WorldWideScience

Sample records for bi-layered thin films

  1. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  2. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  3. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    Science.gov (United States)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  4. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  5. SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor

    Science.gov (United States)

    Raut, Shrikant S.; Dhobale, Jyotsna A.; Sankapal, Babasaheb R.

    2017-03-01

    Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg-1 at 5 mVs-1 scan rate in 1 M Na2SO4 electrolyte.

  6. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  7. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  8. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A.K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.

  9. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw; Chang, Chih-Hsiang; Chang, Chih-Jui [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  10. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  11. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    Science.gov (United States)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  12. Photoluminescence of electron beam evaporated CaS:Bi thin films

    CERN Document Server

    Smet, P F; Poelman, D R; Meirhaeghe, R L V

    2003-01-01

    For the first time, the photoluminescence (PL) of electron beam evaporated CaS:Bi thin films is reported. Luminescent CaS:Bi powder prepared out of aqueous solutions was used as source material. The influence of substrate temperature on the PL and the morphology of thin films is discussed, and an optimum is determined. Substrate temperatures between 200 deg. C and 300 deg. C lead to good quality thin films with sufficient PL intensity. As-deposited thin films show two emission bands, peaking at 450 and 530 nm. Upon annealing the emission intensity increases, and annealing at 800 deg. C is sufficient to obtain a homogeneously blue emitting thin film (CIE colour coordinates (0.17; 0.12)), thanks to a single remaining emission band at 450 nm. The influence of ambient temperature on the PL of CaS:Bi powder and thin films was also investigated and it was found that CaS:Bi thin films show a favourable thermal quenching behaviour near room temperature.

  13. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Science.gov (United States)

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; Siegal, M. P.

    2015-12-01

    Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1-xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%-95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  14. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Directory of Open Access Journals (Sweden)

    C. Rochford

    2015-12-01

    Full Text Available Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1−xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%–95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  15. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  16. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  17. YIG: Bi2O3 Nanocomposite Thin Films for Magnetooptic and Microwave Applications

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm, achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz.

  18. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  19. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  20. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  1. Density functional study of BiSbTeSe{sub 2} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourrad, Zahra; Abolhassani, Mohammadreza [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In this work, using density functional theory calculations, we have investigated the band topology of bulk BiSbTeSe{sub 2} and its thin film electronic properties in several thicknesses. It is one member of the quaternary compounds Bi{sub 2-x}Sb{sub x}Te{sub 3-y}Se{sub y} (BSTS) with the best intrinsic bulk insulating behavior. Based on our calculations we have found that a band inversion at Γ-point is induced when spin-orbit coupling is turned on, with an energy gap of about 0.318 eV. The film thickness has an effect on the surface states such that a gap opens at Dirac point in 6 quintuple-layers film and with decrease in thickness, the magnitude of the gap increases. The atomic contributions have been mapped out for the first few layers of thin films to demonstrate the surface states. The relative charge density has been calculated layer-wise and the penetration depth of the surface states into the bulk region is found to be about 2.5-3.5 quintuple layers, depending on the termination species of thin films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-12-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

  3. Electrical and optical properties of Bi2S3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Ubale, A.U.; Daryapurkar, A.S.; Mankar, R.B.; Raut, R.R.; Sangawar, V.S.; Bhosale, C.H.

    2008-01-01

    Bi 2 S 3 thin films were prepared on amorphous glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using bismuth nitrate and thioacetamide as the cationic and anionic precursors in aqueous medium. The X-ray diffraction study reveals that as-deposited films of Bi 2 S 3 are amorphous in nature, it becomes polycrystalline after annealing at 573 K. The decrease in activation energy from 0.65 to 0.36 eV and optical band gap energy, E g , from 2.35 to 1.86 eV are observed as film thickness varies from 67 to 150 nm. Such changes are attributed to the quantum size effect in semiconducting films

  4. Enhanced Optical and Electrical Properties of TiO_2 Buffered IGZO/TiO_2 Bi-Layered Films

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Kim, Daeil

    2016-01-01

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO_2-deposited glass substrate to determine the effect of the thickness of a thin TiO_2 buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO_2 buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO_2 buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO_2 bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO_2 bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  5. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  6. Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo

    Science.gov (United States)

    Sabet, S.; Hildebrandt, E.; Alff, L.

    2017-10-01

    Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.

  7. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  8. Properties of SrBi2Nb2O9 thin films on Pt-coated Si

    International Nuclear Information System (INIS)

    Avila, R.E.; Navarro, P.O.; Martin, V. del C.; Fernandez, L.M.; Sylvester, G.; Retuert, P.J.; Gramsch, E.

    2002-01-01

    SrBi 2 Nb 2 O 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  9. Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition

    Science.gov (United States)

    Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul

    2017-10-01

    For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.

  10. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  11. Modification of photosensing property of CdS–Bi{sub 2}S{sub 3} bi-layer by thermal annealing and swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Shaheed U.; Siddiqui, Farha Y. [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India); Singh, Fouran; Kulriya, Pawan K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Phase, D.M. [UGC DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-02-01

    The CdS–Bi{sub 2}S{sub 3} bi-layer thin films have been deposited on Indium Tin Oxide (ITO) glass substrates at room temperature by Chemical Bath Deposition Technique (CBD) and bi-layer thin films were annealed in air atmosphere for 1 h at 250 {sup °}C. The air annealed sample was irradiated using Au{sup 9+} ions at the fluence 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. Effects of Swift Heavy Ion (SHI) irradiation on CdS–Bi{sub 2}S{sub 3} bi-layer thin films were studied. The results are explained on the basis annealing and high electronic excitation, using X-ray diffraction (XRD), Selective Electron Area Diffraction (SEAD), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV spectroscopy and I–V characteristics. The photosensing property after illumination of visible light over the samples is studied. These as-deposited, annealed and irradiated bi-layer thin films are used to sense visible light at room temperature. - Graphical abstract: Schematic illustration of CdS–Bi{sub 2}S{sub 3} bi-layer thin film (a) As-deposited (b) Annealed (c) irradiated sample respectively (d) Model of bi-layer photosensor device (e) Graph of illumination intensity verses photosensitivity. - Highlights: • CdS–Bi{sub 2}S{sub 3} bi-layer thin film prepared at room temperature. • Irradiated using Au{sup 9+} ions at the fluence of 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. • Study of modification induced by irradiations. • Study of Photosensitivity after annealing and irradiation.

  12. Growth of (100)-highly textured BaBiO{sub 3} thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina); Marchini, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Granell, P. [INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Golmar, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, 1650 San Martín, Buenos Aires (Argentina); Albornoz, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); and others

    2016-08-01

    We report on the growth and characterization of non-epitaxial but (100)-highly textured BaBiO{sub 3} thin films on silicon substrates. We have found the deposition conditions that optimize the texture, and show that the textured growth is favoured by the formation of a BaO layer at the first growth stages. X-ray diffraction Φ-scans, together with the observation that the same textured growth is found on films grown on Pt and SiO{sub 2} buffered Si, demonstrate the absence of epitaxy. Finally, we have shown that our (100)-oriented BaBiO{sub 3} films can be used as suitable buffers for the growth of textured heterostructures on silicon, which could facilitate the integration of potential devices with standard electronics. - Highlights: • BaBiO{sub 3} thin films were grown on Si substrates and characterized. • Films prepared using optimized conditions are highly textured in the (100) direction. • The absence of in-plane texture was demonstrated by X-ray diffraction. • Our films are suitable buffers for the growth of (100)-textured oxide heterostructures.

  13. Investigation on synthesis of Bi-based thin films on flat sputter-deposited Ag film by melting process

    International Nuclear Information System (INIS)

    Su Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Awane, Toru; Fukuyo, Akihiro; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2003-01-01

    We report on the fabrication of ribbon-like thin films on flat sputter-deposited Ag films whose surface smoothness remained within the order of tens of nm. It was found that the addition of Pb to the starting material improves the wettability of molten phase and facilitates the growth of Bi-2212 ribbon-like thin films on a flat Ag substrate, and that the increase of Ca and Cu in starting material suppresses the intergrowth of the Bi-2201 phase in ribbon-like thin films. By using (Bi,Pb)-2246 powders, with nominal composition of Bi 1.6 Pb 0.4 Sr 1.6 Ca 3.2 Cu 4.8 O y , as the starting material, the superconducting Bi-2212 ribbon-like thin films with an onset T c at 74 K on a very flat Ag substrate were successfully synthesized. Additionally, the growth mechanism of ribbon-like thin films on flat Ag substrate was investigated by in situ high temperature microscope observation

  14. Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films

    Science.gov (United States)

    Kodan, Nisha; Mehta, B. R.

    2018-05-01

    Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.

  15. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  16. Multiferroic BiFeO{sub 3} thin films: Structural and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Z. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt); Atta, A. [National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo (Egypt); Abbas, Y. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Sedeek, K.; Adam, A.; Abdeltwab, E. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt)

    2015-02-27

    BiFeO{sub 3} (BFO) film has been deposited on indium tin oxide (ITO) substrate by a simple sol–gel spin-coating technique. The crystal phase composition, surface morphology, topography and magnetization measurements of the BFO thin film were investigated using grazing incidence X-ray diffraction (GIXRD), scanning electronic microscope (SEM), atomic force microscope and vibrating sample magnetometer, respectively. GIXRD analysis revealed that the film was fully crystallized and no impure phase was observed. Cross-section SEM results indicated that compact and homogeneous BFO thin film was deposited on ITO with a thickness of about 180 nm. Moreover, most of A and E-symmetry normal modes of R3c BFO were assigned by Raman spectroscopy. We report here that the pure phase BFO film shows ferromagnetism at room temperature with remarkably high saturation magnetization of 63 kA m{sup −1}. Our results are discussed mainly in correlation with the condition of processing technique and destruction of the spiral spin cycloid at interface layers and grain boundaries. - Highlights: • Multiferroic BiFeO{sub 3} (BFO) thin film was prepared by sol–gel spin-coating method. • BFO film w asdeposited on indium tin oxide substrate with a thickness of 180 nm. • The film exhibits pure rhombohedral perovskite structure. • High saturation magnetization was recorded for our film at room temperature.

  17. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  18. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  19. Quantum interference effects in [Co/Bi]n thin films

    Directory of Open Access Journals (Sweden)

    Athanasopoulos P.

    2014-07-01

    Full Text Available Magnetoconductivity (MC, Δσ(Β, and Hall coefficient, RH(B, measurements have been performed in polycrystalline thin films of Bi(15nm, Bi(10nm/Co(1nm/Bi(10nm trilayer and [Co(0.7nm/Bi(2nm]10 multilayer, grown by magnetron scattering. The temperature dependence of RH(B curves reveal the existence of a second conduction channel below 250K, that can be assigned to surface states. MC measurements between ±0.4T show at 5K an interplay between weak-antilocalization (WAL in Bi and Bi/Co/Bi films and weal-localization (WL in [Co/Bi]10 multilayer.

  20. Growth and characterization of MnGa thin films with perpendicular magnetic anisotropy on BiSb topological insulator

    Science.gov (United States)

    Duy Khang, Nguyen Huynh; Ueda, Yugo; Yao, Kenichiro; Hai, Pham Nam

    2017-10-01

    We report on the crystal growth as well as the structural and magnetic properties of Bi0.8Sb0.2 topological insulator (TI)/MnxGa1-x bi-layers grown on GaAs(111)A substrates by molecular beam epitaxy. By optimizing the growth conditions and Mn composition, we were able to grow MnxGa1-x thin films on Bi0.8Sb0.2 with the crystallographic orientation of Bi0.8Sb0.2(001)[1 1 ¯ 0]//MnGa (001)[100]. Using magnetic circular dichroism (MCD) spectroscopy, we detected both the L10 phase ( x 0.6 ) of MnxGa1-x. For 0.50 ≤ x ≤ 0.55 , we obtained ferromagnetic L10-MnGa thin films with clear perpendicular magnetic anisotropy, which were confirmed by MCD hysteresis, anomalous Hall effect as well as superconducting quantum interference device measurements. Our results show that the BiSb/MnxGa1-x bi-layer system is promising for perpendicular magnetization switching using the giant spin Hall effect in TIs.

  1. Enhanced Optical and Electrical Properties of TiO{sub 2} Buffered IGZO/TiO{sub 2} Bi-Layered Films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-08-15

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO{sub 2}-deposited glass substrate to determine the effect of the thickness of a thin TiO{sub 2} buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO{sub 2} buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO{sub 2} buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO{sub 2} bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO{sub 2} bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  2. Multiferroic properties of BiFeO3/Bi4Ti3O12 double-layered thin films fabricated by chemical solution deposition

    International Nuclear Information System (INIS)

    Yi, Seung Woo; Kim, Sang Su; Kim, Jin Won; Jo, Hyun Kyung; Do, Dalhyun; Kim, Won-Jeong

    2009-01-01

    Multiferroic BiFeO 3 /Bi 4 Ti 3 O 12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO 2 /Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2P r ) of the double-layered film capacitor was 100 μC/cm 2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2M r ) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 x 10 -7 A/cm 2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.

  3. Thickness oscillations of the transport properties in n-type Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Budnik, A.V.; Sipatov, A.Yu.; Nashchekina, O.N. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Fedorov, A.G. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Dresselhaus, M.S.; Tang, S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-11-02

    The dependences of the electrical conductivity, Seebeck coefficient and Hall coefficient on the thickness (d = 20–155 nm) of the n-type thin films grown on the glass substrates by the thermal evaporation in vacuum of the n-type Bi{sub 2}Te{sub 3} topological insulator crystals have been measured. It has been established that these dependences have an oscillatory character with a substantial amplitude. The obtained results are interpreted in terms of quantum size effects, taking into account the peculiar properties of the surface layers of the Bi{sub 2}Te{sub 3} films connected with the topological insulator nature of the bismuth telluride. - Highlights: • The thickness dependences of Bi{sub 2}Te{sub 3} thin films kinetic coefficients were obtained. • The dependences have oscillatory character with a substantial undamped amplitude. • The oscillation period increases with decreasing film thickness. • The oscillations are attributed to electron confinement in the film growth direction. • It is suggested that topological surface layer affects quantum processes in films.

  4. Annealing Effect on the Photoelectrochemical Properties of BiVO_4 Thin Film Electrodes

    International Nuclear Information System (INIS)

    Siti Nur Farhana Mohd Nasir; Mohd Asri Mat Teridi; Mehdi Ebadi; Sagu, J.S.

    2015-01-01

    Monoclinic bismuth vanadate (BiVO_4) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectrophotometry (UV-Vis) and current voltage measurement. All BiVO_4 thin films showed an anodic photocurrent. The sample of BiVO_4 annealed at 400 degree Celsius exhibited the highest photocurrent density of 0.44 mAcm"-"2 vs. Ag/ AgCl at 1.23 V. (author)

  5. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  6. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  7. Fabrication of bi-layer graphene and theoretical simulation for its possible application in thin film solar cell.

    Science.gov (United States)

    Behura, Sanjay K; Mahala, Pramila; Nayak, Sasmita; Yang, Qiaoqin; Mukhopadhyay, Indrajit; Janil, Omkar

    2014-04-01

    High quality graphene film is fabricated using mechanical exfoliation of highly-oriented pyrolytic graphite. The graphene films on glass substrates are characterized using field-emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV-vis spectroscopy and Fourier transform infrared spectroscopy. A very high intensity ratio of 2D to G-band (to approximately 1.67) and narrow 2D-band full-width at half maximum (to approximately 40 cm(-1)) correspond to the bi-layer graphene formation. The bi-layer graphene/p-GaN/n-InGaN/n-GaN/GaN/sAl2O3 system is studied theoretically using TCAD Silvaco software, in which the properties of exfoliated bi-layer graphene are used as transparent and conductive film, and the device exhibits an efficiency of 15.24% compared to 13.63% for ITO/p-GaN/n-InGaN/n-GaN/GaN/Al2O3 system.

  8. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  9. Constructing anisotropic single-Dirac-cones in Bi(1-x)Sb(x) thin films.

    Science.gov (United States)

    Tang, Shuang; Dresselhaus, Mildred S

    2012-04-11

    The electronic band structures of Bi(1-x)Sb(x) thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness, and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi(1-x)Sb(x) thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band gap, which can be used in a general two-dimensional system that has a nonparabolic dispersion relation as in the Bi(1-x)Sb(x) thin film system. © 2012 American Chemical Society

  10. Properties of SrBi sub 2 Nb sub 2 O sub 9 thin films on Pt-coated Si

    CERN Document Server

    Avila, R E; Martin, V D C; Fernandez, L M; Sylvester, G S; Retuert, P J; Gramsch, E

    2002-01-01

    SrBi sub 2 Nb sub 2 O sub 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n sup 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO sub 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  11. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  12. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  13. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  14. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  15. Magneto-optical properties of BiFeO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO{sub 3} thin films. BiFeO{sub 3} thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO{sub 3}/air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO{sub 3} thin films. The SPR reflectance curves obtained for prism/Au/BiFeO{sub 3}/air structure were utilized to investigate the optical properties of BiFeO{sub 3} thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO{sub 3} film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO{sub 3} film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO{sub 3} film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T.

  16. Thermoelectric power of Bi and Bi{sub 1{minus}x}Sb{sub x} alloy thin films and superlattices grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; DiVenere, A; Wong, G K; Ketterson, J B; Meyer, J R; Hoffman, C A

    1997-07-01

    The authors have measured the thermoelectric power (TEP) of MBE-grown epitaxial Bi and Bi{sub 1{minus}x} alloy thin films and superlattices as a function of temperature in the range 20--300 K. They have observed that the TEP of a Bi thin film of 1 {micro}m thickness is in good agreement with the bulk single crystal value and that the TEPs for superlattices with 400 {angstrom} and 800 {angstrom} Bi well thicknesses are enhanced over the bulk values. For x = 0.072 and 0.088 in Bi{sub 1{minus}x}Sb{sub x} thin films showing semiconducting behavior, TEP enhancement was observed by a factor of two. However as Bi or Bi{sub 1{minus}x}Sb{sub x} well thickness decreases in superlattice geometry, the TEP decreases, which may be due to unintentional p-type doping.

  17. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  18. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  19. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  20. Effect of preparation conditions on the properties of Cu3BiS3 thin films grown by a two - step process

    Science.gov (United States)

    Mesa, F.; Gordillo, G.

    2009-05-01

    Cu3BiS3 thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu3BiS3 phase. It was also found that the Cu3BiS3 films present p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  1. Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Sanchez-Meza, E.; Ruiz, C.M.; Sastre-Hernandez, J.; Morales-Acevedo, A.; Cruz-Gandarilla, F.; Aguilar-Hernandez, J.; Saucedo, E.; Contreras-Puente, G.; Bermudez, V.

    2007-01-01

    The physical properties of Bi doped CdTe films, grown on glass substrates by the Closed Space Transport Vapour (CSVT) method, from different Bi doped CdTe powders are presented. The CdTe:Bi films were characterized using Photoluminescence, Hall effect, X-Ray diffraction, SEM and Photoconductivity measurements. Moreover, CdS/CdTe:Bi solar cells were made and their characteristics like short circuit current density (J sc ), open circuit voltage (V OC ), fill factor (FF) and efficiency (η) were determined. These devices were fabricated from Bi doped CdTe layers deposited on CdS with the same growth conditions than those used for the single CdTe:Bi layers. A correlation between the CdS/CdTe:Bi solar cell characteristics and the physical properties of the Bi doped CdTe thin films are presented and discussed

  2. Effects of Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} ultra-thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Garcia, H., E-mail: hamog@ier.unam.mx [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63155 Tepic, Nayarit (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Martínez, H. [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico)

    2016-04-01

    As-deposited bismuth sulfide thin films prepared by means of a chemical bath deposition were treated with argon AC plasma. In this paper, we present the results on the physical modifications which were observed when a pre-treatment, containing a solution of 1 M sodium hydroxide, was applied to the glass substrates before depositing the bismuth sulfide. The bismuth sulfide thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV–VIS, and electrical measurements. The XRD analysis demonstrated an enhancement in the crystalline properties, as well as an increment in the crystal size. The energy band gap value was calculated as 1.60 eV. Changes in photoconductivity (σ{sub p}) values were also observed due to the pre-treatment in NaOH. A value of σ{sub p} = 6.2 × 10{sup −6} (Ω cm){sup −1} was found for samples grown on substrates without pre-treatment, and a value of σ{sub p} = 0.28 (Ω cm){sup −1} for samples grown on substrates with pre-treatment. Such σ{sub p} values are optimal for the improvement of solar cells based on Bi{sub 2}S{sub 3} thin films as absorber material. - Highlights: • We report our findings about Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} thin layers. • The Na pre-treatment improves the structural and electrical properties of Bi{sub 2}S{sub 3} films. • The E{sub g} value was 1.60 eV for films with pre-treatment with NaOH and treatment in Ar plasma.

  3. Layer-by-layer assembly of thin film oxygen barrier

    International Nuclear Information System (INIS)

    Jang, Woo-Sik; Rawson, Ian; Grunlan, Jaime C.

    2008-01-01

    Thin films of sodium montmorillonite clay and cationic polyacrylamide were grown on a polyethylene terephthalate film using layer-by-layer assembly. After 30 clay-polymer layers are deposited, with a thickness of 571 nm, the resulting transparent film has an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation ( 2 /day/atm). This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a brick wall nanostructure comprised of completely exfoliated clay in polymeric mortar. With an optical transparency greater than 90% and potential for microwaveability, this thin composite is a good candidate for foil replacement in food packaging and may also be useful for flexible electronics packaging

  4. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  5. Crystallized InBiS3 thin films with enhanced optoelectronic properties

    Science.gov (United States)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Omar, M. Firdaus Bin; Sultan, M.; Fu, Yong Qing

    2018-04-01

    In this paper, a one-step thermal evaporation approach was used for fabrication of indium bismuth sulphide thin films, and the synergetic effects of co-evaporation of two sources (indium granules and Bi2S3 powders) were investigated using different characterization techniques. X-ray diffraction (XRD) analysis confirmed the crystalline orthorhombic structure for the post-annealed samples. Surface roughness and crystal size of the obtained film samples were increased with increasing annealing temperatures. Analysis using X-ray photoelectron spectroscopy showed the formation of the InBiS3 structure for the obtained films, which is also confirmed by the XRD results. The optical absorption coefficient value of the annealed samples was found to be in the order of 105 cm-1 in the visible region of the solar spectrum. The optical band gap energy and electrical resistivity of the fabricated samples were observed to decrease (from 2.2 to 1.3 eV, and from 0.3 to 0.01 Ω-cm, respectively) with increasing annealing temperatures (from 200 to 350 °C), indicating the suitability of the prepared InBiS3 thin films for solar cell applications.

  6. Magnetic field induced superconductor-insulator transitions for ultra-thin Bi films on the different underlayers

    International Nuclear Information System (INIS)

    Makise, K; Kawaguti, T; Shinozaki, B

    2009-01-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for ultra-thin Bi films in magnetic fields. The quench-condensed (q-c) Bi film onto insulating underlayers have been interpreted to be homogeneous. In contrast, the Bi film without underlayers has been regarded as a granular film. The electrical transport properties of ultra-thin metal films near the S-I transition depend on the structure of the film. In order to confirm the effect of the underlayer to the homogeneity of the superconducting films, we investigate the characteristics of S-I transitions of q-c nominally homogeneous Bi films on underlayers of two insulating materials, SiO, and Sb. Under almost the same deposition condition except for the material of underlayer, we prepared the Bi films by repeating the additional deposition and performed in-situ electrical measurement. It is found that the transport properties near the S-I transitions show the remarkable difference between two films on different underlayers. As for Bi films on SiO, it turned out that the temperature dependence of resistance per square R sq (T) of the field-tuned transition and the thickness-tuned transition shows similar behavior; it was a thermally activated form. On the other hand, the R sq (T) of Bi films on Sb for thickness-tuned S-I transition showed logarithmic temperature dependence, but that for field-tuned S-I transition showed a thermally activated form.

  7. Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.

    2010-02-01

    Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.

  8. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    International Nuclear Information System (INIS)

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-01

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w Bi ) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ F  = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L ϕ ) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w Bi and t smaller than λ F showed low dimensional electronic behavior at low temperatures where L ϕ (T) exceed w Bi or t

  9. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  10. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates

    International Nuclear Information System (INIS)

    Chen Xinman; Zhang Hu; Ruan Kaibin; Shi Wangzhou

    2012-01-01

    Highlights: ► Annealing effect on the bipolar resistive switching behaviors of BiFeO 3 thin films with Pt/BiFeO 3 /LNO was reported. ► Rectification property was explained from the asymmetrical contact between top and bottom interfaces and the distinct oxygen vacancy density. ► The modification of Schottky-like barrier was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices. - Abstract: We reported the annealing effect on the electrical behaviors of BiFeO 3 thin films integrated on LaNiO 3 (LNO) layers buffered Si substrates by sol–gel spin-coating technique. All the BiFeO 3 thin films exhibit the reversible bipolar resistive switching behaviors with Pt/BiFeO 3 /LNO configuration. The electrical conduction mechanism of the devices was dominated by the Ohmic conduction in the low resistance state and trap-controlled space charged limited current in the high resistance state. Good diode-like rectification property was observed in device with BiFeO 3 film annealed at 500 °C, but vanished in device with BiFeO 3 film annealed at 600 °C. This was attributed to the asymmetrical contact between top and bottom interfaces as well as the distinct oxygen vacancy density verified by XPS. Furthermore, the modification of Schottky-like barrier due to the drift of oxygen vacancies was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices.

  11. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  12. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y., E-mail: youngok@chem.s.u-tokyo.ac.jp [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Hirose, Y.; Fukumura, T.; Hasegawa, T. [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Nakao, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Xu, J. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  13. Effect of preparation conditions on the properties of Cu{sub 3}BiS{sub 3} thin films grown by a two - step process

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F; Gordillo, G, E-mail: fgmesar@unal.edu.c, E-mail: ggordillog@unal.edu.c [Departamento de Fisica, Universidad Nacional de Colombia, Bogota Cr.30 No 45-03 (Colombia)

    2009-05-01

    Cu{sub 3}BiS{sub 3} thin films were prepared on soda-lime glass substrates by co-evaporation of the precursors in a two-step process; for that, the metallic precursors were evaporated from a tungsten boat in presence of elemental sulfur evaporated from a tantalum effusion cell. The films were characterized by spectral transmittance, atomic force microscopy AFM and x-ray diffraction (XRD) measurements to investigate the effect of the growth conditions on the optical, morphological and structural properties. The results revealed that, independently of the deposition conditions, the films grow only in the orthorhombic Cu{sub 3}BiS{sub 3} phase. It was also found that the Cu{sub 3}BiS{sub 3} films present p-type conductivity, a high absorption coefficient (greater than 10{sup 4} cm{sup -1}) and an energy band gap Eg of about 1.41 eV, indicating that this compound has good properties to perform as absorbent layer in thin film solar cells.

  14. Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures

    International Nuclear Information System (INIS)

    Yakovlev, S.; Zekonyte, J.; Solterbeck, C.-H.; Es-Souni, M.

    2005-01-01

    Polycrystalline BiFeO 3 thin films of various thickness were fabricated on (111)Pt/Ti/SiO 2 /Si substrates via chemical solution deposition. The electrical properties were investigated using impedance and leakage current measurements. X-ray photoelectron spectroscopy (XPS) combined with Ar ion milling (depth profiling) was used to investigate elemental distribution near the electrode-film interface. It is shown that the dielectric constant depends on film thickness due to the presence of an interfacial film-electrode layer evidenced by XPS investigation. Direct current conductivity is found to be governed by Schottky and/or Poole-Frenkel mechanisms

  15. AFM study of growth of Bi2Sr2-xLaxCuO6 thin films

    International Nuclear Information System (INIS)

    Haitao Yang; Hongjie Tao; Yingzi Zhang; Duogui Yang; Lin Li; Zhongxian Zhao

    1997-01-01

    c-axis-oriented Bi 2 Sr 1.6 La 0.4 CuO 6 thin films deposited on flat planes of (100)SrTiO 3 , (100)LaAlO 3 and (100)MgO substrates and vicinal planes (off-angle ∼ 6 deg.) of SrTiO 3 substrates by RF magnetron sputtering were studied by atomic force microscopy (AFM). T c of these films reached 29 K. Film thickness ranged from 15 nm to 600 nm. Two typical growth modes have been observed. AFM images of thin films on flat planes of substrates showed a terraced-island growth mode. By contrast, Bi-2201 thin films on vicinal planes of substrates showed a step-flow growth mode. The growth unit is a half-unit-cell in the c-axis for both growth modes. No example of spiral growth, which was thought to be the typical structure of YBCO thin films, was found in either of these kinds of thin films. (author)

  16. Ni-YSZ cermet substrate supported thin SDC and YSZ+SDC bi-layer SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Robertson, M.; Deces-Petit, C.; Xie, Y.; Hui, R.; Yick, S.; Styles, E.; Roller, J.; Kesler, O.; Qu, W.; Jankovic, J.; Tang, Z.; Perednis, D.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    One of the disadvantages of a ceria-based electrolyte is that it becomes a mixed conductor at anode conditions, which causes cell voltage loss and fuel efficiency loss due to internal shorting. Chemical and mechanical stability is another concern for long-term service. To lower manufacturing costs, efforts have been made to bring proven semiconductor manufacturing technology to Solid Oxide Fuel Cells (SOFCs). This study employed Tape casting of cermet substrates, Screen-printing of functional layers and Co-firing of cell components (TSC) to fabricate nickel (Ni)-cermet supported cells with mainly ceria-based thin electrolytes. Ni-Yttria-Stabilized Zirconia (YSZ) cermet supported cell with Samaria Doped Ceria (SDC) single layer electrolytes and YSZ+SDC bi-layer electrolytes were successfully developed for low-temperature performance characterization. The elemental distribution at the cell interface was mapped and the electrochemical performance of the cells was recorded. Many high-Zr-content micro-islands were found on the thin SDC surface. The influence of co-firing temperature and thin-film preparation methods on the Zr-islands' appearance was also investigated. Using in-situ sintered cathodes, high performance of the SDC cells was obtained. It was concluded that the bi-layer cells did show higher Open Circuit Voltage (OCV) values, with 1180 mW/cm{sup 2} at 650 degrees C, as well as good performance at 700-800 degrees C, with near OCV value. However, their performance was much lower than those of the SDC cells at low operating temperature. Zr-micro-islands formation on the SDC electrolyte was observed and investigated. 6 refs., 5 tabs., 7 figs.

  17. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  18. Sequential electro-deposition of Bi{sub 2}S{sub 3}/CdS films as co-sensitizer photoanodes for liquid junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Atanu; Hazra, Prasenjit; Hazra, Mukul; Datta, Jayati, E-mail: jayati_datta@rediffmail.com

    2016-11-01

    In this investigation multilayered conjugate films are formulated with Bi{sub 2}S{sub 3} and CdS nanoparticles (NPs) on FTO glass substrate. Thin layer Bi{sub 2}S{sub 3} was deposited and subsequently covered with various levels of CdS coating. Optical properties and XRD analysis of the films show existence of both the compound phases. The morphology of the films studied through electron microscopy reveals coverage of spherical CdS NPs on the network of Bi{sub 2}S{sub 3} NPs. The electrochemical impedance records and performances output characteristics of the n-type films show that the most efficient co-sensitizer matrix is produced with deep coating of CdS on thin layer of Bi{sub 2}S{sub 3}. - Highlights: • Multilayered Bi{sub 2}S{sub 3}/CdS conjugate films are formulated on FTO glass substrate. • Photo-degradation of Bi{sub 2}S{sub 3} is restricted by the coating of CdS layer. • High level of Cd coating on thin layer of Bi{sub 2}S{sub 3} have shown appreciable photocurrent output. • Photo-conversion efficiency of 0.93% is observed for the best conjugate film.

  19. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  20. Phonon Drag in Thin Films, Cases of Bi2Te3 and ZnTe

    Science.gov (United States)

    Chi, Hang; Uher, Ctirad

    2014-03-01

    At low temperatures, in (semi-)conductors subjected to a thermal gradient, charge carriers (electrons and holes) are swept (dragged) by out-of-equilibrium phonons due to strong electron-phonon interaction, giving rise to a large contribution to the Seebeck coefficient called the phonon-drag effect. Such phenomenon was surprisingly observed in our recent transport study of highly mismatched alloys as potential thermoelectric materials: a significant phonon-drag thermopower reaching 1.5-2.5 mV/K was recorded for the first time in nitrogen-doped ZnTe epitaxial layers on GaAs (100). In thin films of Bi2Te3, we demonstrate a spectacular influence of substrate phonons on charge carriers. We show that one can control and tune the position and magnitude of the phonon-drag peak over a wide range of temperatures by depositing thin films on substrates with vastly different Debye temperatures. Our experiments also provide a way to study the nature of the phonon spectrum in thin films, which is rarely probed but clearly important for a complete understanding of thin film properties and the interplay of the substrate and films. This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957.

  1. Raman scattering study of phonons in Bi-based superconductor thin films

    International Nuclear Information System (INIS)

    Mejia-Garcia, C.; Diaz-Valdes, E.; Contreras-Puente, G.; Lopez-Lopez, J.L.; Jergel, M.; Morales, A.

    2004-01-01

    Raman spectra were obtained from samples of Bi-Pb-Sr-Ca-Cu-O (BPSCCO) thin films after varying several growth parameters, such as covering material, annealing time (t R ), annealing temperature (T R ), and nominal lead content (x). Thin films with the nominal composition Bi 1.4 Pb x Sr 2 Ca 2 Cu 3 O δ were grown on MgO substrates by a spray pyrolysis technique, followed by a solid state reaction. The results of Raman scattering measurements at room temperature show a series of vibrational optical modes within the range 300-900 cm -1 . The assignment of these modes was made by involving mainly the 2212 and 2223 phases and was confirmed by both X-ray diffraction and resistance in dependence of the temperature (R-T) measurements as well

  2. Thickness dependent structural, optical and electrical properties of Se85In12Bi3 nanochalcogenide thin films

    Science.gov (United States)

    Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.

    2018-04-01

    Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.

  3. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  4. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  5. Tuning the electronic properties at the surface of BaBiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Guller, F.; Llois, A. M.; Vildosola, V. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Marchini, F.; Williams, F. J. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Lüders, U. [CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4 (France); Albornoz, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Leyva, A. G. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, (1650), San Martín, Buenos Aires (Argentina); and others

    2016-06-15

    The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO{sub 3} appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO{sub 3} thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We find significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.

  6. Investigations on electrical, magnetic and optical behaviors of five-layered Aurivillius Bi6Ti3Fe2O18 polycrystalline films

    International Nuclear Information System (INIS)

    Bai, W.; Xu, W.F.; Wu, J.; Zhu, J.Y.; Chen, G.; Yang, J.; Lin, T.; Meng, X.J.; Tang, X.D.; Chu, J.H.

    2012-01-01

    Five-layered Aurivillius Bi 6 Ti 3 Fe 2 O 18 (BTF2) polycrystalline thin films were prepared by a chemical solution deposition route. The crystalline structures and microstructures were characterized by X-ray diffractometer, micro-Raman spectrometer and atomic force microscopy. Its electrical and magnetic properties were investigated, and especially optical properties were addressed in detail. Coexistence of the ferroelectric and weak ferromagnetic properties indicated the multiferroic behavior of the BTF2 films. The optical dielectric functions in the photon energy range of 1.13–4.13 eV have been extracted by fitting the experimental data in the light of the Tauc–Lorentz dispersion model. A direct interband transition with bandgap energy ∼ 3.72 eV was determined for the BTF2 films. The weak absorption below band-gap edge was explained by the Urbach band tail rule. Finally, the optical dispersion behaviors of the BTF2 films in the transparent oscillating region were described using a single oscillator model. - Highlights: ► Five-layered Aurivillius Bi 6 Ti 3 Fe 2 O 18 (BTF2) thin films were prepared. ► Electrical and magnetic properties of the BTF2 films were investigated. ► Optical properties of the BTF2 films were especially addressed in detail.

  7. Growth and magnetic properties of multiferroic LaxBi1-xMnO3 thin films

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Wyczisk, F.; Varela, M.; Fontcuberta, J.; Barthélémy, A.

    2007-05-01

    A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

  8. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    Science.gov (United States)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  9. Influence of different substrates on the ionic conduction in LiCoO{sub 2}/LiNbO{sub 3} thin-film bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Horopanitis, E.E.; Perentzis, G.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Section of Solid State Physics, Thessaloniki (Greece)

    2008-07-01

    LiNbO{sub 3} thin films, deposited by e-gun evaporation, show lithium deficiency, which is cured by ''Li doping''. The ''Li doping'' of the films was achieved by preparing a structure of Li-Nb-O/Li/Li-Nb-O, which after annealing forms a homogenized LiNbO{sub 3} layer because of diffusion of Li in the two Li-Nb-O layers. The LiCoO{sub 2}/LiNbO{sub 3} bi-layers were prepared either on Stainless Steel/TiN or on Al{sub 2}O{sub 3}/Co/Pt substrates/ohmic-contacts by depositing first either the cathode LiCoO{sub 2} or the electrolyte LiNbO{sub 3}. The Nyquist plots of the AC impedance measurements of all structures showed that the interfaces prepared on Stainless-Steel/TiN consisted of two semicircles. The structures deposited on Al{sub 2}O{sub 3}/Co/Pt showed a third semicircle, which is probably due to the roughness of the substrate. It is important that the ionic properties of the bi-layers with the cathode material deposited first, a usual structure in a microbattery, are improved compared to the other structures. The quality of the LiNbO{sub 3} layer depends very much on the substrate. It can be evaluated from Arrhenius plots that the activation energy of this layer is considerably lower when the whole structure is deposited on Stainless Steel/TiN. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  11. Sol-gel synthesis of Bi2WO6/graphene thin films with enhanced photocatalytic performance for nitric monoxide oxidation under visible light irradiation

    Science.gov (United States)

    Sun, Chufeng; Wang, Yanbin; Su, Qiong

    2018-06-01

    Bi2WO6 and Bi2WO6/graphene thin films were fabricated by spin coating and post annealing at 600 °C for 2 h. In four different thin film samples, the graphene concentration was controlled as 0, 2, 4 and 6 wt%, respectively. The morphology, grain size and elemental distribution of the thin films were characterized by SEM and TEM. The crystallization and crystal phases were determined by XRD patterns, and the existence of graphene in Bi2WO6/graphene composite thin films were confirmed by Raman spectra. The photocatalytic performance of Bi2WO6 and Bi2WO6/graphene thin films was investigated by oxidizing NO under visible light irradiation. The results showed that Bi2WO6/graphene with 4 wt% of graphene showed the highest photocatalytic performance among all samples. This could be attributed to the increased electron conductivity with the presence of graphene. However, a further increased graphene concentration resulted in a decreased photocatalytic performance.

  12. Band alignment measurements at heterojunction interfaces in layered thin film solar cells & thermoelectrics

    Science.gov (United States)

    Fang, Fang

    2011-12-01

    Public awareness of the increasing energy crisis and the related serious environmental concerns has led to a significantly growing demand for alternative clean and renewable energy resources. Thin film are widely applied in multiple renewable energy devices owing to the reduced amount of raw materials and increase flexibility of choosing from low-cost candidates, which translates directly into reduced capital cost. This is a key driving force to make renewable technology competitive in the energy market. This thesis is focused on the measurement of energy level alignments at interfaces of thin film structures for renewable energy applications. There are two primary foci: II -VI semiconductor ZnSe/ZnTe thin film solar cells and Bi2Te3/Sb2Te3 thin film structures for thermoelectric applications. In both cases, the electronic structure and energy band alignment at interfaces usually controls the carrier transport behavior and determines the quality of the device. High-resolution photoemission spectroscopy (lab-based XPS & synchrotron-based UPS) was used to investigate the chemical and electronic properties of epitaxial Bi2Te3 and Sb2Te3 thin films, in order to validate the anticipated band alignment at interfaces in Bi 2Te3/Sb2Te3 superlattices as one favoring electron-transmission. A simple, thorough two-step treatment of a chemical etching in dilute hydrochloric acid solution and a subsequent annealing at ˜150°C under ultra-high vacuum environment is established to remove the surface oxides completely. It is an essential step to ensure the measurements on electronic states are acquired on stoichimetric, oxide-free clean surface of Bi 2Te3 and Sb2Te3 films. The direct measurement of valence band offsets (VBO) at a real Sb 2Te3/Bi2Te3 interface is designed based on the Kraut model; a special stacking film structure is prepared intentionally: sufficiently thin Sb2Te3 film on top of Bi2Te 3 that photoelectrons from both of them are collected simultaneously. From a

  13. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  14. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  15. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  16. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    Science.gov (United States)

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  17. Dopant rearrangement and superconductivity in Bi2Sr2-xLaxCuO6 thin films under annealing

    International Nuclear Information System (INIS)

    Cancellieri, C; Lin, P H; Ariosa, D; Pavuna, D

    2007-01-01

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing

  18. Bi-Sr-Ca-Cu-O superconducting thin films: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, M [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Boybay, M S [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Elbuken, C [Department of Mechanical Engineering and Mechatronics Engineering Program, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Andrews, M J [Los Alamos National Lab, PO Box 1663, Mail Stop B 296, Los Alamos, NM 87545 (United States); Hu, C R [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Ross, J H [Department of Physics, Texas A and M University, College Station, Texas 77843 (United States)

    2006-06-01

    The interest of this paper centers on fabrication and characterization and modeling of vortices in high temperature superconducting thin films. As a first step, the magnetic vertices of the superconducting matrix were modeled. As a second, Bi-Sr-Ca-Cu-O thin films were grown using Pulsed Laser Ablation (PLD) on single crystal MgO substrates as magnetic templates for the potential use for Nano and Microelectronic circuits, and were characterized by x-ray diffraction, electron, and atomic force microscopy. The third step (future work) will be observation and pinning of these vortices using Bitter decoration.

  19. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang; Zhang, Bei; Chen, Long; Yang, Yang; Wang, Zhihong; Alshareef, Husam N.; Zhang, Xixiang

    2012-01-01

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar

  20. Analysis of multiferroic properties in BiMnO3 thin films

    International Nuclear Information System (INIS)

    Grizalez, M; Mendoza, G A; Prieto, P

    2009-01-01

    Textured BiMnO 3 [111] thin films on SrTiO 3 (100) and Pt/TiO 2 /SiO 2 substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO 3 films. The films grown on SrTiO 3 (100) showed higher crystalline quality than those developed on Pt/TiO 2 /SiO 2 . Through optimized oxygen pressure of 5x10 -2 mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO 3 film was improved with respect to the previously reported value of 2x10 -1 mbar. The values of spontaneous polarization (P s ), remnant polarization (P r ), and coercive field (F c ) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P s and P r values and a low F c ). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO 3 films grown on SrTiO 3 and Pt/TiO 2 /SiO 2 substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  1. Polarization fluctuation behavior of lanthanum substituted Bi{sub 4}Ti{sub 3}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ni; Xiang, Ping-Hua, E-mail: phxiang@ee.ecnu.edu.cn; Zhang, Yuan-Yuan; Wu, Xing; Tang, Xiao-Dong; Yang, Ping-Xiong; Duan, Chun-Gang; Chu, Jun-Hao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2015-09-14

    Polarization fluctuation behavior of lanthanum substituted Bi{sub 4}Ti{sub 3}O{sub 12} (Bi{sub 4−x}La{sub x}Ti{sub 3}O{sub 12}, BLT) ferroelectric thin films has been examined. Remnant polarization exhibits an initial increase (P{sub up}, 1–10{sup 6} cycles) and a subsequent decrease (P{sub down}, 10{sup 6}–10{sup 9} cycles) with switching cycles, whereas the dielectric constant exhibits a continuous decrease. By careful investigations on the effect of switching frequency and annealing atmosphere on the polarization fluctuation characteristics, we propose that this polarization fluctuation characteristic of BLT films is attributed to the competition between domain pinning and passive layer growing effect, due to the redistribution of oxygen vacancy related defect under external applied field. P{sub up} behavior is dominated by the unpinning of pinned domain, while P{sub down} behavior is dominated by the reduction of applied field on BLT bulk layer, due to the growing of the passive layer between BLT and Pt electrode. By assuming the dielectric constant and initial thickness of passive layer, the passive layer was estimated to be about 2–5 times thicker than the initial state after 10{sup 9} cycling.

  2. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  3. Enhanced electrical properties in bilayered ferroelectric thin films

    Science.gov (United States)

    Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie

    2013-03-01

    Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.

  4. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  5. Low-Power Super-resolution Readout with Antimony Bismuth Alloy Film as Mask layer

    International Nuclear Information System (INIS)

    Lai-Xin, Jiang; Yi-Qun, Wu; Yang, Wang; Jing-Song, Wei; Fu-Xi, Gan

    2009-01-01

    Sb–Bi alloy films are proposed as a new kind of super-resolution mask layer with low readout threshold power. Using the Sb–Bi alloy film as a mask layer and SiN as a protective layer in a read-only memory disc, the super-resolution pits with diameters of 380 nm are read out by a dynamic setup, the laser wavelength is 780 nm and the numerical aperture of pickup lens is 0.45. The effects of the Sb–Bi thin film thickness, laser readout power and disc rotating velocity on the readout signal are investigated. The results show that the threshold laser power of super-resolution readout of the Sb–Bi mask layer is about 0.5 mW, and the corresponding carrier-to-noise ratio is about 20 dB at the film thickness of 50 nm. The super-resolution mechanism of the Sb–Bi alloy mask layer is discussed based on its temperature dependence of reflection

  6. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  7. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  8. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  9. Spin texture of Bi2Se3 thin films in the quantum tunneling limit.

    Science.gov (United States)

    Landolt, Gabriel; Schreyeck, Steffen; Eremeev, Sergey V; Slomski, Bartosz; Muff, Stefan; Osterwalder, Jürg; Chulkov, Evgueni V; Gould, Charles; Karczewski, Grzegorz; Brunner, Karl; Buhmann, Hartmut; Molenkamp, Laurens W; Dil, J Hugo

    2014-02-07

    By means of spin- and angle-resolved photoelectron spectroscopy we studied the spin structure of thin films of the topological insulator Bi2Se3 grown on InP(111). For thicknesses below six quintuple layers the spin-polarized metallic topological surface states interact with each other via quantum tunneling and a gap opens. Our measurements show that the resulting surface states can be described by massive Dirac cones which are split in a Rashba-like manner due to the substrate induced inversion asymmetry. The inner and the outer Rashba branches have distinct localization in the top and the bottom part of the film, whereas the band apices are delocalized throughout the entire film. Supported by calculations, our observations help in the understanding of the evolution of the surface states at the topological phase transition and provide the groundwork for the realization of two-dimensional spintronic devices based on topological semiconductors.

  10. Preparation of thin layers of BiSrCaCuO by method MOCVD

    International Nuclear Information System (INIS)

    Beran, P.; Stejskal, J.; Strejc, A.; Nevriva, M.; Sedmibudsky, D.; Leitner, J.

    1999-01-01

    Preparation of superconducting material on the basis mixed oxides of BiSrCaCuO by chemical vapour deposition (CVD) method is described. Surface morphology and concentration profiles of elements were analyzed by scanning electron microscope and microprobe. Phase of layers was analysed by X-ray diffraction (radiation of Cu kα ). Samples of thin layers were characterized by magnetic susceptibility in temperature interval 10 to 150 K. Obtained results confirm formation of superconducting phases Bi 2 Sr 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Xa 2 Cu 3 O x

  11. Physical properties of chemically deposited Bi{sub 2}S{sub 3} thin films using two post-deposition treatments

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-García, H., E-mail: hamog@ier.unam.mx [Instituto de Ciencias Físicas, Laboratorio de espectroscopia, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62210 Cuernavaca, Morelos (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63155 Tepic, Nayarit (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Martínez, H. [Instituto de Ciencias Físicas, Laboratorio de espectroscopia, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62210 Cuernavaca, Morelos (Mexico)

    2014-08-30

    Highlights: • The post-deposition treatment by Ar plasma is a viable alternative to enhance the optical, electrical, morphological and structural properties of Bi{sub 2}S{sub 3} semiconductor thin films. • The plasma treatment avoids the loss in thickness of the chemically deposited Bi{sub 2}S{sub 3} thin films. • The E{sub g} values were 1.60 eV for the thermally annealed samples and 1.56 eV for the Ar plasma treated samples. • The highest value obtained for the electrical conductivity was 7.7 × 10{sup −2} (Ω cm){sup −1} in plasma treated samples. - Abstract: As-deposited bismuth sulfide (Bi{sub 2}S{sub 3}) thin films prepared by chemical bath deposition technique were treated with thermal annealed in air atmosphere and argon AC plasma. The as-deposited, thermally annealing and plasma treatment Bi{sub 2}S{sub 3} thin films have been characterized by X-ray diffraction (XRD) analysis, atomic force microscopy analysis (AFM), transmission, specular reflectance and electrical measurements. The structural, morphological, optical and electrical properties of the films are compared. The XRD analysis showed that both post-deposition treatments, transform the thin films from amorphous to a crystalline phase. The atomic force microscopy (AFM) measurement showed a reduction of roughness for the films treated in plasma. The energy band gap value of the as-prepared film was E{sub g} = 1.61 eV, while for the film thermally annealed was E{sub g} = 1.60 eV and E{sub g} = 1.56 eV for film treated with Plasma. The electrical conductivity under illumination of the as-prepared films was 3.6 × 10{sup −5} (Ω cm){sup −1}, whereas the conductivity value for the thermally annealed films was 2.0 × 10{sup −3} (Ω cm){sup −1} and for the plasma treated films the electrical conductivity increases up to 7.7 × 10{sup −2} (Ω cm){sup −1}.

  12. Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material.

    Science.gov (United States)

    Li, Shun; AlOtaibi, Bandar; Huang, Wei; Mi, Zetian; Serpone, Nick; Nechache, Riad; Rosei, Federico

    2015-08-26

    Ferroelectric materials have been studied increasingly for solar energy conversion technologies due to the efficient charge separation driven by the polarization induced internal electric field. However, their insufficient conversion efficiency is still a major challenge. Here, a photocathode material of epitaxial double perovskite Bi(2) FeCrO(6) multiferroic thin film is reported with a suitable conduction band position and small bandgap (1.9-2.1 eV), for visible-light-driven reduction of water to hydrogen. Photoelectrochemical measurements show that the highest photocurrent density up to -1.02 mA cm(-2) at a potential of -0.97 V versus reversible hydrogen electrode is obtained in p-type Bi(2) FeCrO(6) thin film photocathode grown on SrTiO(3) substrate under AM 1.5G simulated sunlight. In addition, a twofold enhancement of photocurrent density is obtained after negatively poling the Bi(2) FeCrO(6) thin film, as a result of modulation of the band structure by suitable control of the internal electric field gradient originating from the ferroelectric polarization in the Bi(2) FeCrO(6) films. The findings validate the use of multiferroic Bi(2) FeCrO(6) thin films as photocathode materials, and also prove that the manipulation of internal fields through polarization in ferroelectric materials is a promising strategy for the design of improved photoelectrodes and smart devices for solar energy conversion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ferroelectric properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/ (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Bao Dinghua; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Sandwich structured (Bi, La) 4 Ti 3 O 12 /Pb(Zr, Ti)O 3 /(Bi, La) 4 Ti 3 O 12 thin films were fabricated on Pt/Ti/SiO 2 /Si substrates, with the intention of simultaneously utilizing the advantages of both (Bi, La) 4 Ti 3 O 12 (BLT) and Pb(Zr, Ti)O 3 (PZT) thin films such as non-fatigue behaviours of BLT and good ferroelectric properties of PZT. Both BLT and PZT layers were prepared by a chemical solution deposition technique. The experiments demonstrated that the sandwich structure showed fatigue-free characteristics at least up to 10 10 switching bipolar pulse cycles under 8 V and excellent retention properties. The sandwich structured thin films also exhibited well-defined hysteresis loops with a remanent polarization (2P r ) of 8.8 μC cm -2 and a coercive field (E c ) of 47 kV cm -1 . The room-temperature dielectric constant and dissipation factor were 210 and 0.031, respectively, at a frequency of 100 kHz. These results suggest that this sandwich structure is a promising material combination for ferroelectric memory applications. (author)

  14. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  15. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  16. Josephson effectss in bicrystalline Bi2Sr2CaCu2O8+δ thin films

    International Nuclear Information System (INIS)

    Amrein, T.

    1994-08-01

    A pulsed laser deposition process is developed for preparing high quality thin films of Bi 2 Sr 2 CaCu 2 O x on different substrates. Both microstructural and electrical properties of the superconducting films are well characterized, e.g. by SEM, TEM and AFM. The high reproducability of the thin film quality facilitated a detailed study of Josephson effects in bicrystalline grain boundary junctions (GBJs). Thin films are deposited on commercially available (001) SrTiO 3 bicrystalls and patterned by standard photolithography using wet-etching or Ar + -ion milling. The width of the micobridges ranges from 2 to 111 μm. The critical current densities across grain boundaries of thin film bicrystals have been measured as a function of the tilt angle Θ. For Θ=0 to 45 , the ratio of the grain boundary critical current density to the bulk critical current density decreases exponentially with increasing tilt angle. Microstructure investigations show a rough grain boundary of the superconductor (roughness 100 nm-1 μm) which is not determined by the roughness of the substrate grain boundary (1-3 nm) but by the island-plus-layer growth of the twin domains. The electrical properties are well described by the resistively shunted junction (RSJ) model. The I c R n -product reaches values of 2.2 mV at 4.2 K and 60 μV at 77 K. An optimized design for dc SQUIDs (Θ=24 ) is developed relating to the results of single GBJs. The values of the transfer function (∂V/∂Φ) run up to 74 μV/Φ o . The equivalent flux noise which is measured in a flux-locked loop mode amounts 4.5 to 25 μPhi o Hz in the white noise region for Φ≥25-50 Hz and 13 to 150 μΦ o Hz at 1 Hz. In conclusion, microstructural as well as electrical properties of bicrystalline Bi 2 Sr 2 CaCu 2 O x and YBa 2 Cu 3 O y GBJs are more or less equal. (orig.)

  17. Comparative study on substitution effects in BiFeO{sub 3} thin films fabricated on FTO substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu; Tan, Guoqiang, E-mail: tan3114@163.com; Hao, Hangfei; Ren, Huijun

    2013-10-01

    Pure BiFeO{sub 3} (BFO), BiFe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BFCO) and Bi{sub 0.90}Gd{sub 0.10}Fe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BGFCO) thin films were successfully deposited on FTO substrates by chemical solution deposition technique. The field emission scanning electron microscope reveals that the surface morphology of the BGFCO thin film becomes more compact and uniform than that of the other two films. A slight lattice distortion is created in the BFCO thin film, whereas 10% Gd doping gives rise to tetragonal phase transition and (1 1 0) preferentially oriented film texture for the BGFCO thin film, as evidenced by Raman scattering spectra and X-ray diffraction analyses. X-ray photoelectron spectroscopy analyses clarify that Co-doping results in the increase of oxygen vacancy concentration in the BFCO film, while further introduction of Gd into the BFCO lattice can decrease oxygen vacancy concentration, and the concentrations of Fe{sup 2+} ions in the BFCO and BGFCO thin films are less than that in the BFO counterpart. The BFCO film shows the improved remanent polarization (P{sub r}) of 11.2 μC/cm{sup 2} compared with that of 1.4 μC/cm{sup 2} for the BFO film. The high breakdown strength, low leakage current density in the high electric filed, improved dielectric properties as well as the increased stereochemical activity of Bi ion lone electron pair of the BGFCO thin film all together contribute to the giant P{sub r} of 139.6 μC/cm{sup 2} at room temperature.

  18. Fermi-level tuning of the Dirac surface state in (Bi1-x Sb x )2Se3 thin films

    Science.gov (United States)

    Satake, Yosuke; Shiogai, Junichi; Takane, Daichi; Yamada, Keiko; Fujiwara, Kohei; Souma, Seigo; Sato, Takafumi; Takahashi, Takashi; Tsukazaki, Atsushi

    2018-02-01

    We report on the electronic states and the transport properties of three-dimensional topological insulator (Bi1-x Sb x )2Se3 ternary alloy thin films grown on an isostructural Bi2Se3 buffer layer on InP substrates. By angle-resolved photoemission spectroscopy, we clearly detected Dirac surface states with a large bulk band gap of 0.2-0.3 eV in the (Bi1-x Sb x )2Se3 film with x  =  0.70. In addition, we observed by Hall effect measurements that the dominant charge carrier converts from electron (n-type) to hole (p-type) at around x  =  0.7, indicating that the Fermi level can be controlled across the Dirac point. Indeed, the carrier transport was shown to be governed by Dirac surface state in 0.63  ⩽  x  ⩽  0.75. These features suggest that Fermi-level tunable (Bi1-x Sb x )2Se3-based heterostructures provide a platform for extracting exotic topological phenomena.

  19. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  20. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  1. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  2. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  3. Comparison of physical and electrical properties of GZO/ZnO buffer layer and GZO as source and drain electrodes of α-IGZO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jia-Ling; Lin, Han-Yu; Su, Bo-Yuan; Chen, Yu-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liu, Ssu-Yin [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, Chia-Chiang; Wu, Chin-Jyi [Industrial Technology Research Institute, Mechanical and Systems Research Laboratories, Hsinchu 310, Taiwan (China)

    2014-04-01

    Highlights: • The electrodes of bi-layer GZO/ ZnO and single-layer GZO in α-IGZO TFT were compared. • The TFT performances of two different structures were systematically investigated. • The bi-layer GZO/100-nm ZnO S/D electrodes showed the better TFT device properties. - Abstract: In this research, top-gate bottom-contact thin-film transistors (TFTs) made with amorphous indium gallium zinc oxide (α-IGZO) active layers were grown using the radio-frequency sputtering technique. Two kinds of source and drain (S/D) electrodes, namely bi-layer GZO/100-nm ZnO buffer layer/Corning 1737 and single-layer GZO/Corning 1737, used in the TFT devices and the electric characteristics of the devices were compared. To explain the differences in the TFT performances with these different S/D electrodes, X-ray reflectivity (XRR) and contact angles were measured. The α-IGZO TFT with the bi-layer GZO/100-nm ZnO buffer layer structure as S/D electrodes exhibited superior device performance compared to that of the TFT with a single-layer GZO structure, with a higher thin film density (5.94 g/cm{sup 3}), lower surface roughness (0.817 nm), and larger surface energy (62.07 mJ/m{sup 2}) and better adhesion properties of neighboring α-IGZO films. In addition, the mechanisms responsible for the GZO/100-nm ZnO buffer layer/Corning 1737 structure S/D electrodes improving the device characteristics were systematically investigated. The α-IGZO TFT saturation mobility, subthreshold voltage, on/off current ratio, and the trap density of the GZO/100-nm ZnO buffer layer/Corning 1737 S/D electrodes were 13.5 cm{sup 2} V{sup −1} S{sup −1}, 0.43 V/decade, 3.56 × 10{sup 7}, and 5.65 × 10{sup 12} eV{sup −1} cm{sup −2}, respectively, indicating the potential of this bi-layer structure to be applied to large-area flat-panel displays.

  4. Comparison of physical and electrical properties of GZO/ZnO buffer layer and GZO as source and drain electrodes of α-IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Wu, Jia-Ling; Lin, Han-Yu; Su, Bo-Yuan; Chen, Yu-Cheng; Chu, Sheng-Yuan; Liu, Ssu-Yin; Chang, Chia-Chiang; Wu, Chin-Jyi

    2014-01-01

    Highlights: • The electrodes of bi-layer GZO/ ZnO and single-layer GZO in α-IGZO TFT were compared. • The TFT performances of two different structures were systematically investigated. • The bi-layer GZO/100-nm ZnO S/D electrodes showed the better TFT device properties. - Abstract: In this research, top-gate bottom-contact thin-film transistors (TFTs) made with amorphous indium gallium zinc oxide (α-IGZO) active layers were grown using the radio-frequency sputtering technique. Two kinds of source and drain (S/D) electrodes, namely bi-layer GZO/100-nm ZnO buffer layer/Corning 1737 and single-layer GZO/Corning 1737, used in the TFT devices and the electric characteristics of the devices were compared. To explain the differences in the TFT performances with these different S/D electrodes, X-ray reflectivity (XRR) and contact angles were measured. The α-IGZO TFT with the bi-layer GZO/100-nm ZnO buffer layer structure as S/D electrodes exhibited superior device performance compared to that of the TFT with a single-layer GZO structure, with a higher thin film density (5.94 g/cm 3 ), lower surface roughness (0.817 nm), and larger surface energy (62.07 mJ/m 2 ) and better adhesion properties of neighboring α-IGZO films. In addition, the mechanisms responsible for the GZO/100-nm ZnO buffer layer/Corning 1737 structure S/D electrodes improving the device characteristics were systematically investigated. The α-IGZO TFT saturation mobility, subthreshold voltage, on/off current ratio, and the trap density of the GZO/100-nm ZnO buffer layer/Corning 1737 S/D electrodes were 13.5 cm 2 V −1 S −1 , 0.43 V/decade, 3.56 × 10 7 , and 5.65 × 10 12 eV −1 cm −2 , respectively, indicating the potential of this bi-layer structure to be applied to large-area flat-panel displays

  5. Analysis of multiferroic properties in BiMnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grizalez, M [Universidad de la Amazonia, Florencia (Colombia); Mendoza, G A [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Prieto, P, E-mail: pprieto@calima.univalle.edu.c [Center of Excellence on Novel Materials - CENM (Colombia)

    2009-05-01

    Textured BiMnO{sub 3} [111] thin films on SrTiO{sub 3} (100) and Pt/TiO{sub 2}/SiO{sub 2} substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO{sub 3} films. The films grown on SrTiO{sub 3} (100) showed higher crystalline quality than those developed on Pt/TiO{sub 2}/SiO{sub 2}. Through optimized oxygen pressure of 5x10{sup -2} mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO{sub 3} film was improved with respect to the previously reported value of 2x10{sup -1} mbar. The values of spontaneous polarization (P{sub s}), remnant polarization (P{sub r}), and coercive field (F{sub c}) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P{sub s} and P{sub r} values and a low F{sub c}). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO{sub 3} films grown on SrTiO{sub 3} and Pt/TiO{sub 2}/SiO{sub 2} substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  6. Dual-bath electrodeposition of n-type Bi–Te/Bi–Se multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Ken; Okuhata, Mitsuaki; Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp

    2015-11-15

    N-type Bi–Te/Bi–Se multilayer thin films were prepared by dual-bath electrodeposition. We varied the number of layers from 2 to 10 while the total film thickness was maintained at approximately 1 μm. All the multilayer films displayed the X-ray diffraction peaks normally observed from individual Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystal structures, indicating that both phases coexist in the multilayer. The cross-section of the 10-layer Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains but the boundaries between the layers were not planar. The Seebeck coefficient was almost constant throughout the entire range of our experiment, but the electrical conductivity of the multilayer thin films increased significantly as the number of layers was increased. This may be because the electron mobility increases as the thickness of each layer is decreased. As a result of the increased electrical conductivity, the power factor also increased with the number of layers. The maximum power factor was 1.44 μW/(cm K{sup 2}) for the 10-layer Bi–Te/Bi–Se film, this was approximately 3 times higher than that of the 2-layer sample. - Highlights: • N-type Bi–Te/Bi–Se multilayer thin films were deposited by electrodeposition. • We employed a dual-bath electrodeposition process for preparing the multilayers. • The Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains. • The electrical conductivity increased as the number of layers was increased. • The power factor improved by 3 times as the number of layers was increased.

  7. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  8. Quantized dissipation and random telegraph voltage noise in epitaxial BiSrCaCuO thin films

    International Nuclear Information System (INIS)

    Jung, G.; Savo, B.; Vecchione, A.

    1993-01-01

    In this paper we report on the observation of correlated multiple-voltage RTN switching in high quality epitaxial BiSrCaCuO thin film. We ascribe the correlated noise to the quantization of flux flow dissipation in the film. (orig.)

  9. Molecular beam epitaxy growth of InSb1-xBix thin films

    DEFF Research Database (Denmark)

    Yuxin Song; Shumin Wang; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1-xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  10. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  11. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  12. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  13. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  14. Study of the circular photo-galvanic effect in electrically gated (Bi,Sb)2Te3 thin films

    Science.gov (United States)

    Pan, Yu; Pillsbury, Timothy; Richardella, Anthony; Flanagan, Thomas; Samarth, Nitin

    Illumination with circularly polarized light is known to produce a helicity dependent photocurrent in topological insulators such as Bi2Se3 [Nature Nanotech. 7, 96 (2012)]. Symmetry considerations suggest that this ``circular photo-galvanic effect'' (CPGE) arises purely from the surface. However, whether or not the CPGE is directly related to optical excitations from the helical surface states is still under debate. To clarify the origin of the CPGE, we first compare the helicity dependent photocurrent in intrinsic (Bi,Sb)2Te3 to Cr doped (Bi,Sb)2Te3 thin films in which the Dirac surface states are perturbed by magnetic coupling. Secondly, we discuss the tunable CPGE in electrically gated (Bi,Sb)2Te3 thin films excited by optical excitations at different wavelengths. The dependence on the chemical potential and the photon energy of the excitation unveils the origin of the CPGE. Funded by ONR.

  15. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  16. A computational study of the piezoelectric response due to the material effect in periodic, single island thin films and the geometric effect in periodic, bi-island thin films

    International Nuclear Information System (INIS)

    Liu, B.; Bhattacharyya, A.

    2010-01-01

    The electromechanical response of a square-periodic array of circular piezoelectric (PE) thin films alternating with non-piezoelectric (NPE) films is studied in this paper. The material effects are studied for four film/substrate combinations in absence of NPE films for which it is found that if d zxx zzz (z-axis being normal to the interfacial plane between the film and the substrate), it results in reduced substrate bending leading to reduced degradation in the electromechanical response of the thin film. The bi-island structure is studied for zinc oxide on strontium titanate, and, in general, it is seen that the NPE films not only reduce degradation of the electromechanical response of the PE films but also increase their internal stresses; the effect on the former is less than the latter. These effects are most prominent when the circular NPE thin films fill the space between the PE thin films and are elastically very stiff compared to the substrate.

  17. Annealing effects on room temperature thermoelectric performance of p-type thermally evaporated Bi-Sb-Te thin films

    Science.gov (United States)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-05-01

    Bismuth antimony telluride (Bi-Sb-Te) compounds have been investigated for the past many decades for thermoelectric (TE) power generation and cooling purpose. We synthesized this compound with a stoichiometry Bi1.2Sb0.8Te3 through melt cool technique and thin films of as synthesized material were deposited by thermal evaporation. The prime focus of the present work is to study the influence of annealing temperature on the room temperature (RT) power factor of thin films. Electrical conductivity and Seebeck coefficient were studied and power factors were calculated which showed a peak value at 323 K. The compounds performance is comparable to some very efficient Bi-Sb-Te reported stoichiometries at RT scale. The values observed show that material has an enormous potential for energy production at ambient temperature scales.

  18. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering

    International Nuclear Information System (INIS)

    Herrero, J.; Guillen, C.

    2004-01-01

    The improvement of the optical and electrical characteristics of indium tin oxide (ITO) layers is pursued to achieve a higher efficiency in its application as frontal electrical contacts in thin film photovoltaic devices. In order to take advantage of the polycrystalline structure of ZnO films as growth support, the properties of ITO layers prepared at room temperature by sputtering onto bare and ZnO-coated substrates have been analyzed using X-ray diffraction, optical and electrical measurements. It has been found that by inserting a thin ZnO layer, the ITO film resistivity can be reduced as compared to that of a single ITO film with similar optical transmittance. The electrical quality improvement is related to ITO grain growth enhancement onto the polycrystalline ZnO underlayer

  19. Evidence for surface-generated photocurrent in (Bi,Sb)2Se3and(Bi,Sb)2Te3 thin films

    Science.gov (United States)

    Pan, Yu; Richardella, Anthony; Yao, Bing; Lee, Joon Sue; Flanagan, Thomas; Kandala, Abhinav; Samarth, Nitin; Yeats, Andrew; Mintun, Peter; Awschalom, David

    2015-03-01

    Illumination with circularly polarized light is known produce a helicity-dependent photocurrent in topological insulators such as Bi2Se3 [e.g. Nature Nanotech. 7, 96 (2012)]. However, the exact origin of this effect is still unclear since it is observed with photons well above the bulk band gap. We report measurements of the polarization-dependent photocurrent in a series of (Bi,Sb)2Se3 thin films with different carrier concentrations and find that the photocurrent is enhanced as we increase the population of the surface states. This finding is supported by a study of helicity-dependent photocurrents in back-gated (Bi,Sb)2Te3 thin films, where the chemical potential is varied electrostatically. By illuminating our samples at different wavelengths, we show that the helicity-dependent photocurrent is enhanced when the photon energy approaches the energy difference between the lowest and first excited (unoccupied) topological surface states. This leads us to attribute the helicity-dependent photocurrent in topological insulators to optical excitations between these two spin-textured surface states. We will also discuss experiments imaging the spatial variation of these helicity-dependent photocurrents. This work is supported by ONR.

  20. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    Science.gov (United States)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  1. Surface and interface states of Bi{sub 2}Se{sub 3} thin films investigated by optical second-harmonic generation and terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2016-02-01

    We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.

  2. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  3. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  4. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  5. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The thickness effect of Bi3.25La0.75Ti3O12 buffer layer in PbZr0.58Ti0.42O3/Bi3.25La0.75Ti3O12 (PZT/BLT) multilayered ferroelectric thin films

    International Nuclear Information System (INIS)

    Li Jianjun; Li Ping; Zhang Guojun; Yu Jun; Wu Yunyi; Wen Xinyi

    2011-01-01

    A series of PbZr 0.58 Ti 0.42 O 3 (PZT) thin films with various Bi 3.25 La 0.75 Ti 3 O 12 (BLT) buffer layer thicknesses were deposited on Pt/TiO 2 /SiO 2 /p-Si(100) substrates by RF magnetron sputtering. The X-ray diffraction measurements of PZT film and PZT/BLT multilayered films illustrate that the pure PZT film shows (111) preferential orientation, and the PZT/BLT films show (110) preferential orientation with increasing thickness of the BLT layer. There are no obvious diffraction peaks for the BLT buffer layer in the multilayered films, for interaction effect between the bottom BLT and top PZT films during annealing at the same time. From the surface images of field-emission scanning electron microscope, there are the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples. The growth direction and grain size have significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics of PZT and PZT/BLT films suggest that 30-nm-thick BLT is just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results with that of PZT/Pt/TiO 2 /SiO 2 /p-Si(100) basic structured film suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.

  7. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  8. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  9. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  10. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  11. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  12. A general analytical equation for phase diagrams of an N-layer ferroelectric thin film with two surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z X; Teng, B H; Rong, Y H; Lu, X H; Yang, X [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: phytbh@163.com

    2010-03-15

    Within the framework of effective-field theory with correlations, the phase diagrams of an N-layer ferroelectric thin film with two surface layers are studied by the differential operator technique based on the spin-1/2 transverse Ising model. A general analytical equation for the phase diagram of a ferroelectric thin film with arbitrary layer number as well as exchange interactions and transverse fields is derived, and then the effects of exchange interactions and transverse fields on phase diagrams are discussed for an arbitrary layer number N. Meanwhile, the crossover features, from the ferroelectric-dominant phase diagram (FPD) to the paraelectric-dominant phase diagram (PPD), for various parameters of an N-layer ferroelectric thin film with two surface layers are investigated. As a result, an N-independent common intersection point equation is obtained, and the three-dimensional curved surfaces for the crossover values are constructed. In comparison with the usual mean-field approximation, the differential operator technique with correlations reduces to some extent the ferroelectric features of a ferroelectric thin film.

  13. Dependency of the properties of Sr xBi yTa2O9 thin films on the Sr and Bi stoichiometry

    International Nuclear Information System (INIS)

    Viapiana, Matteo; Schwitters, Michael; Wouters, Dirk J.; Maes, Herman E.; Van der Biest, Omer

    2005-01-01

    In this study the properties of ferroelectric SBT thin films crystallized at 700 deg. C have been investigated as function of the Sr and Bi stoichiometry. A matrix of 130 nm Sr x Bi y Ta 2 O 9 films with 0.7 ≤ x ≤ 1.0 and 2.0 ≤ y ≤ 2.4 has been realized by metal-organic spin-on deposition technique on Pt/IrO 2 /Ir/TiAlN/SiO 2 /Si substrates. Within this composition range, we found that the ferroelectric properties peak into a narrow window of 0.8 ≤ x ≤ 0.9 and y ∼ 2.25 with Pr and Ec of 6.5 μC/cm 2 and 50 kV/cm, respectively (at 2.5 V). Outside this composition window, the Pr decreases while the hysteresis loop becomes slanted. For some Sr/Bi-ratios even no ferroelectricity was achieved. 2Ec-tendencies were seen as function of the x/y-ratios, too. Examination of the microstructure of the films by scanning electron microscopy showed that film grain size increased with decreasing Sr-deficiency and that nucleation increased with increasing Bi-excess. At high Sr-deficiency and low Bi-excess, no complete crystallization of the SBT film occurs. From the film morphology, also different phases can be discriminated. X-ray diffraction analysis showed a strong correlation of the film orientation with the film composition. While our results show a clear correlation of Pr, film grain size and orientation with composition, further investigations are required to clarify the relation of the hysteresis parameters with film orientation

  14. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  15. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  16. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  17. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  18. Properties of Ferrite Garnet (Bi, Lu, Y3(Fe, Ga5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2018-05-01

    Full Text Available This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films.

  19. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  20. Neutron reflectivity of electrodeposited thin magnetic films

    International Nuclear Information System (INIS)

    Cooper, Joshaniel F.K.; Vyas, Kunal N.; Steinke, Nina-J.; Love, David M.; Kinane, Christian J.; Barnes, Crispin H.W.

    2014-01-01

    Highlights: • Electrodeposited magnetic bi-layers were measured by polarised neutron reflectivity. • When growing a CoNiCu alloy from a single bath a Cu rich region is initially formed. • This Cu rich region is formed in the first layer but not subsequent ones. • Ni deposition is inhibited in thin film growth and Co deposits anomalously. • Alloy magnetism and neutron scattering length give a self-consistent model. - Abstract: We present a polarised neutron reflectivity (PNR) study of magnetic/non-magnetic (CoNiCu/Cu) thin films grown by single bath electrodeposition. We find that the composition is neither homogeneous with time, nor consistent with bulk values. Instead an initial, non-magnetic copper rich layer is formed, around 2 nm thick. This layer is formed by the deposition of the dilute, but rapidly diffusing, Cu 2+ ions near the electrode surface at the start of growth, before the region is depleted and the deposition becomes mass transport limited. After the region has been depleted, by growth etc., this layer does not form and thus may be prevented by growing a copper buffer layer immediately preceding the magnetic layer growth. As has been previously found, cobalt deposits anomalously compared to nickel, and even inhibits Ni deposition in thin films. The layer magnetisation and average neutron scattering length are fitted independently but both depend upon the alloy composition. Thus these parameters can be used to check for model self-consistency, increasing confidence in the derived composition

  1. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  2. Bi-layer sandwich film for antibacterial catheters.

    Science.gov (United States)

    Franz, Gerhard; Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter

    2017-01-01

    Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly( p -xylylene). This top layer is mainly designed to release a controlled amount of Ag + ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens' reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin's pot and the principle of Le Chatelier.

  3. Bi-layer sandwich film for antibacterial catheters

    Directory of Open Access Journals (Sweden)

    Gerhard Franz

    2017-09-01

    Full Text Available Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters.Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene. This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition.Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier.

  4. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  5. Control of retention and fatigue-free characteristics in CaBi4Ti4O15 thin films prepared by chemical method

    International Nuclear Information System (INIS)

    Simoes, A.Z.; Ramirez, M.A.; Gonzalez, A.H.M.; Riccardi, C.S.; Ries, A.; Longo, E.; Varela, J.A.

    2006-01-01

    Ferroelectric CaBi 4 Ti 4 O 15 (CBTi144) thin films were deposited on Pt/Ti/SiO 2 /Si substrates by the polymeric precursor method. The films present a single phase of layered-structured perovskite with polar axis orientation after annealing at 700 deg. C for 2 h in static air and oxygen atmosphere. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. It is noted that the films annealed in static air showed good polarization fatigue characteristics at least up to 10 10 bipolar pulse cycles and excellent retention properties up to 10 4 s. On the other hand, oxygen atmosphere seems to be crucial in the decrease of both, fatigue and retention characteristics of the capacitors. Independently of the applied electric field, the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. - Graphical abstract: Fatigue of CBTi144 thin film obtained by polymeric precursor method

  6. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  7. Optical, electrical and the related parameters of amorphous Ge-Bi-Se thin films

    International Nuclear Information System (INIS)

    El-Korashy, A.; El-Kabany, N.; El-Zahed, H.

    2005-01-01

    The related optical and electrical parameters of amorphous Ge-Bi-Se thin films were studied. The dependence of optical and electrical properties on the Bi content was observed in most compositions. At Bi >10at% the behavior show a switch from p to n type conduction mechanism. The correlation between the optical band gap E g and the average heats of atomization H s were observed. The results indicated that both the number of topological constant N con and the radial and angular N α , N β valence force constants exhibit the same trend with increasing Bi content. On the other hand, the mean bond energy increases with increasing Bi content to x=15at%. It may be concluded that is a function of the mean coordination number N co , the type of bonds, the degree of cross-linking and the band energy forming the network

  8. Orthorhombic polar Nd-doped BiFeO3 thin film on MgO substrate

    International Nuclear Information System (INIS)

    Leontyev, I N; Janolin, P-E; Dkhil, B; Yuzyuk, Yu I; El-Marssi, M; Chernyshov, D; Dmitriev, V; Golovko, Yu I; Mukhortov, V M

    2011-01-01

    A Nd-doped BiFeO 3 thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45 0 with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  9. Electrical and optical properties of thin films with a SnS{sub 2} - Bi{sub 2}S{sub 3} alloy grown by sulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Dussan, A; Mesa, F; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota Cr.30 No 45-03 (Colombia); Botero, M, E-mail: ggordillog@unal.edu.c, E-mail: adussanc@unal.edu.c [Departamento de Fisica, Universidad Central, Bogota Cr.5 No 21A-03 (Colombia)

    2009-05-01

    In this work, thin films of SnS{sub 2} with increased Bi content were grown by sulphurization of a thin film of Sn:Bi alloy, at temperatures around 300{sup 0}C. The effect of the Bi concentration on the optical, electrical and structural properties was determined through measurements of spectral transmittance, conductivity and x-ray diffraction XRD respectively. It was found that the optical constants (refractive index n, absorption coefficient alpha and energy gap Eg) and the electrical conductivity are significantly affected by the Bi concentration. In particular, a variation of the energy gap between 1.44 and 1.63 eV and a change of the conductivity greater than three orders of magnitude were observed when the content of Bi in the Sn:Bi alloy varied between 0 and 100 %. The analysis of the XRD measurements allowed us to find that the SnS: Bi films grow with a mixture of the SnS{sub 2} and Bi{sub 2}S{sub 3} phases, independently of the Bi content.

  10. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  11. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    International Nuclear Information System (INIS)

    Bedekar, M.M.

    1992-01-01

    The discovery of a new class of copper oxide superconductors has led to the development of three major systems that exhibit superconducting properties. The Bi-Sr-Ca-Cu-O superconductors offer intrinsic advantages due to the high T c , chemical inertness and tolerance for a range of compositions. However, thin film research on these materials has progressed more slowly than the other cuprate systems. This dissertation examines the film growth, by laser ablation, of the Bi-Sr-Ca-Cu-O superconductors and the effect of the deposition parameters such as the laser target interaction, substrate temperature, target to substrate distance, deposition and cooling pressure, target type and processing and the substrate type. CO 2 laser ablation was shown to give rise to a non-stoichiometric material transfer due to the low fluences and long pulse lengths. In situ superconducting thin films with T c(0) 's of 76 K could be deposited using the KrF laser at substrate temperatures of 5 degrees C to 20 degrees C below phases. Lower temperatures gave rise to a mixture of 2201 and glassy phases. An increase in the target to substrate distance led to a deterioration of the electrical and structural properties of the films due to a decrease in the energy for film formation. A maximum in T c(0) was observed at 450 mtorr as the deposition pressure was varied between 200 to 700 mtorr. Optimum oxygen incorporation could be achieved by cooling the films in high oxygen pressures and the best films were obtained with 700 torr cooling pressure. The oxygen deficiency of the hot pressed targets led to inferior properties compared to the conventionally sintered targets. The microwave surface resistance of the films measured at 35 GHz showed an onset at 80 K and dropped below that of copper at 30 K. The study of the laser ablation process in this system revealed the presence of a stoichiometric forward directed component and a diffuse evaporation component

  12. Epitaxially influenced boundary layer model for size effect in thin metallic films

    International Nuclear Information System (INIS)

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  13. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Science.gov (United States)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  14. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  15. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  16. Dry etching of ferroelectric Bi4-xEuxTi3O12 (BET) thin films

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    Bi 4-x Eu x Ti 3 O 12 (BET) thin films were etched by using a inductively coupled Cl 2 /Ar plasma. We obtained a maximum etch rate of 69 nm/min at a gas mixing ratio of Cl 2 (20 %)/Ar (80 %). This result suggests that an effective method for BET etching is chemically assisted physical etching. With increasing coil RF power, the plasma density increases so that the increased reactive free radicals and ions enhance the etch rates of BET, Pt, and SiO 2 . As the dc-bias voltage is increased, the increased ion energy leads to an increased etch rate of BET films. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O, and the Ti-O peaks change with increasing Cl 2 concentration. For a pure Ar plasma, the peak associated with the oxygen-metal (O-M: TiO 2 , Bi 2 O 3 , Eu 2 O 3 ) bond seems to disappear while the pure oxygen peak does not appear. After the BET thin films is etched by using a Cl 2 /Ar plasma, the peak associated with the O-M bond increases slowly, but more quickly than the peak associated with pure oxygen atoms, due to a decrease in the Ar-ion bombardment. These results seem to indicate that Bi and Eu react little with Cl atoms and are removed predominantly by argon-ion bombardment. Also, Ti reacts little with Cl radicals and is mainly removed by chemically assisted physical etching.

  17. Variation of the optical energy gap with {gamma}-radiation and thickness in Bi-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I. [Qatar Univ., Doha (Qatar). Dept. of Physics

    1995-02-01

    The effect of {gamma}-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different {gamma}-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be {gamma}-dose dependent. (author).

  18. Variation of the optical energy gap with γ-radiation and thickness in Bi-thin films

    International Nuclear Information System (INIS)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I.

    1995-01-01

    The effect of γ-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different γ-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be γ-dose dependent. (author)

  19. Growth and properties of SrBi2TaNbO9 ferroelectric thin films using pulsed laser deposition

    International Nuclear Information System (INIS)

    Yang Pingxiong; Deng Hongmei; Shi Meirong; Tong Ziyang; Qin Sumei

    2007-01-01

    High quality SrBi 2 TaNbO 9 (SBTN) ferroelectric thin films were fabricated on platinized silicon by pulsed laser deposition. Microstructure and ferroelectric properties of the films were characterized. Optical fatigue (light/bias) for the thin films was studied and the average remanent polarization dropped by nearly 55% due to the bias/illumination treatment. Optical properties of the thin films were studied by spectroscopic ellipsometry (SE) from the ultraviolet to the infrared region. Optical constants, n ∼ 0.16 in the infrared region and n ∼ 2.12 in the visible spectral region, were determined through refractive index functions. The band gap energy is estimated to be 3.93 eV

  20. Effect of the KOH chemical treatment on the optical and photocatalytic properties of BiVO4 thin films

    International Nuclear Information System (INIS)

    Mirabal-Rojas, R.; Depablos-Rivera, O.; Medina, J.C.; Thalluri, S.M.; Bizarro, M.; Perez-Alvarez, J.; Rodil, S.E.; Zeinert, A.

    2016-01-01

    In this work, we present the structural, optical and photocatalytic properties of BiVO 4 thin films produced by a dual-magnetron sputtering process using both Bi 2 O 3 (α-phase, 99.98 % purity) and V (99.9 % purity) targets under Ar/O 2 atmosphere with a ratio of 18:2. The films were deposited varying the power applied to the targets to obtain stoichiometric films, and the monoclinic structure was achieved by post-deposition annealing. The dual process was chosen to better control the Bi/V ratio since Bi and V have very different sputtering yields. In particular, the influence of a chemical treatment using potassium hydroxide (KOH) on the optical properties and different dye discolorations (acid blue 113 and methyl orange) is discussed. The optical properties were studied by reflectance and transmittance spectroscopy, where the spectra were fitted to obtain the refractive index dispersion and the optical band gap of the BiVO 4 as a function of the film structure, as determined by X-ray diffraction and Raman spectroscopy. (orig.)

  1. Effect of the KOH chemical treatment on the optical and photocatalytic properties of BiVO4 thin films

    Science.gov (United States)

    Mirabal-Rojas, R.; Depablos-Rivera, O.; Thalluri, S. M.; Medina, J. C.; Bizarro, M.; Perez-Alvarez, J.; Rodil, S. E.; Zeinert, A.

    2016-04-01

    In this work, we present the structural, optical and photocatalytic properties of BiVO4 thin films produced by a dual-magnetron sputtering process using both Bi2O3 (α-phase, 99.98 % purity) and V (99.9 % purity) targets under Ar/O2 atmosphere with a ratio of 18:2. The films were deposited varying the power applied to the targets to obtain stoichiometric films, and the monoclinic structure was achieved by post-deposition annealing. The dual process was chosen to better control the Bi/V ratio since Bi and V have very different sputtering yields. In particular, the influence of a chemical treatment using potassium hydroxide (KOH) on the optical properties and different dye discolorations (acid blue 113 and methyl orange) is discussed. The optical properties were studied by reflectance and transmittance spectroscopy, where the spectra were fitted to obtain the refractive index dispersion and the optical band gap of the BiVO4 as a function of the film structure, as determined by X-ray diffraction and Raman spectroscopy.

  2. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  3. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  4. Electrochemical reaction of lithium with orthorhombic bismuth tungstate thin films fabricated by radio-frequency sputtering

    International Nuclear Information System (INIS)

    Li Chilin; Sun Ke; Yu Le; Fu Zhengwen

    2009-01-01

    Bi 2 WO 6 thin films with fast deposition rate have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrodes in rechargeable thin film lithium batteries. An initial discharge capacity of 113 μAh/cm 2 -μm is obtainable for Bi 2 WO 6 film electrode with good capacity reversibility. A multiple-center reactive mechanism associated with both Bi 3+ /Bi 0 and W 6+ /W x+ (x 2 WO 6 electrochemical performance with those of Bi 2 O 3 and WO 3 thin films. A possible explanation about smooth capacity loss of Bi 2 WO 6 after long-term cycling is suggested from the incomplete reaction of Bi component. The advantages of Bi 2 WO 6 thin films over the singer-center Bi 2 O 3 or WO 3 thin films are shown in both the aspects of volumetric capacity and cycling life.

  5. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  6. Size effects of polycrystalline lanthanum modified Bi4Ti3O12 thin films

    International Nuclear Information System (INIS)

    Simoes, A.Z.; Riccardi, C.S.; Cavalcante, L.S.; Gonzalez, A.H.M.; Longo, E.; Varela, J.A.

    2008-01-01

    The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi 3.25 La 0.75 Ti 3 O 12 was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness

  7. Structure and electrical properties of (La, Zn) Co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Y. J.; Kim, H. J.; Kim, J. W.; Raghavan, C. M.; Kim, S. S.

    2012-08-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9La0.1)(Fe0.975Zn0.025)O3- δ (BLFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BLFZO thin film. The leakage current density of the BLFZO thin film was four orders of magnitude lower than that of the pure BFO, 4.17 × 10-7 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BLFZO thin film were 97 µC/cm2 and 903 kV/cm at an applied electric field of 972 kV/cm and at a frequency of 1 kHz, and the values decreased with increasing measurement frequency to 63 µC/cm2 and 679 kV/cm at 10 kHz, respectively. Also, after 1.44 × 1010 cycles, a better fatigue endurance was observed in the BLFZO thin film, which was 90% of its initial value. We also confirmed that the remnant polarization (2 P r ) and the coercive electric field (2 E c ) were fairly saturated above a measurement frequency of 15 kHz for the BLFZO thin film.

  8. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  9. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  10. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  11. Orthorhombic polar Nd-doped BiFeO{sub 3} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, I N; Janolin, P-E; Dkhil, B [Laboratoire Structures, Proprietes et Modelisation des Solides, UMR CNRS-Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex (France); Yuzyuk, Yu I [Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090 (Russian Federation); El-Marssi, M [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Chernyshov, D; Dmitriev, V [Swiss-Norwegian Beam Lines at ESRF, Boite Postale 220, F-38043 Grenoble (France); Golovko, Yu I; Mukhortov, V M, E-mail: i.leontiev@rambler.ru [Southern Scientific Center RAS, Rostov-on-Don, 344006 (Russian Federation)

    2011-08-24

    A Nd-doped BiFeO{sub 3} thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45{sup 0} with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  12. Influence of a ZnO Buffer Layer on the Structural, Optical, and Electrical Properties of ITO/ZnO Bi-Layered Films

    International Nuclear Information System (INIS)

    Heo, Sung-Bo; Moon, Hyun-Joo; Kim, Daeil; Kim, Jun-Ho

    2016-01-01

    Sn-doped indium oxide (ITO) films and ITO/ZnO bi-layered films were prepared on polycarbonate substrates by RF magnetron sputtering without intentional substrate heating. In order to consider the influence of the ZnO thickness on the structural, optical, and electrical properties of ITO/ZnO films, the thickness of the ZnO buffer layer was varied from 5 to 20 nm. As-deposited ITO films show an average optical transmittance of 79.2% in the visible range and an electrical resistivity of 3.0×10"-"4 Ωcm, while films with a 5-nm thick ZnO buffer layer film show an electrical resistivity of 2.6×10"-"4 Ωcm and films with a 20-nm thick ZnO buffer layer show an optical transmittance of 82.0%. Based on the figure of merit, it is concluded that the ZnO buffer layer enhances the optical and electrical performance of ITO films used as transparent conducting oxides in flexible display applications.

  13. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  14. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  15. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  16. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    International Nuclear Information System (INIS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-01-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.

  17. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  18. Bulk photovoltaic effect in epitaxial (K, Nb) substituted BiFeO3 thin films

    Science.gov (United States)

    Agarwal, Radhe; Zheng, Fan; Sharma, Yogesh; Hong, Seungbum; Rappe, Andrew; Katiyar, Ram

    We studied the bulk photovoltaic effect in epitaxial (K, Nb) modified BiFeO3 (BKFNO) thin films using theoretical and experimental methods. Epitaxial BKFNO thin films were grown by pulsed laser deposition (PLD). First, we have performed first principles density function theory (DFT) using DFT +U method to calculate electronic band structure, including Hubbard-Ueff (Ueff =U-J) correction into Hamiltonian. The electronic band structure calculations showed a direct band gap at 1.9 eV and a defect level at 1.7 eV (in a 40 atom BKFNO supercell), sufficiently lower in comparison to the experimentally observed values. Furthermore, the piezoforce microscopy (PFM) measurements indicated the presence of striped polydomains in BKFNO thin films. Angle-resolved PFM measurements were also performed to find domain orientation and net polarization directions in these films. The experimental studies of photovoltaic effect in BKNFO films showed a short circuit current of 59 micro amp/cm2 and open circuit voltage of 0.78 V. We compared our experimental results with first principles shift current theory calculations of bulk photovoltaic effect (BPVE).The synergy between theory and experimental results provided a realization of significant role of BPVE in order to understand the photovoltaic mechanism in ferroelectrics.

  19. Effect of the KOH chemical treatment on the optical and photocatalytic properties of BiVO{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mirabal-Rojas, R.; Depablos-Rivera, O.; Medina, J.C. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Mexico City (Mexico); Universidad Nacional Autonoma de Mexico, Posgrado en Ciencia e Ingenieria de Materiales, Mexico City (Mexico); Thalluri, S.M. [Politecnico di Torino, Department of Applied Science and Technology (DISAT), Torino (Italy); Bizarro, M.; Perez-Alvarez, J.; Rodil, S.E. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Mexico City (Mexico); Zeinert, A. [Universite de Picardie Jules Verne, Laboratoire de Physique de la Matiere Condensee, Amiens (France)

    2016-04-15

    In this work, we present the structural, optical and photocatalytic properties of BiVO{sub 4} thin films produced by a dual-magnetron sputtering process using both Bi{sub 2}O{sub 3} (α-phase, 99.98 % purity) and V (99.9 % purity) targets under Ar/O{sub 2} atmosphere with a ratio of 18:2. The films were deposited varying the power applied to the targets to obtain stoichiometric films, and the monoclinic structure was achieved by post-deposition annealing. The dual process was chosen to better control the Bi/V ratio since Bi and V have very different sputtering yields. In particular, the influence of a chemical treatment using potassium hydroxide (KOH) on the optical properties and different dye discolorations (acid blue 113 and methyl orange) is discussed. The optical properties were studied by reflectance and transmittance spectroscopy, where the spectra were fitted to obtain the refractive index dispersion and the optical band gap of the BiVO{sub 4} as a function of the film structure, as determined by X-ray diffraction and Raman spectroscopy. (orig.)

  20. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  1. Constructing a large variety of Dirac-cone materials in the Bi(1-x)Sb(x) thin film system.

    Science.gov (United States)

    Tang, Shuang; Dresselhaus, Mildred S

    2012-12-21

    We theoretically predict that a large variety of Dirac-cone materials can be constructed in Bi(1-x)Sb(x) thin films and we here show how to construct single-, bi- and tri-Dirac-cone materials with various amounts of wave vector anisotropy. These different types of Dirac cones can be of special interest to electronic device design, quantum electrodynamics and other fields.

  2. Semiconductor- to metallic-like behavior in Bi thin films on KCl substrate

    International Nuclear Information System (INIS)

    Bui, Thanh Nhan; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Bi thin films, with a thickness of 100 nm, are deposited by electron-beam evaporation on a freshly cleaved (100) KCl substrate. The substrate temperature during film growth (T_d_e_p) ranges from room temperature up to 170 °C. Films deposited at room temperature exhibit a maze-like microstructure typical of the rhombohedral (110) texture, as confirmed by X-ray diffraction. For T_d_e_p above 80 °C, a different microstructure appears, characterized by concentric triangular shapes corresponding to the trigonal (111) texture. Temperature dependence of the resistivity shows a transition from a semiconductor-like behavior for films deposited at room temperature to a metallic-like behavior for T_d_e_p above 80 °C. From magnetoresistance measurements between room temperature and 1.6 K, we extract the electron and hole mobilities, concentrations, and mean free paths, which allow to draw a complete picture of the transport properties of both types of films.

  3. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  4. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films

    International Nuclear Information System (INIS)

    Guo Yiping; Guo Bing; Dong Wen; Li Hua; Liu Hezhou

    2013-01-01

    The diode and photovoltaic effects of BiFeO 3 and Bi 0.9 Sr 0.1 FeO 3−δ polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi 0.9 Sr 0.1 FeO 3−δ thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO 3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities. (paper)

  6. Enhancement of the electrical properties of (Eu,Zn) co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Youn-Jang; Kim, Jin Won; Kim, Hae Jin; Kim, Sang Su

    2013-04-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9Eu0.1)(Fe0.975Zn0.025)O3-δ (BEFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BEFZO thin film. The leakage current density of the BEFZO thin film was three orders of magnitude lower than that of the pure BFO, 3.93 × 10-6 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BEFZO thin film were 42 µC/cm2 and 898 kV/cm at an applied electric field of 1000 kV/cm and at a frequency of 1 kHz and the values decreased with increasing measurement frequency to 18 µC/cm2 and 866 kV/cm at 10 kHz, respectively. Also, the fatigue endurances were evaluated at peak voltages of 8-10 V after 1.44 × 1010 cycles in the BEFZO thin films and were 70 ˜ 90% of the initial values. We also confirmed that the 2 P r was fairly saturated at measurement frequency about 30 kHz for the BEFZO thin film.

  7. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  8. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  9. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  10. Controllable Electrical Contact Resistance between Cu and Oriented-Bi2Te3 Film via Interface Tuning.

    Science.gov (United States)

    Kong, Xixia; Zhu, Wei; Cao, Lili; Peng, Yuncheng; Shen, Shengfei; Deng, Yuan

    2017-08-02

    The contact resistance between metals and semiconductors has become critical for the design of thin-film thermoelectric devices with their continuous miniaturization. Herein, we report a novel interface tuning method to regulate the contact resistance at the Bi 2 Te 3 -Cu interface, and three Bi 2 Te 3 films with different oriented microstructures are obtained. The lowest contact resistivity (∼10 -7 Ω cm 2 ) is observed between highly (00l) oriented Bi 2 Te 3 and Cu film, nearly an order of magnitude lower than other orientations. This significant decrease of contact resistivity is attributed to the denser film connections, lower lattice misfit, larger effective conducting contact area, and smaller width of the surface depletion region. Meanwhile, our results show that the reduction of contact resistance has little dependence on the interfacial diffusion based on the little change in contact resistivity after the introduction of an effective Ti barrier layer. Our work provides a new idea for the mitigation of contact resistivity in thin-film thermoelectric devices and also gives certain guidance for the size design of the next-level miniaturized devices.

  11. Atomic Layer Control of Thin Film Growth Using Binary Reaction Sequence Chemistry

    National Research Council Canada - National Science Library

    George, Steven

    1997-01-01

    Our research is focusing on the atomic layer control of thin film growth. Our goal is to deposit films with precise control of thickness and conformality on both flat and high aspect ratio structures...

  12. Preparation of Nd-doped BiFeO{sub 3} films and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Meng [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Tan Guoqiang, E-mail: tan3114@163.com [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Xue Xu; Xia Ao; Ren Huijun [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China)

    2012-09-01

    The Nd-doped BiFeO{sub 3} thin films were prepared on SnO{sub 2}(FTO) substrates spin-coated by the sol-gel method using Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O, Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O and Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O as raw materials. The microstructure and electric properties of the BiFeO{sub 3} thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO{sub 3} films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} films gives rise to the largest Pr of 64 {mu}C/cm{sup 2}. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} thin film at 10 kHz are 190 and 0.017 respectively.

  13. Thermal spike model interpretation of sputtering yield data for Bi thin films irradiated by MeV {sup 84}Kr{sup 15+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.com [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Msimanga, M. [iThemba LABS, National Research Foundation, P. Bag 11, Wits 2050, Johannesburg (South Africa); Department of Physics, Tshwane University of Technology, P. Bag X680, Pretoria 001 (South Africa)

    2015-07-01

    A modified thermal spike model initially proposed to account for defect formation in metals within the high heavy ion energy regime is adapted for describing the sputtering of Bi thin films under MeV Kr ions. Surface temperature profiles for both the electronic and atomic subsystems have been carefully evaluated versus the radial distance and time with introducing appropriate values of the Bi target electronic stopping power for multi-charged Kr{sup 15+} heavy ions as well as different target physical proprieties like specific heats and thermal conductivities. Then, the total sputtering yields of the irradiated Bi thin films have been determined from a spatiotemporal integration of the local atomic evaporation rate. Besides, an expected non negligible contribution of elastic nuclear collisions to the Bi target sputtering yields and ion-induced surface effects has also been considered in our calculation. Finally, the latter thermal spike model allowed us to derive numerical sputtering yields in satisfactorily agreement with existing experimental data both over the low and high heavy ion energy regions, respectively, dominated by elastic nuclear collisions and inelastic electronic collisions, in particular with our data taken recently for Bi thin films irradiated by 27.5 MeV Kr{sup 15+} heavy ions. An overall consistency of our model calculation with the predictions of sputtering yield theoretical models within the target nuclear stopping power regime was also pointed out.

  14. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  15. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  16. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  17. Magnetic properties of Cobalt thin films deposited on soft organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)]. E-mail: i.bergenti@bo.ismn.cnr.it; Riminucci, A. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Arisi, E. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Murgia, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Cavallini, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Solzi, M. [Dipartimento di Fisica dell' Universita di Parma and CNISM, Parco Area delle Scienze 7/A, Parma 43100 (Italy); Casoli, F. [IMEM-CNR Parco Area delle Scienze 37/A, Parma 43100 (Italy); Dediu, V. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)

    2007-09-15

    Magnetic and morphological properties of Cobalt thin films grown by RF sputtering on organic Alq3 layers were investigated by magneto-optical Kerr effect (MOKE) technique and atomic force microscopy (AFM). The AFM images indicate a template growth of Co layers on top of Alq3, the magnetic film 'decorates' the surface of organic material. This peculiar morphology induces a strong uniaxial magnetic anisotropy in the Co films, as detected by MOKE measurements. Results are important for the operation of a new class of devices-vertical organic spin valves.

  18. Effect of interfacial layers on dielectric properties in very thin SrBi2Ta2O9 capacitors

    International Nuclear Information System (INIS)

    Moon, Bum-Ki; Isobe, Chiharu; Hironaka, Katsuyuki; Hishikawa, Shinichi

    2001-01-01

    The effect of interfacial layers on the dielectric properties in very thin SrBi 2 Ta 2 O 9 (SBT) capacitors has been investigated using static measurements. Total permittivity (ε t ) decreased as the film thickness was reduced in both Pt/SBT/Pt and Ir/SBT/Pt capacitors. The contribution of the interfacial capacitance (C int ) and bulk capacitance to the total capacitance indicates that C int of the Ir/SBT/Pt structure was lower than that of the Pt/SBT/Pt structure, while the bulk permittivity (ε b ) was essentially the same. The dispersion of all capacitors followed the power law, while the Ir/SBT/Pt capacitor showed a larger dispersion of C int . These results suggest that the Pt/SBT/Pt capacitor is preferred for obtaining the high performance with less effect of the interfacial layers on the dielectric properties. [copyright] 2001 American Institute of Physics

  19. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    Science.gov (United States)

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural and Galvanomagnetic properties in Mn-Bi2Te3 thin films

    Science.gov (United States)

    Bidinakis, K.; Speliotis, Th.

    2017-12-01

    Bismuth-based binary chalcogenide compounds such as Bi2Te3 and Bi2Se3 are well known materials for their excellent thermoelectric properties due to their near-gap electronic structure. In the last few years these materials have received attention for exhibiting new physics of 3D topological insulators (TI). Possible applications of TI based devices range from quantum computing, spin based logic and memory to electrodynamics. The 3D TIs present spin-momentum-locked surface states by time reversal symmetry (TRS). Introducing magnetic doping in a TI, brakes the TRS and is predicted to open the gap at Dirac point, resulting in exotic quantum phenomena. This interaction between magnetism and topologically protected states is of potential attention for applications in modern spintronics. Quantum phenomena such as weak antilocalization observed in these nanostructures are described. In this work, granular Mn-Bi2Te3 thin films were grown by DC magnetron sputtering on Si(111) substrates and were submitted to ex situ annealing. We present results for the crystal structure of sputtered and annealed films characterized with X-ray diffraction and high-resolution scanning electron microscopy (HRSEM). The surface analysis was studied with atomic force microscopy (AFM). Magnetotransport measurements were performed using standard four probe technique with Hall and MR configurations, with perpendicular magnetic fields up to 9T and temperatures from 300 to 3K.

  1. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    Science.gov (United States)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  2. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  3. Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications

    Science.gov (United States)

    Yu, Shihui; Li, Lingxia; Zhang, Weifeng; Sun, Zheng; Dong, Helei

    2015-01-01

    The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tunable dielectric properties (tunability = 49.7% at 500 kV/cm) at a PZT/BZN thickness ratio of 3, while the largest figure of merit is obtained as 51.8. The thickness effect is discussed with a series connection model of bilayer capacitors, and the calculated dielectric constant and loss tangent are obtained. Furthermore, five kinds of thin–film samples comprising single bilayers, two, three, four and five PPBLs were also elaborated with the final same thickness. The four PPBLs show the largest dielectric constant of ~538 and tunability of 53.3% at a maximum applied bias field of 500 kV/cm and the lowest loss tangent of ~0.015, while the largest figure of merit is 65.6. The results indicate that four PPBLs are excellent candidates for applications of tunable devices. PMID:25960043

  4. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    Science.gov (United States)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  5. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  6. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  7. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  8. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  9. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  10. Plasmon Enhancement of Photoinduced Resistivity Changes in Bi1-xCaxMnO3 Thin Films

    Science.gov (United States)

    Smolyaninova, Vera; Talanova, E.; Kolagani, Rajeswari; Yong, G.; Kennedy, R.; Steger, M.; Wall, K.

    2007-03-01

    Doped rare-earth manganese oxides (manganites) exhibit a wide variety of physical phenomena due to complex interplay of electronic, magnetic, orbital, and structural degrees of freedom and their sensitivity to external fields. A photoinduced insulator to conductor transition in charge-ordered manganites is especially interesting from the point of view of creating photonic devices. Thin films of Bi0.4Ca0.6MnO3 exhibit large photoinduced resistivity changes associated with melting of the charge ordering by visible light [1]. We have found a considerable increase of the photoinduced resistivity changes in the Bi0.4Ca0.6MnO3 thin film after depositing metal nanoparticles on the surface. This increase can be explained by enhancement of local electromagnetic field in the vicinity of the gold nanoparticle due to the plasmon resonance. The changes in lifetime of the photoinduced state will be reported, and the possible origin of these effects will be discussed. [1] V. N. Smolyaninova at al., Appl. Phys. Lett. 86, 071922 (2005).

  11. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  12. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  13. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    photolithography followed by etching of the silver film. Saturation ... Fe in +3 state. Films thus obtained are therefore highly resistive (ρ ∼ 108–109 cm) and hence exhibit saturated ferroelectric hysteresis loop (figure 3). Anomaly in ... BiFeO3 bulk sample by Rogniskaya et al [4] had indicated abrupt change in lattice parame-.

  14. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  15. Thickness and temperature dependence of electrical resistivity of p-type Bi0.5Sb1.5Te3 thin films prepared by flash evaporation method

    International Nuclear Information System (INIS)

    Duan Xingkai; Yang Junyou; Zhu, W; Fan, X A; Bao, S Q

    2006-01-01

    P-type Bi 0.5 Sb 1.5 Te 3 thin films with thicknesses in the range 80-320 nm have been deposited by the flash evaporation method on glass substrates at 473 K. XRD and field emission scanning electron microscope were performed to characterize the thin films. The results show that the thin films are polycrystalline and the grain size of the thin films increases with increasing thickness of the thin films. Compositional analysis of the thin films was also carried out by energy-dispersive x-ray analysis. A near linear relationship was observed between the electrical resistivity and the inverse thickness of the annealed thin films, and it agrees with Tellier's model. Electrical resistivity of the annealed thin films was studied in the temperature range 300-350 K, and their thermal activation behaviour was characterized, the activation energy for conduction decreases with increasing thickness of the thin films

  16. Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency

    Science.gov (United States)

    Berrian, Djaber; Fathi, Mohamed; Kechouane, Mohamed

    2018-02-01

    Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon ( a- Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a- Si:H ( n- i- p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a- Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a- Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a- Si:H thin-film bifacial solar cell.

  17. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  18. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    International Nuclear Information System (INIS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-01-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  19. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  20. A comparative study on the magnetic and electrical properties of Bi{sub 0.89}Tb{sub 0.11}FeO{sub 3} and Bi{sub 0.89}Tb{sub 0.11}FeO{sub 3}/CoFe{sub 2}O{sub 4} multiferroic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Dong, Guohua; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2015-02-25

    Highlights: • BTFO and CFO phases have perfect double layered structure on FTO substrates. • The CFO layer has a large effect on the dielectric properties of the BTFO/CFO. • The huge ferroelectric polarization (2P{sub r} ∼ 218 μC/cm{sup 2}) is obtained in BTFO/CFO. • BTFO/CFO exhibits the desired magnetic characteristics (2M{sub r} ∼ 100.9 emu/cm{sup 3}). - Abstract: A double layered multiferroic thin film consisting of Bi{sub 0.89}Tb{sub 0.11}FeO{sub 3} (BTFO) and CoFe{sub 2}O{sub 4} (CFO) layers has been deposited on a FTO/glass substrate by the chemical solution deposition method. The influence of magnetic layer on the crystal structure, dielectric, ferroelectric and magnetic properties of the double layered film was investigated. X-ray diffraction, Raman spectra and scanning electron microscope results demonstrate the perfect formation of double layered thin film structure without second phase. With the introduction CFO magnetic layer, the double layered film of dielectric constant shows strong frequency dependence, and the leakage current density and the multiferroic properties have been significantly improved. It is believed that at room temperature the superior multiferroic parameters (2P{sub r} ∼ 218 μC/cm{sup 2} and 2M{sub r} ∼ 100.9 emu/cm{sup 3}) of the BTFO/CFO film are a major breakthrough in the double layered BFO-based films. The double layered film with excellent multiferroic properties become an attractive research focus in potential multifunctional devices.

  1. Scaling of Hall coefficient in Co-Bi granular thin films

    Directory of Open Access Journals (Sweden)

    Speliotis Th.

    2013-01-01

    Full Text Available A series of Co-Bi thin films with Co concentrations c=0, 0.05, 0.2, 0.26, 0.3, 0.333, 0.375, 0.545, were grown by magnetron sputtering on Si(100/SiNX substrates. Resistivity measurements at zero field (ρxx as a function of temperature-T exhibit an exponential variation with T in the region of 240K

  2. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  3. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  4. Crystalline structure and XMCD studies of Co40Fe40B20 grown on Bi2Te3, BiTeI and Bi2Se3

    OpenAIRE

    Kaveev, A. K.; Sokolov, N. S.; Suturin, S. M.; Zhiltsov, N. S.; Golyashov, V. A.; Tereshchenko, O. E.; Prosvirin, I. P.; Kokh, K. A.; Sawada, M.

    2018-01-01

    Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi2Te3 was observed, in contrast to polycrystalline CoFeB film formed on Bi2Se3(001) at RT using high-temperature seeding layer. Therefore, structurally ordered ferromagnetic thin films were obtained on the topological insulator surface for the firs...

  5. The effect of different annealing temperatures on the structure and luminescence properties of Y{sub 2}O{sub 3}:Bi{sup 3+} thin films fabricated by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Jafer, R.M.; Som, S. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Duvenhage, M.M.; Coetsee, E. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-03-01

    Graphical abstract: - Highlights: • Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were successfully fabricated by the spin coating method. • The Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were converted into Y{sub 2}Si{sub 2}O{sub 7}:Bi films after annealing. • The conversion affected the PL properties of the Bi{sup +} ion in the newly formed host. • A blue shift in emission colour was observed. - Abstract: This paper reports on the structural, morphology and optical properties of Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} micro-and nanophosphors synthesized via the spin coating method. The influence of different annealing temperatures (900–1200 °C) on the morphology, crystal structure and the photoluminescence (PL) properties of the synthesized films were studied in detail. The crystal structure of the films was investigated with X-ray diffraction. The presence of the three major diffraction peaks with Miller indexes (2 1 1), (2 2 2) and (4 0 0) indicated that the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were well-crystallized at 900 °C, 1000 °C, 1100 °C and 1200 °C. Additionally, extra diffraction peaks were observed for the sample that was annealed at 1200 °C. Those extra peaks were due to the formation of the Y{sub 2}Si{sub 2}O{sub 7} phase owing to the annealing induced changes in the crystal structure and chemical composition of the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin film. This may also be attributed to inter diffusion of atomic species between the Si substrate and the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin film at the high annealing temperature. Due to structure-sensitive properties of the Bi{sup 3+} ions, a blue shift of the centre PL emission band from 495 nm to 410 nm was clearly observed and explained in detail. The time-of-flight secondary ion mass spectroscopy results show the Si diffusion from the Si substrate, whereas, the scanning electron microscopy and the atomic force microscopy were used for the morphology

  6. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  7. Automatic identification of single- and/or few-layer thin-film material

    DEFF Research Database (Denmark)

    2014-01-01

    One or more digital representations of single- (101) and/or few-layer (102) thin- film material are automatically identified robustly and reliably in a digital image (100), the digital image (100) having a predetermined number of colour components, by - determining (304) a background colour...... component of the digital image (100) for each colour component, and - determining or estimating (306) a colour component of thin-film material to be identified in the digital image (100) for each colour component by obtaining a pre-determined contrast value (C R; C G; C B) for each colour component...

  8. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S. E. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Kellock, A. J.; Pushp, A.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Harris, J. S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  9. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  10. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  11. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  12. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  13. Manufacture of Bi-cuprate thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Bertelsen, Christian Vinther; Andersen, Niels Hessel

    2014-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors dissolved in xylene. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c...

  14. Electrical conductivity dependence of thin metallic films of Au and Pd as a top electrode in capacitor applications

    International Nuclear Information System (INIS)

    Nazarpour, S.; Langenberg, E.; Jambois, O.; Ferrater, C.; Garcia-Cuenca, M.V.; Polo, M.C.; Varela, M.

    2009-01-01

    Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO 3 /SrTiO 3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn 3 O 4 (l 0 l) and Mn 3 O 4 (0 0 4 l). The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.

  15. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer

    International Nuclear Information System (INIS)

    Martins, Alessandro F.; Follmann, Heveline D.M.; Rubira, Adley F.; Muniz, Edvani C.

    2011-01-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through 1 H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  16. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  17. Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis

    Science.gov (United States)

    Wood, Suzannah Rebecca

    Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part. The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+delta(TiSe2) n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (Bix Sn1-xSe)1+deltaTiSe2, where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+delta]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3. The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis

  18. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang

    2012-12-28

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes. © 2013 IOP Publishing Ltd.

  19. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  20. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  1. Seed layer technique for high quality epitaxial manganite films

    Directory of Open Access Journals (Sweden)

    P. Graziosi

    2016-08-01

    Full Text Available We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  2. Pr and Gd co-doped bismuth ferrite thin films with enhanced ...

    Indian Academy of Sciences (India)

    in Pr content, the crystal structures of BPGFO thin films retain rhombohedral (R3c) symmetry accompanied by structure distortion. ... Pr and Gd co-modified BiFeO3 thin film; ferroelectric properties; sol-gel. 1. Introduction. In recent years, great attention has been paid to single- phase BiFeO3 (BFO) multiferroic materials ...

  3. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Science.gov (United States)

    Bedekar, M. M.; Safari, A.; Wilber, W.

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.

  4. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    International Nuclear Information System (INIS)

    Dewald, Wilma; Sittinger, Volker; Szyszka, Bernd; Säuberlich, Frank; Stannowski, Bernd; Köhl, Dominik; Ries, Patrick; Wuttig, Matthias

    2013-01-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al 2 O 3 target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm 2 /Vs and electron density of 4.3 · 10 20 cm −3 from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm 2 /Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current

  5. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, Wilma, E-mail: wilma.dewald@ist.fraunhofer.de [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Sittinger, Volker; Szyszka, Bernd [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Säuberlich, Frank; Stannowski, Bernd [Sontor GmbH, OT Thalheim, Sonnenallee 7-11, 06766 Bitterfeld-Wolfen (Germany); Köhl, Dominik; Ries, Patrick; Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen, Sommerfeldstraße 14, 52074 Aachen (Germany)

    2013-05-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al{sub 2}O{sub 3} target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm{sup 2}/Vs and electron density of 4.3 · 10{sup 20} cm{sup −3} from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm{sup 2}/Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current.

  6. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  7. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Vähä-Nissi, Mika; Pitkänen, Marja; Salo, Erkki; Kenttä, Eija; Tanskanen, Anne; Sajavaara, Timo; Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana; Karppinen, Maarit; Harlin, Ali

    2014-01-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al 2 O 3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al 2 O 3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al 2 O 3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  8. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  9. Atomic layer deposition of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  10. Thickness dependent quantum oscillations of transport properties in topological insulator Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N. [National Technical University “Kharkov Polytechnic Institute,” 21 Frunze St., Kharkov 61002 (Ukraine); Dresselhaus, M. S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18−600 nm) of p-type topological insulator Bi{sub 2}Te{sub 3} thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18–100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi{sub 2}Te{sub 3} quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi{sub 2}Te{sub 3} and are inherent to topological insulators.

  11. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  12. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  13. Nanoscale strengthening mechanisms in metallic thin film systems

    Science.gov (United States)

    Schoeppner, Rachel Lynn

    Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity

  14. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  15. Space charge limited current conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Sathyamoorthy, R.; Dheepa, J.; Velumani, S.

    2007-01-01

    Bi 2 Te 3 is known for its large thermoelectric coefficients and is widely used as a material for Peltier devices. Bi 2 Te 3 thin films with thicknesses in the range 125-300 A have been prepared by Flash Evaporation at a pressure of 10 -5 m bar on clean glass substrates at room temperature. An Al-Bi 2 Te 3 -Al sandwich structure has been used for electrical conduction properties in the temperature range 303 to 483 K. I-V characteristics showed Ohmic conduction in the low voltage region. In the higher voltage region, a Space Charge Limited Conduction (SCLC) takes place due to the presence of the trapping level. The transition voltage (V t ), between the Ohmic and the SCLC condition was proportional to the square of thickness. Further evidence for this conduction process was provided by the linear dependence of V t on t 2 and log J on log t. The hole concentration in the films were found to be n 0 = 1.65 * 10 10 m -3 . The carrier mobility increases with increasing temperature whereas the density of trapped charges decreases with increasing temperature. The barrier height decreases with an increase in temperature. The increase in the trapping concentration V t is correlated with ascending the degree of preferred orientation of the highest atomic density plane. The activation energy was estimated and the values found to decrease with increasing applied voltage. The zero field value of the activation energy is found to be 0.4 eV

  16. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  17. Correlating thermoelectric properties with microstructure in Bi0.8Sb0.2 thin films

    Science.gov (United States)

    Siegal, M. P.; Lima-Sharma, A. L.; Sharma, P. A.; Rochford, C.

    2017-04-01

    The room temperature electronic transport properties of 100 nm-thick thermoelectric Bi0.8Sb0.2 films, sputter-deposited onto quartz substrates and post-annealed in an ex-situ furnace, systematically correlate with the overall microstructural quality, improving with increasing annealing temperature until close to the melting point for the alloy composition. The optimized films have high crystalline quality with ˜99% of the grains oriented with the trigonal axis perpendicular to the substrate surface. Film resistivities and Seebeck coefficients are accurately measured by preventing deleterious surface oxide formation via a SiN capping layer and using Nd-doped Al for contacts. The resulting values are similar to single crystals and significantly better than previous reports from films and polycrystalline bulk alloys.

  18. Nanoporous anodic aluminum oxide as a promising material for the electrostatically-controlled thin film interference filter

    International Nuclear Information System (INIS)

    Lo, Pei-Hsuan; Lee, Chih-Chun; Fang, Weileun; Luo, Guo-Lun

    2015-01-01

    This study presents the approach to implement the electrostatically-controlled thin film optical filter by using a nanoporous anodic aluminum oxide (np-AAO) layer as the key suspended micro structure. The bi-stable optical filter operates in the visible spectral range. In this work, the presented bi-stable optical filter has averaged reflectivity of 60%, and the central wavelengths are 580 and 690 nm respectively for on and off states. The presented np-AAO layer offers the following merits for the thin film optical filter: (1) material properties of np-AAO film, such as refractive index, elastic modulus and dielectric constant, can be easily changed by a low temperature pore-widening process, (2) in-use stiction of the suspended np-AAO structure can be reduced by the small contact area of nanoporous textures, (3) driving (pull-in) voltage can be reduced due to a large dielectric constant (ε AAO is 7.05) and small stiffness of np-AAO film and (4) dielectric charging can be reduced by the np-AAO material; thus the offset voltage is small. The study reports the design, fabrication and experimental results of the bi-stable optical filter to demonstrate the advantages of the presented device. The np-AAO material also has the potential for applications of other electrostatic drive micro devices. (paper)

  19. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  20. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    International Nuclear Information System (INIS)

    Pathan, H.M.; Lokhande, C.D.; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan

    2005-01-01

    Indium sulphide (In 2 S 3 ) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In 2 S 3 thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study

  1. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  2. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  3. Photodiode Based on CdO Thin Films as Electron Transport Layer

    Science.gov (United States)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  4. Growth behavior of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} thin films on graphene substrate grown by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Wan [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Gun Hwan; Kang, Min A.; An, Ki-Seok; Lee, Young Kuk [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kang, Seong Gu [School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Hyungjun [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2017-03-15

    A comparative study of the substrate effect on the growth mechanism of chalcogenide Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} thin films was carried out. Obvious microstructural discrepancy in both the as-deposited Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} thin films was observed when grown on graphene or SiO{sub 2}/Si substrate. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} thin films deposited on the graphene substrate were observed to be grown epitaxially along c-axis and show very smooth surface compared to that on SiO{sub 2}/Si substrate. Based on the experimental results of this study, the initial adsorption sites on graphene substrate during deposition process, which had been discussed theoretically, could be demonstrated empirically. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Transparent Conductive In and Ga Doped ZnO/Cu Bi-Layered Films Deposited by DC and RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Song, Young-Hwan; Oh, Jung-Hyun; Heo, Sung-Bo; Kim, Daeil

    2016-01-01

    In- and Ga-doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered poly-carbonate substrates with RF magnetron sputtering and the effects of the Cu buffer layer on the optical and electrical properties of the films were investigated. The IGZO single layer films exhibited an electrical resistivity of 1.2×10"-1 Ω cm while the IGZO/Cu bi-layered films exhibited a lower resistivity of 1.6×10"-3 Ω cm. With respect to optical properties, the optical band gap of the IGZO films appeared to decrease as a result of an increasing carrier concentration due to the Cu buffer layer. In addition, the RMS roughness (8.2 nm) of the IGZO films also decreased to 6.8 nm by a Cu buffer layer in AFM observation. Although the optical transmittance in the range of visible wavelengths was deteriorated by the Cu buffer layer, the IGZO films with a 5 nm thick Cu buffer layer exhibited a higher figure of merit of 2.6×10"-4 Ω"-1 compared with the IGZO single layer films due to enhanced optoelectrical performance.

  6. Transparent Conductive In and Ga Doped ZnO/Cu Bi-Layered Films Deposited by DC and RF Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Song, Young-Hwan; Oh, Jung-Hyun; Heo, Sung-Bo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-06-15

    In- and Ga-doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered poly-carbonate substrates with RF magnetron sputtering and the effects of the Cu buffer layer on the optical and electrical properties of the films were investigated. The IGZO single layer films exhibited an electrical resistivity of 1.2×10{sup -}1 Ω cm while the IGZO/Cu bi-layered films exhibited a lower resistivity of 1.6×10{sup -}3 Ω cm. With respect to optical properties, the optical band gap of the IGZO films appeared to decrease as a result of an increasing carrier concentration due to the Cu buffer layer. In addition, the RMS roughness (8.2 nm) of the IGZO films also decreased to 6.8 nm by a Cu buffer layer in AFM observation. Although the optical transmittance in the range of visible wavelengths was deteriorated by the Cu buffer layer, the IGZO films with a 5 nm thick Cu buffer layer exhibited a higher figure of merit of 2.6×10{sup -}4 Ω{sup -}1 compared with the IGZO single layer films due to enhanced optoelectrical performance.

  7. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  8. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  9. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Hsiung, C.-P.; Chen, C.-Y.; Gan, J.-Y.; Sun, Y.-M.; Lin, C.-P.

    2006-01-01

    We report on the properties of Nd-substituted bismuth titanate Bi 4-x Nd x Ti 3 O 12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi 4-x Nd x Ti 3 O 12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi 3.25 Nd 0.75 Ti 3 O 12 , annealed at 680 deg. C, were 38 μC/cm 2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  10. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  11. Structural, electrical and magnetic properties of (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu, E-mail: xuexu9@163.com; Tan, Guoqiang, E-mail: tan3114@163.com; Liu, Wenlong; Ren, Huijun

    2014-04-01

    Highlights: • Nd–Co and Gd–Co codoped BiFeO{sub 3} thin films are synthesized by chemical solution deposition method. • Enhanced magnetic property is observed in BGFC thin film at room temperature. • The onset electric field of FN tunneling of the films is associated with band gaps. • Both ferromagnetism and diamagnetism coexist in the BNFC film. - Abstract: Rhombohedral (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films were deposited on FTO substrates by using a chemical solution deposition method. Raman scattering spectra reveal that the BiFeO{sub 3} lattices are able to incorporate Nd/Gd and Co ions with no effect on the basic rhombohedral structure. The chemical shift of Bi 4f, Fe 2p and O 1s core levels of the films is investigated by the X-ray photoelectron spectroscopy (XPS) analysis. The presence of defects in the films has been estimated through XPS study, which has a great effect on the dielectric dispersion and ferroelectric polarization. The intrinsic density of free electrons associated with band gap is the dominating factor which controls the FN tunneling conductance mechanism of the films. Both ferromagnetism and diamagnetism coexist in the BNFC film, while only ferromagnetism is observed in the BGFC film.

  12. Analysis of influence of buffer layers on microwave propagation through high-temperature superconducting thin films

    International Nuclear Information System (INIS)

    Ceremuga, J.; Barton, M.; Miranda, F.

    1994-01-01

    Methods of analysis of microwave propagation through superconducting thin films with buffer layers on dielectric substrates have been discussed. Expressions describing the transmission coefficient S 21 through the structure and the complex conductivity sigma of a superconductor in an analytical form have been derived. The derived equations are valid for microwave propagation in waveguides as well as in free space with relevant definition of impedances. Using the obtained solutions, the influences of buffer layers' parameters (thickness, relative permittivity and loss tangent) on the transmission coefficient has been investigated using MATLAB. Simulations have been performed for 10 GHz transmission through YBa 2 Cu 3 O 7 films on sapphire with SrTiO 3 and CeO 2 buffer layers and on silicon with CaF 2 and YSZ buffer layers. To illustrate the simulations, measurements of the transmission through YBCO film on sapphire with SrTiO 3 buffer layer have been performed. It has been shown that even lossy buffer layers have very little impact (smaller than 1% in magnitude and 0.3% in phase) on the transmission coefficient through superconducting thin films, providing their thickness is below 10 mu m. (author)

  13. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  14. Electrode contacts on ferroelectric Pb(Zr x Ti1−x )O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties

    OpenAIRE

    Lee, J. J.; Thio, C. L.; Desu, Seshu B.

    1995-01-01

    The degradation (fatigue) of dielectric properties of ferroelectric Pb(ZrxTi1-x)O-3 (PZT) and SrBi2Ta2O9 thin films during cycling was investigated. PZT and SrBi2Ta2O9 thin films were fabricated by metalorganic decomposition and pulsed laser deposition, respectively. Samples with electrodes of platinum (Pt) and ruthenium oxide (RuO2) were studied. The interfacial capacitance (if any) at the Pt/PZT, RuO2/PZT, and Pt/SrBi2Ta2O9 interfaces was determined from the thickness dependence of low-fiel...

  15. A simple model for quantifying the degree of layer-by-layer growth in low energy ion deposition of thin films

    International Nuclear Information System (INIS)

    Huhtamaeki, T.; Jahma, M.O.; Koponen, I.T.

    2007-01-01

    Layer-by-layer growth of thin films can be promoted by using low energy ion deposition (LEID) techniques. The basic process affecting the growth are often quite diverse, but often the ion impact induced inter layer mass transfer processes due to adatom insertion to lower step edges or pile-ups to step edges above dominate. In this paper we propose a simple phenomenological model which describes the growth of thin films in LEID under these conditions. The model makes possible to distinguish the dominant growth, the detection of the transition from the 3D growth to 2D growth, and it can be used to quantify the degree of layer-by-layer growth. The model contains only two parameters, which can be phenomenologically related to the properties of the bombarding ion beam

  16. Crystallographic orientations and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0. sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films on Pt/Ti/SiO sub 2 /Si and Pt/SiO sub 2 /Si substrates

    CERN Document Server

    Ryu, S O; Lee, W J

    2003-01-01

    We report on the crystallization and electrical properties of Bi sub 3 sub . sub 4 sub 7 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 (BLT) thin films for possible ferroelectric non-volatile memory applications. The film properties were found to be strongly dependent on process conditions especially on the intermediate heat treatment conditions. The crystallographic orientation of the films showed sharp changes at the intermediate rapid thermal annealing (RTA) temperature of 450degC. Below 450degC, BLT thin films have (117) orientation while they have preffered c-axis orientation above 450degC. We found that RTA conditions of the first coating layer play a major role in determining the entire crystallographic orientation of the films. The films also showed of ferroelectric hysterisis behavior strongly dependent on RTA treatment. In fact, the remanent polarization of Bi sub 3 sub . sub 4 sub 6 sub 5 La sub 0 sub . sub 8 sub 5 Ti sub 3 O sub 1 sub 2 thin films having (001) preferred crystallographic orient...

  17. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    Science.gov (United States)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  18. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors

    International Nuclear Information System (INIS)

    Choi, Yuri; Kim, Gun Hee; Jeong, Woong Hee; Kim, Hyun Jae; Chin, Byung Doo; Yu, Jae-Woong

    2010-01-01

    Characteristics of oxide semiconductor thin film transistor prepared by gravure printing technique were studied. This device had inverted staggered structure of glass substrate/MoW/SiNx/ printed active layer. The active layer was printed with precursor of indium gallium zinc oxide solution and then annealed at 550 o C for 2 h. Influences of printing parameters (i.e. speed and force) were studied. As the gravure printing force was increased, the thickness of printed film was decreased and the refractive index of printed active layer was increased. The best printed result in our study was obtained with printing speed of 0.4 m/s, printing force of 400 N and the thickness of printed active layer was 45 nm. According to AFM image, surface of printed active layer was quite smooth and the root-mean square roughness was approximately 0.5 nm. Gravure printed active layer had a field-effect mobility of 0.81 cm 2 /Vs and an on-off current ratio was 1.36 x 10 6 .

  19. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  20. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-01-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO 3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi 1−x Ce x FeO 3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm −1 ) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm −1 ), shows a minor shift. Sudden evolution of Raman mode at 668 cm −1 , manifested as A 1 -tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M s ) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi 0.88 Ce 0.12 FeO 3 thin film found to exhibit better magnetic properties with M s =15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi 1−x Ce x FeO 3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  1. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  2. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  3. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  4. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer; Caracterizacao e obtencao de filmes finos de N,N,N-trimetil quitosana e heparina atraves da tecnica layer-by-layer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through {sup 1}H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  5. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  6. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    OpenAIRE

    Wang Lan; Lin Xianzhong; Ennaoui Ahmed; Wolf Christian; Lux-Steiner Martha Ch.; Klenk Reiner

    2016-01-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating ...

  7. Synthesis and organisation of poly-substituted porphyrins in thin films for the elaboration of a highly conjugated 2D polymer

    International Nuclear Information System (INIS)

    Da Cruz, Fernande

    1997-01-01

    This research thesis addresses the production and characterization of organic thin layers for the elaboration of a wholly conjugated bi-dimensional polymer. The author first reports the synthesis of molecules belonging to the substituted porphyrin family substituted by reactive functions (acetylenic and thiophene functions). He reports how these molecules are organised under the form of a plane paving by using the Langmuir-Blodgett (LB) technique and self-assembly. It has been possible to obtain steady and organised LB films from one the synthesized porphyrins. A new method of organisation based on self-assembly has been developed, and allowed polymerizable organised porphyrin single layers to be obtained. This opens a promising way to the production of the bi-dimensional polymer. Thin films have been characterized by UV-visible spectrophotometry, IR spectrometry, X-ray diffraction, and linear dichroism [fr

  8. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  9. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  10. Optical, ferroelectric and magnetic properties of multiferroelectric BiFeO3-(K0.5Na0.5)0.4(Sr 0.6Ba0.4)0.8Nb2O6 thin films

    KAUST Repository

    Yao, Yingbang

    2014-02-01

    Multiferroic BiFeO3-(K0.5Na0.5) 0.4(Sr0.6Ba0.4)0.8Nb 2O6 (BFO-KNSBN) trilayer thin films, were epitaxially grown on MgO(0 0 1) and SrTiO3(0 0 1) by using pulsed laser deposition (PLD). Their ferroelectric, magnetic, dielectric and optical properties were investigated. It was found that both ferroelectric polarization and dielectric constant of the films were enhanced by introducing KNSBN as a barrier layer. Meanwhile, ferromagnetism of BFO was maintained. More interestingly, a double hysteresis magnetic loop was observed in the KNSBN-BFO-KNSBN trilayer films, where exchange bias and secondary phase in the BFO layer played crucial roles. Interactions between adjacent layers were revealed by temperature-dependent Raman spectroscopic measurements. © 2013 Elsevier B.V. All rights reserved.

  11. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  12. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  13. Thermoelectric properties of bismuth antimony tellurium thin films through bilayer annealing prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhuang-hao [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Fan, Ping, E-mail: fanping308@126.com [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Luo, Jing-ting [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Cai, Xing-min; Liang, Guang-xing; Zhang, Dong-ping [College of Physics Science and Technology, Shenzhen University, 518060 (China); Ye, Fan [Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China)

    2014-07-01

    Bismuth antimony tellurium is one of the most important tellurium-based materials for high-efficient thermoelectric application. In this paper, ion beam sputtering was used to deposit Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films on borosilicate substrates at room-temperature. Then the bismuth antimony tellurium thin films were synthesized via post thermal treatment of the Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films. The effect of annealing temperature and compositions on the thermoelectric properties of the thin films was investigated. After the thin films were annealed from 150 °C to 350 °C for 1 h in the high vacuum condition, the Seebeck coefficient changed from a negative sign to a positive sign. The X-ray diffraction results showed that the synthesized tellurium-based thermoelectric thin film exhibited various alloys phases, which contributed different thermoelectricity conductivity to the synthesized thin film. The overall Seebeck coefficient of the synthesized thin film changed from negative sign to positive sign, which was due to the change of the primary phase of the tellurium-based materials at different annealing conditions. Similarly, the thermoelectric properties of the films were also associated with the grown phase. High-quality thin film with the Seebeck coefficient of 240 μV K{sup −1} and the power factor of 2.67 × 10{sup −3} Wm{sup −1} K{sup −2} showed a single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase when the Sb/Te thin film sputtering time was 40 min. - Highlights: • Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} thermoelectric thin films synthesized via bilayer annealing • The film has single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase with best thermoelectric performance. • The film has high thermoelectric properties comparable with other best results.

  14. Fabrication of Lead-Free Bi0.5Na0.5TiO3 Thin Films by Aqueous Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Mads Christensen

    2017-02-01

    Full Text Available Piezoelectric ceramics are widely used in actuator applications, and currently the vast majority of these devices are based on Pb ( Zr , Ti O 3 , which constitutes environmental and health hazards due to the toxicity of lead. One of the most promising lead-free material systems for actuators is based on Bi 0 . 5 Na 0 . 5 TiO 3 (BNT, and here we report on successful fabrication of BNT thin films by aqueous chemical solution deposition. The precursor solution used in the synthesis is based on bismuth citrate stabilized by ethanolamine, NaOH , and a Ti-citrate prepared from titanium tetraisopropoxide and citric acid. BNT thin films were deposited on SrTiO 3 and platinized silicon substrates by spin-coating, and the films were pyrolized and annealed by rapid thermal processing. The BNT perovskite phase formed after calcination at 500 °C in air. The deposited thin films were single phase according to X-ray diffraction, and the microstructures of the films shown by electron microscopy were homogeneous and dense. Decomposition of the gel was thoroughly investigated, and the conditions resulting in phase pure materials were identified. This new aqueous deposition route is low cost, robust, and suitable for development of BNT based thin film for actuator applications.

  15. Influence of the bismuth deficit on the structural and electric properties of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} thin films synthesized by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Alami, H.El.; Rannou, I.; Deville Cavellin, C

    2004-07-15

    BiSrCaCuO thin films were grown on (1 0 0) SrTiO3 substrates by molecular beam epitaxy (MBE) with variation of the Bi deposition time. A new 2x212 family with x varied between 1 and 0 was grown. The X-ray study, the Rutherford back scattering (RBS), reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM) were used to characterize the films. It was shown that the growth method used leads to intergrowth nanostructures. The transport measurements of BiSrCaCuO thin films were performed. The results analysed using the theory of percolation show a 2D character of conductivity in the films studied.

  16. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  17. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  18. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    pressure of 10-5 mbar. The thickness of the film was kept 1 mum for the solar cell device preparation. Rapid Thermal Annealing (RTA) is carried out of CIGS thin film at 500 °C for 2 minutes in the argon atmosphere. Annealing process mainly improves the grain growth of the CIGS and, hence the surface roughness, which is essential for a multilayered semiconductor structure. Thin layer of n-type highly resistive cadmium sulphide (CdS), generally known as a "buffer" layer, is deposited on CIGS layer by thermal and flash evaporation method at the substrate temperature of 100 °C. The CdS thin film plays a crucial role in the formation of the p-n junction and thus the solar cell device performance. The effect of CdS film substrate temperature ranging from 50 °C to 200 °C is observed. At the 100 °C substrate temperature, CdS thin film shows the near to 85 % of transmission in the visible region and resistivity of the order of greater then 20 x 109 Ocm, which are the essential characteristics of buffer layer. The bi-layer structure of ZnO, containing 70 nm i-ZnO and 500 nm aluminum (Al) doped ZnO, act as a transparent front-contact for CIGS thin film solar cell. These layers were deposited using RF magnetron sputtering. i-ZnO thin film acts as an insulating layer, which prevents the recombination of the photo-generated carries and also minimizes the lattice miss match defects between CdS and Al-ZnO. The resistivity of iZnO and Al-ZnO is of the order of 1012 Ocm and 10-4 Ocm, respectively. Al-ZnO thin films act as transparent conducting top electrode having transparency of about 85 % in the visible region. On Al-ZnO layer the finger-type grid pattern of silver (Ag), 200 nm thick, is deposited for the collection of photo-generated carriers. The thin film based multilayered structure Mo / CIGS / CdS / i-ZnO / Al-ZnO / Ag grid of CIGS solar cell is grown one by one on a single glass substrate. As-prepared CIGS solar cell device shows a minute photovoltaic effect. For the further

  19. Structural and optical investigation of Te-based chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Chander, Ravi [Applied Science Deptt. Govt. Polytechnic College Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Sarmastipur, Jalandhar-144012 (India)

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  20. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  1. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  2. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama; Fu, Lei; Sougrat, Rachid; Belmabkhout, Youssef; Cairns, Amy; Giannelis, Emmanuel P.; Eddaoudi, Mohamed

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  3. Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yu; Zhu Hongwei; Wang Jun [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-10-20

    Highlights: > Layered birnessite-type MnO{sub 2} thin films are fabricated on ITO/PET substrates through a facile chemical bath deposition at room temperature. > The transmittance of the MnO{sub 2} thin films at 550 nm is up to 77.4%. > MnO{sub 2} thin films exhibit a special capacitance of 229.2 F g{sup -1} and 9.2 mF cm{sup -2}. > MnO{sub 2} thin films show a capacitance retention ratio of 83% after 1000 CV cycles. > MnO{sub 2} thin film electrodes show great mechanical flexibility and electrochemical stability even after 200 tensile and compressive bending cycles. - Abstract: Layered birnessite-type manganese oxide thin films are successfully fabricated on indium tin oxide coated polyethylene terephthalate substrates for flexible transparent supercapacitors by a facile, effective and inexpensive chemical bath deposition technology from an alkaline KMnO{sub 4} aqueous solution at room temperature. The effects of deposition conditions, including KMnO{sub 4} concentration, initial molar ratio of NH{sub 3}.H{sub 2}O and KMnO{sub 4}, bath temperature, and reaction time, on the electrochemical properties of MnO{sub 2} thin films are investigated. Layered birnessite-type MnO{sub 2} thin films deposited under optimum conditions display three-dimensional porous morphology, high hydrophilicity, and a transmittance of 77.4% at 550 nm. A special capacitance of 229.2 F g{sup -1} and a capacitance retention ratio of 83% are obtained from the films after 1000 cycles at 10 mV s{sup -1} in 1 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that as-prepared MnO{sub 2} thin film electrodes possess excellent mechanical flexibility and electrochemical stability.

  4. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  5. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  6. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kale, R.B.; Lokhande, C.D.

    2004-01-01

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E g ' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10 7 Ω cm

  7. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  8. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  9. Thickness and growth-condition dependence of in-situ mobility and carrier density of epitaxial thin-film Bi2Se3

    International Nuclear Information System (INIS)

    Hellerstedt, Jack; Fuhrer, Michael S.; Edmonds, Mark T.; Zheng, C. X.; Chen, J. H.; Cullen, William G.

    2014-01-01

    Bismuth selenide Bi 2 Se 3 was grown by molecular beam epitaxy, while carrier density and mobility were measured directly in situ as a function of film thickness. Carrier density shows high interface n-doping (1.5 × 10 13  cm −2 ) at the onset of film conduction and bulk dopant density of ∼5 × 10 11  cm −2 per quintuple-layer unit, roughly independent of growth temperature profile. Mobility depends more strongly on the growth temperature and is related to the crystalline quality of the samples quantified by ex-situ atomic force microscopy measurements. These results indicate that Bi 2 Se 3 as prepared by widely employed parameters is n-doped before exposure to atmosphere, the doping is largely interfacial in origin, and dopants are not the limiting disorder in present Bi 2 Se 3 films.

  10. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  11. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  12. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  13. Unraveling the magnetic properties of BiFe0.5Cr0.5O3 thin films

    Directory of Open Access Journals (Sweden)

    G. Vinai

    2015-11-01

    Full Text Available We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO thin films grown on (001 (110 and (111 oriented SrTiO3 (STO substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  14. Spin-on Bi4Sr3Ca3Cu4O16μ/sub x/ superconducting thin films from citrate precursors

    International Nuclear Information System (INIS)

    Furcone, S.L.; Chiang, Y.

    1988-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system have been synthesized from homogeneous liquid citrate precursors by a spin-coating and pyrolysis method. Films prepared on SrTiO 3 substrates of [100] orientation show strongly textured orientations with the c axis of the predominant Bi 4 Sr 3 Ca 3 Cu 4 O 16 μ/sub x/ phase normal to the film plane. In a single coating and firing, crack-free films of 0.2--0.5 μm thickness are obtained. For films fired to peak temperatures of 850--875 0 C, linearly decreasing resistance with temperature is observed, with rho (300 K)∼460 μΩ cm and rho (300 K)rho (100 K)∼2.4. Clear onsets of superconductivity are observed at 90--100 K, with occasional films showing smaller resistant drops at 110--120 K. For all films, T/sub c/ (R = 0) occurs in the range 70--75 K. High critical current densities at 4.2 K of 5--8 x 10 5 Acm 2 are measured by direct transport

  15. DC-sputtered MoO{sub x} thin-films as hole transport layer in organic photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Cauduro, Andre L.F.; Ahmadpour, Mehrad; Rubahn, Horst-Guenter; Madsen, Morten, E-mail: cauduro@mci.sdu.dk [NanoSYD, University of Southern Denmark (Denmark); Reis, Roberto dos; Chen, Gong; Schmid, Andreas [National Center for Electron Microscopy, The Molecular Foundry, LBNL, Berkeley, CA (United States); Methivier, Christophe [Sorbonne Universites, UPMC Univ Paris 06, CNRS UMR, Laboratoire de Reactivite de Surface (LRS) (France); Witkowski, Nadine [Sorbonne Universites, UPMC Univ Paris 06, UMR CNRS, Institut des Nanosciences de Paris (INSP) (France); Fichtner, Paulo F.P. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: Molybdenum-oxide (MoO{sub x}) thin-films have attracted a lot of attention in the past years due to their unique ability to act as interfacial layers in novel electronics and energy applications. In the work presented here, large tuning possibilities in the electronic and optoelectronic properties of MoO{sub x} thin-films deposited by reactive sputtering using different oxygen partial pressures and annealing conditions are demonstrated along with the implementation of the films in organic photovoltaic. MoO{sub x} thin-films deposited under low oxygen partial pressure present a high conductivity of around 3.22 S.cm{sup -1}, however, as the oxygen partial pressure increases, the conductivity of the resulting films drops by up to around 10 orders of magnitude as the [O]/[Mo] ratio changes from 2.57 to beyond 3.00. Optical absorption measurements also show drastic changes mostly within the 0.60 eV - 2.50 eV spectral region for the same increase in oxygen concentration in [1]. UPS and XPS studies are conducted for accessing information about the work function and surface composition of the thin-films. The XPS spectra registered on the Mo 3d core level reveal how the oxidation state of Mo is affected by the partial pressure of oxygen during film growth. The work function of the films increase with annealing temperature and oxygen content, and span a tuning range of about 2 eV. To extract the spatially resolved work function values from the sputtered films, we use in addition Low Energy Electron Microscopy (LEEM). Finally, the application of the MoO{sub x} thin-films in organic optoelectronic devices is investigated by employing them as hole transport layers in small molecule photovoltaic, here based on DBP and C70. The work thus demonstrates a viable method for tuning the electronic and optoelectronic properties of MoO{sub x} thin-films, which can be applied in combination with a wide range of materials in e.g. organic photovoltaic. [1] A.L. Fernandes Cauduro

  16. Spatial and thickness dependence of coupling interaction of surface states and influence on transport and optical properties of few-layer Bi2Se3

    Science.gov (United States)

    Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong

    2018-02-01

    Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.

  17. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  18. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  19. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2).

    Science.gov (United States)

    Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao

    2017-08-02

    Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.

  20. Dual-layer ultrathin film optics: I. Theory and analysis

    International Nuclear Information System (INIS)

    Wang, Qian; Lim, Kim Peng

    2015-01-01

    This paper revisits dual-layer ultrathin film optics, which can be used for functional graded refractive index thin film stack. We present the detailed derivation including s-polarized and p-polarized light under arbitrary incidence angle showing the equivalence between the dual-layer ultrathin films and a negative birefringent thin film and also the approximations made during the derivation. Analysis of the approximations shows the influence of thickness of dual-layer thin films, the incidence angle and desired refractive index of the birefringent film. Numerical comparison between the titanium dioxide/aluminum oxide based dual-layer ultrathin film stack and the equivalent birefringent film verifies the theoretical analysis. The detailed theoretical study and numerical comparison provide a physical insight and design guidelines for dual-layer ultrathin film based optical devices. (paper)

  1. Specific Effects of Oxygen Molecule and Plasma on Thin-Film Growth of Y-Ba-Cu-O and Bi-Sr-(Ca)-Cu-O Systems

    Science.gov (United States)

    Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji

    1998-07-01

    Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.

  2. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    International Nuclear Information System (INIS)

    Singh, Akhilesh Kumar; Hsu, Jen-Hwa; Perumal, Alagarsamy

    2016-01-01

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)] 2 /FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T A =200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T A ≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T A =300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T A and temperature. A large reduction in coercivity (H C ) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H C (T), i.e., a broad minimum in H C (T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H C (T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T C ) with T A (x). The multilayer films annealed at 200 °C exhibit low value of T C with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T C with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and nature of interfaces. - Highlights: • Preparation and

  3. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  4. Photo-galvanic effect in Bi2Se3 thin films with ionic liquid gating

    Science.gov (United States)

    Pan, Yu; Richardella, Anthony; Lee, Joon Sue; Flanagan, Thomas; Samarth, Nitin

    2013-03-01

    A key challenge in three dimensional (3D) topological insulators (TIs) is to reveal the helical spin-polarized surface states via electrical transport measurements. A recent study [Nature Nanotech. 7, 96 (2012)] showed that circularly polarized light can be used to generate and control photocurrents in the 3D TI Bi2Se3, even at photon energies that are well above the bulk band gap. Symmetry considerations suggest that this ``photo-galvanic effect'' arises purely from photo-currents induced in the surface Dirac states. To gain insights into this phenomenon, we have carried out systematic measurements of the photo-galvanic effect in electrically gated MBE-grown Bi2Se3 thin films of varying thickness. By using an ionic liquid as an optically transparent gate, we map out the behavior of the photo-galvanic effect as a function of Fermi energy over a temperature range 5 K <= T <= 300 K. Supported by ONR and NSF.

  5. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    Science.gov (United States)

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  6. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  7. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  8. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  9. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  10. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  11. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Sammelselg, Väino; Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan

    2013-01-01

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H 2 SO 4 was studied. • Smallest etching rates of < 5 pm/s for TiO 2 , Al 2 O 3 , and Cr 2 O 3 were reached. • Highest etching rate of 2.8 nm/s for Al 2 O 3 was occurred. • Remarkable differences in etching of non- and crystalline films were observed

  12. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shui-Hsiang, E-mail: shsu@isu.edu.tw; Wu, Chung-Ming; Kung, Shu-Yi; Yokoyama, Meiso

    2013-06-01

    Organic thin-film transistors (OTFTs) with various buffer layers between the active layer and source/drain electrodes were investigated. The structure was polyethylene terephthalate/indium-tin oxide/poly(methyl methacrylate) (PMMA)/pentacene/buffer layer/Au (source/drain). V{sub 2}O{sub 5}, 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine (m-MTDATA) and m-MTDATA-doped V{sub 2}O{sub 5} films were utilized as buffer layers. The electrical performances of OTFTs in terms of drain current, threshold voltage, mobility and on/off current ratio have been determined. As a result, the saturation current of − 40 μA is achieved in OTFTs with a 10% m-MTDATA-doped V{sub 2}O{sub 5} buffer layer at a V{sub GS} of − 60 V. The on/off current ratio reaches 2 × 10{sup 5}, which is approximately double of the device without a buffer layer. The energy band diagrams of the electrode/buffer layer/pentacene were measured using ultra-violet photoelectron spectroscopy. The improvement in electrical characteristics of the OTFTs is attributable to the weakening of the interface dipole and the lowering of the barrier to enhance holes transportation from the source electrode to the active layer. - Highlights: • A buffer layer enhances the performance of organic thin-film transistors (OTFTs). • The buffer layer consists of organic-doped inorganic material. • Interface dipole is weakened at the active layer/electrodes interface of OTFTs.

  13. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    Science.gov (United States)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  14. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  15. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.

    Science.gov (United States)

    Yoshida, Kentaro

    2017-01-01

    Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.

  16. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  17. Photon up-converting (Yb,Er){sub 2}O{sub 3} thin films by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, Minnea [Department of Chemistry, University of Turku (Finland); Doctoral Programme in Physical and Chemical Sciences, University of Turku Graduate School (UTUGS), Turku (Finland); Giedraityte, Zivile; Karppinen, Maarit [Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University (Finland); Lastusaari, Mika [Department of Chemistry, University of Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland)

    2017-06-15

    We report up-converting (Yb,Er){sub 2}O{sub 3} thin films grown with the atomic layer deposition (ALD) technique. The films are crystalline and show a homogeneous morphology with a roughness less than 1 nm for 40 nm thick films. High-intensity near-infrared (NIR) to green and red two-photon up-conversion emission is obtained with 974 nm excitation through an absorption by Yb{sup 3+}, followed by a Yb{sup 3+}-Er{sup 3+} energy transfer and emission from Er{sup 3+}. The ALD technique promises to be excellent for producing up-converting films for many applications such as near-infrared radiation absorbing layers for solar cells and sensors in point-of-care biomedical diagnostics. Schematic picture of the ALD-grown (Yb,Er){sub 2}O{sub 3} thin film including the up-conversion emission spectra. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  19. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films

    Directory of Open Access Journals (Sweden)

    L. J. Collins-McIntyre

    2014-12-01

    Full Text Available We report the growth of Mn-doped Bi2Se3 thin films by molecular beam epitaxy (MBE, investigated by x-ray diffraction (XRD, atomic force microscopy (AFM, SQUID magnetometry and x-ray magnetic circular dichroism (XMCD. Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS, and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 μB/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μB/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L2,3 edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  20. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  1. Structural transformation and multiferroic properties of single-phase Bi{sub 0.89}Tb{sub 0.11}Fe{sub 1−x}Mn{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2014-01-30

    Pure BiFeO{sub 3} (BFO) and Tb, Mn co-doped BiFeO{sub 3} (BTFMO) thin films were deposited on SnO{sub 2}: F (FTO)/glass substrates using a chemical solution deposition method. Detailed investigations were made on the influence of (Tb, Mn) co-doping on the structure change and the electric properties of the BFO films. With the co-doping of Tb and Mn, the structural transformation from rhombohedral R3c to triclinic P1 is confirmed through XRD, Rietveld refinement and Raman analysis. XPS analysis clarifies that (Tb, Mn) co-doping avails to decrease oxygen vacancy concentration, showing less Fe{sup 2+} ions in the co-doped BTFMO thin films than that of the pure BFO thin film. Among the co-doped thin films, the BTFM{sub 1}O film shows the highly enhanced ferroelectric properties with a giant remnant polarization value (2P{sub r} = 180.3 μC/cm{sup 2}). The structural transformation, the well-distributed fine grains and the reduction of leakage current favor enhanced ferroelectric property of (Tb, Mn) co-doped BFO films. It is also found that the BTFM{sub 1}O film shows the enhanced ferromagnetism with the saturated magnetization (M{sub s} = 2.5 emu/cm{sup 3}) as a result of the collapse of space modulated spin structure by the structure transformation.

  2. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  3. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  4. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  5. Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Ghosh, Biswajit; Das, Madhumita; Banerjee, Pushan; Das, Subrata

    2008-01-01

    Tin sulfide films of 0.20 µm thickness were grown on glass and ITO substrates by the successive ionic layer adsorption and reaction (SILAR) method using SnSO 4 and Na 2 S solution. The as-grown films were well covered and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films and provided information on the crystallite size and residual strain of the thin films. FESEM revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDX showed that as-grown SnS films were slightly rich in tin component. High absorption in the visible region was evident from UV–Vis transmission spectra. PL studies were carried out with 550 nm photon excitation. To the best of our knowledge, however, no attempt has been made to fabricate a SnS thin film using the SILAR technique

  6. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akhilesh Kumar [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Hsu, Jen-Hwa [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2016-11-15

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)]{sub 2}/FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T{sub A}=200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T{sub A}≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T{sub A}=300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T{sub A} and temperature. A large reduction in coercivity (H{sub C}) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H{sub C}(T), i.e., a broad minimum in H{sub C}(T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H{sub C}(T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T{sub C}) with T{sub A} (x). The multilayer films annealed at 200 °C exhibit low value of T{sub C} with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T{sub C} with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and

  7. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  8. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    International Nuclear Information System (INIS)

    Khamseh, S.; Ghahari, M.; Araghi, H.; Faghihi Sani, M.A.

    2016-01-01

    W-doped VO 2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO X -WO X -VO X ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO 2 (M) and VO 2 (B) was formed in VO X -WO X -VO X ceramic thin films. Tungsten content of VO X -WO X -VO X ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R sq ) of VO X -WO X -VO X ceramic thin films increased from 65 to 86 kΩ/sq. The VO X -WO X -VO X ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  9. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  10. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  11. Structural properties of Bi{sub 2−x}Mn{sub x}Se{sub 3} thin films grown via molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Babakiray, Sercan; Johnson, Trent A.; Borisov, Pavel; Holcomb, Mikel B.; Lederman, David, E-mail: david.lederman@mail.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Marcus, Matthew A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tarafder, Kartick [Department of Physics, BITS-Pilani Hyderabad Campus, Secunderabad, Andhra Pradesh 500078 (India)

    2015-07-28

    The effects of Mn doping on the structural properties of the topological insulator Bi{sub 2}Se{sub 3} in thin film form were studied in samples grown via molecular beam epitaxy. Extended x-ray absorption fine structure measurements, supported by density functional theory calculations, indicate that preferential incorporation occurs substitutionally in Bi sites across the entire film volume. This finding is consistent with x-ray diffraction measurements which show that the out of plane lattice constant expands while the in plane lattice constant contracts as the Mn concentration is increased. X-ray photoelectron spectroscopy indicates that the Mn valency is 2+ and that the Mn bonding is similar to that in MnSe. The expansion along the out of plane direction is most likely due to weakening of the Van der Waals interactions between adjacent Se planes. Transport measurements are consistent with this Mn{sup 2+} substitution of Bi sites if additional structural defects induced by this substitution are taken into account.

  12. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    Science.gov (United States)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  13. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  14. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  15. Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Matei, A.; Ion, V.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2016-09-01

    Layered double hydroxides (LDHs) are a class of layered materials consisting of positively charged brucite-like layers and exchangeable interlayer anions. Layered double hydroxides containing a transition metal which undergoes a reversible redox reaction in the useful potential range have been proposed as electrode coating materials due to their properties of charge transport and redox catalysts in basic solutions. Ni–Al,(Ni,Mg)–Al and, as reference, non-electronically conductive Mg–Al double hydroxides thin films were obtained via pulsed laser deposition technique. The thin films were deposited on different substrates (Si, glass) by using a Nd:YAG laser (1064 nm) working at a repetition rate of 10 Hz. X-ray diffraction, Atomic Force Microscopy, Energy Dispersive X-ray spectroscopy, Fourier Transform Infra-Red Spectroscopy, Secondary Ions Mass Spectrometry, Impedance Analyzer and ellipsometry were the techniques used for the as deposited thin films investigation. The optical properties of Ni based LDH thin films and the effect of the Ni amount on the structural, morphological and optical response are evidenced. The optical band gap values, covering a domain between 3.84 eV and 4.38 eV, respond to the Ni overall concentration: the higher Ni amount the lower the band gap value. - Highlights: • Ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films were deposited. • The effect of the nickel is evidenced. • The possibility to tailor the materials accompanied by an optical response is shown.

  16. Investigation of the electronic and magnetic structure of thin layer FeTe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cornils, Lasse; Manna, Sujit; Kamlapure, Anand; Haenke, Torben; Wiebe, Jens; Wiesendanger, Roland [Department of Physics, University of Hamburg, Hamburg (Germany); Hu, Jin; Mao, Zhiqiang [Department of Physics, Tulane University, New Orleans (United States); Brummerstedt Iversen, Bo; Hofmann, Philip [Interdisciplinary Nanoscience Center iNANO, Aarhus University (Denmark)

    2016-07-01

    The surprising discovery of Fe based superconductors in 2008 lead to a big effort in finding new materials with very high critical temperatures. One good example are Fe-chalcogenides. Although the parent compound FeTe is not superconducting, the situation changes drastically on interfacing the material with other substrates. Recently He and coworkers found zero resistance at the interface of Bi{sub 2}Te{sub 3} films grown on bulk FeTe, which showed a transition temperature of 12 K. In this talk we present our latest results on our investigation of the electronic and magnetic nature of epitaxially grown FeTe thin films on the topological insulator Bi{sub 2}Te{sub 3} using spin-polarized scanning tunneling microscopy and spectroscopy. Up to several monolayers of FeTe, an antiferromagnetic structure similar to the one observed on its bulk compound FeTe was clearly visible. Surprisingly we found a gap around the Fermi level indicating proximity to superconductivity in coexistence with magnetism on the nanoscale.

  17. Multicaloric effect in bi-layer multiferroic composites

    International Nuclear Information System (INIS)

    Vopson, M. M.; Zhou, D.; Caruntu, G.

    2015-01-01

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ T c m  ≈ T c e ). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect

  18. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    Science.gov (United States)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  19. Sol–gel derived scattering layers as substrates for thin-film photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Hegmann, Jan [Lehrstuhl für Chemische Technologie der Materialsynthese, Universität Würzburg, Röntgenring 11, 97070 Würzburg (Germany); Mandl, Magdalena [Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 97082 Würzburg (Germany); Löbmann, Peer, E-mail: peer.loebmann@isc.fraunhofer.de [Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-08-01

    Agglomerated silica particles were coated on glass by dip-coating; the resulting films exhibited optical scattering. With constant optical transmittances > 80% their haze could be modified by the withdrawal rate applied for the respective deposition procedure. Film thickness, surface topography and coverage of the substrate were characterized by Scanning Electron Microscopy and Atomic Force Microscopy. For the use in radiation management in thin-film silicon solar cells in a first step the scattering layers were coated with aluminum-doped zinc oxide by sputtering; the optical performance of the resulting bilayer was characterized by haze measurements and angle resolved scattering spectroscopy. Quantum efficiencies of complete solar cells could be determined after the deposition of a hydrogenated amorphous Si/hydrogenated microcrystalline Si tandem absorber and application of metallic back contacts. It turned out that the external quantum efficiency of the resulting cells is not directly related to the light scattering performance of the scattering layer used. - Highlights: • Characterization of sol–gel scattering layers • Combination of different coating-technologies to prepare stacks with optical functionality • Comprehensive material preparation and characterization for complex multilayer.

  20. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  1. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  2. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  3. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  4. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  5. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  6. Filmes finos de SrBi2Ta2O9 processados em forno microondas SrBi2Ta2O9 thin films processed in microwave oven

    Directory of Open Access Journals (Sweden)

    J. S. Vasconcelos

    2003-03-01

    Full Text Available Filmes finos de SrBi2Ta2O9 foram depositados em substratos de Pt/Ti/SiO2/Si e, pela primeira vez, sinterizados em forno microondas doméstico. Os padrões de difração de raios X mostraram que os filmes são policristalinos. O processamento por microondas permite utilizar baixa temperatura na síntese e obter filmes com boas propriedades elétricas. Ensaios de microscopia eletrônica de varredura (MEV e de Força Atômica (MFA revelam boa aderência entre filme e substrato, com microestrutura de superfície apresentando grãos finos e esféricos e rugosidade de 4,7 nm. A constante dielétrica e o fator de dissipação, para freqüência de 100 KHz, à temperatura ambiente, foram de 77 e 0,04, respectivamente. A polarização remanescente (2Pr e o campo coercitivo (Ec foram 1,04 miC/cm² e 33 kV/cm. O comportamento da densidade de corrente de fuga revela três mecanismos de condução: linear, ôhmico e outro mecanismo que pode ser atribuído à corrente de Schottky. Dos padrões de DRX, análises das imagens por MEV e topografia de superfície por MFA observa-se que 10 min de tratamento térmico a 550 ºC, em forno microondas, é tempo suficiente para se obter a cristalização do filme.SrBi2Ta2O9 thin films were deposited on Pt/Ti/SiO2/Si substrates and, for the first time, sintered in a domestic microwave oven. The X-ray diffraction patterns showed that the films are polycrystalline. The microwave processing allows to use a low temperature for the synthesis, obtaining films with good electrical properties. Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM results reveal good adherence between film and substrate and a surface microstructure presenting thin and spherical grains and roughness of 4.7 nm. The dielectric constant and the dissipation factor, for a frequency of 100 KHz at room temperature, were 77 and 0.04, respectively. The remaining polarization (2Pr and the coercive field (Ec were 1.04 C/cm² and 33 k

  7. Molecular dynamics simulation of thin film interfacial strength dependency on lattice mismatch

    International Nuclear Information System (INIS)

    Yang, Zhou; Lian, Jie; Wang, Junlan

    2013-01-01

    Laser-induced thin film spallation experiments have been previously developed to characterize the intrinsic interfacial strength of thin films. In order to gain insights of atomic level thin film debonding processes and the interfacial strength dependence on film/substrate lattice structures, in this study, molecular dynamics simulations of thin film interfacial failure under laser-induced stress waves were performed. Various loading amplitudes and pulse durations were employed to identify the optimum simulation condition. Stress propagation as a function of time was revealed in conjunction with the interface structures. Parametric studies confirmed that while the interfacial strength between a thin film and a substrate does not depend on the film thickness and the duration of the laser pulse, a thicker film and a shorter duration do provide advantage to effectively load the interface to failure. With the optimized simulation condition, further studies were focused on bulk Au/Au bi-crystals with mismatched orientations, and Ni/Al, Cu/Al, Cu/Ag and Cu/Au bi-crystals with mismatched lattices. The interfacial strength was found to decrease with increasing orientation mismatch and lattice mismatch but more significantly dominated by the bonding elements' atomic structure and valence electron occupancy. - Highlights: • Molecular dynamics simulation was done on stress wave induced thin film spallation. • Atomic structure was found to be a primary strength determining factor. • Lattice mismatch was found to be a secondary strength determining factor

  8. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  9. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  10. Separation of top and bottom surface conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Yu Xinxin; He Liang; Lang Murong; Jiang Wanjun; Kou Xufeng; Tang Jianshi; Huang Guan; Wang, Kang L; Xiu Faxian; Liao Zhiming; Zou Jin; Wang Yong; Zhang Peng

    2013-01-01

    Quantum spin Hall (QSH) systems are insulating in the bulk with gapless edges or surfaces that are topologically protected and immune to nonmagnetic impurities or geometric perturbations. Although the QSH effect has been realized in the HgTe/CdTe system, it has not been accomplished in normal 3D topological insulators. In this work, we demonstrate a separation of two surface conductions (top/bottom) in epitaxially grown Bi 2 Te 3 thin films through gate dependent Shubnikov–de Haas (SdH) oscillations. By sweeping the gate voltage, only the Fermi level of the top surface is tuned while that of the bottom surface remains unchanged due to strong electric field screening effects arising from the high dielectric constant of Bi 2 Te 3 . In addition, the bulk conduction can be modulated from n- to p-type with a varying gate bias. Our results on the surface control hence pave a way for the realization of QSH effect in topological insulators which requires a selective control of spin transports on the top/bottom surfaces. (paper)

  11. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    Science.gov (United States)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  12. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  13. Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3

    International Nuclear Information System (INIS)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2015-01-01

    Transient reflectivity traces measured for nanometer-sized films (6–40 nm) of the topological insulator Bi 2 Se 3 revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (∼100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ∼35 to ∼70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi 2 Se 3 films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi 2 Se 3

  14. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.

    Science.gov (United States)

    Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2017-01-03

    This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.

  16. Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering

    International Nuclear Information System (INIS)

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-01-01

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO 3 (BFO) thin films were successfully grown on SrRuO 3 /Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of ≅5.3 nm and average grain sizes of ≅65-70 nm for samples with different thicknesses. Remanent polarization values (2P r ) of 54 μC cm -2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe 3+ /Fe 2+ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO 3 /Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  17. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  18. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  19. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A., E-mail: andreeapurice@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Laser techniques MAPLE and PLD can successfully be used to produce LDHs thin films. Black-Right-Pointing-Pointer Hydration treatments of the PLD and MAPLE deposited films lead to the LDH reconstruction effect. Black-Right-Pointing-Pointer The Ni retention from aqueous solution occurs in the films via a dissolution-reconstruction mechanism. Black-Right-Pointing-Pointer The films are suitable for applications in remediation of contaminated drinking water or waste waters. - Abstract: Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO{sub 3}){sub 2} aqueous solutions with Ni concentrations of 10{sup -3}% (w/w) (1 g/L) and 10{sup -4}% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  20. Atomic scale investigation of planar defects in 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} thin films on SrTiO{sub 3} (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiao-Wei; Lu, Lu [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Mi, Shao-Bo, E-mail: shaobo.mi@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Cheng, Sheng; Liu, Ming [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jia, Chun-Lin [The School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-08-15

    Thin films of lead-free piezoelectric 0.95Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.05BaTiO{sub 3} (0.95NBT–0.05BT) are epitaxially grown on single crystalline SrTiO{sub 3} (001) substrates at 800 °C, 850 °C and 900 °C, respectively, by a high-pressure sputtering deposition technique. The microstructure of the thin films is investigated by means of aberration-corrected scanning transmission electron microscopy. Planar defects are observed and the density of the defects increases with the increase of the film-growth temperature. Two types of planar defects in the films are studied at the atomic scale. One consists of groups of edge-sharing TiO{sub 6} octahedra with Bi atoms located between the TiO{sub 6} octahedral groups, and the other exists in the form of Na/Bi(Ba)−O{sub 2}−Na/Bi(Ba) layer parallel to the (010) plane of the films. Based on the structure feature of the planar defects, the propagation of the planar defects related to edge-sharing TiO{sub 6} octahedra within the films and from the film-substrate interface is discussed. Furthermore, the ordering of the planar defects is expected to form new structures. In comparison with the microstructure of 0.95NBT–0.05BT bulk materials, the appearance of the high-density planar defects observed within the films could be considered to be responsible for the difference in the physical properties between the bulk materials and the films. - Highlights: • NBT–BT films have been successfully prepared on SrTiO{sub 3} (001) substrates. • Complex planar defects of zigzag-like and Aurivillius-type have been determined. • The propagation of the planar defects in the films has been characterized. • The intergrowth of planar faults with NBT–BT structure units results in the formation of new structures. • The NBT–BT/SrTiO{sub 3} interface structure has been determined at the atomic scale.

  1. Ferroelectric properties of bilayer structured Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films on Pt/TiO2/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Zhang Wenqi; Li Aidong; Shao Qiyue; Xia Yidong; Wu Di; Liu Zhiguo; Ming Naiben

    2008-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with large remanent polarization and SrBi 2 Ta 2 O 9 (SBT) thin films with excellent fatigue-resisting characteristic have been widely studied for non-volatile random access memories, respectively. To combine these two advantages , bilayered Pb(Zr 0.52 Ti 0.48 )O 3 /SrBi 2 Ta 2 O 9 (PZT/SBT) thin films were fabricated on Pt/TiO 2 /SiO 2 /Si substrates by chemical solution deposition method. X-ray diffraction patterns revealed that the diffraction peaks of PZT/SBT thin films were completely composed of PZT and SBT, and no other secondary phase was observed. The electrical properties of the bilayered structure PZT/SBT films have been investigated in comparison with pure PZT and SBT films. PZT/SBT bilayered thin films showed larger remanent polarization (2P r ) of 18.37 μC/cm 2 than pure SBT and less polarization fatigue up to 1 x 10 9 switching cycles than pure PZT. These results indicated that this bilayered structure of PZT/SBT is a promising material combination for ferroelectric memory applications

  2. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  3. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    Science.gov (United States)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  4. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  5. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  6. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  7. Magnetization curves for thin films of layered type-II superconductors, Kolmogorov-Arnold-Moser theory, and the devil's staircase

    International Nuclear Information System (INIS)

    Burkov, S.E.

    1991-01-01

    Magnetization curves for a thin-layered superconducting film in parallel magnetic field have been shown to become devil's staircases provided the superconducting layers are perpendicular to the film plane. The transition from an incomplete to a complete devil's staircase with decreasing temperature is predicted. A chain of vortices is described by the generalized Frenkel-Kontorova model

  8. Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films

    International Nuclear Information System (INIS)

    Deb, M; Popova, E; Fouchet, A; Keller, N

    2012-01-01

    We performed a magneto-optical (MO) Faraday spectroscopy study of bismuth iron garnet Bi 3 Fe 5 O 12 thin single-crystalline films with thickness from 5 to 220 nm. The Faraday rotation and ellipticity spectra were measured for photon energies ranging from 1.7 to 4.2 eV. Using a model based on two electric dipole transitions associated with tetrahedral and octahedral iron sites, we successfully reproduce the observed rotation and ellipticity spectra. The sign of both site contributions to the Faraday rotation and ellipticity spectra has been used to interpret the complex thermal dependence of the Faraday rotation and ellipticity. For a Faraday ellipticity, anomalous hysteresis loops have been observed around specific photon energies. To explain the surprising shape of hysteresis loop, a model based on the superposition of two hysteresis loops with opposite sign associated with both sites is proposed. The modelling of these hysteresis loops allows accessing the magnetic properties of each individual sublattice. Finally, we have studied the dependence of the energy level parameters on bismuth content in Yi 3-x Bi x Fe 5 O 12 garnet and on the thickness of bismuth iron garnet. Based on this analysis, we show that MO spectroscopy is a fast and non-destructive technique to determine the bi-deficiency of BIG films.

  9. Leakage current phenomena in Mn-doped Bi(Na,K)TiO_3-based ferroelectric thin films

    International Nuclear Information System (INIS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-01-01

    Mn-doped 80(Bi_0_._5Na_0_._5)TiO_3-20(Bi_0_._5K_0_._5)TiO_3 thin films were fabricated by chemical solution deposition on Pt/TiO_2/SiO_2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ_i_o_n ≈ 1.7 × 10"−"1"2 cm"2 V"−"1 s"−"1 and E_A_,_i_o_n ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  10. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  11. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  12. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  13. Preparation and characterization of Bi2Sr2CaCu2O8+δ thin films on MgO single crystal substrates by chemical solution deposition

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Kepa, Katarzyna; Hlásek, T.

    2013-01-01

    Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2Ca...

  14. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  15. Feasibility of X-ray analysis of multi-layer thin films at a single beam voltage

    International Nuclear Information System (INIS)

    Statham, P J

    2010-01-01

    Multi-layer analysis using electron beam excitation and X-ray spectrometry is a powerful tool for characterising layers down to 1 nm thickness and with typically 1 μm lateral resolution but does not always work. Most published applications have used WDS with many measurements at different beam voltages and considerable experience has been needed to choose lines and voltages particularly for complex multi-layer problems. A new objective mathematical approach is described which demonstrates whether X-ray analysis can obtain reliable results for an arbitrary multi-layer problem. A new algorithm embodied in 'ThinFilmID' software produces a single plot that shows feasibility of achieving results with a single EDS spectrum and suggests the optimal beam voltage. Synthesis of EDS spectra allows the precision in results to be estimated and acquisition conditions modified before wasting valuable instrument time. Thus, practicality of multi-layer thin film analysis at a single beam voltage can now be established without the extensive experimentation that was previously required by a microanalysis expert. Examples are shown where the algorithm discovers viable single-voltage conditions for applications that experts previously thought could only be addressed using measurements at more than one beam voltage.

  16. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  17. Enhancement of photocurrents due to the oxidation of water and organic compounds at BiZn2VO6 particulate thin film electrodes by treatment with a TiCl4 solution

    International Nuclear Information System (INIS)

    Liu Haimei; Imanishi, Akihito; Yang Wensheng; Nakato, Yoshihiro

    2010-01-01

    Photocurrents due to water oxidation at BiZn 2 VO 6 (E g 2.4 eV) particulate thin film electrodes were largely enhanced by pre-treatment with an aqueous TiCl 4 solution. Photocurrents for BiZn 2 VO 6 electrodes with no TiCl 4 treatment were also enhanced by the addition of organic compounds such as methanol and trimethyl amine to the aqueous electrolyte. Interestingly, such enhanced photocurrents by organic compounds were further enhanced by the TiCl 4 pre-treatment. EDAX and SEM investigations showed the formation of a flock-like TiO 2 overlayer on BiZn 2 VO 6 particles after the TiCl 4 treatment. The photocurrent enhancement by the TiCl 4 pre-treatment is thus mainly attributed to the necking effect of the flock-like TiO 2 overlayer, which facilitates the transport of photogenerated electrons within the BiZn 2 VO 6 particulate thin film electrode.

  18. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    Science.gov (United States)

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  19. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors.

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-09

    Atomic-layer-deposition (ALD) of In 2 O 3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H 2 O 2 ) as precursors. The In 2 O 3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (E g ) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In 2 O 3 , and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In 2 O 3 thin-film transistors with an Al 2 O 3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm 2 /V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 10 7 . This was ascribed to passivation of oxygen vacancies in the device channel.

  20. Influence of bismuth doping on the structural and optical properties of ZnS thin films and nanopowders

    International Nuclear Information System (INIS)

    Mageswari, S; Palanivel, Balan; Dhivya, L; Murugan, Ramaswamy

    2013-01-01

    Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) thin films and nanopowders synthesized by the simple chemical bath deposition technique were characterized using x-ray diffraction (XRD), scanning electron microscope, energy dispersive x-ray analysis, an atomic force microscope (AFM) and ultraviolet visible (UV–Vis) and photoluminescence spectroscopy. XRD analysis revealed a sphalerite structure for Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) thin films. However, the XRD pattern of Zn (1−x/2) Bi x/3 S (x = 0.09) nanopowder revealed the co-existence of both sphalerite and hexagonal (wurtzite) phases. The crystallite size of Zn (1−x/2) Bi x/3 S (x = 0, 0.03, 0.09) nanopowders were found to be in the range of 2–4 nm. AFM studies revealed that the film quality of Zn (1−x/2) Bi x/3 S (x = 0.09) was relatively good compared to other films. A notable decrease in the band gap of both the thin films and nanopowders were observed with incorporation of Bi 3+ in ZnS. These results indicate that Bi doped ZnS can be used to enhance the photocatalytic H 2 -production activity under visible and UV light. (paper)

  1. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  2. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  3. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  4. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  5. Thin pentacene layer under pressure

    International Nuclear Information System (INIS)

    Srnanek, R.; Jakabovic, J.; Kovac, J.; Donoval, D.; Dobrocka, E.

    2011-01-01

    Organic semiconductors have got a lot of interest during the last years, due to their usability for organic thin film transistor. Pentacene, C 22 H 14 , is one of leading candidates for this purpose. While we obtain the published data about pressure-induced phase transition only on single crystal of pentacene we present pressure-induced phase transition in pentacene thin layers for the first time. Changes in the pentacene structure, caused by the pressure, were detected by micro-Raman spectroscopy. Applying the defined pressure to the pentacene layer it can be transformed from thin phase to bulk phase. Micro-Raman spectroscopy was found as useful method for detection of changes and phases identification in the pentacene layer induced by mechanical pressure. Such a pressure-induced transformation of pentacene thin layers was observed and identified for the first time. (authors)

  6. Exfoliated thin Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying; Jia, Yulong; Wang, Lina [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Min [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Bi, Yingpu, E-mail: yingpubi@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Qi, Yanxing, E-mail: qiyx@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China)

    2016-12-30

    Highlights: • Thin Bi{sub 2}MoO{sub 6} nanosheets were prepared by microwave assisted ultrasonic separation. • The thin Bi{sub 2}MoO{sub 6} nanosheets could be more favorable to charge shift and separation. • The WO{sub 3}/thin Bi{sub 2}MoO{sub 6} exhibits superior photoelectric activity than WO{sub 3}/Bi{sub 2}MoO{sub 6} film. • The efficient photoelectric property results from facilitated charge separation. - Abstract: Thin Bi{sub 2}MoO{sub 6} nanosheets are obtained by a microwave-assisted ultrasonic separation process. After exfoliation, the thinner and uniform nanosheets with a thickness of about 10 nm were obtained. The exfoliated nanosheets would provide many amazing functionalities such as high electron mobility and quantum Hall effects. Therefore, thin Bi{sub 2}MoO{sub 6} supported on WO{sub 3} electrode (WO{sub 3}/thin Bi{sub 2}MoO{sub 6}) exhibits facilitated charge separation than pure WO{sub 3} film and the un-exfoliated Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode (WO{sub 3}/Bi{sub 2}MoO{sub 6}). As a result, WO{sub 3}/thin Bi{sub 2}MoO{sub 6} shows remarkably stable photocurrent density of 2.2 mA/cm{sup 2} at 0.8 V{sub SCE} in 0.1 M Na{sub 2}SO{sub 4} which is higher than that of that of WO{sub 3} (1.1 mA/cm{sup 2}) and WO{sub 3}/Bi{sub 2}MoO{sub 6} (1.5 mA/cm{sup 2}).

  7. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  8. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A. K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-04-13

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  9. Two-dimensional models for the optical response of thin films

    Science.gov (United States)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  10. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  11. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byunggu; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2017-01-15

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  12. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    International Nuclear Information System (INIS)

    Kim, Byunggu; Leem, Jae-Young

    2017-01-01

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  13. Studies of metallic species incorporation during growth of SrBi2Ta2O9 films on YBa2Cu3O7-x substrates using mass spectroscopy of recoiled ions

    International Nuclear Information System (INIS)

    Dhote, A. M.

    1999-01-01

    The incorporation of metallic species (Bi, Sr and Ta) during the growth of layered perovskite SrBi 2 Ta 2 O 9 (SBT) on a-axis oriented YBa 2 Cu 3 O 7-x (YBCO) conducting oxide substrates has been investigated using in situ low energy mass spectroscopy of recoiled ions (MSRI). This technique is capable of providing monolayer-specific surface information relevant to the growth of single and multi-component thin films and layered heterostructures. The data show a temperature dependence of metallic species incorporation during co-deposition of Sr, Bi and Ta on YBCO surfaces. At high temperatures (400 400 C. SBT films grown at temperatures ≤ 400 C and annealed in oxygen or air at 800 C exhibit a polycrystalline structure with partial a-axis orientation

  14. Adsorbate-induced modification of electronic band structure of epitaxial Bi(111) films

    Energy Technology Data Exchange (ETDEWEB)

    Matetskiy, A.V., E-mail: mateckij@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Bondarenko, L.V.; Tupchaya, A.Y.; Gruznev, D.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Eremeev, S.V. [Institute of Strength Physics and Materials Science, 634021 Tomsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-06-01

    Highlights: • Modification of electronic properties of ultrathin Bi films by adsorbates is demonstrated. • Due to electron doping from Cs adatoms, surface-state bands shift to higher binding energies. • As a result, only electron pockets are left in the Fermi map. • Tin acts as an acceptor dopant for Bi, shifting Fermi level upward. • As a result, only hole pockets are left in the Fermi map. - Abstract: Changes of the electronic band structure of Bi(111) films on Si(111) induced by Cs and Sn adsorption have been studied using angle-resolved photoemission spectroscopy and density functional theory calculations. It has been found that small amounts of Cs when it presents at the surface in a form of the adatom gas leads to shifting of the surface and quantum well states to the higher binding energies due to the electron donation from adsorbate to the Bi film. In contrast, adsorbed Sn dissolves into the Bi film bulk upon heating and acts as an acceptor dopant, that results in shifting of the surface and quantum well states upward to the lower binding energies. These results pave the way to manipulate with the Bi thin film electron band structure allowing to achieve a certain type of conductivity (electron or hole) with a single spin channel at the Fermi level making the adsorbate-modified Bi a reliable base for prospective spintronics applications.

  15. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  16. Stress reduction in tungsten films using nanostructured compliant layers

    International Nuclear Information System (INIS)

    Karabacak, Tansel; Picu, Catalin R.; Senkevich, Jay J.; Wang, G.-C.; Lu, T.-M.

    2004-01-01

    The residual stress in thin films is a major limiting factor for obtaining high quality films. We present a strategy for stress reduction in sputter deposited films by using a nanostructured compliant layer obtained by the oblique angle deposition technique, sandwiched between the film and the substrate. The technique is all in situ, does not require any lithography steps, and the nanostructured layer is made from the same material as the deposited thin film. By using this approach we were able to reduce stress values by approximately one order of magnitude in sputter deposited tungsten films. These lower stress thin films also exhibit stronger adhesion to the substrate, which retards delamination buckling. This technique allows the growth of much thicker films and has enhanced structural stability. A model is developed to explain the stress relief mechanism and the stronger adhesion associated with the presence of the nanostructured compliant layer

  17. Growth of Cu thin films by the successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Lindroos, S.; Ruuskanen, T.; Ritala, M.; Leskelae, M.

    2004-01-01

    Copper thin films were grown on reduced indium tin oxide, molybdenum and polymer substrates using successive ionic layer adsorption and reaction (SILAR) method. Copper films were grown sequentially in a controlled way using simple copper salt and basic solution of formaldehyde as precursors. The copper films were polycrystalline with no preferred orientation as characterised by X-ray diffraction. On all substrates, the growth was clearly island growth in the beginning but after the whole surface was covered, the growth was more homogeneous

  18. Experimental formation of a fractional vortex in a superconducting bi-layer

    Science.gov (United States)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  19. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  20. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  1. Thin film ionic conductors based on cerium oxide

    International Nuclear Information System (INIS)

    Haridoss, P.; Hellstrom, E.; Garzon, F.H.; Brown, D.R.; Hawley, M.

    1994-01-01

    Fluorite and perovskite structure cerium oxide based ceramics are a class of materials that may exhibit good oxygen ion and/or protonic conductivity. The authors have successfully deposited thin films of these materials on a variety of substrates. Interesting orientation relationships were noticed between cerium oxide films and strontium titanate bi-crystal substrates. Near lattice site coincidence theory has been used to study these relationships

  2. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  3. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  4. Bi-epitaxial tilted out-of-plane YBCO junctions on NdGaO{sub 3} substrates with YSZ seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P.B. (Institute of Physics and Technology RAS, Moscow (Russian Federation)); Mozhaev, J.E.; Bindslev Hansen, J.; Jacobsen, C.S. (Technical Univ. of Denmark, Dept. of Physics, Kgs. Lyngby (Denmark)); Kotelyanskil, I.M.; Luzanov, V.A. (Institute of Radio Engineering and Electronics RAS, Moscow (Russian Federation)); Benacka, S.; Strbik, V. (Institute of Electrical Engineering SAS, Bratislava (SK))

    2008-10-15

    Bi-epitaxial junctions with out-of plane tilt of the c axis were fabricated of YBCO superconducting thin films on NdGaO{sub 3} substrates with different miscut angles. Bi-epitaxial growth was provided by implementation of an Y:ZrO{sub 2} seeding layer on a certain part of the substrate. Junctions with different orientation of the bi-epitaxial boundaries were fabricated, their DC electrical properties were studied as a function of the boundary orientation angle. The junctions showed extremely high critical current densities for all tested miscut angles and bi-epitaxial boundary orientations (about 105 A/cm2 at 77 K and up to 106 A/cm2 at 4.2 K). The dependence of critical current density on the bi-epitaxial boundary orientation angle may be explained as an effect of a d-wave pairing mechanism in the HTSC with the simple Sigrist-Rice model. The studied boundaries may be considered as model structures for the grain boundaries in the coated conductors. (au)

  5. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  6. Pr and Gd co-doped bismuth ferrite thin films with enhanced

    Indian Academy of Sciences (India)

    Pr and Gd co-modified Bi0.95−PrGd0.05FeO3 ( = 0.00, 0.05, 0.10) (BPGFO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates were prepared by a sol-gel together with spin coating technique. A detailed study of electrical and magnetic properties of these thin films is reported. X-ray diffraction analysis shows that, with an ...

  7. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application

    International Nuclear Information System (INIS)

    Zhang Zhonghai; Hossain, Md. Faruk.; Arakawa, Takuya; Takahashi, Takakazu

    2010-01-01

    In this paper, various zinc oxide (ZnO) films are deposited by a versatile and effective dc-reactive facing-target sputtering method. The ratios of Ar to O 2 in the mixture gas are varied from 8:2 to 6:4 at a fixed sputtering pressure of 1.0 Pa. X-ray diffraction, spectrophotometer and scanning electron microscope are used to study the crystal structure, optical property and surface morphology of the as-deposited films. The Pt ultra-thin layer, ∼2 nm thick, is deposited on the surface of ZnO film by dc diode sputtering with a mesh mask controlling the coated area. The photocatalytic activity of ZnO films and Pt-ZnO films is evaluated by decomposition of methanol under UV-vis light irradiation. The variation of photocatalytic activity depends on the ratios of Ar to O 2 , which is mainly attributed to the different grain size and carrier mobility. Though the pure ZnO film normally shows a low gas-phase photocatalytic activity, its activity is significantly enhanced by depositing Pt ultra-thin layer.

  8. Unraveling the magnetic properties of BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinai, G.; Petrov, A. Yu.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Khare, A. [CNR-SPIN Napoli and Dipartimento di Fisica, Università di Napoli “Federico II,” I-80126 Napoli (Italy); Department of Physics, Sungkyunkwan University, Suwon 440 746 (Korea, Republic of); Rana, D. S. [Department of Physics, Indian Institute of Science Education and Research Bhopal, Govindpura, Bhopal 462023 (India); Di Gennaro, E.; Scotti di Uccio, U.; Miletto Granozio, F. [CNR-SPIN Napoli and Dipartimento di Fisica, Università di Napoli “Federico II,” I-80126 Napoli (Italy); Gobaut, B. [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Moroni, R. [CNR-SPIN, Corso Perrone 24, I-16152 Genova (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Department of Physics, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2015-11-01

    We investigate the structural, chemical, and magnetic properties on BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO{sub 3} (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  9. Electrical behaviors of c-axis textured 0.975Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–0.025BiCoO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feifei [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Yang, Bin, E-mail: binyang@hit.edu.cn [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Shantao, E-mail: stzhang@mail.nju.edu.cn [Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Danqing [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150080 (China); Wu, Fengmin [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Wang, Dali [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150080 (China); Cao, Wenwu [Department of Physics, Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080 (China); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-10-15

    The thin films of 0.975Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–0.025BiCoO{sub 3} (BNT-BC) have been successfully deposited on (1 1 1) Pt/Ti/SiO{sub 2}/Si (1 0 0) substrates by pulse laser deposition and their ferroelectric, dielectric, local piezoelectric properties and temperature dependent leakage current behaviors have been investigated systematically. X-ray diffraction indicates the films are single phased and c-axis oriented. The thin films exhibit ferroelectric polarization–electric field (P–E) hysteresis loop with a remnant polarization (P{sub r}) of 10.0 μC/cm{sup 2} and an excellent fatigue resistance property up to 5 × 10{sup 9} switching cycles. The dielectric constant and dielectric loss are 500 and 0.22 at 1 kHz, respectively. The tunability of the dielectric constant is about 12% at 20 kV/mm. The piezo-phase response hysteresis loop and piezo-amplitude response butterfly curve are observed by switching spectroscopy mode of piezoelectric force microscope (SS-PFM) and the piezoelectric coefficient d{sub 33} is about 19–63 pm/V, which is comparable to other reports. The dominant leakage current conduction mechanisms are ohmic conduction at low electric field and Schottky emission at high electric field, respectively. Our results may be helpful for further work on BNT-based thin films with improved electric properties.

  10. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity.

    Science.gov (United States)

    Gunasekera, Bhagya; Abou Diwan, Charbel; Altawallbeh, Ghaith; Kalil, Haitham; Maher, Shaimaa; Xu, Song; Bayachou, Mekki

    2018-03-07

    Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.

  11. Magnetic characterisation of longitudinal thin film media

    International Nuclear Information System (INIS)

    Dova, P.

    1998-09-01

    Magnetic characterisation techniques, as applied to longitudinal thin film media, have been investigated. These included the study of the differentials of the remanence curves, the delta-M plot and the examination of the critical volumes. Several thin film structures, which are currently used or are being considered for future media applications, have been examined using these techniques. Most of the films were Co-alloys with the exception of a set of Barium ferrite films. Both monolayer and multilayer structures were studied. It was found that the study of activation volumes provides a better insight into the reversal mechanisms of magnetic media, especially in the case of complex structures such as multilayer films and films with bicrystal microstructure. Furthermore, an evaluation study of different methods of determining critical volumes showed that the method using time dependence measurements and the micromagnetic approach is the most appropriate. The magnetic characteristics of the thin film media under investigation were correlated with their microstructure and, where possible, with their noise performance. Magnetic force microscopy was also used for acquiring quasi-domain images in the ac-demagnetised state. It was found that in all Co-alloy films the dominant intergranular coupling is magnetising in nature, the level of which is governed by the Cr content in the magnetic layer. In the case of laminated media it was found that when non-magnetic spacers are used, the nature of the interlayer coupling depends on the spacer thickness. In double layer structures with no spacer, the top layer replicates the crystallographic texture of the bottom layer, and the overall film properties are a combination of the two layers. In bicrystal films the coupling is determined by the Cr segregation in the grain boundaries. Furthermore, the presence of stacking faults in bicrystal films deteriorates their thermal stability, but can be prevented by improving the epitaxial

  12. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  13. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  14. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  15. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  16. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    Science.gov (United States)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  17. Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R., E-mail: arsagari@gmail.com [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Malm, Jari [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Rahkila, Paavo [Department of Biology of Physical Activity, P.O. Box 35, FIN-40014 University of Jyväskylä (Finland); Hongqiang, Ma [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyväskylä (Finland); Putkonen, Matti [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Beneq Oy, P.O. Box 262, FI-01511 Vantaa (Finland); Karppinen, Maarit [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Whitlow, Harry J.; Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland)

    2013-03-01

    Amorphous Ca–P–O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness R{sub rms} values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on rough metal surfaces with a clear dependence of substrate roughness on the Ca/P atomic ratio of thin films. The in vitro cell-culture studies using MC3T3 mouse osteoblast showed a greater coverage of cells on the surface polished with diamond paste in comparison to rougher surfaces after 24 h culture. No statistically significant difference was observed between Ca–P–O coated and un-coated Ti surfaces for the measured roughness value. The deposited 50 nm thick films did not dissolve during the cell culture experiment. - Highlights: ► Atomic layer deposition of Ca–P–O films on abraded Ti substrate ► Surface analysis using Time-Of-Flight Elastic Recoil Detection Analysis ► Dependence of substrate roughness on the Ca/P atomic ratio of thin films ► An increase in Ca/P atomic ratio with decreasing roughness ► Mouse osteoblast showed greater coverage of cells in polished surface.

  18. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Yu

    2016-07-01

    Full Text Available This paper presents the preparation of high-quality vanadium dioxide (VO2 thermochromic thin films with enhanced visible transmittance (Tvis via radio frequency (RF sputtering and plasma enhanced chemical vapor deposition (PECVD. VO2 thin films with high Tvis and excellent optical switching efficiency (Eos were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58% compared with the pristine samples (λ 650 nm, 43%. This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications.

  20. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  1. Determination of magnetic properties of multilayer metallic thin films

    International Nuclear Information System (INIS)

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  2. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  3. Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles

    Science.gov (United States)

    Jarka, Paweł; Tański, Tomasz; Matysiak, Wiktor; Krzemiński, Łukasz; Hajduk, Barbara; Bilewicz, Marcin

    2017-12-01

    The aim of submitted paper is to present influence of manufacturing parameters on optical properties and surface morphology of composite materials with a polymer matrix reinforced by TiO2 and SiO2 and Bi2O3 nanoparticles. The novelty proposed by the authors is the use of TiO2 and SiO2 and Bi2O3 nanoparticles simultaneously in polymeric matrix. This allows using the combined effect of nanoparticles to a result composite material. The thin films of composite material were prepared by using spin-coating method with various spinning rates from solutions of different concentration of nanoparticles. In order to prepare the spinning solution polymer, Poly(methyl methacrylate) (PMMA) was used as a matrix. The reinforcing phase was the mixture of the nanoparticles of SiO2, TiO2 and B2O3. In order to identify the surface morphology of using thin films and arrangement of the reinforcing phase Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) were used. In order to study the optical properties of the obtained thin films, the thin films of composites was subjected to an ellipsometry analysis. The measurements of absorbance of the obtained materials, from which the value of the band gap width was specified, were carried out using the UV/VIS spectroscopy. The optical properties of obtain composite thin films depend not only on the individual components used, but also on the morphology and the interfacial characteristics. Controlling the participation of three kinds of nanoparticles of different sizes and optical parameters allows to obtaining the most optimal optical properties of nanocomposites and also controlling the deposition parameters allows to obtaining the most optimal surface morphology of nanocomposites.

  4. Numerical studies of temperature profile and hydrodynamic phenomena during excimer laser assisted heteroepitaxial growth of patterned silicon and germanium bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati Roma (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-01-01

    In this manuscript, a 3-D axisymmetric model for the heteroepitaxial growth induced by irradiating thin patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers on Si (100) with pulsed UV-laser radiation, is presented. For reducing optimization steps, an efficient simulation of the laser induced processes that include rapid heating and solidification phenomena in the range of several tenth of nanoseconds, must be performed, if alloy composition and quality has to be adjusted. In this study, the effects of various laser energy densities on different amorphous Si/Ge bi-layer structures has been predicted and adjusted to obtain the desired Ge concentration profiles for applications as sacrificial layers, i.e. a Ge containing film buried under a Si rich surface layer. The numerical model includes the temperature dependent variations of the thermophysical properties and takes the coupled effects of temperature and hydrodynamic phenomena for a Boussinesq fluid, to estimate the element interdiffusion during the process and predicting the concentration profiles.

  5. Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers

    International Nuclear Information System (INIS)

    Picca, Rosaria Anna; Sportelli, Maria Chiara; Hötger, Diana; Manoli, Kyriaki; Kranz, Christine; Mizaikoff, Boris; Torsi, Luisa; Cioffi, Nicola

    2015-01-01

    Highlights: • PSS-capped ZnO NPs were synthesized via a green electrochemical-thermal method • The influence of electrochemical conditions and temperature was studied • Spectroscopic data show that PSS functionalities are retained in the annealed NPs • Nanostructured ZnO improved the performance of P3HT-based thin film transistors - Abstract: ZnO nanoparticles have been prepared via a green electrochemical synthesis method in the presence of a polymeric anionic stabilizer (poly-sodium-4-styrenesulfonate, PSS), and then applied as inorganic component in poly-3-hexyl-thiophene thin-film transistor active layers. Different parameters (i.e. current density, electrolytic media, PSS concentration, and temperature) influencing nanoparticle synthesis have been studied. The resulting nanomaterials have been investigated by transmission electron microscopy (TEM) and spectroscopic techniques (UV-Vis, infrared, and x-ray photoelectron spectroscopies), assessing the most suitable conditions for the synthesis and thermal annealing of nanostructured ZnO. The proposed ZnO nanoparticles have been successfully coupled with a poly-3-hexyl-thiophene thin-film resulting in thin-film transistors with improved performance.

  6. Superconducting thin films of As-free pnictide LaPd{sub 1-x}Sb{sub 2} grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2013-07-01

    We use reactive molecular beam epitaxy as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaPd{sub 1-x}Sb{sub 2} were grown on (100) MgO substrates from elemental sources by simultaneous evaporation of high purity La, Pd and Sb metals by e-gun. LaPd{sub 1-x}Sb{sub 2} belongs to a novel class of pnictide superconductors with a peculiar pnictide square net layer. Previously, we have reported epitaxial growth of isostructural Bi based compounds. The substitution of Bi by Sb leads to thin films with metallic behavior and room temperature resistivity of about 85 μΩ cm. The highest observed transition temperature T{sub c} inLaPd{sub 1-x}Sb{sub 2} is 3.1 K and does not depend on x. We discuss strategies to increase T{sub c} in this pnictide subfamily.

  7. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  8. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  9. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Investigated the optical properties of BiFeO_3 (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO_3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au"9"+ ions at a fluence of 1 × 10"1"2 ions cm"−"2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  10. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  11. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    International Nuclear Information System (INIS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G.; Mankad, Ravin; Haight, Richard; Gunawan, Oki; Mitzi, David B.

    2014-01-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10 19 to 10 20 cm −3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10 19 to 10 14 cm −3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications

  12. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    Science.gov (United States)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-12-01

    Infinite-layer LaNiO2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO2 is isostructural to SrCuO2, the parent compound of high-Tc Sr0.9La0.1CuO2 with Tc = 44 K, and has 3d9 configuration, which is very rare in oxides but common to high-Tc copper oxides. The bulk synthesis of LaNiO2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO2. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  13. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  14. Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers.

    Science.gov (United States)

    Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong

    2017-08-17

    Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.

  15. Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method

    International Nuclear Information System (INIS)

    Yao, Situ; Kamakura, Ryosuke; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2017-01-01

    We have synthesized polycrystalline thin film composed of a single phase of metastable bismuth iron garnet, Bi_3Fe_5O_1_2, on a fused silica substrate, one of the most widely utilized substrates in the solid-state electronics, by using mist chemical vapor deposition (mist CVD) method. The phase purity and stoichiometry are confirmed by X-ray diffraction and Rutherford backscattering spectrometry. The resultant thin film shows a small surface roughness of 3.251 nm. The saturation magnetization at room temperature is 1200 G, and the Faraday rotation angle at 633 nm reaches −5.2 deg/μm. Both the magnetization and the Faraday rotation angles are somewhat higher than those of polycrystalline BIG thin films prepared by other methods. - Highlights: • Thin film of polycrystalline Bi_3Fe_5O_1_2 was prepared by the mist CVD method. • Optimized conditions were found for the synthesis of single phase of Bi_3Fe_5O_1_2. • The Faraday rotation angle at 633 nm is –5.2 deg/μm at room temperature. • The Faraday rotation is interpreted by the electronic transitions of Fe"3"+ ions.

  16. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition

    NARCIS (Netherlands)

    O'Donoghue, R.; Rechmann, J.; Aghaee, M.; Rogalla, D.; Becker, H.-W.; Creatore, M.; Wieck, A.D.; Devi, A.P.K.

    2017-01-01

    Herein we describe an efficient low temperature (60–160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga2O3) thin films using hexakis(dimethylamido)digallium [Ga(NMe2)3]2 with oxygen (O2) plasma on Si(100). The use of O2 plasma was found to have a significant

  17. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  18. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  19. The measuring technique developed to evaluate the thermal diffusivity of the multi-layered thin film specimens

    Directory of Open Access Journals (Sweden)

    Li Tse-Chang

    2017-01-01

    Full Text Available In the present study, the thermal diffusivities of the Al, Si and ITO films deposited on the SUS304 steel substrate are evaluated via the present technique. Before applying this technique, the temperature for the thin film of the multi-layered specimen is developed theoretically for the one- dimensional steady heat conduction in response to amplitude and frequency of the periodically oscillating temperature imposed by a peltier placed beneath the specimen's substrate. By the thermal-electrical data processing system excluding the lock-in amplifier, the temperature frequency a3 has been proved first to be independent of the electrical voltage applied to the peltier and the contact position of the thermocouples. The experimental data of phase difference for three kinds of specimen are regressed well by a straight line with a slope. Then, the thermal diffusivity of the thin film is thus determined if the slope value and the film- thickness are available. In the present arrangements for the thermocouples, two thermal diffusivity values are quite close each other and valid for every kind of specimen. This technique can provide an efficient, low-cost method for the thermal diffusivity measurements of thin films.

  20. Study on the Preparation and Properties of Colored Iron Oxide Thin Films

    International Nuclear Information System (INIS)

    Zhao Xianhui; Li Changhong; Liu Qiuping; He Junjing; Wang Hai; Liang Song; Duan Yandong; Liu Su

    2013-01-01

    Colored iron oxide thin films were prepared using Sol-gel technique. The raw materials were tetraethyl orthosilicate (TEOS), etoh ehanol (EtOH), iron nitrate, and de-ionized water. Various properties were measured and analysed, including the colour of thin films, surface topography, UV-Visible spectra, corrosion resistance and hydrophobicity. To understand how these properties influenced the structural and optical properties of Fe 2 O 3 thin films, Scanning Electron Microscope (SEM), UV Spectrophotometer and other facilities were employed. Many parameters influence the performance of thin films, such as film layers, added H 2 O content, and the amount of polydimethylsiloxane (PDMS). When the volume ratio of TEOS, EtOH and H 2 O was 15: 13: 1, the quality of Fe(NO 3 ) 3 ·9H 2 O was 6g, and pH value was 3, reddish and uniform Fe 2 O 3 thin films with excellent properties were produced. Obtained thin films possessed corrosion resistance in hydrochloric acid with pH=l and the absorption edge wavelength was ∼350.2nm. Different H 2 O contents could result in different morphologies of Fe 2 O 3 nanoparticles. When 1.5 ml PDMS was added into the Sol, thin films possessed hydrophobiliry without dropping. Coating with different layers, thin films appeared different morphologies. Meanwhile, with the increment of film layers, the absorbance increased gradually.

  1. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Craciun, V.; Singh, R. K.

    2000-01-01

    Ba 0.5 Sr 0.5 TiO 3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (∼1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO 3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer. (c) 2000 American Institute of Physics

  2. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    Science.gov (United States)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  3. Epitaxial growth of topological insulator Bi{sub 2}Se{sub 3} film on Si(111) with atomically sharp interface

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Namrata [Department of Electrical and Computer Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Kim, Yong Seung [Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Edrey, Eliav; Brahlek, Matthew; Horibe, Yoichi [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Iida, Keiko; Tanimura, Makoto [Research Department, Nissan Arc, Ltd. Yokosuka, Kanagawa 237-0061 (Japan); Li Guohong; Feng Tian; Lee, Hang-Dong; Gustafsson, Torgny; Andrei, Eva [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Oh, Seongshik, E-mail: ohsean@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 (United States)

    2011-10-31

    Atomically sharp epitaxial growth of Bi{sub 2}Se{sub 3} films is achieved on Si(111) substrate with molecular beam epitaxy. Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi{sub 2}Se{sub 3} films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi{sub 2}Se{sub 3} and Si substrate, as verified by reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM) and X-ray diffraction. The lattice constant of Bi{sub 2}Se{sub 3} is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi{sub 2}Se{sub 3} film down to the first quintuple layer without any second phase or an amorphous layer.

  4. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  5. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Eddaoudi, Mohamed

    2017-01-01

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  6. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films.

    Science.gov (United States)

    Hahn, Nathan T; Hoang, Son; Self, Jeffrey L; Mullins, C Buddie

    2012-09-25

    Bismuth oxy-iodide is a potentially interesting visible-light-active photocatalyst; yet there is little research regarding its photoelectrochemical properties. Herein we report the synthesis of BiOI nanoplatelet photoelectrodes by spray pyrolysis on fluorine-doped tin oxide substrates at various temperatures. The films exhibited n-type conductivity, most likely due to the presence of anion vacancies, and optimized films possessed incident photon conversion efficiencies of over 20% in the visible range for the oxidation of I(-) to I(3)(-) at 0.4 V vs Ag/AgCl in acetonitrile. Visible-light photons (λ > 420 nm) contributed approximately 75% of the overall photocurrent under AM1.5G illumination, illustrating their usefulness under solar light illumination. A deposition temperature of 260 °C was found to result in the best performance due to the balance of morphology, crystallinity, impurity levels, and optical absorption, leading to photocurrents of roughly 0.9 mA/cm(2) at 0.4 V vs Ag/AgCl. Although the films performed stably in acetonitrile, their performance decreased significantly upon extended exposure to water, which was apparently caused by a loss of surface iodine and subsequent formation of an insulating bismuth hydroxide layer.

  7. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  8. Anisotropy and vortex behaviour in BiSrCaCuO thin films and multilayers probed by columnar pinning centers

    International Nuclear Information System (INIS)

    Raffy, H.; Murrills, C.D.; Pomar, A.; Stiufiuc, G.; Stiufiuc, R.; Li, Z.Z.

    2006-01-01

    In this paper we review typical mixed state transport results obtained on a variety of Bi 2 Sr 2 Ca n-1 Cu n O y thin films and artificial multilayers, which allowed us to cover the range from low to high anisotropy. The vortex behaviour, 2D or 3D, probed by the pinning properties of columnar defects, is shown to be highly dependant on the anisotropy, and therefore on the microstructure of the system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  10. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  11. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  12. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    In a system of thin alternating layers of superconductors and insulators the equations describing static and dynamic fluxon solutions are derived. The approach, represented by a useful compact matrix form, is intended to describe systems fabricated for example of niobium or niobium-nitride thin...... films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...

  13. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response.

    Science.gov (United States)

    Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth

    2015-07-21

    Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

  14. Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Wei Yaowei; Liu Hao; Sheng Ouyang; Liu Zhichao; Chen Songlin; Yang Liming

    2011-01-01

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO 2 /Al 2 O 3 films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm Φ samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO 2 /Al 2 O 3 films, the LIDTs were 6.73±0.47 J/cm 2 and 6.5±0.46 J/cm 2 at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.

  15. Effect of active layer deposition temperature on the performance of sputtered amorphous In—Ga—Zn—O thin film transistors

    International Nuclear Information System (INIS)

    Wu Jie; Shi Junfei; Dong Chengyuan; Chen Yuting; Zhou Daxiang; Hu Zhe; Zhan Runze; Zou Zhongfei

    2014-01-01

    The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as ''optimized-annealed'' are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150 °C while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature. (semiconductor devices)

  16. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    .... Utilizing a coplanar device design we successfully designed, fabricated, characterized, and optimized a high performance Ta2O5 thin film passive buffer layer on Si substrates, which will allow...

  17. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    International Nuclear Information System (INIS)

    Pan Feng; Qian Xian-Rui; Huang Li-Zhen; Wang Hai-Bo; Yan Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5‴-bis(4-fluorophenyl)-2,2':5',2″:5″,2‴-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F 16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit, which are fabricated at different substrate temperatures, as a buffer layer. The highest mobility of 4.08cm 2 /Vs is achieved using a F 16 CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature. Compared with the random small grain-like morphology of the room-temperature buffer layer, the high-temperature organic heterojunction presents a large-sized fiber-like film morphology, resulting in an enhanced conductivity. Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained. (cross-disciplinary physics and related areas of science and technology)

  18. Characterization of thin films with synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    Komiya, Satoshi

    2005-01-01

    Many studies about thin films by using synchrotron radiation in SPring-8 were reviewed. Structural analyses and assessment of thin films used for electronics, and also assessment of insulating films for the gate used in LSI were carried out. Film thickness, unevenness, and density of SiO 2 films in order of nanomer thickness were determined by interference fringes of x-ray reflection curves. The interface structure of (SiO 2 /Si) films was studied by x-ray crystal truncation rod scattering, and the correlation between leakage character depending on nitrogen concentration and interface structure was clarified on SiON film. The oxygen concentration in HfO films in nanometer thickness was determined by x-ray fluorescence analysis, and the interface reaction for HfO 2 /SiO 2 was clearly observed by electron spectroscopy. The structure of amorphous thin films with large dielectric constant was analyzed by x-ray absorption fine structure (XAFS) spectrum. Devices fabricated from multi-layer films showing giant magnetic resistance were developed for hard disk with a large memory. The character of giant magnetic resistance was governed by multi-layer thin film structure piled up by magnetic and nonmagnetic polycrystalline thin metals. For the multi-layer structure, the concentration distribution of constituent elements was determined to the direction of film thickness by x-ray reflection analysis and grazing incident x-ray fluorescence analysis. In the semiconductor laser source, Ga 1-x In x N, used for DVD, the local structure around In ions was studied by XAFS since constituent instability, especially overpopulation of In element, caused the deterioration of lifetime and light emission of the laser. The lattice constant of the light emission layer in InGaAs was measured by x-ray micro-beams. (author)

  19. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: kazuhide.ozeki.365@vc.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Aoki, H. [International Apatite Institute Co., Ltd., 2-12-9, Misaki-cho, Chiyoda-ku, Tokyo 101-0061 (Japan)

    2017-03-01

    Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. A thin titanium (Ti) intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film to the PEEK substrate. The coated films were recrystallized using a hydrothermal treatment to reduce the dissolution of the HA film. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a UV-Vis spectrophotometer. A pull-out test was performed to measure the film-to-substrate adhesion strength, and an immersion test was performed in ultra-pure water. In the XRD patterns of the sputtered film with the Ti intermediate layer on the PEEK substrate, small HA peaks and large Ti peaks were observed. After the hydrothermal treatment, the intensity of the HA peaks increased. The transmittance of the HA films with 5 and 10 nm Ti intermediate layers was > 79% and 68%, respectively, in the visible light wavelength region (400–700 nm) after the hydrothermal treatment. The adhesion strength of the hydrothermally treated HA films increased with decreasing thickness of the Ti intermediate layer, and the strength reached 2.7 MPa with the 5-nm-thick Ti intermediate layer. In the immersion test, the HA film with a 5-nm-thick Ti intermediate layer without hydrothermal treatment exhibited a released Ti concentration of 42.0 ± 2.4 ppb. After hydrothermal treatment, the released Ti concentration decreased to 17.3 ± 1.1 ppb. - Highlights: • Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. • A thin Ti intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film. • The adhesion strength of the HA films with the Ti intermediate layer increased with decreasing thickness of the Ti layer.

  20. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique

    International Nuclear Information System (INIS)

    Ozeki, K.; Masuzawa, T.; Aoki, H.

    2017-01-01

    Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. A thin titanium (Ti) intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film to the PEEK substrate. The coated films were recrystallized using a hydrothermal treatment to reduce the dissolution of the HA film. The films were then characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a UV-Vis spectrophotometer. A pull-out test was performed to measure the film-to-substrate adhesion strength, and an immersion test was performed in ultra-pure water. In the XRD patterns of the sputtered film with the Ti intermediate layer on the PEEK substrate, small HA peaks and large Ti peaks were observed. After the hydrothermal treatment, the intensity of the HA peaks increased. The transmittance of the HA films with 5 and 10 nm Ti intermediate layers was > 79% and 68%, respectively, in the visible light wavelength region (400–700 nm) after the hydrothermal treatment. The adhesion strength of the hydrothermally treated HA films increased with decreasing thickness of the Ti intermediate layer, and the strength reached 2.7 MPa with the 5-nm-thick Ti intermediate layer. In the immersion test, the HA film with a 5-nm-thick Ti intermediate layer without hydrothermal treatment exhibited a released Ti concentration of 42.0 ± 2.4 ppb. After hydrothermal treatment, the released Ti concentration decreased to 17.3 ± 1.1 ppb. - Highlights: • Hydroxyapatite (HA) thin films were coated on a polyetheretherketone (PEEK) substrate using a sputtering technique. • A thin Ti intermediate layer was formed between the HA and the PEEK surface to improve adhesion of the HA film. • The adhesion strength of the HA films with the Ti intermediate layer increased with decreasing thickness of the Ti layer.