster is effective in removing neutral hydrogen from galaxies, and this perturbation is strong enough to appreciably reduce the SFR of its entire galaxy population. Conclusions: An estimate of the present infall rate of 300-400 galaxies per Gyr in the Virgo cluster is obtained from the number of existing HI-rich late-type systems, assuming 200-300 Myr as the time scale for HI ablation. If the infall process has been acting at a constant rate, this would imply that the Virgo cluster has formed approximately 2 Gyr ago, consistently with the idea that Virgo is in a young state of dynamical evolution. Based

  5. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  6. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  7. EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z  = 4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Intae; Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Song, Mimi; Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M.; Ryan, Russell E. Jr.; Salmon, Brett [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontana, Adriano [INAF—Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone (Italy); Lu, Yu [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Papovich, Casey, E-mail: itjung@astro.as.utexas.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe ( z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z  = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K -band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z  ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  8. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    Science.gov (United States)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  9. Star Formation Intensities Of Non-Isolated Galaxies With The Califa Survey

    Science.gov (United States)

    Morales Vargas, Abdías; Torres-Papaqui, Juan Pablo; Rosales-Ortega, Fernando Fabián; Sánchez, Sebastián F.; Chow-Martínez, Marcel; Ortega-Minakata, René Alberto; Romero-Cruz, Fernando J.; Trejo-Alonso, Josué de Jesús; Neri-Larios, Daniel Marcos; Robleto-Orús Aitor, Carlos

    2017-08-01

    Poster presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France. The influence of interactions on the star formation (SF) is investigated by studying a sample of 34 CALIFA survey non-isolated galaxies. We use the instantaneous star formation rate intensity (SFRI) obtained from the Halpha recombination line emission normalized by a unit of projected area. We explore the SFRI, stellar mass and stellar age annulus structures (split by morphology group), also for a control population of star-forming isolated galaxies observed with the CALIFA survey likewise. By morphology groups, the SF efficiency of early type spirals (ETSs) results magnified likely because of angular momentum loss. The SFRI of the non-isolated sample is then compared with that one of the isolated sample. It is found statistically and moderately enhanced in the non-isolated sample by a factor of at most 2. We also find the SFRI as to be a function of the degree of tidal perturbation what might consequently suggest interactions as to facilitate the gas transport to central regions. Contrasting behaviors of the SFRI structures, a gradual quench with clear outer presence of SF (isolated sample) while a steeper decrease from the center with poor SFRIs outwards (non-isolated one) are found. Similitudes in a variety of stellar population properties support the closeness of companions as to be the cause of the SFRI differences between samples.

  10. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  11. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  12. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  13. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    Science.gov (United States)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  14. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  15. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  16. EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES

    International Nuclear Information System (INIS)

    Thakur, Parijat; Jiang, I.-G.; Ann, H. B.

    2009-01-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  17. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    Science.gov (United States)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  18. How To Model Supernovae in Simulations of Star and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguére, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-03-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting "preferred directions" on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common "fully-thermal" (energy-dump) or "fully-kinetic" (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳ 100 M⊙, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.

  19. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    Science.gov (United States)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  20. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  1. Evolution of galaxy cluster scaling and structural properties from XMM observations: probing the physics of structure formation

    International Nuclear Information System (INIS)

    Anokhin, Sergey

    2008-01-01

    Clusters of galaxies are the largest gravitationally bound objects in the Universe. It is possible to study the hierarchical structure formation based on these youngest objects in the Universe. In order to complete the results found with hot clusters, we choose the cold distant galaxy clusters selected from The Southern SHARC catalogue. In the same time, we studied archived galaxy clusters to test the theory and treatment analysis. To study these weak cluster of galaxies, we optimized our treatment analysis: in particular, searching for the best background subtraction and modeling it for our surface brightness profile and spectra. Our results are in a good agreement with Scaling Relation obtained from hot galaxy clusters. (author) [fr

  2. LOW-MASS GALAXY FORMATION IN COSMOLOGICAL ADAPTIVE MESH REFINEMENT SIMULATIONS: THE EFFECTS OF VARYING THE SUB-GRID PHYSICS PARAMETERS

    International Nuclear Information System (INIS)

    ColIn, Pedro; Vazquez-Semadeni, Enrique; Avila-Reese, Vladimir; Valenzuela, Octavio; Ceverino, Daniel

    2010-01-01

    We present numerical simulations aimed at exploring the effects of varying the sub-grid physics parameters on the evolution and the properties of the galaxy formed in a low-mass dark matter halo (∼7 x 10 10 h -1 M sun at redshift z = 0). The simulations are run within a cosmological setting with a nominal resolution of 218 pc comoving and are stopped at z = 0.43. For simulations that cannot resolve individual molecular clouds, we propose the criterion that the threshold density for star formation, n SF , should be chosen such that the column density of the star-forming cells equals the threshold value for molecule formation, N ∼ 10 21 cm -2 , or ∼8 M sun pc -2 . In all of our simulations, an extended old/intermediate-age stellar halo and a more compact younger stellar disk are formed, and in most cases, the halo's specific angular momentum is slightly larger than that of the galaxy, and sensitive to the SF/feedback parameters. We found that a non-negligible fraction of the halo stars are formed in situ in a spheroidal distribution. Changes in the sub-grid physics parameters affect significantly and in a complex way the evolution and properties of the galaxy: (1) lower threshold densities n SF produce larger stellar effective radii R e , less peaked circular velocity curves V c (R), and greater amounts of low-density and hot gas in the disk mid-plane; (2) when stellar feedback is modeled by temporarily switching off radiative cooling in the star-forming regions, R e increases (by a factor of ∼2 in our particular model), the circular velocity curve becomes flatter, and a complex multi-phase gaseous disk structure develops; (3) a more efficient local conversion of gas mass to stars, measured by a stellar particle mass distribution biased toward larger values, increases the strength of the feedback energy injection-driving outflows and inducing burstier SF histories; (4) if feedback is too strong, gas loss by galactic outflows-which are easier to produce in low

  3. DISSECTING THE RED SEQUENCE. II. STAR FORMATION HISTORIES OF EARLY-TYPE GALAXIES THROUGHOUT THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Graves, Genevieve J.; Faber, S. M.; Schiavon, Ricardo P.

    2009-01-01

    This analysis uses spectra of ∼16,000 nearby Sloan Digital Sky Survey quiescent galaxies to track variations in galaxy star formation histories (SFHs) along and perpendicular to the fundamental plane (FP). We sort galaxies by their FP properties (σ, R e , and I e ) and construct high signal-to-noise ratio mean galaxy spectra that span the breadth and thickness of the FP. From these spectra, we determine mean luminosity-weighted ages, [Fe/H], [Mg/H], and [Mg/Fe] based on single stellar population models using the method described in Graves and Schiavon. In agreement with previous work, the SFHs of early-type galaxies are found to form a two-parameter family. The major trend is that mean age, [Fe/H], [Mg/H], and [Mg/Fe] all increase with σ. However, no stellar population property shows any dependence on R e at fixed σ, suggesting that σ and not dynamical mass (M dyn ∝ σ 2 R e ) is the better predictor of past SFH. In addition to the main trend with σ, galaxies also show a range of population properties at fixed σ that are strongly correlated with surface brightness residuals from the FP (Δlog I e ), such that higher surface brightness galaxies have younger mean ages, higher [Fe/H], higher [Mg/H], and lower [Mg/Fe] than lower surface brightness galaxies. These latter trends are a major new constraint on SFHs.

  4. How to model supernovae in simulations of star and galaxy formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-06-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting `preferred directions' on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common `fully thermal' (energy-dump) or `fully kinetic' (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳100 M⊙, they diverge by orders of magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (models without re-tuning parameters.

  5. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  6. VizieR Online Data Catalog: Star formation histories of LG dwarf galaxies (Weisz+, 2014)

    Science.gov (United States)

    Weisz, D. R.; Dolphin, A. E.; Skillman, E. D.; Holtzman, J.; Gilbert, K. M.; Dalcanton, J. J.; Williams, B. F.

    2017-03-01

    For this paper, we have selected only dwarf galaxies that are located within the zero surface velocity of the LG (~1 Mpc; e.g., van den Bergh 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press) ; McConnachie 2012, J/AJ/144/4). This definition excludes some dwarfs that have been historically associated with the LG, such as GR8 and IC 5152, but which are located well beyond 1 Mpc. We have chosen to include two galaxies with WFPC2 imaging that are located on the periphery of the LG (Sex A and Sex B), because of their ambiguous association with the LG, the NGC 3109 sub-group, or perhaps neither (although see Bellazzini et al. 2013A&A...559L..11B for discussion of the possible association of these systems). We measured the SFH of each field using the maximum likelihood CMD fitting routine, MATCH (Dolphin 2002MNRAS.332...91D). Briefly, MATCH works as follows: it accepts a range of input parameters (e.g., initial mass function (IMF) slope, binary fraction, age and metallicity bin widths, etc.), uses these parameters to construct synthetic CMDs of simple stellar populations (SSPs), and then linearly combines them with a model foreground CMD to form a composite model CMD with a complex SFH. The composite model CMD is then convolved with the noise model from the artificial star tests (i.e., completeness, photometric uncertainties, and color/magnitude biases). The resulting model CMD is then compared to the observed CMD using a Poisson likelihood statistic. (3 data files).

  7. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bigiel, F. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Leroy, A. K. [Department of Astronomy, The Ohio State University, 140 W 18th Street, Columbus, OH 43210 (United States); Blitz, L. [Department of Astronomy, Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Bolatto, A. D. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Da Cunha, E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rosolowsky, E. [Department of Physics, University of Alberta, Edmonton, AB (Canada); Sandstrom, K. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Usero, A., E-mail: bigiel@uni-heidelberg.de [Observatorio Astronomico Nacional, Alfonso XII 3, E-28014, Madrid (Spain)

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.

  8. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    Science.gov (United States)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  9. Cloud fluid models of gas dynamics and star formation in galaxies

    Science.gov (United States)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  10. Two phase formation of massive elliptical galaxies: study through cross-correlation including spatial effect

    Science.gov (United States)

    Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2017-11-01

    Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.

  11. Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation

    Science.gov (United States)

    Posti, Lorenzo; Pezzulli, Gabriele; Fraternali, Filippo; Di Teodoro, Enrico M.

    2018-03-01

    We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at z = 0 by combining (i) the standard Λcold dark matter tidal torque theory, (ii) the observed relation between stellar mass and specific angular momentum (the Fall relation), and (iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio fj = j*/jh of the specific angular momentum of stars to that of the dark matter (i) varies with mass as a double power law, (ii) always has a peak in the mass range explored and iii) is three to five times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of fj occurs at the same mass where the stellar-to-halo mass ratio f* = M*/Mh has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires fj and f* to be correlated with each other roughly as f_j∝ f_\\ast ^{2/3}, as expected if the outer and more angular momentum rich parts of a halo failed to accrete on to the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).

  12. Evaluating Galactic Habitability Using High Resolution Cosmological Simulations of Galaxy Formation

    OpenAIRE

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2015-01-01

    D. F. acknowledges support from STFC consolidated grant ST/J001422/1, and the ‘ECOGAL’ ERC Advanced Grant. P. D. acknowledges the support of the Addison Wheeler Fellowship awarded by the Institute of Advanced Study at Durham University. N. I. L. is supported by the Deutsche Forschungs Gemeinschaft (DFG). We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which...

  13. Rate of formation of neutron stars in the galaxy estimated from stellar statistics

    International Nuclear Information System (INIS)

    Endal, A.S.

    1979-01-01

    Stellar statistics and stellar evolution models can be used to estimate the rate of formation of neutron stars in the Galaxy. A recent analysis by Hills suggests that the mean interval between neutron-star births is greater than 27 years. This is incompatible with estimates based on pulsar statistics. However, a closer examination of the stellar data shows that Hill's result is incorrect. A mean interval between neutron-star births as short as 4 years is consistent with (though certainly not required by) stellar evolution theory

  14. Old stellar populations