WorldWideScience

Sample records for bi-partite plant mitochondrial

  1. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  2. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  3. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    Science.gov (United States)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  4. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  5. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  6. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    Science.gov (United States)

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  7. Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments

    International Nuclear Information System (INIS)

    Zhang Xiu-Xing; Li Fu-Li

    2011-01-01

    The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments. (general)

  8. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: ccharest@uottawa.ca

    2008-11-15

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress.

  9. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2008-01-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress

  10. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  11. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  12. Prediction of phenanthrene uptake by plants with a partition-limited model

    International Nuclear Information System (INIS)

    Zhu, Lizhong; Gao, Yanzheng

    2004-01-01

    The performance of a partition-limited model on prediction of phenanthrene uptake by a wide variety of plant species was evaluated using a greenhouse study. The model predictions of root or shoot concentrations for tested plant species were all within an order of magnitude of the observed values. Modeled root concentrations appeared to be more accurate than modeled shoot concentrations. The differences of simulated and experimented concentrations of phenanthrene in roots and shoots of three representative plant species, including ryegrass, flowering Chinese cabbage, and three-colored amaranth, were less than 81% for roots and 103% for shoots. Results are promising in that the α pt values of the partition-limited model for root uptake of phenanthrene correlate well with root lipid contents. Additionally, a significantly positive correlation is also observed between root concentration factors (RCFs, defined as the ratio of contaminant concentrations in root and in soil on a dry weight basis) of phenanthrene and root lipid contents. Results from this study suggest that the partition-limited model may have potential applications for predicting the plant PAH concentration in contaminated sites

  13. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  14. MitoSatPlant: mitochondrial microsatellites database of viridiplantae.

    Science.gov (United States)

    Kumar, Manjeet; Kapil, Aditi; Shanker, Asheesh

    2014-11-01

    Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  16. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  17. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  18. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  19. Effect of livestock grazing in the partitions of a semiarid plant-plant spatial signed network

    Science.gov (United States)

    Saiz, Hugo; Alados, Concepción L.

    2014-08-01

    In recent times, network theory has become a useful tool to study the structure of the interactions in ecological communities. However, typically, these approaches focus on a particular kind of interaction while neglecting other possible interactions present in the ecosystem. Here, we present an ecological network for plant communities that consider simultaneously positive and negative interactions, which were derived from the spatial association and segregation between plant species. We employed this network to study the structure and the association strategies in a semiarid plant community of Cabo de Gata-Níjar Natural Park, SE Spain, and how they changed in 4 sites that differed in stocking rate. Association strategies were obtained from the partitions of the network, built based on a relaxed structural balance criterion. We found that grazing simplified the structure of the plant community. With increasing stocking rate species with no significant associations became dominant and the number of partitions decreased in the plant community. Independently of stocking rate, many species presented an associative strategy in the plant community because they benefit from the association to certain ‘nurse’ plants. These ‘nurses’ together with species that developed a segregating strategy, intervened in most of the interactions in the community. Ecological networks that combine links with different signs provide a new insight to analyze the structure of natural communities and identify the species which play a central role in them.

  20. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  1. Evaluation of construction cost of pyro-partitioning plant

    International Nuclear Information System (INIS)

    Kinoshita, Kensuke; Kurata, Masateru; Inoue, Tadashi

    1999-01-01

    This study was conducted to evaluate the construction cost of a pyro-partitioning plant. The plant capacity was chosen to accommodate processing of the HLLW generated by PUREX reprocessing of 800 ton of spent LWR fuel. The block flow diagram and mass balance obtained from our previous experimental data were used to produce a detailed process-flow diagram and to design the plant. In this evaluation, the plant was estimated to cover an area of about 90 m x 70 m, and to cost $576 million for construction. This study shows that the cost of process equipments, such as reaction vessels, accountability tanks and so on, is just about 13% of total construction cost. On the other hand, the cost of process robots and the equipments for key measurement point (KMP) is major part in the cost of in-cell equipment. So it is clear that the construction cost can be reduced by reducing the number of material balance area (MBA) and KMP. (author)

  2. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    DEFF Research Database (Denmark)

    Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda

    2018-01-01

    -sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...

  3. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  4. Minimum nonuniform graph partitioning with unrelated weights

    Science.gov (United States)

    Makarychev, K. S.; Makarychev, Yu S.

    2017-12-01

    We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.

  5. Partial transposition on bi-partite system

    OpenAIRE

    Han, Y. -J.; Ren, X. J.; Wu, Y. C.; Guo, G. -C.

    2006-01-01

    Many of the properties of the partial transposition are not clear so far. Here the number of the negative eigenvalues of K(T)(the partial transposition of K) is considered carefully when K is a two-partite state. There are strong evidences to show that the number of negative eigenvalues of K(T) is N(N-1)/2 at most when K is a state in Hilbert space N*N. For the special case, 2*2 system(two qubits), we use this result to give a partial proof of the conjecture sqrt(K(T))(T)>=0. We find that thi...

  6. Industrial scale-plant for HLW partitioning in Russia

    International Nuclear Information System (INIS)

    Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.; Kurochkin, A.I.

    1996-01-01

    Radiochemical plant of PA > at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m 3 HLW and 235 MCi of radionuclides was included in glass. However only 1100 m 3 and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology and equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA > in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported

  7. Partitioned based approach for very large scale database in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Tiwari, Sachin; Upadhyay, Pushp; Sengupta, Nabarun; Bhandarkar, S.G.; Agilandaeswari

    2012-01-01

    This paper presents a partition based approach for handling very large tables with size running in giga-bytes to tera-bytes. The scheme is developed from our experience in handling large signal storage which is required in various computer based data acquisition and control room operator information systems such as Distribution Recording System (DRS) and Computerised Operator Information System (COIS). Whenever there is a disturbance in an operating nuclear power plant, it triggers an action where a large volume of data from multiple sources is generated and this data needs to be stored. Concurrency issues as data is from multiple sources and very large amount of data are the problems which are addressed in this paper by applying partition based approach. Advantages of partition based approach with other techniques are discussed. (author)

  8. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  9. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  10. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  11. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    Science.gov (United States)

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  12. CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models?

    Science.gov (United States)

    W.J. Mattson; R. Julkunen-Tiitto; D.A. Herms

    2005-01-01

    Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the...

  13. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Growth analysis partitioning of assimilate in tomato plants cv. Micro-Tom submitted to nitrogen and pyraclostrobin

    Directory of Open Access Journals (Sweden)

    Emanuela Garbin Martinazzo

    2015-10-01

    Full Text Available This work aimed at comparing the growth and partitioning of assimilate in tomato plants cv. Micro-Tom subjected to nitrogen and pyraclostrobin. This substance favors the development of chloroplasts and the synthesis of chlorophyll. Tomato plants were submitted to the treatments: T1, complete nutrient solution without pyraclostrobin, T2, complete nutrient solution + pyraclostrobin, T3, ½ strength nutrient solution without N pyraclostrobin and T4, ½ strength nutrient solution N + pyraclostrobin. Plants were collected at regular intervals of seven days after transplantation throughout the crop cycle, with dry mass and leaf area being determined. From the primary data, growth analysis was carried out to calculate total dry matter (Wt, the instantaneous rates of dry matter production (Ct, relative growth (Rw e net assimilation (Ea, leaf area (Af, production rates (Ca and relative growth of leaf area index (Ra and leaf weight (Fw specific leaf area (Sa the dry matter partitioning between organs and number (Nfr and fresh fruit weight (Wfr. Plants of T1 showed higher Wt, Ct and Wfr compared to those of other treatments. However, the T2 plants exhibited similar Nfr to T1 plants, being superior to others. Also allocated on the total dry matter and at the end of the cycle, a higher percentage of dry matter in the seafood compared to T3 and T4 plants. Also they allocated relative to the total dry matter and at the end of the cycle, a higher percentage in fruits of plants to T3 and T4. The association between nitrogen and pyraclostrobin changes the growth and assimilated partition on tomato plants cv. Micro – Tom, and those submitted to ½ dose of nitrogen have a higher total dry matter and less final percentage of total dry matter in fruits , comparatively to those submitted to the association ½ dose of nitrogen and pyraclostrobin.

  15. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  16. Bioconcentration factors and plant-water partition coefficients of munitions compounds in barley.

    Science.gov (United States)

    Torralba-Sanchez, Tifany L; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2017-12-01

    Plants growing in the soils at military ranges and surrounding locations are exposed, and potentially able to uptake, munitions compounds (MCs). The extent to which a compound is transferred from the environment into organisms such as plants, referred to as bioconcentration, is conventionally measured through uptake experiments with field/synthetic soils. Multiple components/phases that vary among different soil types and affect the bioavailability of the MC, however, hinder the ability to separate the effects of soil characteristics from the MC chemical properties on the resulting plant bioconcentration. To circumvent the problem, this work presents a protocol to measure steady state bioconcentration factors (BCFs) for MCs in barley (Hordeum vulgare L.) using inert laboratory sand rather than field/synthetic soils. Three MCs: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (2,4-DNAN), and two munition-like compounds (MLCs): 4-nitroanisole (4-NAN) and 2-methoxy-5-nitropyridine (2-M-5-NPYNE) were evaluated. Approximately constant plant biomass and exposure concentrations were achieved within a one-month period that produced steady state log BCF values: 0.62 ± 0.02, 0.70 ± 0.03, 1.30 ± 0.06, 0.52 ± 0.03, and 0.40 ± 0.05 L kg plant dwt -1 for TNT, 2,4-DNT, 2,4-DNAN, 4-NAN, and 2-M-5-NPYNE, respectively. Furthermore, results suggest that the upper-bounds of the BCFs can be estimated within an order of magnitude by measuring the partitioning of the compounds between barley biomass and water. This highlights the importance of partition equilibrium as a mechanism for the uptake of MCs and MLCs by barley from interstitial water. The results from this work provide chemically meaningful data for prediction models able to estimate the bioconcentration of these contaminants in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  18. Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress

    NARCIS (Netherlands)

    Leborgne-Castel, N.; Jelitto- Dooren, E.P.W.M. van; Crofts, A.J.; Denecke, J.

    1999-01-01

    To study the role of the lumenal binding protein (BiP) in the transport and secretion of proteins, we have produced plants with altered BiP levels. Transgenic plants overexpressing BiP showed dramatically increased BiP mRNA levels but only a modest increase in BiP protein levels. The presence of

  19. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock

    Science.gov (United States)

    Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C

    2015-01-01

    Abstract Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant’s circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. This work focusses on the temporal changes in the allocation and transport of photoassimilates within Arabidopsis rosettes, helping to fill a gap in our understanding of plant growth. Using short pulses of 14C-labelled carbon dioxide, we quantified how much carbon is used for growth and how much is stored as starch for use at night. In source leaves, partitioning is surprisingly dynamic during the day, even though photosynthesis is relatively constant, while in sink leaves, utilisation is more constant. Furthermore, by analysing metabolic mutants and clock mutants, and by manipulating the growth conditions, we show that

  20. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    Directory of Open Access Journals (Sweden)

    Magdalena Opalińska

    2017-11-01

    Full Text Available Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4 and Pam18-2 and known (Tim17-2 substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  1. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  2. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.

    Science.gov (United States)

    Pellny, Till K; Van Aken, Olivier; Dutilleul, Christelle; Wolff, Tonja; Groten, Karin; Bor, Melike; De Paepe, Rosine; Reyss, Agnès; Van Breusegem, Frank; Noctor, Graham; Foyer, Christine H

    2008-06-01

    Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered 'nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots.

  3. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  4. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  5. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

    Science.gov (United States)

    Welchen, Elina; García, Lucila; Mansilla, Natanael; Gonzalez, Daniel H.

    2014-01-01

    Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands. PMID:24409193

  6. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  7. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  8. Altered mitochondrial regulation in quadriceps muscles of patients with COPD

    DEFF Research Database (Denmark)

    Naimi, Ashley I; Bourbeau, Jean; Perrault, Helene

    2011-01-01

    Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from bi...

  9. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    International Nuclear Information System (INIS)

    Sadeghi, Seyed Mohammad Moein; Attarod, Pedram; Van Stan, John Toland; Pypker, Thomas Grant

    2016-01-01

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  10. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Seyed Mohammad Moein, E-mail: moeinsadeghi@ut.ac.ir [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Attarod, Pedram [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Van Stan, John Toland [Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia (United States); Pypker, Thomas Grant [Department of Natural Resource Sciences, Faculty of Science, Thompson Rivers University, Kamloops (Canada)

    2016-10-15

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  11. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy.

    Science.gov (United States)

    McGuire, Jimmy A; Witt, Christopher C; Altshuler, Douglas L; Remsen, J V

    2007-10-01

    Hummingbirds are an important model system in avian biology, but to date the group has been the subject of remarkably few phylogenetic investigations. Here we present partitioned Bayesian and maximum likelihood phylogenetic analyses for 151 of approximately 330 species of hummingbirds and 12 outgroup taxa based on two protein-coding mitochondrial genes (ND2 and ND4), flanking tRNAs, and two nuclear introns (AK1 and BFib). We analyzed these data under several partitioning strategies ranging between unpartitioned and a maximum of nine partitions. In order to select a statistically justified partitioning strategy following partitioned Bayesian analysis, we considered four alternative criteria including Bayes factors, modified versions of the Akaike information criterion for small sample sizes (AIC(c)), Bayesian information criterion (BIC), and a decision-theoretic methodology (DT). Following partitioned maximum likelihood analyses, we selected a best-fitting strategy using hierarchical likelihood ratio tests (hLRTS), the conventional AICc, BIC, and DT, concluding that the most stringent criterion, the performance-based DT, was the most appropriate methodology for selecting amongst partitioning strategies. In the context of our well-resolved and well-supported phylogenetic estimate, we consider the historical biogeography of hummingbirds using ancestral state reconstructions of (1) primary geographic region of occurrence (i.e., South America, Central America, North America, Greater Antilles, Lesser Antilles), (2) Andean or non-Andean geographic distribution, and (3) minimum elevational occurrence. These analyses indicate that the basal hummingbird assemblages originated in the lowlands of South America, that most of the principle clades of hummingbirds (all but Mountain Gems and possibly Bees) originated on this continent, and that there have been many (at least 30) independent invasions of other primary landmasses, especially Central America.

  12. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Directory of Open Access Journals (Sweden)

    Quagliariello Carla

    2008-03-01

    Full Text Available Abstract Background In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Results Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1 no differences in the comparison between inferred genomic and cDNA topologies could be detected. Conclusions Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0% and reduced in length (shorter than 500 bp. In the current lack of direct experimental evidence the results

  13. Effect of narcotics on membrane-bound mitochondrial processes in fish

    DEFF Research Database (Denmark)

    Vergauwen, Lucia; Nørgaard Schmidt, Stine; Michiels, Ellen

    and endoplasmic reticulum membrane are known to closely interact with the cell membrane, we hypothesize that narcotics can be further partitioned into these organelle membranes where they can disrupt essential membrane-bound processes. The electron transport chain (ETC) is an example of a crucial mitochondrial...

  14. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    OpenAIRE

    Magdalena Opalińska; Katarzyna Parys; Hanna Jańska

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we...

  15. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA

    International Nuclear Information System (INIS)

    Meeusen, S.; Tieu, Q.; Wong, E.; Weiss, E.; Schieltz, D.; Yates, J.R.; Nunnari, J.

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. (author)

  16. Effect of Silicon on Activity Coefficients of P, Bi, Cd, Sn, and Ag in Liquid Fe-Si, and Implications for Core Formation

    Science.gov (United States)

    Righter, K.; Pando, K.; Ross, D. K.; Righter, M.; Lapen, T. J.

    2018-01-01

    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on Ni and Co, and larger effects on Mo, Ge, Sb, As metal/silicate partitioning. The effect of Si on metal-silicate partitioning has been quantified for many siderophile elements, but there are a few key elements for which the effects are not yet quantified. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Moon, and Vesta, for which we have good constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.

  17. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  18. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park

    Directory of Open Access Journals (Sweden)

    Kristie S. Wendelberger

    2018-03-01

    Full Text Available Coastal plant communities are being transformed or lost because of sea level rise (SLR and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP. Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  19. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park.

    Science.gov (United States)

    Wendelberger, Kristie S; Gann, Daniel; Richards, Jennifer H

    2018-03-09

    Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata . Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  20. Photosynthate partitioning in alfalfa before harvest and during regrowth

    International Nuclear Information System (INIS)

    Cralle, H.T.; Heichel, G.H.

    1988-01-01

    During the harvest regrowth cycle of alfalfa (Medicago sativa L.) plants, factors such as source to sink distance, sink size, and inter-organ competition continually change. However, consequent changes in the pattern of photosynthate partitioning from leaves to other organs are poorly understood. The authors objective was to examine photosynthate partitioning from upper and lower alfalfa leaves at intervals before herbage harvest and during regrowth after harvest. The uppermost or lowest fully expanded leaf on the longest or dominant stem was labeled with 14 CO 2 . After a 24-h translocation period, the plants were divided into various organs to determine distribution of the radiocarbon. At that time, the upper leaf preferentially partitioned photosynthate to the shoot apex, unexpanded leaves and auxillary shoots of the dominant shoot, whereas the lower leaf preferentially distributed photosynthate to the crown shoots, crown, root, and nodules. Expressions of 14 C partitioning were affected differently by organ mass. While the smallest organs such as nodules and unexpanded leaves always ranked higher for 14 C based on relative specific activity, the largest organs such as roots and crown shoots accumulated the largest percentage of total plant recovered radioactivity. The results illustrate the importance of growth stage and leaf position in photosynthate partitioning in alfalfa and the dominance of herbage meristems for current photosynthate during regrowth

  1. Evaluation of the genetic distinctiveness of Greater Sage-grouse in the Bi-State Planning Area

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.

    2011-01-01

    The purpose of this study was to further characterize a distinct population of Greater Sage-grouse: the population located along the border between Nevada and California (Bi-State Planning Area) and centered around the Mono Basin. This population was previously determined to be genetically distinct from other Greater Sage-grouse populations across their range. Previous genetic work focused on characterizing genetic variation across the species' range and thereby used a coarse sampling approach for species characterization. The goal of this study was to investigate this population further by obtaining samples from breeding locations within the population and analyzing those samples with the same mitochondrial and microsatellite loci used in previous studies. Blood samples were collected in six locations within the Bi-State Planning Area. Genetic data from subpopulations were then compared with each other and also with two populations outside of the Bi-State Planning Area. Particular attention was paid to subpopulation boundaries and internal dynamics by drawing comparisons among particular regions within the Bi-State Planning Area and regions proximal to it. All newly sampled subpopulations contained mitochondrial haplotypes and allele frequencies that were consistent with the genetically unique Bi-State (Mono Basin) Greater Sage-grouse described previously. This reinforces the fact that this group of Greater Sage-grouse is genetically unique and warrants special attention. Maintaining the genetic integrity of this population could protect the evolutionary potential of this population of Greater Sage-grouse. Additionally, the White Mountains subpopulation was found to be significantly distinct from all other Bi-State subpopulations.

  2. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  3. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  4. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sperotto, R.A.; Vasconcelos, M.W.; Grusak, M.A.; Fett, J.

    2017-07-01

    Minimal information exists on whole-plant dynamics of mineral flow. Understanding these phenomena in a model plant such as rice could help in the development of nutritionally enhanced cultivars. A whole-plant mineral accumulation study was performed in rice (cv. Kitaake), using sequential harvests during reproductive development panicle exertion, grain filling, and full maturity stages in order to characterize mineral accumulation in roots, non-flag leaves, flag leaves, stems/sheaths, and panicles. Partition quotient analysis showed that Fe, Zn, Cu and Ni are preferentially accumulated in roots; Mn and Mg are accumulated in leaves; Mo, Ca, and S in roots and leaves; and K in roots, leaves and stems/sheaths. Correlation analysis indicated that changes in the concentrations of mineral pairs Fe-Mn, K-S, Fe-Ni, Cu-Mg, Mn-Ni, S-Mo, Mn-Ca, and Mn-Mg throughout the reproductive development of rice were positively correlated in all four of the above ground organs evaluated, with Fe-Mn and K-S being positively correlated also in roots, which suggest that root-to-shoot transfer is not driven simply by concentrations in roots. These analyses will serve as a starting point for a more detailed examination of mineral transport and accumulation in rice plants.

  5. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  6. BID links ferroptosis to mitochondrial cell death pathways

    Directory of Open Access Journals (Sweden)

    Sandra Neitemeier

    2017-08-01

    Full Text Available Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4 to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation.In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Keywords: Ferroptosis, BID, Mitochondria, CRISPR, Oxytosis, Neuronal death

  7. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    International Nuclear Information System (INIS)

    Mendes Godinho, R.; Raimundo, J.; Vale, C.; Anes, B.; Brito, P.; Alves, L.C.; Pinheiro, T.

    2013-01-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism

  8. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    Science.gov (United States)

    Mendes Godinho, R.; Raimundo, J.; Vale, C.; Anes, B.; Brito, P.; Alves, L. C.; Pinheiro, T.

    2013-07-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism.

  9. A Timing-Driven Partitioning System for Multiple FPGAs

    Directory of Open Access Journals (Sweden)

    Kalapi Roy

    1996-01-01

    Full Text Available Field-programmable systems with multiple FPGAs on a PCB or an MCM are being used by system designers when a single FPGA is not sufficient. We address the problem of partitioning a large technology mapped FPGA circuit onto multiple FPGA devices of a specific target technology. The physical characteristics of the multiple FPGA system (MFS pose additional constraints to the circuit partitioning algorithms: the capacity of each FPGA, the timing constraints, the number of I/Os per FPGA, and the pre-designed interconnection patterns of each FPGA and the package. Existing partitioning techniques which minimize just the cut sizes of partitions fail to satisfy the above challenges. We therefore present a timing driven N-way partitioning algorithm based on simulated annealing for technology-mapped FPGA circuits. The signal path delays are estimated during partitioning using a timing model specific to a multiple FPGA architecture. The model combines all possible delay factors in a system with multiple FPGA chips of a target technology. Furthermore, we have incorporated a new dynamic net-weighting scheme to minimize the number of pin-outs for each chip. Finally, we have developed a graph-based global router for pin assignment which can handle the pre-routed connections of our MFS structure. In order to reduce the time spent in the simulated annealing phase of the partitioner, clusters of circuit components are identified by a new linear-time bottom-up clustering algorithm. The annealing-based N-way partitioner executes four times faster using the clusters as opposed to a flat netlist with improved partitioning results. For several industrial circuits, our approach outperforms the recursive min-cut bi-partitioning algorithm by 35% in terms of nets cut. Our approach also outperforms an industrial FPGA partitioner by 73% on average in terms of unroutable nets. Using the performance optimization capabilities in our approach we have successfully partitioned the

  10. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.

    Science.gov (United States)

    El Zawily, Amr M; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S; Logan, David C

    2014-10-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Current perspectives on mitochondrial inheritance in fungi

    Directory of Open Access Journals (Sweden)

    Xu J

    2015-08-01

    Full Text Available Jianping Xu,1,2 He Li2 1Department of Biology, McMaster University, Hamilton, Canada; 2The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Federal Ministry of Education, Central South University of Forestry and Technology, Changsha, People’s Republic of China Abstract: The mitochondrion is an essential organelle of eukaryotes, generating the universal energy currency, adenosine triphosphate, through oxidative phosphorylation. However, aside from generation of adenosine triphosphate, mitochondria have also been found to impact a diversity of cellular functions and organ system health in humans and other eukaryotes. Thus, inheriting and maintaining functional mitochondria are essential for cell health. Due to the relative ease of conducting genetic and molecular biological experiments using fungi, they (especially the budding yeast Saccharomyces cerevisiae have been used as model organisms for investigating the patterns of inheritance and intracellular dynamics of mitochondria and mitochondrial DNA. Indeed, the diversity of mitochondrial inheritance patterns in fungi has contributed to our broad understanding of the genetic, cellular, and molecular controls of mitochondrial inheritance and their evolutionary implications. In this review, we briefly summarize the patterns of mitochondrial inheritance in fungi, describe the genes and processes involved in controlling uniparental mitochondrial DNA inheritance in sexual crosses in basidiomycete yeasts, and provide an overview of the molecular and cellular processes governing mitochondrial inheritance during asexual budding in S. cerevisiae. Together, these studies reveal that complex regulatory networks and molecular processes are involved in ensuring the transmission of healthy mitochondria to the progeny. Keywords: uniparental inheritance, biparental inheritance, mating type, actin cable, mitochore, mitochondrial partition 

  12. Evolution of gastropod mitochondrial genome arrangements

    Directory of Open Access Journals (Sweden)

    Zardoya Rafael

    2008-02-01

    Full Text Available Abstract Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis, and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia. The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P

  13. Evaluation of salt tolerance in ectoine-transgenic tomato plants (Lycopersicon esculentum) in terms of photosynthesis, osmotic adjustment, and carbon partitioning.

    Science.gov (United States)

    Moghaieb, Reda E A; Nakamura, Akiko; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-01-01

    Ectoine is a common compatible solute in halophilic bacteria. Its biosynthesis originates from L-aspartate β-semialdehyde and requires three enzymes: L-2, 4-diaminobutyric acid aminotransferase (gene: ect B), L-2,4-diaminobutyric acid acetyl transferase (gene: ect A) and L-ectoine synthase (gene: ect C). Genetically engineered tomato plants expressing the three H. elongata genes (ectA, ectB, and ectC) generated showed no phenotypic abnormality. Expression of the ectoine biosynthetic genes was detected in the T3 transgenic plants by Northern blot analysis. The ectoine accumulating T3 plants were evaluated for salt tolerance by examining their photosynthestic activity, osmotic adjustment and carbon partitioning. Nuclear magnetic resonance (NMR) detected the accumulation of ectoine. The concentration of ectoine increased with increasing salinity. The transgenic lines showed higher activities of peroxidase, while the malondialdehyde (MDA) concentration was decreased under salinity stress condition. In addition, preservation of higher rates of photosynthesis and turgor values as compared to control was evident. Within a week of ( 13) CO 2 feeding, salt application led to increases in the partitioning of ( 13) C into roots at the expense of ( 13) C in the other plant parts. These results suggest that under saline conditions ectoine synthesis is promoted in the roots of transgenic plants, leading to an acceleration of sink activity for photosynthate in the roots. Subsequently, root function such as water uptake is improved, compared with wild-type plants. In this way, the photosynthetic rate is increased through enhancement of cell membrane stability in oxidative conditions under salt stress.

  14. BID links ferroptosis to mitochondrial cell death pathways.

    Science.gov (United States)

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Cho, S.S.; Park, K.C.

    2016-01-01

    Roč. 107, č. 7 (2016), s. 543-579 ISSN 0029-5981 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : stress wave propagation * finite element method * explicit time integrator * dispersion * minimal spurious oscillations * partitioned analysis Subject RIV: BI - Acoustics Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0207

  16. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Science.gov (United States)

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  17. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  18. Long term stability of yttria-stabilized zirconia waste forms. Stability for secular change of partitioned TRU waste composition by disintegration

    International Nuclear Information System (INIS)

    Kuramoto, Ken-ichi; Banba, Tsunetaka; Mitamura, Hisayoshi; Sakai, Etsuro; Uno, Masayoshi; Kinoshita, H.; Yamanaka, Shinsuke

    1999-01-01

    In this study, the stability of YSZ waste forms for secular change of partitioned TRU waste composition by disintegration, one of important terms in long-term stability, is the special concern. Designed amount of waste and YSZ powder were mixed and sintered. These TRU waste forms were submitted to tests of phase stability, chemical durability, mechanical property and compactness. The results were compared with those of another YSZ waste forms, non-radioactive Ce and/or Nd doped YSZ samples, and glass and Synroc waste forms. Experimental results show following: (1) Phase stability of (Np+Am)-, (Np+U)-, and (Np+U+Bi)-doped YSZ waste forms could be maintained of that of the initial Np+Am-doped YSZ waste form permanently even when the composition of partitioned TRU waste were changed by disintegration. (2) Secular change also accelerated volume increase of YSZ waste forms as well as alpha-decay damage. (3) Hv, E and K IC of (Np+U)- and (Np+U+Bi)-doped YSZ waste forms were independent of the secular change of the partitioned TRU waste composition by disintegration. (4) Mechanical properties of YSZ waste forms were more than those of a glass and Synroc waste forms. (5) Compactness of YSZ waste forms was good as waste forms for the partitioned TRU wastes. (J.P.N.)

  19. Photoperiodic control of soybean 14C-assimilate partitioning during the seed filling period

    International Nuclear Information System (INIS)

    Morandi, E.N.

    1986-01-01

    Photoperiod not only controls the timing of flowering, but also affects later stages of seed development. To study its effect on assimilate partitioning, soybean plants were kept in short days (SD) or night interrupted (NI) during seed filling. The source-sink ratio was fixed to one leaflet-one pod per node. The node was girdle-isolated and its leaflet was pulse labelled with 14 CO 2 . SD plants partitioned more 14 C into seeds, while NI plants showed higher proportions in the petiole, stem and carpel. Seed growth rate and final seed dry weight were increased by 40% in SD. The sugar/starch ratio was increased in cotyledons and decreased in leaves of SD plants. In contrast, NI plants showed more 14 C incorporation into proteins. No changes were detected in carbon exchange ratio, dark respiration and total node dry weight. Thus, photoperiodic induced changes in carbohydrate and protein partitioning occurred without changes in the overall assimilatory process

  20. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  1. Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome

    Directory of Open Access Journals (Sweden)

    Chun Pong eLee

    2013-01-01

    Full Text Available Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, less than 30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past five years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.

  2. Linking nitrogen partitioning and species abundance to invasion resistance in the Great Basin

    Science.gov (United States)

    J. J. James; K. W. Davies; R. L. Sheley; Z. T. Aanderud

    2008-01-01

    Resource partitioning has been suggested as an important mechanism of invasion resistance. The relative importance of resource partitioning for invasion resistance, however, may depend on how species abundance is distributed in the plant community. This study had two objectives. First, we quantified the degree to which one resource, nitrogen (N), is partitioned by time...

  3. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    Science.gov (United States)

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  5. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  6. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  7. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  8. Future use of BI-GAS facility. Final report, Part II. [Other possible uses

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    The 120 tpd BI-GAS pilot plant, intended to produce SNG at high pressure, was completed in 1976. For the next three and a half years, the operator, Stearns-Roger Inc., was engaged in operating the plant while overcoming a series of mechanical problems that have prevented the plant from running at design capacity and pressure. Since July 1980, these problems have apparently been corrected and considerable progress was made. In late 1979, the Yates Congressional Committee directed DOE to investigate the possibility of establishing an entrained-bed gasifier test facility at the site. In January 1981, the DOE established a study group composed of DOE and UOP/SDC personnel to determine how best to use the BI-GAS facility. The group considered four possibilities: Continue operation of the facility in accordance with the technical program plan developed by DOE and Stearns-Roger; modify the plant into an entrained-bed facility for testing components and processes; mothball the facility, or dismantle the facility. The group took the view that modifying the plant into a test facility would increase substantially the amount of engineering data available to the designers of commercial gasification plants. Since it appears that syngas plants will be of commercial interest sooner than SNG plants will, it was decided that the facility should test syngas production components and processes at high pressure. Consequently, it was recommended that: Operation of the plant be continued, both to collect data and to prove the BI-GAS process, as long as the schedule of the technical program plan is met; Begin at once to prepare a detailed design for modifying the BI-GAS plant to a high-pressure, entrained flow syngas test facility; and Implement the modification plan as soon as the BI-GAS process is proven or it becomes apparent that progress is unsatisfactory.

  9. The partitioning of 137Cs, in comparison to K, P, and Ca in the shoots of Eriophorum vaginatum L. plants

    International Nuclear Information System (INIS)

    Jones, D.R.; Eason, W.R.; Dighton, J.

    1998-01-01

    In previous studies, persistently high concentrations of 13 '7Cs in Eriophorum vaginatum plants in the UK uplands have been attributed partly to the efficiency with which they remobilize minerals. The partitioning in the shoots of E. vaginatum of 137 Cs from environmental sources was investigated and found to be the same as that of mobile nutrients, inferring similar relative mobility and remobilisation. (author)

  10. Complete mitochondrial genome of the scalloped hammerhead Sphyrna lewini (Carcharhiniformes: Sphyrnidae).

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Xu, Yuziwei; Shi, Xiaofang

    2015-08-01

    The complete mitochondrial genome of the endangered scalloped hammerhead Sphyrna lewini was firstly determined in this study. It is 16,726 bp in length with the typical gene composition and orders in vertebrates. The overall base composition is 31.4% A, 26.3% C, 13.2% G and 29.1% T. Two start codon (ATG and GTG) and three stop codon (TAG, AGA and TAA/TA/T) patterns were found in protein-coding genes. Except for the tRNA-Ser2, the remaining 21 tRNAs can be folded into the typical cloverleaf structure. The control region possess the highest A + T content (66.1%) and lowest G content (12.6%) among all mitochondrial partitions.

  11. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei and a comparison of mitochondrial gene rearrangements in Arachnida

    Directory of Open Access Journals (Sweden)

    Braband Anke

    2007-10-01

    Full Text Available Abstract Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN, trnV show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.. We propose that two events led to this derived gene order: (1 a tandem duplication followed by random deletion and (2 an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of

  12. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  13. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Tedder, D.W.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates

  14. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  15. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  16. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  17. Regulation of assimilate partitioning by daylength and spectral quality

    Energy Technology Data Exchange (ETDEWEB)

    Britz, S.J. [USDA-Climate Stress Lab., Beltsville, MD (United States)

    1994-12-31

    Photosynthesis is the process by which plants utilize light energy to assimilate and transform carbon dioxide into products that support growth and development. The preceding review provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon metabolism with emphasis on the importance of gradual changes in photosynthetically-active radiation at dawn and dusk. In addition to these direct effects of irradiance, there are indirect effects of light period duration and spectral quality on carbohydrate metabolism and assimilate partitioning. Both daylength and spectral quality trigger developmental phenomena such as flowering (e.g., photoperiodism) and shade avoidance responses, but their effects on partitioning of photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants of such effects is sometimes not clear.

  18. BiP Negatively Affects Ricin Transport

    Directory of Open Access Journals (Sweden)

    Kirsten Sandvig

    2013-05-01

    Full Text Available The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER. In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  19. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling.

    Science.gov (United States)

    Essop, M Faadiel; Razeghi, Peter; McLeod, Chris; Young, Martin E; Taegtmeyer, Heinrich; Sack, Michael N

    2004-02-06

    Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (pheart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.

  20. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  1. Photosynthesis and assimilate partitioning characteristics of the coconut palm as observed by carbon-14 labelling

    International Nuclear Information System (INIS)

    Jayasekara, K.S.; Jayaswkara, K.S.; Bowen, G.D.

    2000-01-01

    A technique was developed on the use of carbon dioxide(carbon-14 labelled) rapid labelling of foliage and to ascertain photosynthesis and partitioning characteristics of labelled assimilate into other parts of the coconut palm. An eight-year-old Tall x Tall young coconut palm growing under field conditions at Bandirippuwa Estate and with six developing bunches , was selected for this study. The labelling was carried out on a bright sunny day and soil was at field capacity. Seventh leaf from the youngest open leaf was used for labelling with 5 mCi of sodium bi carbonate (Carbon-14 labelled). The results revealed that within 24 hours, 60% of the labelled assimilate was partitioned into other parts of the palm and at the end of the seventh day about 18% of the labelled assimilate still remained in the labelled leaf. Among the developing bunches fifth and sixth bunches from the youngest developing bunch received more labelled assimilate than young developing bunches above them. It was revealed that partitioning of assimilate into various ''sinks'' is determined by the developmental stage or activeness of the ''sink''. The proportion of C-14 labelled carbon assimilate, partitioned into developing bunches was substantially low compared to the total amount of labelled carbon fixed by the labelled leaf. Further, it was observed that partitioning of assimilated labelled carbon into the young leaves above, as well as the mature leaves below the labelled leaf. The complex vascular anatomy of the palms could be attributed to this pattern of partitioning of assimilates into upper and lower leaves from the labelled leaf

  2. Probable relationship between partitions of the set of codons and the origin of the genetic code.

    Science.gov (United States)

    Salinas, Dino G; Gallardo, Mauricio O; Osorio, Manuel I

    2014-03-01

    Here we study the distribution of randomly generated partitions of the set of amino acid-coding codons. Some results are an application from a previous work, about the Stirling numbers of the second kind and triplet codes, both to the cases of triplet codes having four stop codons, as in mammalian mitochondrial genetic code, and hypothetical doublet codes. Extending previous results, in this work it is found that the most probable number of blocks of synonymous codons, in a genetic code, is similar to the number of amino acids when there are four stop codons, as well as it could be for a primigenious doublet code. Also it is studied the integer partitions associated to patterns of synonymous codons and it is shown, for the canonical code, that the standard deviation inside an integer partition is one of the most probable. We think that, in some early epoch, the genetic code might have had a maximum of the disorder or entropy, independent of the assignment between codons and amino acids, reaching a state similar to "code freeze" proposed by Francis Crick. In later stages, maybe deterministic rules have reassigned codons to amino acids, forming the natural codes, such as the canonical code, but keeping the numerical features describing the set partitions and the integer partitions, like a "fossil numbers"; both kinds of partitions about the set of amino acid-coding codons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Does better taxon sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and nuclear markers.

    Science.gov (United States)

    Zhao, Lei; Annie, Ang Shi Hui; Amrita, Srivathsan; Yi, Su Kathy Feng; Rudolf, Meier

    2013-10-01

    We here present a phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha), a group of schizophoran flies with ca. 320 described species that is widely used in sexual selection research. The hypothesis is based on five nuclear and five mitochondrial markers totaling 8813 bp for ca. 30% of the diversity (105 sepsid taxa) and - depending on analysis - six or nine outgroup species. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inferences (BI) yield overall congruent, well-resolved, and supported trees that are largely unaffected by three different ways to partition the data in BI and ML analyses. However, there are also five areas of uncertainty that affect suprageneric relationships where different analyses yield alternate topologies and MP and ML trees have significant conflict according to Shimodaira-Hasegawa tests. Two of these were already affected by conflict in a previous analysis that was based on the same genes and a subset of 69 species. The remaining three involve newly added taxa or genera whose relationships were previously resolved with low support. We thus find that the denser taxon sample in the present analysis does not reduce the topological conflict that had been identified previously. The present study nevertheless presents a significant contribution to the understanding of sepsid relationships in that 50 additional taxa from 18 genera are added to the Tree-of-Life of Sepsidae and that the placement of most taxa is well supported and robust to different tree reconstruction techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  5. Basic investigation on promotion of joint implementation in fiscal 2000. Efficiency improvement and energy conservation at Uong Bi power plant; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Uong Bi hatsudensho no koritsuka to sho energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on energy conservation, and reduction in greenhouse gas emission through efficiency improvement at the Uong Bi coal burning power plant in Vietnam. The Uong Bi power plant, which has become using coal of lower quality than the design value, has had incomplete combustion, resulting in increase of unburned components in ash, and decrease of the boiler efficiency to 65 to 70%. Clinker hopper troubles have been occurring frequently, causing plant shutdown at a number of times. The turbine efficiency also shows as very low value as 26 to 27%. The plan has envisaged replacement of combustion parts of the boilers, withdrawal and replacement of the turbine generation systems, new installation of electric dust collectors, modification of the ash treatment system, additional installation of the re-circulation system, new installation of waste water treatment facilities, and modification of the waste water treatment equipment in the plant premises. As a result of the discussions, the annual energy saving quantity was found to be 62,936 tons of crude oil equivalent for the case where only one turbine is renewed, and 93,298 tons for the case where both of the two turbines are renewed. The annual reduction quantity of the greenhouse gas emission was found to be 251,215 tons and 372,402 t-CO2, respectively. (NEDO)

  6. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    Science.gov (United States)

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  7. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  8. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  9. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Armstrong, M R; Blok, V C; Phillips, M S

    2000-01-01

    The mitochondrial genome (mtDNA) of the plant parasitic nematode Globodera pallida exists as a population of small, circular DNAs that, taken individually, are of insufficient length to encode the typical metazoan mitochondrial gene complement. As far as we are aware, this unusual structural organization is unique among higher metazoans, although interesting comparisons can be made with the multipartite mitochondrial genome organizations of plants and fungi. The variation in frequency between populations displayed by some components of the mtDNA is likely to have major implications for the way in which mtDNA can be used in population and evolutionary genetic studies of G. pallida.

  10. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Science.gov (United States)

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  11. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants.

    Science.gov (United States)

    Calderón, Aingeru; Sánchez-Guerrero, Antonio; Ortiz-Espín, Ana; Martínez-Alcalá, Isabel; Camejo, Daymi; Jiménez, Ana; Sevilla, Francisca

    2018-02-15

    In a changing environment, plants are able to acclimate to the new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here we studied a mitochondrial thioredoxin in wild type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants in control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H 2 O 2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavourable environment. This article is protected by copyright. All rights reserved.

  12. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    Science.gov (United States)

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  13. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    OpenAIRE

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and ...

  14. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    Science.gov (United States)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  15. Partitioning of high level liquid waste: experiences in plant level adoption

    International Nuclear Information System (INIS)

    Manohar, Smitha; Kaushik, C.P.

    2016-01-01

    High Level Radioactive Wastes are presently vitrified in borosilicate matrices in all our back end facilities in our country. This is in accordance with internationally endorsed methodology for the safe management of high level radioactive wastes. Recent advancements in the field of partitioning technology in our group, has presented us with an opportunity to have a fresh perspective on management of high level liquid radioactive wastes streams, that emanate from reprocessing operations. This paper will highlight our experiences with respect to both partitioning studies and vitrification practices, with a focus on waste volume reduction for final disposal. Incorporation of this technique has led to the implementation of the concept of recovering wealth from waste, a marked decrease on the load of disposal in deep geological repositories and serve as a step towards the vision of transmutation of long lived radionuclides

  16. Partitioning sources of variation in vertebrate species richness

    Science.gov (United States)

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  17. Metal partitioning and uptake in central Ontario forests

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; Dillon, Peter J.; Epova, Ekaterina N.

    2005-01-01

    Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (K d ). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH aq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with K d predictions. Analogous to other studies, log K d values for all metals were predicted by empirical linear regression with soil pH (r 2 = 0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern. - Metal cycling by plants should be considered in risk assessment studies

  18. Effects of shading on dry matter partitioning and yield of field-grown sunflower

    International Nuclear Information System (INIS)

    Villalobos, F.J.; Soriano, A.; Fereres, E.

    1992-01-01

    Crop simulation models require quantitative descriptions of the effects of irradiance on dry matter partition and yield. The objective of this work was to quantify the effects of reduced radiation intensity during different phenological stages on the growth, dry matter partitioning and grain numbers of sunflower (Helianthus annuus, L.). A field experiment was carried out in 1990 with 50 per cent shading treatments. The earliest treatment began at crop emergence while the latest ended at first anthesis. Shading had little effect on plant leaf area growth but reduced biomass and yield. The dry matter: radiation quotient and specific leaf area increased with shading. Grain number per head was decreased by shading, with the greatest effect occurring when shading was applied prior to anthesis. All shading treatments increased dry matter partitioning to stems, decreased assimilate partitioning to the heads and had no effect on the partitioning to leaves. (author)

  19. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  20. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  1. PARTITION: A program for defining the source term/consequence analysis interface in the NUREG--1150 probabilistic risk assessments

    International Nuclear Information System (INIS)

    Iman, R.L.; Helton, J.C.; Johnson, J.D.

    1990-05-01

    The individual plant analyses in the US Nuclear Regulatory Commission's reassessment of the risk from commercial nuclear power plants (NUREG-1150) consist of four parts: systems analysis, accident progression analysis, source term analysis, and consequence analysis. Careful definition of the interfaces between these parts is necessary for both information flow and computational efficiency. This document has been designed for users of the PARTITION computer program developed by the authors at Sandia National Laboratories for defining the interface between the source term analysis (performed with the XXSOR programs) and the consequence analysis (performed with the MACCS program). This report provides a tutorial that details how the interactive partitioning is performed, along with detailed information on the partitioning process. The PARTITION program was written in ANSI standard FORTRAN 77 to make the code as machine-independent (i.e., portable) as possible. 9 refs., 4 figs

  2. Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress

    Science.gov (United States)

    Wang, Jie; Pareja, Kristeen A; Kaiser, Chris A; Sevier, Carolyn S

    2014-01-01

    Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress. DOI: http://dx.doi.org/10.7554/eLife.03496.001 PMID:25053742

  3. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  4. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  5. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  6. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  7. Unusual carbon partitioning during phosphate deficiency in celery, a mannitol-synthesizing species

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, R.H.; Loescher, W.H. (Washington State Univ., Pullman (USA))

    1989-04-01

    Mannitol and sucrose are the main photosynthetic products and translocated carbon compounds in celery (Apium graveolens L.). Carbon partitioning was studied in greenhouse-grown celery plants supplied with a nutrient solution containing or lacking phosphate (P). P-deficient plants developed new leaves at about the same rate as control plants, but showed greatly reduced growth of leaves and petioles; root growth was apparently unaffected. P-deficient leaves contained less mannitol and more sucrose than control leaves. Starch content increased with P-deficiency only in mature (the most photosynthetically-active) leaves, and then amounted to less than 10 mg/g fresh weight. Similarly, when {sup 14}CO{sub 2} was supplied to intact plants, P-deficient leaves contained less label in mannitol and more in sucrose than did control leaves; labeling of starch changed little. The P-status of celery leaves apparently affects the partitioning of carbon between mannitol and sucrose more than it affects starch accumulation. This is in marked contrast to the large increase in starch content commonly observed during P-deficiency in species that produce and translocate predominantly sucrose.

  8. Pyraclostrobin Impairs Energetic Mitochondrial Metabolism and Productive Performance of Silkworm (Lepidoptera: Bombycidae) Caterpillars.

    Science.gov (United States)

    Nicodemo, Daniel; Mingatto, Fábio Ermínio; Carvalho, Amanda de; Bizerra, Paulo Francisco Veiga; Tavares, Marco Aurélio; Balieira, Kamila Vilas Boas; Bellini, William Cesar

    2018-03-09

    Silkworm cocoon production has been reduced due to a number of problems other than those inherent in sericulture, such as diseases, malnutrition, and inappropriate management. The use of pesticides in areas surrounding mulberry fields can contaminate these plants and consequently harm caterpillars. The aim of this study was to evaluate whether the application of the fungicide pyraclostrobin in mulberry plants interferes with the mitochondrial bioenergetics and the productive performance of silkworms. Mulberry plants were treated with pyraclostrobin (0, 100, 200, and 300 g ha-1). After 30 d of fungicide application, fifth instar caterpillars were fed with leaves from the treated plants. We evaluated in vitro and in vivo mitochondrial bioenergetics of mitochondria from the head and intestines, as well as the feed intake and mortality rate of the caterpillars and the weight of fresh cocoons and cocoons shells. At doses of 50 µM (in vitro) and 200 g ha-1 (in vivo), pyraclostrobin inhibited oxygen consumption in state 3, dissipated membrane potential, and inhibited ATP synthesis in mitochondria. Pyraclostrobin acted as a respiratory chain inhibitor, affecting mitochondrial bioenergetics. The fungicide did not interfere with food consumption but negatively affected mortality rate and weight of cocoons. Mulberry leaves contaminated with pyraclostrobin negatively impact the mitochondrial bioenergetics of silkworms and cocoon production.

  9. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    Science.gov (United States)

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able tomodify other mitochondrial constituents. Fourier tran...

  10. Partitioning of photoassimilates by potato plants (Solanum tuberosum L.) as influenced by irradiance. II. Partitioning patterns by four clones grown under high and low irradiance

    International Nuclear Information System (INIS)

    Gawronska, H.; Dwelle, R.B.; Pavek, J.J.

    1990-01-01

    This paper is the second in a three-part series describing the influence of varied irradiance on growth and photoassimilate partitioning by potato plants. Four clones (Russet Burbank, Lemhi Russet, A66107-51, and A6948-4) were grown under two light regimes: a) high light levels (HL) of 500 to 1200 μE m -2 s -1 , varying with changes in natural sunlight and time of day, and b) low light levels (LL) at approximately one quarter of high light (21 to 28%). Three weeks after tuber initiation, the most recently-matured leaf was labelled with 14 CO 2 , and plants were harvested: 1) one day after labelling, and 2) two weeks after labelling. Plants of all clones responded to the low light levels in a similar way by: 1) changing some morphological characteristics, 2) decreasing biomass accumulation and tuber yield, and 3) changing the sink-source relationship by promoting growth of leaves and stems at the expense of tubers. However, there were evident clonal differences in reactions to growth under low light; e.g., Lemhi Russet appeared to be most sensitive to light stress, while clones A66107-51 and A6848-4 were much less sensitive. No matter what the prior light history (HL or LL), clone A6948-4 was able to maintain higher rates of photosynthesis than the other clones at all light levels between 200 and 1200 μE m -2 s -1 . This study showed that the potential exists to breed for cuttivars that can maintain higher rates of photosynthesis and higher tuber yield under low light levels. (author)

  11. Simulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants

    NARCIS (Netherlands)

    Yin, X.; Schapendonk, A.H.C.M.

    2004-01-01

    Quantification of the assimilate partitioning between roots and shoot has been one of the components that need improvement in crop growth models. In this study we derived two equations for root-shoot partitioning of biomass and nitrogen (N) that hold for crops grown under steady-state conditions.

  12. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  13. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard

    2014-01-01

    of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...... comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression...

  14. Expression of the nuclear gene TaF(A)d is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm.

    Science.gov (United States)

    Xu, Pei; Yang, Yuwen; Zhang, Zhengzhi; Chen, Weihua; Zhang, Caiqin; Zhang, Lixia; Zou, Sixiang; Ma, Zhengqiang

    2008-01-01

    Alterations of mitochondrial-encoded subunits of the F(o)F(1)-ATP synthase are frequently associated with cytoplasmic male sterility (CMS) in plants; however, little is known about the relationship of the nuclear encoded subunits of this enzyme with CMS. In the present study, the full cDNA of the gene TaF(A)d that encodes the putative F(A)d subunit of the F(o)F(1)-ATP synthase was isolated from the wheat (Triticum aestivum) fertility restorer '2114' for timopheevii cytoplasm-based CMS. The deduced 238 amino acid polypeptide is highly similar to its counterparts in dicots and other monocots but has low homology to its mammalian equivalents. TaF(A)d is a single copy gene in wheat and maps to the short arm of the group 6 chromosomes. Transient expression of the TaF(A)d-GFP fusion in onion epidermal cells demonstrated TaF(A)d's mitochondrial location. TaF(A)d was expressed abundantly in stem, leaf, anther, and ovary tissues of 2114. Nevertheless, its expression was repressed in anthers of CMS plants with timopheevii cytoplasm. Genic male sterility did not affect its expression in anthers. The expression of the nuclear gene encoding the 20 kDa subunit of F(o) was down-regulated in a manner similar to TaF(A)d in the T-CMS anthers while that of genes encoding the 6 kDa subunit of F(o) and the gamma subunit of F(1) was unaffected. These observations implied that TaF(A)d is under mitochondrial retrograde regulation in the anthers of CMS plants with timopheevii cytoplasm.

  15. Canopy sink-source partitioning influences root/soil respiration in apple

    Science.gov (United States)

    The root system of plants derives all its energy from photosynthate translocated from the canopy to the root system. Canopy manipulations that alter either the rate of canopy photosynthesis or the translocation of photosynthate are expected to alter dry matter partitioning to the root system. Fiel...

  16. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  17. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  18. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  19. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato

    Directory of Open Access Journals (Sweden)

    Shuangchen Chen

    2017-06-01

    Full Text Available Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS or reactive nitrogen species (RNS metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, O2.−, MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP. The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA–GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop

  20. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  1. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  2. Membrane behavior as influenced by partitioning of amphiphiles during drying : a comparative study in anhydrobiotic plant systems

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.

    2002-01-01

    During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in

  3. Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity Between Symbiodinium spp.

    Directory of Open Access Journals (Sweden)

    Thomas David Hawkins

    2016-04-01

    Full Text Available Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations. We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1. In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein-1, and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides

  4. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  5. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels.

    Science.gov (United States)

    Tamoi, Masahiro; Hiramatsu, Yoshie; Nedachi, Shigeki; Otori, Kumi; Tanabe, Noriaki; Maruta, Takanori; Shigeoka, Shigeru

    2011-05-01

    We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO(2) levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO(2) levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO(2) levels.

  7. Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.

    Science.gov (United States)

    Haack, Rebekka; Schulz, Stephan; Jansen, Georg

    2018-03-13

    Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  9. Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.

    Science.gov (United States)

    Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana

    2013-06-01

    Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.

  10. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    Science.gov (United States)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  11. Phosphorus Uptake and Partitioning in Maize as Affected by Tillage ...

    African Journals Online (AJOL)

    Higher phosphorus concentrations were found in the ears than in the shoots and leaves at physiological maturity. Tillage x phospho-rus interactions influenced phosphorus partitioning in the ears and the leaves on the Dystric Cam-bisol but not on the Ferric Acrisol. PUE in the plant parts were significantly higher under ...

  12. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    Science.gov (United States)

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  13. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  14. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    International Nuclear Information System (INIS)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang; Liu, Bitao; Wang, Zhaofeng

    2015-01-01

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed

  15. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The modulation and reconstruction of a BiO layer of cuprate Bi2212

    International Nuclear Information System (INIS)

    Fan Wei; Zeng, Z

    2011-01-01

    Studies based on ab initio density functional theory show that the modulated structures of BiO surfaces of cuprate Bi2212 superconductors are spontaneously formed and closely related to the reconstructions of BiO surfaces. The reconstructions of BiO layers occur both on the surface and in the bulk, accompanied with the formations of BiO-zigzag chains and Bi 2 O 2 quadrilaterals. The structural modulations of the BiO surface are along the b axis, perpendicular to the BiO-zigzag chains along the a axis. Our calculations provide a unified understanding of the formation of modulating structures in Bi2212. Another interesting result is that electronic structures of BiO surfaces are significantly influenced by the CuO 2 layer beneath because of the structural modulations and reconstructions.

  18. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  19. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    Science.gov (United States)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  20. Photocatalytic activity of Bi_2WO_6/Bi_2S_3 heterojunctions: the facilitation of exposed facets of Bi_2WO_6 substrate

    International Nuclear Information System (INIS)

    Yan, Long; Wang, Yufei; Shen, Huidong; Zhang, Yu; Li, Jian; Wang, Danjun

    2017-01-01

    Highlights: • Bi_2S_3/Bi_2WO_6 hybrids with exposed (020) Bi_2WO_6 facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi_2S_3 was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi_2S_3/Bi_2WO_6 hybrid architectures with exposed (020) Bi_2WO_6 facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi_2S_3 was formed on the surface of Bi_2WO_6 during the anion exchange process, thus leading to the transformation from the Bi_2WO_6 to Bi_2S_3/Bi_2WO_6. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi_2S_3/Bi_2WO_6 catalysts. Under visible light irradiation, the Bi_2S_3/Bi_2WO_6-TAA displayed the excellent visible light photoactivities compared with pure Bi_2S_3, Bi_2WO_6 and other composite photocatalysts. The efficient photocatalytic activity of the Bi_2S_3/Bi_2WO_6-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi_2WO_6 facets. Active species trapping experiments revealed that h"+ and O_2·"− are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  1. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Wen Ting; Zheng, Yi Fan; Yin, Hao Yong; Song, Xu Chun

    2015-01-01

    BiOI/Bi 2 MoO 6 heterostructures with different amounts of BiOI were successfully prepared via a facile deposition method. The obtained BiOI/Bi 2 MoO 6 photocatalysts exhibited much higher visible light (λ > 420 nm) induced photocatalytic activity compared with single Bi 2 MoO 6 and BiOI photocatalysts. 20 % BiOI/Bi 2 MoO 6 nanocomposite exhibited the highest photocatalytic activity with almost all RhB decomposed within 70 min. However, excess BiOI covering on the surface of Bi 2 MoO 6 can inversely reduce the photocatalytic activity. The enhanced photocatalytic activities could be resulted from the function of the novel p–n heterojunction interface between Bi 2 MoO 6 and BiOI, which could separate photoinduced carriers efficiently. Possible mechanisms on the basis of the relative band positions were also discussed

  2. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  3. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Science.gov (United States)

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  4. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  5. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    -N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  6. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  7. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    Science.gov (United States)

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  8. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  9. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Chunzi Liang

    2014-01-01

    Full Text Available Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB, a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM, alanine (0.5 mM, valine (0.5 mM, EX527 (SIRT1 inhibitor, 25 μM, and Compound C (AMPK inhibitor, 25 μM alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.

  10. Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?

    Science.gov (United States)

    Wynn, Emily L; Christensen, Alan C

    2015-10-01

    Angiosperm mitochondrial genes appear to have very low mutation rates, while non-gene regions expand, diverge, and rearrange quickly. One possible explanation for this disparity is that synonymous substitutions in plant mitochondrial genes are not truly neutral and selection keeps their occurrence low. If this were true, the explanation for the disparity in mutation rates in genes and non-genes needs to consider selection as well as mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus leaving a pseudogene in the mitochondria. This provides an opportunity to compare neutral substitution rates in pseudogenes with synonymous substitution rates in the orthologs. Genes and pseudogenes of rps14 have been aligned among different species and the mutation rates have been calculated. Neutral substitution rates in pseudogenes and synonymous substitution rates in genes are significantly different, providing evidence that synonymous substitutions in plant mitochondrial genes are not completely neutral. The non-neutrality is not sufficient to completely explain the exceptionally low mutation rates in land plant mitochondrial genomes, but selective forces appear to play a small role.

  11. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  12. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  13. In-situ synthesis of nanofibers with various ratios of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} for effective trichloroethylene photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifan [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Mira [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Ding, Bin [College of Textiles, Donghua University, Shanghai 201620 (China); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of)

    2016-10-30

    Highlights: • BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers were synthesized by in-situ method. • Photodegradation behavior of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers was measured under solar light irradiation. • BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4}/PAN fibers exhibited the highest photocatalytic activity. • Photocatalytic mechanism was discussed in detail. - Abstract: In this work, BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} (x + y + z = 1) composite nanofibers were prepared through electrospinning and the sol-gel methods. Photocatalytic degradation of trichloroethylene (TCE) by BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN nanofibers was systematically investigated via gas chromatography (GC). Optimum photocatalytic activity was achieved with BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} fibers under solar light irradiation. X-ray photoelectron spectroscopy (XPS) peaks due to C−O and C=O were observed at 286.0 and 288.3 eV, respectively, it indicated that the BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} mixture had been successfully doped on the polyacrylonitrile (PAN) fibers. Furthermore, X-ray diffraction (XRD) results also confirmed that we had synthesized the as-prepared composite nanofibers successfully. Photocatalytic activities of BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} were up to 3 times higher than the pure BiOCl, BiOBr and BiOI samples, respectively.

  14. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  15. Slavery in plants

    NARCIS (Netherlands)

    Kabiri, S.; Rodenburg, J.; Ast, van A.; Bastiaans, L.

    2017-01-01

    The rain-fed lowland rice weed Rhamphicarpa fistulosa (Rice Vampireweed) is a facultative root parasitic plant. Growth and reproduction of R. fistulosa benefit considerably from parasitism, but how this affects the host plant is not well established. We determined accumulation and partitioning of

  16. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  18. System study on partitioning and transmutation of long-lived isotopes

    International Nuclear Information System (INIS)

    Szieberth, M.

    2001-01-01

    The management of long-lived isotopes - transuranium elements and fission products - produced in nuclear reactors is a problem that substantially affects the public acceptance of nuclear energy, and may influence the long-term hazard caused by energy production. Partitioning and transmutation of spent fuel materials offer a suitable solution to this problem. After the nuclear community had realised this fact, the number of publications on this topic significantly increased but there is still a lack of studies that include the analysis of not only one instrument but also the whole nuclear energy system. However, from the viewpoint of Partitioning and transmutation's implementation a substantial question is the cooperation of plants optimised for energy generation and others for partitioning or transmutation. In order to analyse this problem, the schemes of different systems are framed and their mathematical models are worked out. The systems are evaluated through the long-term risks caused by the waste deposited in final disposal, and the risks are described by a newly defined quantity, the residual hazard index. (author)

  19. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  20. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  1. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  2. Influence of photoinduced Bi-related self-doping on the photocatalytic activity of BiOBr nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Yue, Songtao; Wang, Wei [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); An, Tiacheng, E-mail: antc99@gig.ac.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Guiying [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ye, Liqun [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Yip, Ho Yin [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Wong, Po Keung, E-mail: pkwong@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China)

    2017-01-01

    Highlights: • Bi{sup 5+} self-doped BiOBr nanosheets are achieved under UV irradiation. • Bi{sup 5+} is formed due to the oxidation of surface Bi{sup 3+} by photoexcited h{sup +} of BiOBr. • Two photoinduced h{sup +} mediated oxidation processes happen simultaneously. • Self-doped BiOBr is superior in phenol degradation and bacterial inactivation. • Bi{sup 5+} electron trapping induced photocatalytic enhancement mechanism is proposed. - Abstract: Under UV irradiation, self-doped Bi{sup 5+} is evidenced to be generated on the surface of BiOBr nanosheets, but with well-preserved crystal structure and morphology compared with pure counterpart. Bi{sup 5+} self-doping BiOBr (BiOBr-4) exhibits distinct photocatalytic mode for dyes degradation, as compared with pure BiOBr nanosheets. These photodegradation distinctions are mainly due to the simultaneous occurrence of two photoinduced hole (h{sup +}) mediated oxidation processes on the BiOBr surfaces: (1) a portion of photoexcited h{sup +} participates in the photocatalytic oxidation of dyes, and (2) partial h{sup +} involves the oxidation of Bi{sup 3+} to Bi{sup 5+}. Notably, BiOBr-4 nanosheets comparatively show superior photocatalytic activity for the phenol decomposition as well as the bacterial inactivation. Besides Bi{sup 5+} induced narrowed bandgap and enhanced light adsorption capacity, significantly, the oxidative Bi{sup 5+} acts as electron traps to promote the photoexcited electron-hole separation and accelerate h{sup +} migration, resulting in the considerable photocatalytic enhancement of BiOBr-4 nanosheets. These novel findings will not only give new insights into the photocatalytic mechanism but also explore new route to enhance photocatalytic performance of Bi-based materials.

  3. Biomass partitioning and root morphology of savanna trees across a water gradient

    NARCIS (Netherlands)

    Tomlinson, K.W.; Sterck, F.J.; Bongers, F.; Silva, da D.A.; Barbosa, E.R.; Ward, D.; Bakker, F.T.; Kaauwen, van M.P.W.; Prins, H.H.T.; Bie, de S.; Langevelde, van F.

    2012-01-01

    1. Plant organ biomass partitioning has been hypothesized to be driven by resources, such that species from drier environments allocate more biomass to roots than species from wetter environments to access water at greater soil depths. In savanna systems, fire may select for greater allocation to

  4. Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J.A.; Beitlerova, A.; Jary, V.

    2013-01-01

    Absorption, cathodoluminescence, excitation spectra of photoluminescence (PL) and PL decay kinetics were studied at 300 K for the double doped with Bi 3+ –Pr 3+ and separately doped with Bi 3+ and Pr 3+ Lu 3 Al 5 O 12 (LuAG) and Y 3 Al 5 O 12 (YAG) single crystalline film (SCF) phosphors grown by the liquid phase epitaxy method. The emission bands in the UV range arising from the intrinsic radiative transitions of Bi 3+ based centers, and emission bands in the visible range, related to the luminescence of excitons localized around Bi 3+ based centers, were identified both in Bi–Pr and Bi-doped LuAG and YAG SCFs. The energy transfer processes from the host lattice simultaneously to Bi 3+ and Pr 3+ ions and from Bi 3+ to Pr 3+ ions were investigated. Competition between Pr 3+ and Bi 3+ ions in the energy transfer processes from the LuAG and YAG hosts was evidenced. The strong decrease of the intensity of Pr 3+ luminescence both in LuAG:Pr and YAG:Pr SCFs phosphors, grown from Bi 2 O 3 flux, is observed due to the quenching influence of Bi 3+ flux related impurity. Due to overlap of the UV emission band of Bi 3+ centers with the f–d absorption bands of Pr 3+ ions in the UV range and the luminescence of excitons localized around Bi ions with the f–f absorption bands of Pr 3+ ions in the visible range, an effective energy transfer from Bi 3+ ions to Pr 3+ ions takes place in LuAG:Bi,Pr and YAG:Bi,Pr SCFs, resulting in the appearance of slower component in the decay kinetics of the Pr 3+ d–f luminescence. -- Highlights: • Bi and Pr doped film phosphor grown by liquid phase epitaxy method. • Energy transfer from Bi 3+ to Pr 3+ ions. • Strong quenching of the Pr 3+ luminescence by Bi 3+ co-dopant

  5. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    Science.gov (United States)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  6. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  7. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.

    Science.gov (United States)

    Fenn, J Daniel; Song, Hojun; Cameron, Stephen L; Whiting, Michael F

    2008-10-01

    The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that

  8. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI

    International Nuclear Information System (INIS)

    Kulbachinskii, Vladimir A.; Kytin, Vladimir G.; Kudryashov, Alexey A.; Kuznetsov, Alexei N.; Shevelkov, Andrei V.

    2012-01-01

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI 3 or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering

  9. A complete mitochondrial genome of wheat (Triticum aestivum cv ...

    Indian Academy of Sciences (India)

    role in the development and reproduction of the plant. They occupy a specific ... for biosynthetic pathways relative to their free-living cousins. (Gray et al. 1999; Itoh ... A mitochondrial genome BAC library was constructed fol- lowing a previously ...

  10. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

    Directory of Open Access Journals (Sweden)

    Ghader Najarbashi

    2011-01-01

    Full Text Available In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b^† together with bz form a closed deformed algebra, i.e., SU_q(2 with q=e^{2πi/3}, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.

  11. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  12. Partitioning and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Baetsle, L.H.

    1993-01-01

    The world's nuclear power plants have a total installed capacity of approximately 340 GWe. They give rise to an annual volume of approximately 9000 t of radioactive waste, which is reprocessed, separated from its plutonium content, contained, and stored in repositories to close the nuclear fuel cycle. Direct disposal is being discussed as an alternative to this procedure. As repositories in suitable types of host rock are not operational, the only viable solution is long-term interim storage above ground. If the volumes of radioactive waste are to be reduced, the longlived actinides and fission products must be partitioned. Isotope partitioning in accelerators, though still sounding like science fiction, may soon be indispensable as the third way of treating radioactive waste. The use of mixed oxide fuel in light water reactors and fast breeder reactors both help to limit waste arisings and protect the long-term continuity of raw materials supply. However, both require public acceptance if they are to succeed. (orig.) [de

  13. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  14. Irradiation plant for flowable material

    International Nuclear Information System (INIS)

    Bosshard, E.

    1975-01-01

    The irradiation plant can be used to treat various flowable materials including effluent or sewage sludge. The plant contains a concrete vessel in which a partition is mounted to form two coaxial irradiation chambers through which the flowable material can be circulated by means of an impeller. The partition can be formed to house tubes of radiation sources and to provide a venturi-like member about the impeller. The operation of the impeller is reversed periodically to assure movement of both heavy and light particles in the flow. (U.S.)

  15. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  17. Partitioning and mobilization of photoassimilate in alfalfa subjected to water deficits

    International Nuclear Information System (INIS)

    Hall, M.H.; Sheaffer, C.C.; Heichel, G.H.

    1988-01-01

    Faster regrowth of a stressed alfalfa (Medicago sativa L.) crop compared to an unstressed crop after rewatering has been reported. The bases of this compensatory response are unknown, but they may be important to understanding adaptation to water stress and to developing crop water management strategies. The authors objectives was to determine the effect of stress induced by water deficit on photoassimilate partitioning and the utilization of stored assimilates during regrowth of alfalfa. Field and greenhouse experiments were conducted using cultivars differing in winterhardiness. Plants were subjected to water stress, pulse-labeled with 14 CO 2 , and sampled following 0, 1, 14, 21, and 28-d translocation periods. Following the 14-d sampling, herbage was harvested and water stress was removed. Cultivars contrasting in winterhardiness responded similarly to water stress. Stressed plant roots contained 73 and 114% more total plant radioactivity (TPR) than the control at the 1 and 14-d translocation periods, respectively. Water stress significantly increased root starch and TPR percentage in the starch fraction, but had much smaller effects on root soluble-sugar concentration and TPR percentage of the root sugar fraction. Herbage regrowth mass following harvest and rewatering of the water-stressed plants was similar to that of the control. Compared to the control, water-stressed alfalfa has greater total nonstructural carbohydrates in the roots, apparently due to increased photoassimilate partitioning to the roots. However, the greater root carbohydrate concentrations did not result in compensatory herbage regrowth following rewatering

  18. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  19. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  20. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning.

    Science.gov (United States)

    Pilling, J; Willmitzer, L; Bücking, H; Fisahn, J

    2004-05-01

    Two pectin methyl esterases (PMEs; EC 3.1.1.11) from Solanum tuberosum were isolated and their expression characterised. One partial clone ( pest1) was expressed in leaves and fruit tissue, while pest2 was a functional full-length clone and was expressed ubiquitously, with a preference for aerial organs. Potato plants were transformed with a chimeric antisense construct that was designed to simultaneously inhibit pest1 and pest2 transcript accumulation; however, reduction of mRNA levels was confined to pest2. The decrease in pest2 transcript was accompanied by up to 50% inhibition of total PME activity, which was probably due to the reduction of only one PME isoform. PME inhibition affected plant development as reflected by smaller stem elongation rates of selected transformants when compared with control plants, leading to a reduction in height throughout the entire course of development. Expansion rates of young developing leaves were measured simultaneously by two displacement transducers in the direction of the leaf tip (proximal-distal axis) and in the perpendicular direction (medial-lateral axis). Significant differences in leaf growth patterns were detected between wild-type and transgenic plants. We suggest that these visual phenotypes could be correlated with modifications of ion accumulation and partitioning within the transgenic plants. The ion-binding capacities of cell walls from PME-inhibited plants were specifically modified as they preferentially bound more sodium, but less potassium and calcium. X-ray microanalysis also indicated an increase in the concentration of several ions within the leaf apoplast of transgenic plants. Moreover, quantification of the total content of major cations revealed differences specific for a given element between the leaves of PME-inhibited and wild-type plants. Reduced growth rates might also be due to effects of PME inhibition on pectin metabolism, predominantly illustrated by an accumulation of galacturonic acid

  1. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  2. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  3. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites

    International Nuclear Information System (INIS)

    Wu, Siyuan; Zheng, Hong; Lian, Youwei; Wu, Yiying

    2013-01-01

    Graphical abstract: - Highlights: • BiPO 4 /BiVO 4 composites were successfully prepared by the hydrothermal method. • BiPO 4 /BiVO 4 composites exhibited broad absorption in the visible region. • Visible-light photocatalytic activities of BiPO 4 /BiVO 4 composites were enhanced. • P/V molar ratio and pH value of the reaction affect photocatalytic activity. • The mechanism of enhanced visible-light photocatalytic activities was discussed. - Abstract: BiPO 4 /BiVO 4 composites with different P/V molar ratios were prepared by the hydrothermal method and the effect of pH values of hydrothermal reaction on photocatalytic activity of BiPO 4 /BiVO 4 composite was investigated. The photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic property of BiPO 4 /BiVO 4 was evaluated by photocatalytic degradation of Methylene blue under visible light irradiation. The results showed that the photocatalytic activity of the composites was much higher than that of pure BiPO 4 and BiVO 4 . The rate constant of Methylene blue degradation over BiPO 4 /BiVO 4 (P/V molar ratio of 5:1 and hydrothermal reaction pH value of 1.5) is 1.7 times that of pure BiVO 4 . The photocatalytic activity enhancement of BiPO 4 /BiVO 4 composite is closely related to the BiVO 4 functioning as a sensitizer to adsorb visible light and the heterojunction of BiPO 4 /BiVO 4 acting as an active center for hindering the rapid recombination of electron–hole pairs during the photocatalytic reaction

  4. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  5. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?

    Directory of Open Access Journals (Sweden)

    Bernadette eGehl

    2014-04-01

    Full Text Available The band-7 protein family comprises a diverse set of membrane-bound proteins characterised by the presence of a conserved domain. The exact function of this band-7 domain remains elusive, but examples from animal and bacterial stomatin-type proteins demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers that form putative scaffolds. Some members, such as prohibitins and human stomatin-like protein 2 (HsSLP2, localise to the mitochondrial inner membrane where they function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has diversified and includes plant-specific members. Mitochondrial-localised members include prohibitins (AtPHBs and two stomatin-like proteins (AtSLP1 and -2. Studies into PHB function in plants have demonstrated an involvement in root meristem proliferation and putative scaffold formation for mAAA proteases, but it remains unknown how these roles are achieved at the molecular level. In this minireview we summarise the current status of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members might recruit specific lipids to form microdomains that could shape the organisation and functioning of the respiratory chain.

  6. State diagram of Pr-Bi system

    International Nuclear Information System (INIS)

    Abulkhaev, V.L.; Ganiev, I.N.

    1994-01-01

    By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.

  7. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  8. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  9. The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera.

    Science.gov (United States)

    Grohmann, L; Brennicke, A; Schuster, W

    1992-01-01

    The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526

  10. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  11. Dry matter yield and Carbon partitioning in the aboveground part of switchgrass ( panicum virgatum l.) germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Butkutė, B.; Lemežien ė, N.; Cesevičienė, J.; Liaudanskienė, I., E-mail: brone@lzi.lt [Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kėdainiai distr. (Lithuania)

    2013-07-01

    Carbon (C) accumulated in biomass can be converted into usable forms of energy like methane, bioethanol or solid fuel. Understanding the partitioning of aboveground biomass and C plays an important role in optimizing its pre-treatment technologies. Our objectives were to determine dry matter yield (DMY) and C partitioning in switch grass germplasm. Plants were sampled at heading (HS) and seed filling (SFS) stages. The biomass of the SFS-sampled plants was separated into leaves (blades+sheaths), stems, and panicles. C content was determined by dry combustion. C yield per plant (CY) at HS ranged from 25.9 to 171 g (37.3 g on average for plants in the first harvest year, and 147 for those in the second harvest year), at SFS CY varied within a range of 79.8 ‒ 295g and averaged 119 and 252g depending on the year of growth. DMY was a weighted factor for such results. At SFS, DMY of stems accounted on average for 46.3%, leaves for 40.5%, and panicles for 13.2% of the aboveground biomass of whole plant with respective C concentrations of 462, 439 and 459 g kg -1 DM. (author)

  12. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    Science.gov (United States)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  13. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  14. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  15. Effects of sulfur dioxide on nitrogen fixation, carbon partitioning, and yield components in snapbean

    International Nuclear Information System (INIS)

    Griffith, S.M.; Campbell, W.F.

    1987-01-01

    The air pollutant SO 2 is known to affect plant biochemistry and physiology, although very little is known about its effects on N 2 -fixation in legumes. This study sought to determine if N 2 -fixation, C partitioning, and plant productivity of snapbean (Phaseolus vulgaris L.) were affected under short-term, low-level SO 2 exposures. Plants were exposed, 29 d after planting (7 d before anthesis), to 0, 18, and 36 μmol SO 2 m -3 for 4 h d -1 for 5 d in a fumigation chamber. On the last day of SO 2 treatment, plants were also exposed to 14 CO 2 to determine changes in C partitioning patterns. At these concentrations, there was no visible damage to plant tissue and no significant changes in dry weight or yield components. Only the 36 μmol SO 2 m -3 treatment reduced C 2 H 2 reduction rates, but recovery to near control rates occurred within 24 h after SO 2 removal. Leaves of plants treated with 18 μmol SO 2 m -3 exported more of their total assimilated 14 C than control plants, while those treated with 36 μmol SO 2 m -3 retained greater amounts. Retention of 14 C at the 36 μmol SO 2 m -3 level may account for the inhibition of C 2 H 2 -reduction because of less photosynthate arriving at the root nodules. These data suggest that SO 2 levels that do not cause visible injury may interfere with C metabolism and transport in snapbean

  16. Responses of young tea (Camellia sinensis) clones to drought and temperature. II. Dry matter production and partitioning

    International Nuclear Information System (INIS)

    Burgess, P.J.; Carr, M.K.V.

    1996-01-01

    The physiological basis for differences in yields from well-watered and draughted plants of four contrasting clones of tea was studied in terms of light interception, dry matter production and partitioning at a high altitude site in Southern Tanzania where there are marked seasonal variations in rainfall and temperature. The plant dry weights, including roots, were measured eight months after field planting and subsequently at intervals of three to four months, corresponding to the different seasons, during the following two years. Fully irrigated plants of one clone (S15/10) were also harvested after four years in the field. Clones differed in the rates of canopy spread and hence in their capacity to intercept solar radiation. The ‘radiation use efficiency’ (the net total dry matter production per unit of intercepted short-wave radiation) was similar for the four well-watered clones and ranged from 0.40 to 0.66 g MJ −1 , which corresponds closely to values reported for other woody tropical plants. A 16-week drought treatment imposed two years after planting reduced the mean light interception of the four clones by about 25% and the mean radiation use efficiency by 78% to 0.09 g MJ −1 . Clone S15/10, a cultivar from Kenya which produces large yields, partitioned a greater proportion of dry matter to leaves and harvested shoots than the other clones, and correspondingly less to large structural roots. This resulted in a maximum harvest index of 24%, substantially greater than other values reported in the literature. There were seasonal differences in partitioning, with more dry matter being diverted to roots and less to shoots during the cool season. Although the drought treatments had no significant effect on root growth, the amount of dry matter partitioned to leaves, stems and harvested shoots declined by 80–95%. The roots of all four clones extended in depth at similar rates (about 2 mm d −1 ), those of Clone S15/10 reaching 2.8m after four years

  17. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  18. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  19. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  20. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  1. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    Science.gov (United States)

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  2. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  3. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  4. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  5. Mitochondrial-Targeted Decyl-Triphenylphosphonium Enhances 2-Deoxy-D-Glucose Mediated Oxidative Stress and Clonogenic Killing of Multiple Myeloma Cells.

    Directory of Open Access Journals (Sweden)

    Jeanine Schibler

    Full Text Available Therapeutic advances have markedly prolonged overall survival in multiple myeloma (MM but the disease currently remains incurable. In a panel of MM cell lines (MM.1S, OPM-2, H929, and U266, using CD138 immunophenotyping, side population staining, and stem cell-related gene expression, we demonstrate the presence of stem-like tumor cells. Hypoxic culture conditions further increased CD138low stem-like cells with upregulated expression of OCT4 and NANOG. Compared to MM cells, these stem-like cells maintained lower steady-state pro-oxidant levels with increased uptake of the fluorescent deoxyglucose analog. In primary human MM samples, increased glycolytic gene expression correlated with poorer overall and event-free survival outcomes. Notably, stem-like cells showed increased mitochondrial mass, rhodamine 123 accumulation, and orthodox mitochondrial configuration while more condensed mitochondria were noted in the CD138high cells. Glycolytic inhibitor 2-deoxyglucose (2-DG induced ER stress as detected by qPCR (BiP, ATF4 and immunoblotting (BiP, CHOP and increased dihydroethidium probe oxidation both CD138low and CD138high cells. Treatment with a mitochondrial-targeting agent decyl-triphenylphosphonium (10-TPP increased intracellular steady-state pro-oxidant levels in stem-like and mature MM cells. Furthermore, 10-TPP mediated increases in mitochondrial oxidant production were suppressed by ectopic expression of manganese superoxide dismutase. Relative to 2-DG or 10-TPP alone, 2-DG plus 10-TPP combination showed increased caspase 3 activation in MM cells with minimal toxicity to the normal hematopoietic progenitor cells. Notably, treatment with polyethylene glycol conjugated catalase significantly reduced 2-DG and/or 10-TPP-induced apoptosis of MM cells. Also, the combination of 2-DG with 10-TPP decreased clonogenic survival of MM cells. Taken together, this study provides a novel strategy of metabolic oxidative stress-induced cytotoxicity of MM

  6. The Euler–Riemann gases, and partition identities

    International Nuclear Information System (INIS)

    Chair, Noureddine

    2013-01-01

    The Euler theorem in partition theory and its generalization are derived from a non-interacting quantum field theory in which each bosonic mode with a given frequency is equivalent to a sum of bosonic mode whose frequency is twice (s-times) as much, and a fermionic (parafermionic) mode with the same frequency. Explicit formulas for the graded parafermionic partition functions are obtained, and the inverse of the graded partition function (IGPPF), turns out to be bosonic (fermionic) partition function depending on the parity of the order s of the parafermions. It is also shown that these partition functions are generating functions of partitions of integers with restrictions, the Euler generating function is identified with the inverse of the graded parafermionic partition function of order 2. As a result we obtain new sequences of partitions of integers with given restrictions. If the parity of the order s is even, then mixing a system of parafermions with a system whose partition function is (IGPPF), results in a system of fermions and bosons. On the other hand, if the parity of s is odd, then, the system we obtain is still a mixture of fermions and bosons but the corresponding Fock space of states is truncated. It turns out that these partition functions are given in terms of the Jacobi theta function θ 4 , and generate sequences in partition theory. Our partition functions coincide with the overpartitions of Corteel and Lovejoy, and jagged partitions in conformal field theory. Also, the partition functions obtained are related to the Ramond characters of the superconformal minimal models, and in the counting of the Moore–Read edge spectra that appear in the fractional quantum Hall effect. The different partition functions for the Riemann gas that are the counter parts of the Euler gas are obtained by a simple change of variables. In particular the counter part of the Jacobi theta function is (ζ(2t))/(ζ(t) 2 ) . Finally, we propose two formulas which brings

  7. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  8. Siderophile Volatile Element Partitioning during Core Formation.

    Science.gov (United States)

    Loroch, D. C.; Hackler, S.; Rohrbach, A.; Klemme, S.

    2017-12-01

    Since the nineteen sixties it is known, that the Earth's mantle is depleted relative to CI chondrite in numerous elements as a result of accretion and core-mantle differentiation. Additionally, if we take the chondritic composition as the initial solar nebular element abundances, the Earth lacks 85 % of K and up to 98 % of other volatiles. However one potentially very important group of elements has received considerably less attention in this context and these elements are the siderophile but volatile elements (SVEs). SVEs perhaps provide important information regarding the timing of volatile delivery to Earth. Especially for the SVEs the partitioning between metal melt and silicate melt (Dmetal/silicate) at core formation conditions is poorly constrained, never the less they are very important for most of the core formation models. This study is producing new metal-silicate partitioning data for a wide range of SVEs (S, Se, Te, Tl, Ag, As, Au, Cd, Bi, Pb, Sn, Cu, Ge, Zn, In and Ga) with a focus on the P, T and fO2dependencies. The initial hypothesis that we are aiming to test uses the accretion of major portions of volatile elements while the core formation was still active. The key points of this study are: - What are the effects of P, T and fO2 on SVE metal-silicate partioning? - What is the effect of compositional complexity on SVE metal-silicate partioning? - How can SVE's D-values fit into current models of core formation? The partitioning experiments will be performed using a Walker type multi anvil apparatus in a pressure range between 10 and 20 GPa and temperatures of 1700 up to 2100 °C. To determine the Dmetal/silicate values we are using a field emission high-resolution JEOL JXA-8530F EPMA for major elements and a Photon Machines Analyte G2 Excimer laser (193 nm) ablation system coupled to a Thermo Fisher Element 2 single-collector ICP-MS (LA-ICP-MS) for the trace elements. We recently finished the first sets of experiments and can provide the

  9. Photosynthate partitioning and distribution in soybean plant

    International Nuclear Information System (INIS)

    Latche, J.; Cavalie, G.

    1983-01-01

    Plants were grown in a controlled environment chamber and fed with a modified Hoagland solution containing nitrate as nitrogen source (N+ medium). Soybeans, 33 days old (flowering stage), 45 and 56 days old (pods formation and filling stages) were used for experimentation. In each experiment, the eight trifoliated leaf (F 8 ) was exposed to 14 CO 2 (10 μCi; 400 vpm), in the light (80 W x m -2 ) for 30 min. After a 6 h chase period (22 - 25 0 C; 80 W x m -2 ), the radiocarbon distribution among plant parts was determined and labelled compounds were identified. (orig.)

  10. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  11. Global EiBI-monopole

    Directory of Open Access Journals (Sweden)

    JIN Xinghua

    2014-04-01

    Full Text Available A global EiBI-monopole problem is studied under EiBI gravitational theory.The equations of global EiBI-monopole are derived in the curved spacetime and the relation between the spacetime metric and auxiliary metric is found.In the case of a very small parameter,an asymptotic form of equations is given.The series solutions of global EiBI-monopole at infinity are found.

  12. [On the partition of acupuncture academic schools].

    Science.gov (United States)

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  13. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  14. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  15. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  16. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  18. High photocatalytic performance of BiOI/Bi{sub 2}WO{sub 6} toward toluene and Reactive Brilliant Red

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiquan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Cui Yumin, E-mail: cuiyumin0908@163.com [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Hong Wenshan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China)

    2013-01-01

    Graphical abstract: When BiOI/Bi{sub 2}WO{sub 6} catalyst was exposed to UV or visible light, the electrons in the valence band of Bi{sub 2}WO{sub 6} would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi{sub 2}WO{sub 6} and transferred across the interface between BiOI and Bi{sub 2}WO{sub 6} to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi{sub 2}WO{sub 6}. In this way, the photoinduced electron-hole pairs were effectively separated. Highlights: Black-Right-Pointing-Pointer BiOI sensitized Bi{sub 2}WO{sub 6} catalysts were successfully prepared by a facile method. Black-Right-Pointing-Pointer The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits higher photoactivities than P25. Black-Right-Pointing-Pointer A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi{sub 2}WO{sub 6} photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV-vis diffuse reflection spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi{sub 2}WO{sub 6} was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi{sub 2}WO{sub 6} catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi{sub 2}WO{sub 6} phases. With increasing BiOI content, the absorption intensity of BiOI/Bi{sub 2}WO{sub 6} catalysts increases in the 380-600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi{sub 2}WO{sub 6}. The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits

  19. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  20. Ga-Bi-Te system

    International Nuclear Information System (INIS)

    Rustamov, P.G.; Seidova, N.A.; Shakhbazov, M.G.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neorganicheskoj i Fizicheskoj Khimii)

    1976-01-01

    To elucidate the nature of interaction in the system Ga-Bi-Te, a study has been made of sections GaTe-Bi 2 Te 3 , Ga 2 Te 3 -Bi, GaTe-Bi and Bi 2 Te 3 -Ga. The alloys have been prepared by direct melting of the components or their alloys with subsequent homogenizin.o annealing at 400 deg C. The study has been made by the methods of differential thermal, microstructural analysis and by microhardness measurements. On the basis of literature data and data obtained a projection of the liquidus surface of the phase diagram for the system Ga-Bi-Te has been constructed. In the ternary system there are 17 curves of monovariant equilibrium dividing the liquidus into 10 fields of primary crystallization of phases, 9 points of non-variant equilibrium of which 4 points are triple eutectics and 5 points are triple peritectics

  1. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  2. A brief history of partitions of numbers, partition functions and their modern applications

    Science.gov (United States)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  3. Clustering Module in OLAP for Horticultural Crops using SpagoBI

    Science.gov (United States)

    Putri, D.; Sitanggang, I. S.

    2017-03-01

    Horticultural crops data are organized by the Ministry of Agriculture, Republic of Indonesia. The data are presented annually in a tabular form and result a large data set. This situation makes users difficult to obtain summaries of horticultural crops data. This study aims to develop a clustering module in the SOLAP system for the distribution of horticultural crops in Indonesia and to visualize the results of clustering in a map using SpagoBI. The algorithm used for clustering is K-Means. Horticultural crops data include vegetables, ornamental plants, medicinal plants, and fruits from 2000 to 2013. The clustering module displays clustering results of horticultural crops in the form of text and table on SpagoBI. This module can also visualize the distribution of horticultural crops in the form of map on the HTML page. The application is expected to be useful for users in order to easily obtain summaries of the horticultural crops distribution data and its clusters. The summaries and clusters can be beneficial for the stakeholders to determine potential areas in Indonesia for horticultural crops.

  4. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    International Nuclear Information System (INIS)

    Xiong Ka; Wang Weichao; Alshareef, Husam N; Gupta, Rahul P; Gnade, Bruce E; Cho, Kyeongjae; White, John B

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2 Te 3 , NiTe/Bi 2 Te 3 , Co/Bi 2 Te 3 and CoTe 2 /Bi 2 Te 3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi 2 Te 3 . The interface formation energy for Co/Bi 2 Te 3 interfaces is much lower than that of Ni/Bi 2 Te 3 interfaces. Furthermore, we found that NiTe on Bi 2 Te 3 is more stable than Ni, while the formation energies for Co and CoTe 2 on Bi 2 Te 3 are comparable.

  5. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  6. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  7. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka; Wang, Weichao; Alshareef, Husam N.; Gupta, Rahul P.; White, John B.; Gnade, Bruce E.; Cho, Kyeongjae

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  8. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka

    2010-03-04

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  9. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Microstructure Of MnBi/Bi Eutectic Alloy

    Science.gov (United States)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  11. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    Science.gov (United States)

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  12. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  13. Photocatalytic activity of Bi{sub 2}WO{sub 6}/Bi{sub 2}S{sub 3} heterojunctions: the facilitation of exposed facets of Bi{sub 2}WO{sub 6} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Long [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Wang, Yufei [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Shen, Huidong; Zhang, Yu [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Li, Jian [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Wang, Danjun, E-mail: yulyanlong@aliyun.com [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China)

    2017-01-30

    Highlights: • Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrids with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi{sub 2}S{sub 3} was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrid architectures with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi{sub 2}S{sub 3} was formed on the surface of Bi{sub 2}WO{sub 6} during the anion exchange process, thus leading to the transformation from the Bi{sub 2}WO{sub 6} to Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} catalysts. Under visible light irradiation, the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA displayed the excellent visible light photoactivities compared with pure Bi{sub 2}S{sub 3}, Bi{sub 2}WO{sub 6} and other composite photocatalysts. The efficient photocatalytic activity of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi{sub 2}WO{sub 6} facets. Active species trapping experiments revealed that h{sup +} and O{sub 2}·{sup −} are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  14. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  15. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  16. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  17. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes).

    Science.gov (United States)

    Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette

    2002-06-01

    We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.

  18. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  19. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  20. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  1. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  2. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    OpenAIRE

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-01-01

    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respe...

  3. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  4. Betweenness-based algorithm for a partition scale-free graph

    International Nuclear Information System (INIS)

    Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua

    2011-01-01

    Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)

  5. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  6. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  7. PBDEs versus NBFR in wastewater treatment plants: occurrence and partitioning in water and sludge

    Directory of Open Access Journals (Sweden)

    Joyce Cristale

    2015-06-01

    Full Text Available This study evaluates the occurrence of flame retardants (FR in five wastewater treatment plants (WWTPs located close to Barcelona (NE Spain, an area with high urban and industrial pressures. Compounds studied include eight polybromodiphenyl ethers (PBDEs and eight New Brominated Flame Retardants (NBFRs, for which little information regarding their presence, partitioning and fate within the WWTPs is available. In unfiltered influent samples, PBDEs were not detected and bis(2-ethyl-1-hexyltetrabromophthalate was the only NBFR detected, and all WWTPs were efficient in eliminating this compound as no residues were found in the effluents. However, primary sludge contained from 279 to 2299 ng/g dry weight of ΣFR and the concentration increased in secondary (biological sludge. NBFRs accounted for the main FR detected in sludge, representing a 63-97% of the total load, and among PBDEs, BDE-209 was the most ubiquitous congener. Considering the amount of sludge generated in each WWTP, it was estimated that 0.34-17.2 kg of FR are released annually through the sludge, which can have negative environmental and health implications if sludge is used as biosolid in agriculture. Overall, this study provides a sampling design and analytical protocol to be used to determine the evolution of FR in WWTPs and compares the levels detected, considering that PBDEs are being phased out to be substituted by other compounds which also have high accumulative and recalcitrant properties.

  8. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  9. Kinetic partitioning mechanism of HDV ribozyme folding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing, E-mail: wbzhang@whu.edu.cn [Department of Physics, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  10. Whole plant senescence of sunflower following seedhead removal

    International Nuclear Information System (INIS)

    Ho, InSun; Below, F.E.

    1989-01-01

    This study was undertaken to further clarify the relationship between seed development and monocarpic senescence of sunflower (Helianthus annuus L.). Field-grown plants with and without seedheads were evaluated for rate and duration of accumulation of dry weight, reduced N, and P by whole shoots, and for partitioning of these constituents within the individual plant parts. Concurrent with seedhead removal, [ 15 N]nitrate was applied to the plants in a selected are of the experimental plot. Whole plants (above ground portions) were harvested seven times during the seed-filling period and analyzed from dry weight, reduced N, and P. Although seedhead removal depressed the rates of dry weight, reduced N, and P accumulation by whole shoots, it extended the duration of accumulation of these constituents, relative to headed control plants. As a result, the final whole shoot dry weight and N and P contents at seed maturity were similar for deheaded and headed plants. Seedhead removal also affected the partitioning of dry matter, reduced N, and P but the relative proportions varied as a function of constituent and growth stage. Analysis of 15 N present in whole shoots at physiological maturity showed that similar amounts of nitrate were absorbed during the postflowering period by headed and deheaded plants. These data indicate that the absence of seeds does not affect the total accumulation of dry matter, reduced N, or P, by sunflower plants, but does alter the rates of accumulation and partitioning of these constituents

  11. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  12. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    Science.gov (United States)

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-02-01

    A new BiS2-based superconductor, Bi2(O,F)S2, was discovered. It is a layered compound consisting of alternately stacked structure of rock-salt-type BiS2 superconducting layers and fluorite-type Bi(O,F) blocking layers. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2. This is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis lengths increased and decreased, respectively, and Tc increased to 5.1 K.

  13. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  14. Partition of selected food preservatives in fish oil-water systems

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan; Leth, Torben

    2010-01-01

    The partition coefficients (Kow) of benzoic acid and sorbic acid in systems of fish oil (sand eel)–water, fish oil–buffer solution, rape oil–water and olive oil–water were experimentally determined in a temperature range from 5 to 43 °C and pH from 4.5 to 6.5 °C. The dimerization of benzoic acid...... in fish oil–water system was observed at 25 °C. Two modifications have been made to the Nordic Food Analysis Standard for the determination of sorbic acid by HPLC. The experimental results show that the Kow of benzoic acid and sorbic acid in fish oil–buffer system is ca. 100 times lower than that in fish...... oil–water system. The Kow values of benzoic acid and sorbic acid in fish oil and water system decrease with increasing system pH values. The partition coefficients of plant origin and fish origin oils are in the same order of magnitude even though their molecular structures are very different....

  15. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  16. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  17. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  18. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  19. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Present status of partitioning developments

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Kubota, Masumitsu; Tachimori, Shoichi

    1978-09-01

    Evolution and development of the concept of partitioning of high-level liquid wastes (HLLW) in nuclear fuel reprocessing are reviewed historically from the early phase of separating useful radioisotopes from HLLW to the recent phase of eliminating hazardous nuclides such as transuranium elements for safe waste disposal. Since the criteria in determining the nuclides for elimination and the respective decontamination factors are important in the strategy of partitioning, current views on the criteria are summarized. As elimination of the transuranium is most significant in the partitioning, various methods available of separating them from fission products are evaluated. (auth.)

  1. Produce bi oethanol from waste; Lager bioetanol av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Jannicke

    2011-07-01

    Borregaard has received 100 million in support to the development of new technology for 2 generation bi oethanol. But a full-scale plant might as well end in Brazil (not Norway). All biomass, whether it's straw or even three, consisting of about 45% cellulose, 30% lignin and 25% sugars (hemi cellulose). About half of lignin production goes to the cement industry in the form of cement improvement products. (AG)

  2. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald

    2014-01-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  3. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  4. PERFORMANCE ANALYSIS OF SET PARTITIONING IN HIERARCHICAL TREES (SPIHT ALGORITHM FOR A FAMILY OF WAVELETS USED IN COLOR IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    A. Sreenivasa Murthy

    2014-11-01

    Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.

  5. Partitioning evapotranspiration fluxes with water stable isotopic measurements: from the lab to the field

    Science.gov (United States)

    Quade, M. E.; Brueggemann, N.; Graf, A.; Rothfuss, Y.

    2017-12-01

    Water stable isotopes are powerful tools for partitioning net into raw water fluxes such as evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET partitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn relies on the fact that each flux is differently affected by isotopic kinetic effects. An important work to be performed in parallel to field measurements is to better characterize these kinetic effects in the laboratory under controlled conditions. A soil evaporation laboratory experiment was conducted to retrieve characteristic values of the kinetic fractionation factor (αK) under varying soil and atmospheric water conditions. For this we used a combined soil and atmosphere column to monitor the soil and atmospheric water isotopic composition profiles at a high temporal and vertical resolution in a nondestructive manner by combining micro-porous membranes and laser spectroscopy. αK was calculated by using a well-known isotopic evaporation model in an inverse mode with the isotopic composition of E as one input variable, which was determined using a micro-Keeling regression plot. Knowledge on αK was further used in the field (Selhausen, North Rhine-Westphalia, Germany) to partition ET of catch crops and sugar beet (Beta vulgaris) during one growing season. Soil and atmospheric water isotopic profiles were measured automatically across depths and heights following a similar modus operandi as in the laboratory experiment. Additionally, a newly developed continuously moving elevator was used to obtain water vapor isotopic composition profiles with a high vertical resolution between soil surface, plant canopy and atmosphere. Finally, soil and plant samples were collected destructively to provide a comparison with the traditional isotopic methods. Our results illustrate the changing proportions of T and E along the growing season and demonstrate the

  6. Specificity of DNA import into isolated mitochondria from plants and mammals

    Directory of Open Access Journals (Sweden)

    Koulintchenko M. V.

    2014-01-01

    Full Text Available Aim. Investigation of different features of DNA import into plant and human mitochondria, for a better understanding of mitochondrial genetics and generation of biotechnological tools. Methods. DNA up-take experiments with isolated plant mitochondria, using as substrates various sequences associated or not with the specific terminal inverted repeats (TIRs present at each end of the plant mitochondrial linear plasmids. Results. It was established that the DNA import efficiency has a non-linear dependence on DNA size. It was shown that import into plant mitochondria of DNA molecules of «medium» sizes, i. e. between 4 and 7 kb, barely has any sequence specificity: neither TIRs from the 11.6 kb Brassica plasmid, nor TIRs from the Zea mays S-plasmids influenced DNA import into Solanum tuberosum mitochondria. Conclusions. The data obtained support the hypothesis about species-specific import mechanism operating under the mitochondrial linear plasmids transfer into plant mitochondria.

  7. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  9. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  10. Feasibility study on modernization and energy conservation at Uong Bi power station

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on energy conservation, and reduction in greenhouse gas emission through efficiency improvement at the Uong Bi coal burning power plant in Vietnam. The Uong Bi power plant, which has become using coal of lower quality than the design value, has had incomplete combustion, resulting in increase of unburned components in ash, and decrease of the boiler efficiency to 65 to 70%. Clinker hopper troubles have been occurring frequently, causing plant shutdown at a number of times. The turbine efficiency also shows as very low value as 26 to 27%. The plan has envisaged replacement of combustion parts of the boilers, withdrawal and replacement of the turbine generation systems, new installation of electric dust collectors, modification of the ash treatment system, additional installation of the re-circulation system, new installation of waste water treatment facilities, and modification of the waste water treatment equipment in the plant premises. As a result of the discussions, the annual energy saving quantity was found to be 62,936 tons of crude oil equivalent for the case where only one turbine is renewed, and 93,298 tons for the case where both of the two turbines are renewed. The annual reduction quantity of the greenhouse gas emission was found to be 251,215 tons and 372,402 t-CO2, respectively. (NEDO)

  11. Investigation of the electronic structure of the BiSBr and BiSeBr clusters by density functional method

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Kvedaravicius, A.; Cerskus, A.

    2008-01-01

    The energy levels of valence bands (VB) of the BiSBr and BiSeBr crystals have been calculated for investigation of the photoelectron emission spectra of BiSBr, BiSeBr and BiSI crystals. The molecular model of this crystal has been used for the calculation of VB by the Density Functional Theory (DFT) method. The molecular cluster, consisting of 20 molecules of BiSBr, BiSeBr, has been used for calculations of averaged total density of states, including atom vibrations. The spectra of the averaged total density of states from VB of BiSBr and BiSeBr clusters have been compared with the experimental photoelectron emission spectra from VB of BiSI crystals. The results clarify that the atomic vibrations in A 5 B 6 C 7 type crystals with chain structure create a smoother appearance of the averaged total density of state spectrum and the experimental X-ray photoemission spectra (XPS)

  12. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  13. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  14. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  15. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Science.gov (United States)

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  16. Luminescence of Bi3+ ions in Y3Al5O12:Bi single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Vistovsky, V.; Nedilko, S.; Nikl, M.

    2007-01-01

    The absorption and cathodoluminescence spectra of single crystalline films (SCF) of Y 3 Al 5 O 12 :Bi garnet depending on Bi concentration were analyzed. For consideration of the nature of the UV and visible Bi-related emission bands the time-resolved luminescence of Bi 3+ (ns 2 ) ions in YAG:Bi SCF was studied at 10 K under excitation by synchrotron radiation. The difference in the excitation spectra and emission decay of the UV and visible bands has been explained via radiative relaxation from the 3 P 1,0 excited states to the 1 S 0 ground state of the isolated and pair/clustered Bi 3+ emission centers in the garnet lattice, respectively

  17. Bi-functional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides

    DEFF Research Database (Denmark)

    Laursen, Tomas; Stonebloom, Solomon H; Pidatala, Venkataramana R

    2018-01-01

    . Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bi-functionality of AtGALS1 may suggest that plants can produce the incredible structural...

  18. Response of MnBi-Bi eutectic to freezing rate changes

    Science.gov (United States)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  19. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steensland, Johan [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Advanced Software Research and Development

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  20. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    to be feasible, while HYDROGENATION would be viable, and with superior environmental performance, if the price of hydrogen remains inferior to 1000 US$/t. A scenario of cheap natural gas at 2.74 US$/MMBtu, as in the United States, would favor BI-REFORMING, which yields returns that are superior to those of HYDROGENATION even with hydrogen prices as low as 800 US$/t. The integrated scenario of HYDROGENATION has an advantage of about 50 US$/t in the methanol price in comparison to its non-integrated alternative. The environmental analysis revealed that both routes contribute to reduce global warming potential, and the reduction is intensified with a clean energy source (hydropower), with additional environmental benefit of decreasing acidification potential. For fossil energy supply, HYDROGENATION succeeds to reduce 87% of the emissions from the carbon dioxide source (bioethanol plant). Moving to a clean energy scenario increases the efficiency to 98%. BI-REFORMING is unable to reduce emissions (rather increasing it by 105%) in the fossil based energy scenario, however, for clean energy supply, it emits only 46% of the input of carbon dioxide from the bioethanol plant.

  1. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  2. Photoreduction of non-noble metal Bi on the surface of Bi{sub 2}WO{sub 6} for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojing [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Yu, Shan; Liu, Yang; Zhang, Qian [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China)

    2017-02-28

    Highlights: • Bi{sub 2}WO{sub 6}-Bi composite was synthesized by in situ photoreduction of Bi{sub 2}WO{sub 6}. • Bi{sub 2}WO{sub 6}-Bi exhibits improved photocatalytic efficiency towards degradation of Rhodamine B. • The generation of elemental Bi in Bi{sub 2}WO{sub 6}-Bi induces vacancy and structure distortion of Bi{sub 2}WO{sub 6}. • The surface oxygen adsorption mode changes from hydroxyl group on Bi{sub 2}WO{sub 6} to molecular oxygen on Bi{sub 2}WO{sub 6}-Bi. - Abstract: In this report, Bi{sub 2}WO{sub 6}-Bi composite was prepared through an in situ photoreduction method and was characterized systematically by X-Ray diffraction, transmission electron microscopy, X-Ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared Bi{sub 2}WO{sub 6}-Bi maintains the same crystal structure with the pristine Bi{sub 2}WO{sub 6} regardless of some surface defects. Nevertheless, these surface defects result in the change of surface oxygen adsorption mode from hydroxyl to molecular oxygen on Bi{sub 2}WO{sub 6}. Photocatalytic activity over Bi{sub 2}WO{sub 6}-Bi is 2.4 times higher than that of Bi{sub 2}WO{sub 6} towards the degradation of organic dye Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). A deep study shows that cleavage of benzene ring is the main pathway for RhB degradation over Bi{sub 2}WO{sub 6}, but both the benzene cleavage and de-ethylation pathway coexist for RhB decomposition in the presence of Bi{sub 2}WO{sub 6}-Bi as the photocatalyst. Photoelectrochemical study including transient photocurrent tests and electrochemical impedance spectroscopy measurements shows that Bi{sub 2}WO{sub 6}-Bi could facilitate the charge transfer process compared to Bi{sub 2}WO{sub 6}. These data above has indicated a new insight into the promotion mechanism based on Bi related heterostructures.

  3. REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL REDOX STATE IN COLON CANCER EX VIVO

    Science.gov (United States)

    XU, HE N.; FENG, MIN; MOON, LILY; DOLLOFF, NATHAN; EL-DEIRY, WAFIK; LI, LIN Z.

    2015-01-01

    The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern

  4. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  5. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  6. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Gupta, Ranadheer; Reddy, Palakolanu Sudhakar; Reddy, Bommineni Pradeep; Reddy, Dumbala Srinivas; Sameerkumar, C V; Saxena, Rachit Kumar; Sharma, Kiran K

    2018-05-01

    A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well.

  7. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  8. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  9. Competição entre plantas de arroz e biótipos de capim-arroz (Echinochloa spp. resistente e suscetível ao quinclorac Competition between rice plants and Echinochloa spp. biotypes resistant or susceptible to quinclorac

    Directory of Open Access Journals (Sweden)

    L. Galon

    2009-01-01

    Full Text Available Objetivou-se com este trabalho avaliar a competitividade interespecífica de biótipos de capim-arroz resistente (R e suscetível (S ao herbicida quinclorac com a cultura do arroz irrigado. O experimento foi instalado em casa de vegetação e os tratamentos consistiram em manter uma planta de arroz cv. BRS Pelota no centro da unidade experimental, variando-se na periferia as densidades de capim-arroz em: 0, 1, 2, 3, 4 ou 5 plantas do biótipo R (ITJ-13 ou S (ITJ-17 oriundos da região de Itajaí-SC. O delineamento experimental utilizado foi o completamente casualizado, em esquema fatorial 2 x 6 com quatro repetições. Aos 40 dias após a emergência, foram avaliados as massas fresca e seca e o conteúdo de água de folhas, colmos e total da parte aérea do arroz e do capim-arroz. Houve efeito significativo dos tratamentos para todas as variáveis estudadas quando a cultura do arroz foi cultivada na presença de biótipos de capim-arroz R ou S. Esse efeito foi aditivo na proporção de 1 planta m-2. Entretanto, a capacidade competitiva dos biótipos de capim-arroz resistente e suscetível ao quinclorac, com as plantas de arroz, apresentou comportamento similar quando se variou a densidade de plantas por área.This work aimed to evaluate the interspecific competitiveness of Echinochloa spp. biotypes resistant or susceptible to the herbicide quinclorac. The trial was installed under greenhouse conditions, with the biotypes resistant (ITJ-13 and susceptible (ITJ-17 to quinclorac under competition with the rice plants. The treatments consisted of maintaining one rice plant at the center of the experimental unit, surrounded by 0, 1, 2, 3, 4 or 5 Echinochloa plants, according to the treatment. The trial was arranged in a completely randomized blocks design and factorial scheme 2 x 6, with four replications. Forty days after emergence, fresh dry weights and water content of the shoots were evaluated. There was a significant effect for all the variables

  10. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  11. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  12. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    The partition function of Gentile statistics also has the property that it nicely interpolates between the ... We now construct the partition function for such a system which also incorporates the property of interpolation ... As in [4], we however keep s arbitrary even though for s > 2 there are no quadratic. Hamiltonian systems.

  13. The importance of having an appropriate data segmentation (partitioning)

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2014-01-01

    In this presentation will be shown real life examples from database applications in the ATLAS experiment @ LHC where we make use of many Oracle partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL for sustaining data sliding windows in order to enforce various data retention policies. We also make use of the reference partitioning in some use cases, however the most challenging was to segment the data of a large bookkeeping system which resulted in tens of thousands list partitions and list sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate for the use case data management model. The gained experience with all of those will be shared with the audience.

  14. Generating Milton Babbitt's all-partition arrays

    OpenAIRE

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a tone row as possible (generated by any combination of transposition, inversion or reversal) are expressed 'horizontally' and that each integer partition of 12 whose cardinality is no greater than the n...

  15. Lift of dilogarithm to partition identities

    International Nuclear Information System (INIS)

    Terhoeven, M.

    1992-11-01

    For the whole set of dilogarithm identities found recently using the thermodynamic Bethe-Ansatz for the ADET series of purely elastic scattering theories we give partition identities which involve characters of those conformal field theories which correspond to the UV-limits of the scattering theories. These partition identities in turn allow to derive the dilogarithm identities using modular invariance and a saddle point approximation. We conjecture on possible generalizations of this correspondance, namely, a lift from dilogarithm to partition identities. (orig.)

  16. A study on climatic adaptation of dipteran mitochondrial protein coding genes

    Directory of Open Access Journals (Sweden)

    Debajyoti Kabiraj

    2017-10-01

    Full Text Available Diptera, the true flies are frequently found in nature and their habitat is found all over the world including Antarctica and Polar Regions. The number of documented species for order diptera is quite high and thought to be 14% of the total animal present in the earth [1]. Most of the study in diptera has focused on the taxa of economic and medical importance, such as the fruit flies Ceratitis capitata and Bactrocera spp. (Tephritidae, which are serious agricultural pests; the blowflies (Calliphoridae and oestrid flies (Oestridae, which can cause myiasis; the anopheles mosquitoes (Culicidae, are the vectors of malaria; and leaf-miners (Agromyzidae, vegetable and horticultural pests [2]. Insect mitochondrion consists of 13 protein coding genes, 22 tRNAs and 2 rRNAs, are the remnant portion of alpha-proteobacteria is responsible for simultaneous function of energy production and thermoregulation of the cell through the bi-genomic system thus different adaptability in different climatic condition might have compensated by complementary changes is the both genomes [3,4]. In this study we have collected complete mitochondrial genome and occurrence data of one hundred thirteen such dipteran insects from different databases and literature survey. Our understanding of the genetic basis of climatic adaptation in diptera is limited to the basic information on the occurrence location of those species and mito genetic factors underlying changes in conspicuous phenotypes. To examine this hypothesis, we have taken an approach of Nucleotide substitution analysis for 13 protein coding genes of mitochondrial DNA individually and combined by different software for monophyletic group as well as paraphyletic group of dipteran species. Moreover, we have also calculated codon adaptation index for all dipteran mitochondrial protein coding genes. Following this work, we have classified our sample organisms according to their location data from GBIF (https

  17. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  18. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  19. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice.

    Science.gov (United States)

    Kazama, Tomohiko; Toriyama, Kinya

    2016-01-01

    Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria.

  20. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Wainstein Julio

    2009-06-01

    Full Text Available Abstract Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM, the association of mitochondrial DNA (mtDNA sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively. Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035. These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.

  1. DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.

    Science.gov (United States)

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-04-12

    Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.

  2. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  3. Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI

    Science.gov (United States)

    López-Legentil, S.; Pawlik, J. R.

    2009-03-01

    In recent years, reports of sponge bleaching, disease, and subsequent mortality have increased alarmingly. Population recovery may depend strongly on colonization capabilities of the affected species. The giant barrel sponge Xestospongia muta is a dominant reef constituent in the Caribbean. However, little is known about its population structure and gene flow. The 5'-end fragment of the mitochondrial gene cytochrome oxidase subunit I is often used to address these kinds of questions, but it presents very low intraspecific nucleotide variability in sponges. In this study, the usefulness of the I3-M11 partition of COI to determine the genetic structure of X. muta was tested for seven populations from Florida, the Bahamas and Belize. A total of 116 sequences of 544 bp were obtained for the I3-M11 partition corresponding to four haplotypes. In order to make a comparison with the 5'-end partition, 10 sequences per haplotype were analyzed for this fragment. The 40 resulting sequences were of 569 bp and corresponded to two haplotypes. The nucleotide diversity of the I3-M11 partition (π = 0.00386) was higher than that of the 5'-end partition (π = 0.00058), indicating better resolution at the intraspecific level. Sponges with the most divergent external morphologies (smooth vs. digitate surface) had different haplotypes, while those with the most common external morphology (rough surface) presented a mixture of haplotypes. Pairwise tests for genetic differentiation among geographic locations based on F ST values showed significant genetic divergence between most populations, but this genetic differentiation was not due to isolation by distance. While limited larval dispersal may have led to differentiation among some of the populations, the patterns of genetic structure appear to be most strongly related to patterns of ocean currents. Therefore, hydrological features may play a major role in sponge colonization and need to be considered in future plans for management and

  4. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  5. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  6. Synthesis of chemically bonded BiOCl@Bi{sub 2}WO{sub 6} microspheres with exposed (0 2 0) Bi{sub 2}WO{sub 6} facets and their enhanced photocatalytic activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongchao [Qingdao Agricultural University, Qingdao 266109 (China); Chen, Zhiwei [School of Life Sciences, Shandong University of Technology, Zibo 255049 (China); Qu, Dan [Qingdao Agricultural University, Qingdao 266109 (China); Shi, Jinsheng, E-mail: jsshiqn@aliyun.com [Qingdao Agricultural University, Qingdao 266109 (China)

    2016-01-15

    Graphical abstract: - Highlights: • BiOCl@Bi{sub 2}WO{sub 6} composites were prepared via a controlled anion exchange method. • The shell of composites was composed of Bi{sub 2}WO{sub 6} sheets with exposed (0 2 0) facets. • The BiOCl@Bi{sub 2}WO{sub 6} composites showed efficient photocatalytic activity. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}WO{sub 6} photocatalysts has been extensively studied for its photocatalytic activity. However, few works have been conducted on hierarchical Bi{sub 2}WO{sub 6} composite photocatalysts with specifically exposed facets. In this work, we report a facile method to synthesize BiOCl@Bi{sub 2}WO{sub 6} hierarchical composite microspheres. Bi{sub 2}WO{sub 6} nanosheets with specifically exposed (0 2 0) facet were directly formed on the surface of BiOCl precursor microspheres via a controlled anion exchange route between BiOCl and Na{sub 2}WO{sub 4}. The visible-light photocatalytic activity of the BiOCl@Bi{sub 2}WO{sub 6} heterojunction with exposed (0 2 0) facets (denoted as BiOCl@Bi{sub 2}WO{sub 6}) was investigated by degradation of Rhodamine B (RhB) and ciprofloxacin (CIP) aqueous solution under visible light irradiation. The experimental results indicated that the BiOCl@Bi{sub 2}WO{sub 6} composite microsphere with intimate interfacial contacts exhibited improved efficiency for RhB photodegradation in comparison with pure BiOCl and Bi{sub 2}WO{sub 6}. The BiOCl@Bi{sub 2}WO{sub 6} composite microsphere also shows high photocatalytic activity for degradation of CIP under visible light irradiation. The enhanced photocatalytic performance of BiOCl@Bi{sub 2}WO{sub 6}-020 hierarchical microspheres can be ascribed to the improved visible light harvesting ability, high charge separation and transfer. This work will make significant contributions toward the exploration of novel heterostructures with high potential in photocatalytic applications.

  7. Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Directory of Open Access Journals (Sweden)

    Scalais Emmanuel

    2009-06-01

    than observed until now. A novel pathogenic mutation in POLG is reported. Tentative explanations for the mitochondrial mosaics are, in one patient, unequal partition of mutated mitochondria during mitoses, and in two others, an interaction between products of several genes required for mtDNA maintenance.

  8. Local variation in Bi crystal sites of epitaxial GaAsBi studied by photoelectron spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, P., E-mail: pekka.laukkanen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Punkkinen, M.P.J., E-mail: marko.punkkinen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Lahti, A. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Puustinen, J. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Tuominen, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Hilska, J. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Mäkelä, J.; Dahl, J.; Yasir, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kuzmin, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021, Russian Federation (Russian Federation); Osiecki, J.R.; Schulte, K. [The MAX IV laboratory, P. O. Box 118, Lund University, SE-221 00 Lund (Sweden); Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Kokko, K. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2017-02-28

    Highlights: • XPS is used to study bulk-like properties of GaAsBi crystals. • Surface effects are removed from XPS signal by an epitaxial AlAs cap film. • Local variation of Bi composition is found. • The result is consistent with photoluminescence and theoretical results. • Ga vacancies and Bi crystallites are suggested to be dominating defects. - Abstract: Epitaxial Bi-containing III–V crystals (III-V{sub 1-x}Bi{sub x}) have attracted increasing interest due to their potential in infrared applications. Atomic-scale characterization and engineering of bulk-like III-V{sub 1-x}Bi{sub x} properties (e.g., Bi incorporation and defect formation) are challenging but relevant to develop applications. Toward that target, we report here that the traditional surface-science measurement of photoelectron spectroscopy (PES) is a potential, non-destructive method to be combined in the studies of bulk-like properties, when surface effects are properly removed. We have investigated epitaxial GaAs{sub 1-x}Bi{sub x} films, capped by epitaxial AlAs layers, with high-resolution photoelectron spectroscopy. The Bi5d core-level spectra of GaAs{sub 1-x}Bi{sub x} together with ab-initio calculations give direct evidence of variation of Bi bonding environment in the lattice sites. The result agrees with photoluminescence (PL) measurement which shows that the studied GaAs{sub 1-x}Bi{sub x} films include local areas with higher Bi content, which contribute to PL but do not readily appear in x-ray diffraction (XRD). The measured and calculated Bi core-level shifts show also that Ga vacancies and Bi clusters are dominant defects.

  9. EXTENSION OF FORMULAS FOR PARTITION FUNCTIONS

    African Journals Online (AJOL)

    Ladan et al.

    2Department of Mathematics, Ahmadu Bello University, Zaria. ... 2 + 1 + 1. = 1 + 1 + 1 + 1. Partition function ( ). Andrew and Erikson (2004) stated that the ..... Andrews, G.E., 1984, The Theory of Partitions, Cambridge ... Pure Appl. Math.

  10. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  11. The partition dimension of cycle books graph

    Science.gov (United States)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  12. Quantum Dilogarithms and Partition q-Series

    Science.gov (United States)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  13. Mutant APP and Amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer's disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Yin, XiangLin; Manczak, Maria; Kumar, Subodh; Jangampalli Adi, Pradeepkiran; Vijayan, Murali; Reddy, Arubala P

    2018-04-25

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in human mutant APP (mAPP) cDNA transfected with primary mouse hippocampal neurons (HT22). Hippocampal tissues are the best source of studying learning and memory functions in patients with Alzheimer's disease (AD) and healthy controls. However, investigating immortalized hippocampal neurons that express AD proteins provide an excellent opportunity for drug testing. Using quantitative RT-PCR, immunoblotting & immunofluorescence, and transmission electron microscopy, we assessed mRNA and protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2, and assessed mitochondrial number and length in mAPP-HT22 cells that express Swedish/Indiana mutations. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Increased levels of mRNA and protein levels of mitochondrial fission genes, Drp1 and Fis1 and decreased levels fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 & TFAM), autophagy (ATG5 & LC3BI, LC3BII), mitophagy (PINK1 & TERT, BCL2 & BNIPBL), synaptic (synaptophysin & PSD95) and dendritic (MAP2) genes were found in mAPP-HT22 cells relative to WT-HT22 cells. Cell survival was significantly reduced mAPP-HT22 cells. GTPase-Dp1 enzymatic activity was increased in mAPP-HT22 cells. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins & reduced dendritic spines and mitochondrial structural and functional changes in mutant APP hippocampal cells. These observations strongly suggest that accumulation of mAPP and A

  14. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99 Tc and 129 I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  15. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  16. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  17. Calorimetric investigations of U-Bi system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Joshi, A.R.

    2013-01-01

    U 0.333 Bi 0.667 is a compound that may form on breach of clad during reactor operation with metallic fuel and lead-bismuth coolant. Therefore, enthalpy of mixing of U-Bi liquid solution in limited composition range and enthalpy of formation of U 0.333 Bi 0.667 compound were measured by high temperature calorimetry. The enthalpy of mixing follows subregular solution model and enthalpy of formation U 0.333 Bi 0.667 from U(l) and Bi(l) at 843 K was -52.5 kJ/mol and -40.8 kJ/mol from U(s) and Bi(s) at 298.15 K. Both enthalpy of mixing and enthalpy of formation of intermetallic compound obtained experimentally were compared with Miedema model values. (author)

  18. Exploratory Bi-factor Analysis: The Oblique Case

    OpenAIRE

    Jennrich, Robert L.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bi-factor rotation criterion designed to produce a rotated loading mat...

  19. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  20. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  1. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  2. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  3. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  4. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  5. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    Science.gov (United States)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  6. Unusual Concentration Induced Antithermal Quenching of the Bi(2+) Emission from Sr2P2O7:Bi(2.).

    Science.gov (United States)

    Li, Liyi; Peng, Mingying; Viana, Bruno; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Zhang, Qinyuan; Qiu, Jianrong

    2015-06-15

    The resistance of a luminescent material to thermal quenching is essential for the application in high power LEDs. Usually, thermal luminescence quenching becomes more and more serious as the activator concentration increases. Conversely, we found here that a red phosphor Sr2P2O7:Bi(2+) is one of the exceptions to this as we studied the luminescence properties at low (10-300 K) and high (300-500 K) temperatures. As Bi(2+) ions are incorporated into Sr2P2O7, they exhibit the emissions at ∼660 and ∼698 nm at room temperature and are encoded, hereafter, as Bi(1) and Bi(2) due to the substitutions for two different crystallographic sites Sr(1) and Sr(2), respectively, in the compound. However, they will not substitute for these sites equally. At lower dopant concentration, they will occupy preferentially Sr(2) sites partially due to size match. As the concentration increases, more Bi(2+) ions start to occupy the Sr(1) sites. This can be verified by the distinct changes of emission intensity ratio of Bi(2) to Bi(1). As environment temperature increases, the thermal quenching happens, but it can be suppressed by the Bi(2+) concentration increase. This becomes even more pronounced in Bi(2+) heavily doped sample as we decompose the broad emission band into separated Bi(1) and Bi(2) Gaussian peaks. For the sample, the Bi(1) emission at ∼660 nm even shows antithermal-quenching particularly at higher temperatures. This phenomenon is accompanied by the blue shift of the overall emission band and almost no changes of lifetimes. A mechanism is proposed due to volume expansion of the unit cell, the increase of Bi(1) content, and temperature dependent energy transfer between Bi(2) and Bi(1). This work helps us better understand the complex luminescent behavior of Bi(2+) doped materials, and it will be helpful to design in the future the heavily doped phosphor for WLEDs with even better resistance to thermal quenching.

  7. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  8. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  9. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    crystal structures and electrical properties.1,2 Up until now, the most sulfur rich phase in the Bi-S phase diagram was Bi2S3.3 For BiS2 the Bi atoms have anisotropic charge distribution and more complex structures are expected when comparing the layered structures of transition metal dichalcogenides....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...... the physical properties since the related compound Bi2S3 is known to be a thermoelectric material.5 In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure...

  10. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  11. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  12. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Juneau, Philippe

    2016-11-01

    We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H 2 O 2 ) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l -1 . Inhibition of mitochondrial ETC Complex I by rotenone reduced H 2 O 2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H 2 O 2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.

    Science.gov (United States)

    Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth

    2013-09-01

    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.

  14. Solvothermal modification of BiOCl nanosheets with Bi nanoparticles using ascorbic acid as reductant and the superoxide radicals dominated photocatalytic performance

    Science.gov (United States)

    Cui, Zhankui; Gao, Keke; Ge, Suxiang; Fa, Wenjun

    2017-11-01

    BiOCl nanosheets were solvothermally modified with Bi nanoparticles (NPs) using ascorbic acid as the reductant. The structures of Bi/BiOCl composites were characterized by XRD, Raman spectroscopy, FTIR spectroscopy and SEM. The light absorption properties were measured by UV-vis-NIR spectroscopy. The photocatalytic performances were evaluated by photodegrading methyl orange (MO) and the photocatalytic mechanism was investigated using trapping experiments and a fluorescent probe method. The results show that Bi NPs are uniformly distributed on the surfaces of BiOCl nanosheets and the modification amount of Bi NPs could be well controlled because of the mild property of ascorbic acid as reducing agent. The photocatalytic activities for the composites are improved obviously and the best photocatalytic performance is obtained when the weight ratio of Bi and BiOCl is1:10 and the photochemical reaction rate is 3.5 times that of pure BiOCl nanosheets and 19.7 times of Bi powders. The enhanced photocatalytic efficiency is ascribed to the favorable formation of dominant \\cdot O2- radicals caused by the increased photoinduced electrons from both Bi NPs and BiOCl nanosheets.

  15. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast.

    Science.gov (United States)

    Nishimura, Akira; Nasuno, Ryo; Takagi, Hiroshi

    2012-07-30

    The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Partitions in languages and parallel computations

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, M S; Burgina, E S

    1982-05-01

    Partitions of entries (linguistic structures) are studied that are intended for parallel data processing. The representations of formal languages with the aid of such structures is examined, and the relationships are considered between partitions of entries and abstract families of languages and automata. 18 references.

  17. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    Science.gov (United States)

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

  18. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  19. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  20. The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.

    Science.gov (United States)

    Tang, Bo-Ping; Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Wang, Zheng-Fei; Zhang, Hua-Bin; Chai, Xin-Yue; Zhou, Chun-Lin; Liu, Qiu-Ning

    2017-01-01

    Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.

  1. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  2. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei; Ren, Shang-Fen

    2011-01-01

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  3. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei

    2011-03-10

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  4. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  5. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  6. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  7. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

    OpenAIRE

    Zhao, Yanfei; Chang, Cui-Zu; Jiang, Ying; DaSilva, Ashley; Sun, Yi; Wang, Huichao; Xing, Ying; Wang, Yong; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Jian

    2013-01-01

    In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (MBE). In situ angle-resolved photoemission spectroscopy (ARPES) provides direct evidence that the su...

  8. Effect of oxidant on resputtering of Bi from Bi--Sr--Ca--Cu--O films

    International Nuclear Information System (INIS)

    Grace, J.M.; McDonald, D.B.; Reiten, M.T.; Olson, J.; Kampwirth, R.T.; Gray, K.E.

    1992-01-01

    The type and partial pressure of oxidant mixed with argon can affect the selective sputtering of Bi in composite-target, magnetron-sputtered Bi--Sr--Ca--Cu--O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O + 2 , which interacts with the target to produce energetic O - . In contrast, ozone may form lower-energy O - by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y--Ba--Cu--O by others are comparable. Bi in Bi--Sr--Ca--Cu--O behaves as Ba in Y--Ba--Cu--O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi--Sr--Ca--Cu--O is similar to what is observed for Cu in Y--Ba--Cu--O

  9. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    Science.gov (United States)

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3-BiAlO3 and LaAlO3-BiAlO3

    International Nuclear Information System (INIS)

    Hou, Yudong; Zheng, Mupeng; Si, Meiju; Cui, Lei; Zhu, Mankang; Yan, Hui

    2013-01-01

    In this work, two perovskite-type compounds, K 0.5 Bi 0.5 TiO 3 and LaAlO 3 , have been selected as host material to incorporate with BiAlO 3 using a solid-state reaction route. The phase evolution and dielectric properties for both systems have been investigated in detail. For the K 0.5 Bi 0.5 TiO 3 -BiAlO 3 system, it is interesting to find that when using Bi 2 O 3 , Al 2 O 3 , K 2 CO 3 , and TiO 2 as starting materials, the formed compounds are K 0.5 Bi 0.5 TiO 3 -K 0.5 Bi 4.5 Ti 4 O 15 and Al 2 O 3 only plays a dopant role. There are two distinct dielectric peaks appearing in the patterns of temperature dependence of dielectric constant, corresponding to the phase-transition points of perovskite-type K 0.5 Bi 0.5 TiO 3 and Aurivillius-type K 0.5 Bi 4.5 Ti 4 O 15 , independently. In comparison, using Bi 2 O 3 , Al 2 O 3 , and La 2 O 3 as starting materials, the pure perovskite phase LaAlO 3 -BiAlO 3 can be obtained. Compared to the inherent paraelectric behavior in LaAlO 3 , the diffuse phase-transition phenomena can be observed in the LaAlO 3 -BiAlO 3 binary system, which corresponds well to the Vogel-Fulcher (VF) relationship. Moreover, compared to pure LaAlO 3 , the synthesized LaAlO 3 -BiAlO 3 compound shows enhanced dielectric properties, which are promising in application as gate dielectric materials. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  12. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...

  13. Feasibility Analysis of Sustainability-Based Measures to Reduce VOC Emissions in Office Partition Manufacturing

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2010-02-01

    Full Text Available A feasibility analysis is reported of reduction opportunities for volatile organic compound (VOC emissions in manufacturing office furniture partitions, aimed at contributing to efforts to improve the sustainability of the process. A pollution prevention methodology is utilized. The purpose is to provide practical options for VOC emissions reductions during the manufacturing of office furniture partitions, but the concepts can be generally applied to the wood furniture industry. Baseline VOC emissions for a typical plant are estimated using a mass balance approach. The feasibility analysis expands on a preliminary screening to identify viable pollution prevention options using realistic criteria and weightings, and is based on technical, environmental and economic considerations. The measures deemed feasible include the implementation of several best management practices, ceasing the painting of non-visible parts, switching to hot melt backwrapping glue, application of solvent recycling and modification of the mechanical clip attachment. Implementation, measurement and control plans are discussed for the measures considered feasible, which can enhance the sustainability of the manufacturing of office furniture partitions. Reducing VOC emissions using the measures identified can, in conjunction with other measures, improve the sustainability of the manufacturing process.

  14. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  15. Crystalline structure and XMCD studies of Co40Fe40B20 grown on Bi2Te3, BiTeI and Bi2Se3

    OpenAIRE

    Kaveev, A. K.; Sokolov, N. S.; Suturin, S. M.; Zhiltsov, N. S.; Golyashov, V. A.; Tereshchenko, O. E.; Prosvirin, I. P.; Kokh, K. A.; Sawada, M.

    2018-01-01

    Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi2Te3 was observed, in contrast to polycrystalline CoFeB film formed on Bi2Se3(001) at RT using high-temperature seeding layer. Therefore, structurally ordered ferromagnetic thin films were obtained on the topological insulator surface for the firs...

  16. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  17. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus

    International Nuclear Information System (INIS)

    Thiede, M.E.; Link, S.O.; Fellows, R.J.; Beedlow, P.A.

    1995-01-01

    To determine the effects of gamma radiation on stem diameter growth, carbon gain, and biomass partitioning, 19-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) were given variable doses (0–40 Gy) from a 60Co gamma source. Exposure of plants to gamma radiation caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that very low doses of radiation could induce morphological growth changes. Carbohydrate analysis of plants exposed to 40 Gy demonstrated significantly more starch content in leaves and significantly less in stems 18 days after exposure compared with control plants. In contrast, the carbohydrate content of the roots of plants exposed to 40 Gy was not significantly different from non-irradiated plants 18 days after exposure. (author)

  18. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  19. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  20. Exploratory Bi-Factor Analysis: The Oblique Case

    Science.gov (United States)

    Jennrich, Robert I.; Bentler, Peter M.

    2012-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…

  1. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  2. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  3. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  4. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Tan, Zhongfu; Yuan, Jinyun; Tan, Qingkun; Li, Huanhuan; Dong, Fugui

    2016-01-01

    Highlights: • Our research focuses on Virtual Power Plant (VPP). • Virtual Power Plant consists of WPP, PV, CGT, ESSs and DRPs. • Robust optimization theory is introduced to analyze uncertainties. • A bi-level stochastic scheduling optimization model is proposed for VPP. • Models are built to measure the impacts of ESSs and DERPs on VPP operation. - Abstract: To reduce the uncertain influence of wind power and solar photovoltaic power on virtual power plant (VPP) operation, robust optimization theory (ROT) is introduced to build a stochastic scheduling model for VPP considering the uncertainty, price-based demand response (PBDR) and incentive-based demand response (IBDR). First, the VPP components are described including the wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and demand resource providers (DRPs). Then, a scenario generation and reduction frame is proposed for analyzing and simulating output stochastics based on the interval method and the Kantorovich distance. Second, a bi-level robust scheduling model is proposed with a double robust coefficient for WPP and PV. In the upper layer model, the maximum VPP operation income is taken as the optimization objective for building the scheduling model with the day-ahead prediction output of WPP and PV. In the lower layer model, the day-ahead scheduling scheme is revised with the actual output of the WPP and PV under the objectives of the minimum system net load and the minimum system operation cost. Finally, the independent micro-grid in a coastal island in eastern China is used for the simulation analysis. The results illustrate that the model can overcome the influence of uncertainty on VPP operations and reduce the system power shortage cost by connecting the day-ahead scheduling with the real-time scheduling. ROT could provide a flexible decision tool for decision makers, effectively addressing system uncertainties. ESSs could

  5. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  6. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    International Nuclear Information System (INIS)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, 90 Sr, 99 Tc, 129 I, and 137 Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello

  7. Description of new mitochondrial genomes (Spodoptera litura, Noctuoidea and Cnaphalocrocis medinalis, Pyraloidea) and phylogenetic reconstruction of Lepidoptera with the comment on optimization schemes.

    Science.gov (United States)

    Wan, Xinlong; Kim, Min Jee; Kim, Iksoo

    2013-11-01

    We newly sequenced mitochondrial genomes of Spodoptera litura and Cnaphalocrocis medinalis belonging to Lepidoptera to obtain further insight into mitochondrial genome evolution in this group and investigated the influence of optimal strategies on phylogenetic reconstruction of Lepidoptera. Estimation of p-distances of each mitochondrial gene for available taxonomic levels has shown the highest value in ND6, whereas the lowest values in COI and COII at the nucleotide level, suggesting different utility of each gene for different hierarchical group when individual genes are utilized for phylogenetic analysis. Phylogenetic analyses mainly yielded the relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), evidencing the polyphyly of Macrolepidoptera. The Noctuoidea concordantly recovered the familial relationships (((Arctiidae + Lymantriidae) + Noctuidae) + Notodontidae). The tests of optimality strategies, such as exclusion of third codon positions, inclusion of rRNA and tRNA genes, data partitioning, RY recoding approach, and recoding nucleotides into amino acids suggested that the majority of the strategies did not substantially alter phylogenetic topologies or nodal supports, except for the sister relationship between Lycaenidae and Pieridae only in the amino acid dataset, which was in contrast to the sister relationship between Lycaenidae and Nymphalidae in Papilionoidea in the remaining datasets.

  8. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  9. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  10. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  11. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  12. Considerations about using OLAP Cubes and Self-Service BI Tools for BI Systems’ Development

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2017-12-01

    Full Text Available Nowadays, the decision-making process must be an extremely fast one. This is why any decision-maker in a company must obtain information from the multiple available data source used in its transactional systems as easily and as quickly as possible. Business Intelligence (BI systems are the ones that provide the tools necessary for obtaining this information. In this article, we shall present the strengths and weaknesses regarding data analyses in a BI system using OLAP cubes and self-service BI tools.

  13. Quantified degree of eccentricity of aortic valve calcification predicts risk of paravalvular regurgitation and response to balloon post-dilation after self-expandable transcatheter aortic valve replacement.

    Science.gov (United States)

    Park, Jun-Bean; Hwang, In-Chang; Lee, Whal; Han, Jung-Kyu; Kim, Chi-Hoon; Lee, Seung-Pyo; Yang, Han-Mo; Park, Eun-Ah; Kim, Hyung-Kwan; Chiam, Paul T L; Kim, Yong-Jin; Koo, Bon-Kwon; Sohn, Dae-Won; Ahn, Hyuk; Kang, Joon-Won; Park, Seung-Jung; Kim, Hyo-Soo

    2018-05-15

    Limited data exist regarding the impact of aortic valve calcification (AVC) eccentricity on the risk of paravalvular regurgitation (PVR) and response to balloon post-dilation (BPD) after transcatheter aortic valve replacement (TAVR). We investigated the prognostic value of AVC eccentricity in predicting the risk of PVR and response to BPD in patients undergoing TAVR. We analyzed 85 patients with severe aortic stenosis who underwent self-expandable TAVR (43 women; 77.2±7.1years). AVC was quantified as the total amount of calcification (total AVC load) and as the eccentricity of calcium (EoC) using calcium volume scoring with contrast computed tomography angiography (CTA). The EoC was defined as the maximum absolute difference in calcium volume scores between 2 adjacent sectors (bi-partition method) or between sectors based on leaflets (leaflet-based method). Total AVC load and bi-partition EoC, but not leaflet-based EoC, were significant predictors for the occurrence of ≥moderate PVR, and bi-partition EoC had a better predictive value than total AVC load (area under the curve [AUC]=0.863 versus 0.760, p for difference=0.006). In multivariate analysis, bi-partition EoC was an independent predictor for the risk of ≥moderate PVR regardless of perimeter oversizing index. The greater bi-partition EoC was the only significant parameter to predict poor response to BPD (AUC=0.775, p=0.004). Pre-procedural assessment of AVC eccentricity using CTA as "bi-partition EoC" provides useful predictive information on the risk of significant PVR and response to BPD in patients undergoing TAVR with self-expandable valves. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  15. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight

    Science.gov (United States)

    Hao, Lin; Huang, Hongwei; Guo, Yuxi; Du, Xin; Zhang, Yihe

    2017-10-01

    Fabrication of homo/hetero-junctions by coupling of wide-band gap semiconductor and narrow-band gap semiconductor is desirable as they can achieve a decent balance between photoabsorption and photo-redox ability. Herein, a n-n type bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 was developed by facilely manipulating the basicity in a one-pot hydrothermal process. Compared with BiOCl which only responds to UV light, the photo-responsive range is remarkably extended to visible region. The BiOCl/Bi12O17Cl2 phasejunctions show much higher photocatalytic activity than the single BiOCl and Bi12O17Cl2 toward degradation of methyl orange (MO) under simulated solar light. In particular, it presented a high photo-oxidation ability in degrading diverse industrial contaminants including 2,4-dichlorophenol (2,4-DCP), phenol, bisphenol A (BPA) and tetracycline hydrochloride. Based on a series of photoelectrochemical and photoluminescence measurements, the fortified photocatalytic performance of BiOCl/Bi12O17Cl2 phasejunctions was manifested to be attributed to the efficient separation and transfer efficiencies of photoinduced electron-hole pairs because of the junctional interface formed between BiOCl and Bi12O17Cl2. The study may not only furnish a high-effective photocatalyst in the application of environment purification, but also pave a path to fabricate agnate phase-junctional photocatalyst.

  16. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  17. Thermal analysis and phase diagrams of the LiF BiF3 e NaF BiF3 systems

    International Nuclear Information System (INIS)

    Nakamura, Gerson Hiroshi de Godoy

    2013-01-01

    Investigations of the binary systems LiF-BiF 3 and NaF-BiF 3 were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF 3 ) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF 3 to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF 3 were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF 4 , decomposes into LiF and a liquid phase. The NaF-BiF 3 system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF 3 ) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF 4 was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF 4 , NaBiF 4 and a solid solution of NaF and BiF 3 called I. The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  18. Nutrient Partitioning and Stoichiometry in Unburnt Sugarcane Ratoon at Varying Yield Levels

    Directory of Open Access Journals (Sweden)

    José Marcos Leite

    2016-04-01

    Full Text Available Unraveling nutrient imbalances in contemporary agriculture is a research priority to improve whenever possible yield and nutrient use efficiency in sugarcane (Saccharum spp. systems while minimizing the costs of cultivation (e.g., use of fertilizers and environmental concerns. The main goal of this study was therefore to investigate biomass and nutrient [nitrogen (N, phosphorus (P, and potassium (K] content, partitioning, stoichiometry and internal efficiencies in sugarcane ratoon at varying yield levels. Three sites were established on highly weathered tropical soils located in the Southeast region of Brazil. At all sites, seasonal biomass and nutrient uptake patterns were synthesized from four sampling times taken throughout the sugarcane ratoon season. At all sites, in-season nutrient partitioning (in diverse plant components, internal efficiencies (yield to nutrient content ratio and nutrient ratios (N:P and N:K were determined at harvesting. Sugarcane exhibited three distinct phases of plant growth, as follows: lag, exponential-linear, and stationary. Across sites, nutrient requirement per unit of yield was 1.4 kg N, 0.24 kg P, and 2.7 kg K per Mg of stalk produced, but nutrient removal varied with soil nutrient status (based on soil plus fertilizer nutrient supply and crop demand (potential yield. Dry leaves had lower nutrient content (N, P, and K and broader N:P and N:K ratios when compared with tops and stalks plant fractions. Greater sugarcane yield and narrowed N:P ratio (6:1 were verified for tops of sugarcane when increasing both N and P content. High-yielding sugarcane systems were related to higher nutrient content and more balanced N:P (6:1 and N:K (0.5:1 ratios.

  19. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  20. Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping.

    Science.gov (United States)

    Schouteden, Koen; Govaerts, Kirsten; Debehets, Jolien; Thupakula, Umamahesh; Chen, Taishi; Li, Zhe; Netsou, Asteriona; Song, Fengqi; Lamoen, Dirk; Van Haesendonck, Chris; Partoens, Bart; Park, Kyungwha

    2016-09-27

    Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

  1. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  2. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  3. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  4. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  5. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  6. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    Science.gov (United States)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  7. Fuzzy Bi-level Decision-Making Techniques: A Survey

    Directory of Open Access Journals (Sweden)

    Guangquan Zhang

    2016-04-01

    Full Text Available Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques.

  8. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  9. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  10. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi{sub 2}MoO{sub 6} with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China); Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Dai, Ke [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China)

    2017-01-01

    Highlights: • A visible light heterojunction photocatalyst of BiOBr-Bi{sub 2}MoO{sub 6} was simply synthesized. • Carriers transferred efficiently in sandwiched layers causing an enhance activity. • A possible direct Z-scheme charge transfer mechanism of BiOBr-Bi2MoO6 is proposed. - Abstract: In this study, a direct Z-scheme heterojunction BiOBr-Bi{sub 2}MoO{sub 6} with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi{sub 2}MoO{sub 6} through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi{sub 2}MoO{sub 6} occurred mainly on the (001) facets of BiOBr and (001) facets of Bi{sub 2}MoO{sub 6}. The photocatalytic activity of the BiOBr-Bi{sub 2}MoO{sub 6} was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi{sub 2}MoO{sub 6} could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  11. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  12. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  13. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    International Nuclear Information System (INIS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-01-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction

  14. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  15. DIALIGN: multiple DNA and protein sequence alignment at BiBiServ.

    OpenAIRE

    Morgenstern, Burkhard

    2004-01-01

    DIALIGN is a widely used software tool for multiple DNA and protein sequence alignment. The program combines local and global alignment features and can therefore be applied to sequence data that cannot be correctly aligned by more traditional approaches. DIALIGN is available online through Bielefeld Bioinformatics Server (BiBiServ). The downloadable version of the program offers several new program features. To compare the output of different alignment programs, we developed the program AltA...

  16. Partitioning and mobilization of photoassimilate by alfalfa subjected to water deficits

    International Nuclear Information System (INIS)

    Hall, M.H.

    1987-01-01

    Our objective was to determine the effect of stress induced by water deficit on photoassimilate partitioning and the utilization of stored assimilates during regrowth. Field and greenhouse experiments were conducted using alfalfa cultivars differing in winter hardiness. Plants were subjected to water stress, pulse-labeled with 14 CO 2 , and sampled following 0, 1, and 14 d translocation periods. Subsequent samples were taken at 7 and 14 d after harvest and rewatering. Water stress resulted in herbage and root dry mass of 65 and 119% of the control, respectively, 14 d after labeling. Stressed plants had similar net carbon exchange and respiration rates but retained 10% greater percent total plant radioactivity (%TPR) in the leaves at the onset of the translocation period than did those of the control. Roots of water-stressed plants had 8% more starch and 12% greater %TPR in the starch fraction 14 d after labeling than did roots of control plants. The stressed plant roots contained 73 and 114% more %TPR than the control at the 1 and 14 d translocation periods, respectively. Water stress had no effect on individual or total root sugar concentration or the %TPR of the root sugar fraction. Alfalfa regrowth mass following harvest and rewatering of the water-stressed plants were similar to that of the control

  17. Phase Grouping Line Extraction Algorithm Using Overlapped Partition

    Directory of Open Access Journals (Sweden)

    WANG Jingxue

    2015-07-01

    Full Text Available Aiming at solving the problem of fracture at the discontinuities area and the challenges of line fitting in each partition, an innovative line extraction algorithm is proposed based on phase grouping using overlapped partition. The proposed algorithm adopted dual partition steps, which will generate overlapped eight partitions. Between the two steps, the middle axis in the first step coincides with the border lines in the other step. Firstly, the connected edge points that share the same phase gradients are merged into the line candidates, and fitted into line segments. Then to remedy the break lines at the border areas, the break segments in the second partition steps are refitted. The proposed algorithm is robust and does not need any parameter tuning. Experiments with various datasets have confirmed that the method is not only capable of handling the linear features, but also powerful enough in handling the curve features.

  18. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes

    Directory of Open Access Journals (Sweden)

    Yamada Mari

    2010-03-01

    Full Text Available Abstract Background Plant mitochondrial genomes are known for their complexity, and there is abundant evidence demonstrating that this organelle is important for plant sexual reproduction. Cytoplasmic male sterility (CMS is a phenomenon caused by incompatibility between the nucleus and mitochondria that has been discovered in various plant species. As the exact sequence of steps leading to CMS has not yet been revealed, efforts should be made to elucidate the factors underlying the mechanism of this important trait for crop breeding. Results Two CMS mitochondrial genomes, LD-CMS, derived from Oryza sativa L. ssp. indica (434,735 bp, and CW-CMS, derived from Oryza rufipogon Griff. (559,045 bp, were newly sequenced in this study. Compared to the previously sequenced Nipponbare (Oryza sativa L. ssp. japonica mitochondrial genome, the presence of 54 out of 56 protein-encoding genes (including pseudo-genes, 22 tRNA genes (including pseudo-tRNAs, and three rRNA genes was conserved. Two other genes were not present in the CW-CMS mitochondrial genome, and one of them was present as part of the newly identified chimeric ORF, CW-orf307. At least 12 genomic recombination events were predicted between the LD-CMS mitochondrial genome and Nipponbare, and 15 between the CW-CMS genome and Nipponbare, and novel genetic structures were formed by these genomic rearrangements in the two CMS lines. At least one of the genomic rearrangements was completely unique to each CMS line and not present in 69 rice cultivars or 9 accessions of O. rufipogon. Conclusion Our results demonstrate novel mitochondrial genomic rearrangements that are unique in CMS cytoplasm, and one of the genes that is unique in the CW mitochondrial genome, CW-orf307, appeared to be the candidate most likely responsible for the CW-CMS event. Genomic rearrangements were dynamic in the CMS lines in comparison with those of rice cultivars, suggesting that 'death' and possible 'birth' processes of the

  19. [sup 205]Bi/[sup 206]Bi cyclotron production from Pb-isotopes for absorption studies in humans

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.; Dresow, B.; Heinrich, H.C. (Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Medizinische Biochemie); Wendel, J.; Bechtold, V. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Kernphysik)

    1993-12-01

    Pb(p,xn) thick target excitation functions were measured in the energy range 10-38 MeV in order to optimize the production of isotopically pure radiobismuth from [sup nat]Pb, [sup 206]Pb, and [sup 207]Pb. Additionally, the decay of Po-isotopes from deuteron irradiation of natural bismuth ([sup 209]Bi) was exploited for radiobismuth production. [sup 205]Bi was produced from [sup 206]Pb at 20 MeV with only 2% of [sup 206]Bi at 4 weeks post irradiation. Bismuth compounds as used in the treatment of peptic ulcer were labeled with [sup 205]Bi for absorption studies in animals and subjects. (Author).

  20. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  1. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales

    Directory of Open Access Journals (Sweden)

    Zhou Kaiya

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Cetacea (whales is not fully resolved with substantial support. The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae (dolphins underestimates its diversity. To remedy these problems, we sequenced the complete mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model heterogenous rates of evolution among cetacean lineages. Results The "deep" phylogenetic relationships are well supported including the monophyly of Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the river dolphin clades Platanistidae (Indian River dolphins and Lipotidae (Yangtze River dolphins. The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae + Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops (bottlenose dolphins and Stenella (spotted dolphins. Conclusion Our phylogenetic analysis of complete mitochondrial genomes using recently developed models of rate autocorrelation resolved the phylogenetic relationships of the major Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our estimation of molecular divergence dates indicates that these radiations occurred in the Middle to Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and Stenella are not monophyletic, and the current taxonomy

  3. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  4. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  5. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    Science.gov (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    fatty acid pathways. Moreover, we found that high VOC emissions were closely related to 13CO2 decarboxylation from pyruvate-1-13C in the light, while mitochondrial respiration mas markedly down-regulated. Moreover, we found that in the dark, VOC emissions dramatically declined while respiration was stimulated with 13CO2 emissions under pyruvate-1-13C exceeding those under pyruvate-2-13C and pyruvate-2,3-13C during light-dark transitions. Our observations suggest VOC emissions are associated with significant pyruvate C1 decarboxylation. Moreover, the data suggests that light fundamentally controls the partitioning of assimilated carbon in leaves by regulating the competition for pyruvate between secondary biosynthetic reactions (e.g. VOC production) and mitochondrial respiration. Our investigation provides novel tool to better understand the mechanistic links between primary and secondary carbon metabolism in plants with important implications for a better understanding biosphere-atmosphere exchange of CO2 and VOCs. References 1. Werner C. & Gessler A. (2011) Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: a review of dynamics and mechanisms. Biogeosciences 8, 2437-2459 2. Jardine K, Wegener F, Abrell L, vonHaren J, Werner C (2014) Phytogenic biosynthesis and emission of methyl acetate. PCE 37, 414-424.

  6. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  7. Mitochondrial DNA variation in brood stocks of the lake trout

    International Nuclear Information System (INIS)

    Grewe, P.M.; Hebert, P.D.N.

    1986-01-01

    Efforts are in progress to restore lake trout populations in the Great Lakes from hatchery stocks. In most cases, plantings include a variety of brood stocks that originated from different portions of the Great Lakes. Members of the various stocks can be differentially fin clipped to permit comparison of their survival success, but this does not allow assessment of their reproductive capability in the wild. Assessment of reproductive success requires the existence of genetic markers between brook stocks which will ideally persist over many generations. Efforts to identify allozyme differences between brood stocks have met with little success. The present investigation has employed an alternative technique to identify genetic markers--the restriction analysis of mitochondrial DNA. Mitochondiral DNA analysis of 7 lake trout brood stocks has revealed the existence of 10 mitochondrial clones falling into 3 major groups. The results indicate that mt-DNA markers have great potential for brood stock management. Genetic variability in the nuclear genome of each stock can be maintained by utilizing a large number of male parents, while restricting female parents to members of a single mitochondrial clone. Genetically marked fry could then be produced with only minor shifts in hatchery management

  8. Advances in genetics. Volume 22: Molecular genetics of plants

    International Nuclear Information System (INIS)

    Scandalios, J.G.; Caspari, E.W.

    1984-01-01

    This book contains the following four chapters: Structural Variation in Mitochondrial DNA; The Structure and Expression of Nuclear Genes in Higher Plants; Chromatin Structure and Gene Regulation in Higher Plants; and The Molecular Genetics of Crown Gall Tumorigenesis

  9. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  10. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  11. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  12. Calorimetric investigation of Pb-Bi system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Jat, Ram Avtar; Sen, B.K.

    2008-01-01

    Enthalpy increment of Pb 0.71 Bi 0.29 compound was determined using high temperature Calvet calorimeter. The data was fit into the following polynomial equation. ΔH(T-298.15 K) J/mol = -10384.96 + 39.23 T - 0.014T 2 - 18970/T. By precipitation method, the enthalpy of formation of the compound of composition Pb 0.68 Bi 0.32 at 448 K, from Pb(l) and Bi(l) was determined to be -2450± 50 J/mol and from Pb(s) and Bi(s) at 298.15 K was calculated to be 4047 J/mol. (author)

  13. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  14. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  15. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  16. X-ray standing wave study of the Bi/GaAs and Bi/GaP interfaces

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.

    1994-04-01

    Interfaces are one of the most important elements determining the characteristics of electronic devices. Composite semiconductors, specifically the III-V family, are technologically attractive because of their mobility and optical properties, and also because they offer the possibility of engineering such properties as the size of the band gap. Nevertheless, Si has remained the most utilized semiconductor material, primarily because the fabrication of practical MOSFETs with III-V semiconductors remains elusive. Examples of such complex interfaces are the structures formed by one monolayer of Bi on the (110) surface of GaAs and GaP. While better matched Column V elements form epitaxial continuous monolayers on III-V semiconductor (110) surfaces, Bi is too large to accommodate on GaAs and GaP surfaces with long range order, and vacancies appear to allow relaxation. For the ideal systems, symmetry imposes the presence of only two nonequivalent adatom sites. However, for Bi/GaAs and Bi/GaP, more than two different sites are present because the position of Bi atoms next to a vacancy is not necessarily equivalent to that between other Bi atoms. The geometry of the Bi/GaAs and Bi/GaP systems was determined here by triangulating XSW results from three Bragg planes. A methodology was developed that provides an intrinsic check of the validity of assuming two sites for the overlayer structures. An experimental method was developed that allows the three reflections to be measured on the same sample, thus reducing the number of experimental variables, such as the degree of disorder. The traditional method of analysis was not accurate enough for this data, so a more reliable and faster method of data fitting was developed. A configuration used in the present work, which previously has been widely used, presents an intrinsic multireflection problem. This issue is discussed in depth, and the appropriate method is determined for analyzing the data obtained with this configuration

  17. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  18. Spatial partitions systematize visual search and enhance target memory.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2017-02-01

    Humans are remarkably capable of finding desired objects in the world, despite the scale and complexity of naturalistic environments. Broadly, this ability is supported by an interplay between exploratory search and guidance from episodic memory for previously observed target locations. Here we examined how the environment itself may influence this interplay. In particular, we examined how partitions in the environment-like buildings, rooms, and furniture-can impact memory during repeated search. We report that the presence of partitions in a display, independent of item configuration, reliably improves episodic memory for item locations. Repeated search through partitioned displays was faster overall and was characterized by more rapid ballistic orienting in later repetitions. Explicit recall was also both faster and more accurate when displays were partitioned. Finally, we found that search paths were more regular and systematic when displays were partitioned. Given the ubiquity of partitions in real-world environments, these results provide important insights into the mechanisms of naturalistic search and its relation to memory.

  19. Experiments and Recommendations for Partitioning Systems of Equations

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-06-01

    Full Text Available Partitioning the systems of equations is a very important process when solving it on a parallel computer. This paper presents some criteria which leads to more efficient parallelization, that must be taken into consideration. New criteria added to preconditioning process by reducing average bandwidth are pro- posed in this paper. These new criteria lead to a combination between preconditioning and partitioning of systems equations, so no need two distinct algorithms/processes. In our proposed methods - where the preconditioning is done by reducing the average bandwidth- two directions were followed in terms of partitioning: for a given preconditioned system determining the best partitioning (or one as close and the second consist in achieving an adequate preconditioning, depending on a given/desired partitioning. A mixed method it is also proposed. Experimental results, conclusions and recommendations, obtained after parallel implementation of conjugate gradient on IBM BlueGene /P supercomputer- based on a synchronous model of parallelization- are also presented in this paper.

  20. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  1. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  2. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  3. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2018-05-01

    The complete mitochondrial genomes (mitogenomes) of Taeniopteryx ugola and Doddsia occidentalis (Plecoptera: Taeniopterygidae) were firstly sequenced from the family Taeniopterygidae. The 15,353-bp long mitogenome of T. ugola and the 16,020-bp long mitogenome of D. occidentalis each contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The mitochondrial gene arrangement of the two taeniopterygids and other stoneflies was identical with the putative ancestral mitogenome of Drosophila yakuba. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome could fold into the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced or absent. Stem-loop (SL) structures, poly-T stretch, poly-[AT] n stretch and tandem repeats were found in the CRs of the two mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results, both supporting the monophyly of all stonefly families and the two infraorders, Systellognatha and Euholognatha. Taeniopterygidae was grouped with another two families from Euholognatha. The relationships within Plecoptera were recovered as (((Perlidae+Peltoperlidae)+((Pteronarcyidae+Chloroperlidae)+Styloperlidae))+((Capniidae+Taeniopterygidae)+Nemouridae))+Gripopterygidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  5. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  6. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  7. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  8. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  9. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  10. Quantum interference effects in [Co/Bi]n thin films

    Directory of Open Access Journals (Sweden)

    Athanasopoulos P.

    2014-07-01

    Full Text Available Magnetoconductivity (MC, Δσ(Β, and Hall coefficient, RH(B, measurements have been performed in polycrystalline thin films of Bi(15nm, Bi(10nm/Co(1nm/Bi(10nm trilayer and [Co(0.7nm/Bi(2nm]10 multilayer, grown by magnetron scattering. The temperature dependence of RH(B curves reveal the existence of a second conduction channel below 250K, that can be assigned to surface states. MC measurements between ±0.4T show at 5K an interplay between weak-antilocalization (WAL in Bi and Bi/Co/Bi films and weal-localization (WL in [Co/Bi]10 multilayer.

  11. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  12. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  13. Natural Radioisotopes of Pb, Bi and Po in the Atmosphere of Coal Burning Area

    Directory of Open Access Journals (Sweden)

    Asnor Azrin Sabuti

    2011-07-01

    Full Text Available This paper is discussing the changes of natural radionuclides 210Pb, 210Bi and 210Po in atmospheric samples (rainwater and solid fallout caused by Sultan Salahuddin Abdul Aziz coal-fired Power Plant (SSAAPP operation. We also describe the seasonal changes of 210Pb, 210Bi and 210Po to the monsoon seasons in Peninsular Malaysia. Bulk atmospheric trap was used to collect atmospheric samples for five months (7 Feb 2007 to 27 July 2007 and placed within the SSAAPP area. The natural radionuclide activity levels in the atmosphere were affected by local meteorological conditions to impact their variance over time. As a result, the natural radionulides were increased from the ambient value in atmospheric particles (solid fallout, which related to coal combustion by-product releases into atmosphere. In contrast, this was giving relatively lower or in the same magnitude from most places of radionuclides in rainwater samples. Degree of changes between 210Pb, 210Bi and 210Po affected by high temperature combustions were found to be different for each nuclide due to their respective volatility. 210Po in rainwater and solid fallout were considerably low during early inter-monsoon period which mainly controlled by the rainfall pattern. On the other hand, 210Pb and 210Bi in solid fallout were recorded higher concentrations which associated to drier conditions and more particulate content in air column during southwest monsoon. The mean activity ratio of 210BiRW/210PbRW and 210PoRW/210PbRW are 0.47 ± 0.04 and 0.52 ± 0.17, respectively. Whereas for 210BiSF/210PbSF and 210PoSF/210PbSF are 0.52 ± 0.05 and 0.71 ± 0.13, respectively. Some results showed high activity ratios, reaching to 1.87 ± 0.08 for 210Bi/210Pb and 4.58 ± 0.55 for 210Po/210Pb, of which due to additional of 210Bi and 210Po excess. These ratios also indicating that 210Pb and 210Bi could potentially come from the same source, compared to 210Po which varied differently, showing evidence it came

  14. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  15. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  16. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    Highlights: • This is the first report on a series of BiO x Cl y /BiO m I n heterojunctions. • The BiO x Cl y /BiO m I n composition was controlled by adjusting the growth parameters. • The BiO x Cl y /BiO m I n were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO 2 . • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO x Cl y /BiO m I n composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO x Cl y /BiO m I n composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O 2 · − played a major role, and OH· or h + played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  17. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-03-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  18. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  19. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  1. Transcriptome Analyses of Mosaic (MSC Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background

    Directory of Open Access Journals (Sweden)

    Tomasz L. Mróz

    2018-03-01

    Full Text Available Cucumber (Cucumis sativus L. has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs. MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions.

  2. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  3. The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films

    Science.gov (United States)

    Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.

    1991-09-01

    The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.

  4. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Norman Moullan

    2015-03-01

    Full Text Available In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.

  5. Preparation and Faraday rotation of Bi-YIG/PMMA nanocomposite

    Science.gov (United States)

    Fu, H. P.; Hong, R. Y.; Wu, Y. J.; Di, G. Q.; Xu, B.; Zheng, Y.; Wei, D. G.

    Bismuth-substituted yttrium iron garnet (Bi-YIG) nanoparticles (NPs) were prepared by coprecipitation and subsequent heating treatment. Thermal gravity-differential thermal analysis was performed to investigate the thermal behavior of the Bi-YIG precursors and to decide the best annealing temperature. Phase formation of garnet NPs was investigated by X-ray powder diffraction. The size of Bi-YIG NPs was investigated by transmission electron microscopy, and the magnetic properties of Bi-YIG NPs were measured using a vibrating sample magnetometer. The results show that the temperature needed for the transformation of Bi-YIG from the amorphous phase to the garnet phase decreases with increasing Bi content, and Bi-YIG NPs with sizes of 28-78 nm are obtained after heating treatment at 650-1000 °C. The saturation magnetization of Bi-YIG NPs increases as the Bi content increases. Moreover, the Faraday rotation of polymethyl methacrylate (PMMA) slices doped with Bi-YIG NPs was investigated. The results indicate that the angle of Faraday rotation increases with increasing Bi content in PMMA composites, and the maximum value of the figure of merit is 1.46°, which is comparable to the value of a sputtered film. The Bi-YIG NPs-doped PMMA slices are new promising materials for magneto-optical devices.

  6. Facile synthesis of AgI/BiOI-Bi{sub 2}O{sub 3} multi-heterojunctions with high visible light activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Shi, Xiaodong; Liu, Enqin [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Crittenden, John C. [The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Ma, Xiangjuan; Zhang, Yi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China)

    2016-11-05

    Graphical abstract: Highly visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was developed. - Highlights: • Visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was prepared. • Highly enhanced photocatalytic reduction of Cr(VI) was observed. • k{sub Cr(VI)} on AgI/BiOI-Bi{sub 2}O{sub 3} increased by ca.16 times relative to Bi{sub 2}O{sub 3}. • Decreased E{sub g}, shifted E{sub fb} and reduced charge transfer resistance were observed. • Simultaneous reduction of Cr(VI) and degradation of organics were achieved. - Abstract: AgI sensitized BiOI-Bi{sub 2}O{sub 3} composite (AgI/BiOI-Bi{sub 2}O{sub 3}) with multi-heterojunctions was prepared using simple etching-deposition process. Different characterization techniques were performed to investigate the structural, optical and electrical properties of the as-prepared photocatalysts. It was found that the ternary AgI/BiOI-Bi{sub 2}O{sub 3} composite exhibited: (1) improved photocurrent response, (2) smaller band gap, (3) greatly reduced charge transfer resistance and (4) negative shift of flat band potential, which finally led to easier generation and more efficient separation of photo-generated electron-hole pairs at the hetero-interfaces. Thus, for the reduction of Cr(VI), AgI/BiOI-Bi{sub 2}O{sub 3} exhibited excellent photocatalytic activity under visible light irradiation at near neutral pH. AgI/BiOI-Bi{sub 2}O{sub 3} was optimized when the initial molar ratio of KI to Bi{sub 2}O{sub 3} and AgNO{sub 3} to Bi{sub 2}O{sub 3} was 1:1 and 10%, respectively. The estimated k{sub Cr(VI)} on optimized AgI/BiOI-Bi{sub 2}O{sub 3} was about 16 times that on pure Bi{sub 2}O{sub 3}. Good stability was also observed in cyclic runs, indicating that the current multi-heterostructured photocatalyst is highly desirable for the remediation of Cr(VI)-containing wastewater.

  7. Choosing the best partition of the output from a large-scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Chelsea Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Casleton, Emily Michele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    Data partitioning becomes necessary when a large-scale simulation produces more data than can be feasibly stored. The goal is to partition the data, typically so that every element belongs to one and only one partition, and store summary information about the partition, either a representative value plus an estimate of the error or a distribution. Once the partitions are determined and the summary information stored, the raw data is discarded. This process can be performed in-situ; meaning while the simulation is running. When creating the partitions there are many decisions that researchers must make. For instance, how to determine once an adequate number of partitions have been created, how are the partitions created with respect to dividing the data, or how many variables should be considered simultaneously. In addition, decisions must be made for how to summarize the information within each partition. Because of the combinatorial number of possible ways to partition and summarize the data, a method of comparing the different possibilities will help guide researchers into choosing a good partitioning and summarization scheme for their application.

  8. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  9. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed.

    Science.gov (United States)

    de Sousa, Diana Nara Ribeiro; Mozeto, Antonio Aparecido; Carneiro, Renato Lajarim; Fadini, Pedro Sergio

    2018-02-01

    The occurrence, partitioning, and spatio-temporal distribution of seven pharmaceuticals for human use, three steroid hormones and one personal care product were determined in surface water, suspended particulate matter (SPM), and sediment of Piraí Creek and Jundiaí River (Jundiaí River Basin, São Paulo, Brazil). The maximum average detected concentrations of the compounds in the Piraí River samples were contaminants most frequently detected in sediment and SPM samples. Triclosan had the highest average proportion of SPM as opposed to in the aqueous phase (> 75%). Contaminants with acid functional groups showed, in general, a lower tendency to bind to particulate matter and sediments. In addition, hydrophobicity had an important effect on their environmental partitioning. The spatial distribution of contaminants along the Jundiaí River was mainly affected by the higher concentration of contaminants in water samples collected downstream from a sewage treatment plant (STP). The results obtained here clearly showed the importance of the analysis of some contaminants in the whole water, meaning both dissolved and particulate compartments in the water, and that the partitioning is ruled by a set of parameters associated to the physicochemical characteristics of contaminants and the matrix properties of the studied, which need be considered in an integrated approach to understand the fate of emerging chemical contaminants in aquatic environments.

  10. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    Science.gov (United States)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  11. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Croff, A.G.; Finney, B.C.; Tedder, D.W.

    1980-01-01

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  12. alpha-decay spectroscopy of light odd-odd Bi isotopes - II sup 1 sup 8 sup 6 Bi and the new nuclide sup 1 sup 8 sup 4 Bi

    CERN Document Server

    Andreyev, A N; Ackermann, D; Münzenberg, G; Hessberger, F P; Hofmann, S; Kojouharov, I; Kindler, B; Lommel, B; Huyse, M; Vel, K V D; Duppen, P V; Heyde, Kris L G

    2003-01-01

    Alpha-decay of the new nuclide sup 1 sup 8 sup 4 Bi has been studied in the complete-fusion reaction sup 9 sup 3 Nb( sup 9 sup 4 Mo, 3n) sup 1 sup 8 sup 4 Bi at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of recoil-alpha, recoil-alpha-gamma analysis and excitation functions measurements. Two alpha-decaying isomeric states in sup 1 sup 8 sup 4 Bi with half-life values of 13(2) ms and 6.6(1.5) ms were identified. The alpha-branching ratio of sup 1 sup 8 sup 0 Tl was deduced for the first time as b subalpha = (2-12)%. Improved data on the fine-structure alpha-decay of sup 1 sup 8 sup 6 Bi were obtained in the sup 9 sup 3 Nb( sup 9 sup 5 Mo, 2n) sup 1 sup 8 sup 6 Bi reaction. A similarity of the decay energies and half-life values of sup 1 sup 8 sup 4 sup , sup 1 sup 8 sup 6 Bi is pointed out and a possible explanation for this effect is suggested.

  13. Combinatorics and complexity of partition functions

    CERN Document Server

    Barvinok, Alexander

    2016-01-01

    Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .

  14. A novel partitioning method for block-structured adaptive meshes

    Science.gov (United States)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  15. A novel partitioning method for block-structured adaptive meshes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-07-15

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  16. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  17. Superstrengthening Bi2Te3 through Nanotwinning

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Morozov, Sergey I.; Wood, Max; An, Qi; Zhai, Pengcheng; Zhang, Qingjie; Goddard, William A.; Snyder, G. Jeffrey

    2017-08-01

    Bismuth telluride (Bi2Te3 ) based thermoelectric (TE) materials have been commercialized successfully as solid-state power generators, but their low mechanical strength suggests that these materials may not be reliable for long-term use in TE devices. Here we use density functional theory to show that the ideal shear strength of Bi2Te3 can be significantly enhanced up to 215% by imposing nanoscale twins. We reveal that the origin of the low strength in single crystalline Bi2Te3 is the weak van der Waals interaction between the Te1 coupling two Te 1 - Bi - Te 2 - Bi - Te 1 five-layer quint substructures. However, we demonstrate here a surprising result that forming twin boundaries between the Te1 atoms of adjacent quints greatly strengthens the interaction between them, leading to a tripling of the ideal shear strength in nanotwinned Bi2Te3 (0.6 GPa) compared to that in the single crystalline material (0.19 GPa). This grain boundary engineering strategy opens a new pathway for designing robust Bi2Te3 TE semiconductors for high-performance TE devices.

  18. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  19. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  20. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  1. Estudio de la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3

    Directory of Open Access Journals (Sweden)

    Caballero, A. C.

    2004-08-01

    Full Text Available Ceramic materials based in the ZnO- Bi2O3 system have their principal application as varistors. The binary system ZnO-Bi2O3 is specially relevant to the formation of the microstructure responsable of the varistor behaviour. The study of the different equilibrium phases at high temperatures at the Bi2O3-rich region of the ZnO-Bi2O3 will allow a correct understanding of the microstructural development. Equilibrium phases have been analyzed by XRD, SEM and DTA. Different temperature treatments of samples formulated in the Bi2O3 rich region of the ZnO-Bi2O3 binary system have allowed to determine the phase 19Bi2O3•ZnO as the equilibrium one instead of the 24Bi2O3•ZnO phase.Los materiales cerámicos basados en el sistema binario ZnO-Bi2O3 tienen su principal aplicación en el campo de los varistores. El sistema binario ZnO-Bi2O3 resulta especialmente relevante para la formación de la microestructura funcional de varistores. La determinación de las diferentes fases en equilibrio a alta temperatura en la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3 permitirá interpretar correctamente el desarrollo microestructural. El estudio de las fases en equilibrio se ha llevado a cabo mediante difracción de rayos X, microscopía electrónica de barrido (MEB y análisis térmico diferencial (ATD. Tratamientos a diferentes temperaturas, en la zona rica en Bi2O3 del sistema, han permitido determinar la presencia del compuesto 19Bi2O3•ZnO como fase estable en equilibrio, en lugar del compuesto 24Bi2O3•ZnO.

  2. Additional Quantum Properties of Entangled Bipartite Qubit Systems Coupled to Photon Baths

    International Nuclear Information System (INIS)

    Quintana, C

    2016-01-01

    The time evolution of an entangled bi-partite qubit interacting with two independent photon baths in isolated cavities is not unitary. It is shown that the bi-partite qubit oscillates between pure and mixed states, and that the initial entanglement is lost and recovered in time by time as a consequence of its interaction with the baths. (paper)

  3. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  4. Mitochondrial quality control in cardiac diseases.

    Directory of Open Access Journals (Sweden)

    Juliane Campos

    2016-10-01

    Full Text Available Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  5. Thermoelectric power of Bi and Bi{sub 1{minus}x}Sb{sub x} alloy thin films and superlattices grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; DiVenere, A; Wong, G K; Ketterson, J B; Meyer, J R; Hoffman, C A

    1997-07-01

    The authors have measured the thermoelectric power (TEP) of MBE-grown epitaxial Bi and Bi{sub 1{minus}x} alloy thin films and superlattices as a function of temperature in the range 20--300 K. They have observed that the TEP of a Bi thin film of 1 {micro}m thickness is in good agreement with the bulk single crystal value and that the TEPs for superlattices with 400 {angstrom} and 800 {angstrom} Bi well thicknesses are enhanced over the bulk values. For x = 0.072 and 0.088 in Bi{sub 1{minus}x}Sb{sub x} thin films showing semiconducting behavior, TEP enhancement was observed by a factor of two. However as Bi or Bi{sub 1{minus}x}Sb{sub x} well thickness decreases in superlattice geometry, the TEP decreases, which may be due to unintentional p-type doping.

  6. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  7. Interfacial thermodynamics and electrochemistry of protein partitioning in two-phase systems

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.

    1987-01-01

    The subject of this thesis is protein partition between an aqueous salt solution and a surface or an apolair liquid and the concomitant co-partition of small ions. The extent of co-partitioning determines the charge regulation in the protein partitioning process.

    Chapters 2 and 3

  8. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  9. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  10. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  11. Time and Space Partitioning the EagleEye Reference Misson

    Science.gov (United States)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  12. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  13. Competitividade de biótipos de capim-arroz resistente e suscetível ao quinclorac Competitiveness of echinochloa biotypes resistant and susceptible to quinclorac

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2008-03-01

    Full Text Available Objetivou-se com este trabalho avaliar a competitividade de dois biótipos de capim-arroz, resistente e suscetível ao quinclorac, coletados em regiões orizícolas do Estado de Santa Catarina. O experimento foi instalado em ambiente protegido, e os tratamentos constaram de diferentes densidades de plantas dos biótipos de capim-arroz comprovadamente resistente (ITJ-13 e suscetível (ITJ-17 ao quinclorac, oriundos da região arrozeira de Itajaí/SC. No centro da unidade experimental, foram semeadas três sementes do biótipo de capim-arroz, considerado como o tratamento da unidade experimental. Na periferia foram semeadas dez sementes do biótipo oposto ao do tratamento (central. Dez dias após a germinação foi efetuado o desbaste, deixando-se apenas uma planta no centro da unidade experimental e um número variável de plantas do biótipo oposto, de acordo com o tratamento (0, 1, 2, 3, 4 ou 5 plantas por vaso. O delineamento experimental utilizado foi o completamente casualizado, em esquema fatorial 2 x 6, com quatro repetições. Aos 40 dias após a emergência, foram avaliados altura de plantas, número de afilhos e de folhas, área foliar, massa fresca e seca e conteúdo de água de colmos e folhas. Os dados foram analisados pelo teste F, sendo efetuado teste de Duncan para comparar o efeito de densidade de plantas e teste da Diferença Mínima Significativa (DMS para avaliar diferenças entre os biótipos resistente e suscetível, além de correlação linear simples entre as variáveis avaliadas. Nas análises, utilizou-se o nível de 5% de probabilidade. Os biótipos estudados de capim-arroz resistente e suscetível ao quinclorac são similares quando sob alta intensidade de competição, com vantagem em algumas variáveis para o biótipo suscetível sob baixa ou moderada intensidade competitiva.The objective of this research was to evaluate the competitive potential of two Echinochloa sp. biotypes, resistant and susceptible to

  14. Shoot growth, radiation interception and dry matter production and partitioning during the establishment phase of Miscanthus sinensis 'Giganteus' grown at two densities in the UK

    International Nuclear Information System (INIS)

    Bullard, M.J.; Heath, M.C.; Nixon, P.M.I.

    1995-01-01

    Photosynthetic area index (PAI), radiation interception (I) and dry matter partitioning between shoots and roots were measured for Miscanthus sinensis‘Giganteus' grown from micro-propagated transplants on a fertile peaty loam soil in eastern England. In the establishment year, Miscanthus plants produced 35 and 70 shoots plant -1 at densities of 4.0 and 1.8 plants m -2 respectively. At the higher density, there were 140 shoots m -2 with the largest reaching a height of 1.8 m; these canopies attained a maximum PAI of 5.45, intercepting 94% of incident radiation. Leaf lamina contributed c. 90% of total photosynthetic area with stems contributing the remainder. At the lower density, maximum PAI and I values were 2.88 and 86% respectively. PAI was related to I by calculating attenuation coefficients (k); these indicated that Miscanthus canopies were more effective at intercepting radiation per unit PAI at the lower density (k= -0.31) compared with the higher density (k= -0.20). Radiation interception was related to dry matter accumulated by calculating conversion efficiencies (e). At 4 plants m -2 , × for shoot dry matter production was 1.17g MJ -1 . Miscanthus partitioned a relatively large amount of total dry matter into below-ground biomass. By plant senescence, c. 30% of total dry matter had been partitioned into root and rhizome; rhizome biomass contributed 80% of below-ground dry matter, × increased to 1.62 g MJ -1 when calculated on a total dry matter basis (shoot + root + rhizome). Total dry matter production was increased 68% by a 2.2-fold increase in plant density. (author)

  15. Growth analisys and assimilate partitioning in physalis plants under leaf fertilization intervalsAnálise de crescimento e partição de assimilados em plantas de fisalis submetidas a intervalos de adubação foliar

    Directory of Open Access Journals (Sweden)

    Tiago Pedó

    2013-10-01

    Full Text Available The work was conducted in greenhouse and aimed to analyze the growth and partitioning of assimilates in Physalis peruviana subjected in intervals of leaf fertilization. The plants were collected at regular intervals of fourteen days after transplantation until the end of the cycle and determined the dry mass and leaf area. From the primary data analysis was applied to growth analysis and calculated the total dry matter production (Wt, rates of dry matter production (Ct, relative growth (Rw, net assimilation (Ea, leaf area index (L, relative growth of leaf area (Fa and ratios of leaf area and leaf mass (Fw, specific leaf area (Sa and dry matter partitioning between organs. Plants of Physalis peruviana subjected to leaf fertilization biweekly reached higher Wt, Ct, number of fruits and similar dry mass of fruits (Wfr of plants subjected to foliar weekly application and higher Wfr compared to plants without application leaf of fertilization. Thus, the application of leaf fertilization provided benefits of growth and the partition of assimilates in Physalis peruviana plants. O trabalho foi conduzido em casa de vegetação e objetivou analisar o crescimento e a partição de assimilados em Physalis peruviana submetida a intervalos de adubação foliar. As plantas foram coletadas a intervalos regulares de quatorze dias após o transplante até o final do ciclo e foram determinados a massa seca e a área foliar. A partir dos dados primários foi aplicada a análise de crescimento, sendo calculados a massa seca total (Wt, taxas de produção de matéria seca (Ct, crescimento relativo (Rw e assimilatória liquída (Ea, índice de área foliar (L, razões de área foliar (Fa e massa foliar (Fw, área foliar específica (Sa, partição de matéria seca entre órgãos e o número de frutos. Plantas de Physalis peruviana submetidas à adubação foliar quinzenal atingiram maior Wt, Ct, superior número de frutos e semelhante matéria seca de frutos (Wfr a

  16. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  17. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Science.gov (United States)

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  18. Construction of Scaling Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Ole Christensen

    2017-11-01

    Full Text Available Partitions of unity in ℝd formed by (matrix scales of a fixed function appear in many parts of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces. We give a simple characterization of the functions and matrices yielding such a partition of unity. For expanding matrices, the characterization leads to easy ways of constructing appropriate functions with attractive properties like high regularity and small support. We also discuss a class of integral transforms that map functions having the partition of unity property to functions with the same property. The one-dimensional version of the transform allows a direct definition of a class of nonuniform splines with properties that are parallel to those of the classical B-splines. The results are illustrated with the construction of dual pairs of wavelet frames.

  19. Thermoelectric properties of Bi2Te3 base solid solutions in the Bi2Te3-InS system

    International Nuclear Information System (INIS)

    Safarov, M.G.; Rustamov, P.G.; Alidzhanov, M.A.

    1979-01-01

    The rich Bi 2 Te 3 part ot the Bi 2 Te 3 -InS constitutional diagram has been studied with a view to produce new Bi 2 Te 3 -based solid solutions and to establish the maximum solubility of InS in Bi 2 Te 3 . The methods of differential-thermal, X-ray phase and microstructural analysis have been used. The alloys microhardness, density and thermal electric properties have been measured. A large region of Bi 2 Te 3 -based restricted solid solutions has been detected; it reaches 14.0 mol.% InS at room temperature. Studied have been the thermoelectromotive forces, electric and thermal conductivity of the alloys, containing up to 5 mol.% InS in the 300-700 K temperature range

  20. Optical spectroscopy and Fermi surface studies of BiTeCl and BiTeBr

    Science.gov (United States)

    Martin, Catalin; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, Philippe; Berger, Helmuth; Magrez, Arnaud; Tanner, D. B.

    2014-03-01

    The observation of a large bulk Rashba effect in the non-centrosymmetric semiconductors BiTeX(X=Cl, Br, I) has stimulated the interest in these sys- tems, as promising candidates for studying spin related phenomena and for the realization of spin devices. Here we present a comparative study of the electronic properties of BiTeCl and BiTeBr, determined from temperature dependent infrared spectroscopy and Shubnikov-de Haas oscillations. In par- ticular, we compare the angle dependence of quantum oscillations between the two compounds and discuss possible differences between the topology of their Fermi surfaces. Supported by NSF Cooperative Agreement DMR-1157490 to the National High Magnetic Field Laboratory.