WorldWideScience

Sample records for bi-layer films evaporated

  1. Bi-layer functionally gradient thick film semiconducting methane sensors

    Indian Academy of Sciences (India)

    A Banerjee; A K Haldar; J Mondal; A Sen; H S Maiti

    2002-11-01

    Gas sensors based on metal oxide semiconductors like tin dioxide are widely used for the detection of toxic and combustible gases like carbon monoxide, methane and LPG. One of the problems of such sensors is their lack of sensitivity, which to some extent, can be circumvented by using different catalysts. However, highly reactive volatile organic compounds (VOC) coming from different industrial and domestic products (e.g. paints, lacquers, varnishes etc) can play havoc on such sensors and can give rise to false alarms. Any attempt to adsorb such VOCs (e.g. by using activated charcoal) results in sorption of the detecting gases (e.g. methane) too. To get round the problem, bi-layer sensors have been developed. Such tin oxide based functionally gradient bi-layer sensors have different compositions at the top and bottom layers. Here, instead of adsorbing the VOCs, they are allowed to interact and are consumed on the top layer of the sensors and a combustible gas like methane being less reactive, penetrates the top layer and interacts with the bottom layer. By modifying the chemical compositions of the top and bottom layers and by designing the electrode-lead wire arrangement properly, the top layer can be kept electrically shunted from the bottom layer and the electrical signal generated at the bottom layer from the combustible gas is collected. Such functionally gradient sensors, being very reliable, can find applications in domestic, industrial and strategic sectors.

  2. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  3. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam, E-mail: mmohri@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  4. Composite bi-layered erodible films for potential ocular drug delivery.

    Science.gov (United States)

    Boateng, J S; Popescu, A M

    2016-09-01

    Bi-layered hydroxypropylmethylcellulose and Eudragit based films were formulated as potential ocular drug delivery systems using chloramphenicol as a model antibiotic. Films were plasticized with polyethylene glycol 400 present in the Eudragit layer or both Eudragit and hydroxypropylmethylcellulose layers, and loaded with chloramphenicol (0.5% w/v in solution) in the hydroxypropylmethylcellulose layer. The weight, thickness and folding endurance of the optimized formulations were measured and further characterised for transparency, tensile, mucoadhesive, swelling and in vitro drug dissolution properties. The physical form of chloramphenicol within the films was evaluated using differential scanning calorimetry (DSC), and X-ray diffraction (XRD), complimented with scanning electron microscopy and energy dispersive X-ray spectroscopy. Fourier transform infrared spectroscopy was used to assess the interactions between the drug and the film components and confirm chloramphenicol's presence within the sample. Optimum films showed high transparency (≥80% transmittance), ease of peeling from Petri dish and folding endurance above 250. Average thickness was lower than contact lenses (0.4-1mm), confirming them as thin ocular films. The tensile properties showed a good balance between toughness and flexibility, and mucoadhesivity showed that they could potentially adhere to the ocular surface for prolonged periods. The drug loaded films showed swelling capacity that was greater than 300% of their original weight. The physical form of chloramphenicol within the films was amorphous (DSC and XRD) whilst in vitro drug dissolution showed sustained drug release from the films for four hours, before complete erosion. The chloramphenicol loaded films represent a potential means of treating common eye infections. PMID:27214785

  5. Performance enhancement of thin-film ceramic electrolyte fuel cell using bi-layered yttrium-doped barium zirconate

    International Nuclear Information System (INIS)

    A thin-film yttrium-doped barium zirconate comprised of two distinct layers with different porosity was fabricated by pulsed laser deposition method for a low-temperature solid oxide fuel cell electrolyte to enhance electrode reactions and suppress electric short-circuit problem simultaneously. At 250 °C, the peak power density of bi-layer electrolyte fuel cell was ∼ 2 mW/cm2, which is ∼ 56% higher than that of single-layer electrolyte fuel cell due to significant reduction of cathodic activation loss. A set of materials characterizations revealed that the differences in compositions and micro-structures at the electrolytes accounts for the improved performance. - Highlights: • Bi-layer thin-film electrolyte was fabricated with pulsed laser deposition method. • Electrochemical performance was investigated at 250 °C. • The porous layer at the cathode surface improved oxygen reduction reaction. • Compositional and structural properties were examined with ex situ characterizations

  6. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Science.gov (United States)

    Liu, Po-Tsun; Chang, Chih-Hsiang; Chang, Chih-Jui

    2016-06-01

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO2 backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  7. Evaporated VOx Thin Films

    Science.gov (United States)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  8. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    Science.gov (United States)

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C. PMID:27455680

  9. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  10. Cross-sectional X-ray nano-diffraction and -reflectivity analysis of multilayered AlTiN–TiSiN thin films: Correlation between residual strain and bi-layer period

    International Nuclear Information System (INIS)

    A multi-layered AlTiN–TiSiN thin film with a bi-layer period of ∼6 nm is characterized by cross-sectional synchrotron X-ray nano-diffraction and -reflectivity using an X-ray beam size of 250 × 350 nm2. The complementary approach allows for simultaneous determining gradients of residual strains and bi-layer thickness along the film depth and demonstrates a correlation between them. The observed dependency allows for a residual strain gradient design in multilayered thin films

  11. Optical behavior of the conjugated polymer MEH-PPV thin films stretched in bi-layer dwetting by an unstable layer

    Science.gov (United States)

    Chen, Po-Tsun; Yang, Arnold C.-M.

    2012-02-01

    Molecular packing and chain conformation play important roles in the optoelectronic performance of conjugated polymer thin films. It has been shown that by virtue of stretching via dewetting, the photoluminescence (PL) efficiencies of rarefied MEH-PPV thin films may be dramatically enhanced. To result similar effects in the stable non-diluted pristine MEH-PPV thin films, bi-layer dewetting was attempted in samples of MEH-PPV thin films (˜7nm) covered by one layer of polystyrene (PS) (˜40nm) that dewetted in toluene vapor to form droplets (height ˜300 nm) and ultrathin residual layer (˜3nm) on the substrate. The instability was initiated from the PS layer in which small pinholes first emerged upon the intake of the solvent vapor. The pinholes then expanded and deepened into the underlying MEH-PPV, forcing the conjugated film to dewet. As a result of the stretching induced by the dewetting, the PL peak blue-shifted 20 nm to 540 nm and the intensity was enhanced around 10 times. Revealed by the position-sensitive confocal PL data, the huge enhancement came from both the droplet and residual layer, caused by molecular separation and stretching. Electroluminescence devices are being made based on these stretched MEH-PPV films.

  12. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  13. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  14. Synthesis of mono- and bi-layer MFI zeolite films on macroporous alumina tubular supports: Application to nanofiltration

    Science.gov (United States)

    Said, Ali; Limousy, Lionel; Nouali, Habiba; Michelin, Laure; Halawani, Jalal; Toufaily, Joumana; Hamieh, Tayssir; Dutournié, Patrick; Daou, T. Jean

    2015-10-01

    This work is dedicated to the development of MFI-type structure zeolite films (single-layer or bilayer) on the internal layer of a specific macroporous alumina tubular support for nanofiltration applications. The bottom MFI layer was obtained by direct hydrothermal synthesis while a secondary growth method was used for the top MFI layer. A complete characterization of the obtained MFI membranes (single-layer or bilayer) is proposed using various techniques, such as X-ray diffraction, scanning electron microscopy, mercury porosimetry and nitrogen sorption measurements. Dense and highly crystallized films of MFI-type structure zeolite were obtained for both single-layer and bilayer MFI films. The total film thickness were around 7.1±0.5 μm and 14.5±1 μm for single-layer and bilayer MFI films respectively. The Si/Al molar ratio of the MFI films varied between 185 and 305 for single-layer and bilayer MFI films respectively. The hydraulic permeability of the tubular MFI membrane was achieved by the filtration of pure water. The hydraulic permeability of the single-layer and bilayer MFI membranes decreased rapidly at the beginning of the conditioning process, and stabilized at 1.08×10-14 m3 m-2 and 1.02×10-15 m3 m-2 after 15 h and the rejection rates of neutral solute (Vb 12) are 10% and 50% for the single-layer and bilayer MFI films respectively.

  15. Twisted bi-layer graphene: microscopic rainbows

    OpenAIRE

    Campos-Delgado, J.; Algara-Siller, G.; Santos, C. N.; Kaiser, U.; Raskin, J.-P.

    2013-01-01

    Twisted bi-layer graphene (tBLG) has recently attracted interest due to the peculiar electrical properties that arise from its random rotational configurations. Our experiments on CVD-grown graphene from Cu foil and transferred onto Si substrates, with an oxide layer of 100 nm, reveal naturally-produced bi-layer graphene patches which present different colorations when shined with white light. In particular yellow-, pink- and blue- colored areas are evidenced. Combining optical microscopy, Ra...

  16. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Science.gov (United States)

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  17. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  18. Evaporation-driven instability of the precorneal tear film.

    Science.gov (United States)

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink.

  19. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  20. Experimental research conception of thin liquid film boiling and evaporation

    Directory of Open Access Journals (Sweden)

    Feoktistov Dmitry V.

    2015-01-01

    Full Text Available The concept of conducting the experiments for studying thin liquid film boiling and evaporation was developed. Implementing this conception on developed experimental setup, we will obtain the data on the change of liquid film thickness in thermosiphon and temperature distribution in the liquid film, also the evaporation rate of liquid film and heat transfer coefficient change will be calculated using the measured values in the experiment. Three series of preliminary experiment were conducted. As a result, the main influencing factors and their values were defined.

  1. Film evaporation MEMS thruster array for micropropulsion

    Science.gov (United States)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue

  2. A Bi-layer Composite Film Based on TiO2 Hollow Spheres, P25, and Multi-walled Carbon Nanotubes for Efficient Photoanode of Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Putao Zhang; Zhiqiang Hu; Yan Wang; Yiying Qin; Wenqin Li; Jinmin Wang

    2016-01-01

    A bi-layer photoanode for dye-sensitized solar cell (DSSC) was fabricated, in which TiO2 hollow spheres (THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes (MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the pho-toanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13%, which is 14.25%higher than that of pure P25 DSSC. Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dye-sensitized solar cells.

  3. Interfacial Evaporation of Falling Liquid Films with Wall Heating

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰

    2001-01-01

    The interfacial evaporation of falling water films with wall heating was experimentally studied andanalyzed. The results presented in this paper showed that the capillary-induced interfacial evaporation playedan important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux andsomewhat lower than that without wall heating for impure fluids such as water-air system. The thermodynamicanalysis conducted gave a theoretical basis for the experimental observations. The effective capillary radiuswas correlated with the mass flow rate. The experimental results and analysis showed that the interfacialevaporation should be taken into account in the study of falling liquid film heat transfer.``

  4. Dewetting of evaporating thin films over nanometer-scale topographies

    Science.gov (United States)

    Akbarzadeh, A. M.; Moosavi, A.; Moghimi Kheirabadi, A.

    2014-07-01

    A lubrication model is used to study dewetting of an evaporating thin film layer over a solid substrate with a nanometer-scale topography. The effects of the geometry of the topography, the contact angle, the film thickness, and the slippage on the dewetting have been studied. Our results reveal that the evaporation enhances the dewetting process and reduces the depinning time over the topography. Also it is shown that the depinning time is inversely proportional to the slippage and increasing the contact angle may considerably reduce the depinning time, while the film thickness increases the depinning time.

  5. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    Pradip Kr Kalita; B K Sarma; H L Das

    2000-08-01

    Thermally evaporated ZnSe thin films deposited on glass substrates within substrate temperatures (s) at 303 K–623 K are of polycrystalline nature having f.c.c. zincblende structure. The most preferential orientation is along [111] direction for all deposited films together with other abundant planes [220] and [311]. The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of preferred orientation in the film are calculated and correlated with s.

  6. CeO{sub 2} thin films by flash evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Duverger, A. [CIFUS, Universidad de Sonora, Sonora (Mexico); Rabdel Ruiz-Salvador, A. [Zeolites Engineering Lab., Fac. Physics-IMRE, Univ. de La Habana, Habana (Cuba); Hernandez-Sanchez, M.P. [DIEES, Fac. Physics-IMRE, Universidad de La Habana, Habana (Cuba); Garcia-Sanchez, M.F.; Rodriguez-Gattorno, G. [Lab. Sensors, IMRE, Univ. de La Habana, Habana (Cuba)

    1997-03-27

    Oxide ion conductors have received special attention during the last 20 years for their applications in high temperature fuel cells and sensors. Cerium oxide based solid electrolytes have one of the lowest activation energies among the fluorite type oxide ion conductors. We present a methodology for obtaining cerium oxide thin films by flash evaporation. The films were characterized using X-ray diffraction, optical absorption, and AC conductivity. The results show the ionic nature of the electrical conductivity

  7. Stability of vertical films of molten glass due to evaporation

    OpenAIRE

    Pigeonneau, Franck; Kocarkova, Helena; Rouyer, Florence

    2012-01-01

    First, we report observations achieved on a gravitationally-driven film drainage with molten glass pointing out a stabilizing effect when temperature is larger than 1250 C. A model to describe the change of surface tension with the film thickness due to the evaporation of oxide species is proposed. A lubrication model is derived taking into account the gradient of surface tension. The final system of equations describing the mass and the momentum conservations is numerically solved by an impl...

  8. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei;

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe...... the densification and stress developments during sintering of tubular bi-layered samples. The correspondence between linear elastic and linear viscous theories is used as a basis for derivation of the model. The developed model is first verified by finite element simulation for sintering of tubular bi-layer system....... Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  9. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  10. Evaporation-driven dewetting of a liquid film

    Science.gov (United States)

    Fourgeaud, L.; Ercolani, E.; Duplat, J.; Gully, P.; Nikolayev, V. S.

    2016-08-01

    We study the dynamics of evaporating ethanol films deposited by a receding liquid meniscus. The films are surrounded by pure vapor in a capillary heated above the saturation temperature. We observe the substrate dewetting with the dewetting ridge in spite of the complete wetting at equilibrium. The dewetting is caused by a high contact angle (˜30∘ ) induced by evaporation. The obtained values agree with a theory proposed earlier. The film shape is measured with both grid deflection technique and interferometry. The phenomenon is convenient to observe inside a capillary with an axial thermal gradient. When the capillary is closed at one end and open at another to a constant pressure reservoir, the meniscus oscillations are known to appear spontaneously. Such a system is the simplest version of an industrial device called a pulsating heat pipe. The effect is general and can be used in any system to control the wetting properties.

  11. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  12. Influence of Marangoni instability on evaporation of the polar liquid film

    Science.gov (United States)

    Gordeeva, Varvara Y.; Lyushnin, Andrey V.

    2013-03-01

    A thin film of an evaporating polar liquid on a solid substrate is investigated within the framework of the lubrication theory. Using linear analysis, we have found that stability of the film depends only on two control parameters: the evaporation and Maranagoni numbers. We demonstrate that the Marangoni effect plays a destabilizing role while evaporation stabilizes the film.

  13. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  14. Optical properties of thermally evaporated cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, D.S.; Vaidya, R.U.; Bhavsar, G.P

    2003-05-26

    Polycrystalline CdTe films have been deposited onto glass substrates at 373 K by vacuum evaporation technique. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 200-2500 nm. The dependence of absorption coefficient, {alpha} on the photon energy have been determined. Analysis of the result showed that for CdTe films of different thicknesses, direct transition occurs with band gap energies in the range 1.45-1.52 eV. Refractive indices and extinction coefficients have been evaluated in the above spectral range. The XRD analysis confirmed that CdTe films are polycrystalline having hexagonal structure. The lattice parameters of thin films are almost matching with the JCPDS 82-0474 data for cadmium telluride.

  15. Multicaloric effect in bi-layer multiferroic composites

    Science.gov (United States)

    Vopson, M. M.; Zhou, D.; Caruntu, G.

    2015-11-01

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ Tcm ≈ Tce). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect.

  16. Multicaloric effect in bi-layer multiferroic composites

    Energy Technology Data Exchange (ETDEWEB)

    Vopson, M. M., E-mail: melvin.vopson@port.ac.uk [Faculty of Science, University of Portsmouth, Portsmouth PO1 3QL (United Kingdom); Zhou, D. [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Caruntu, G. [Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48858 (United States)

    2015-11-02

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ T{sub c}{sup m} ≈ T{sub c}{sup e}). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect.

  17. PREPARATION AND PROPERTIES OF Ni-Cr AND Fe-Cr-Al FILMS BY VACUUM EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    X. W. Shi; Z.Y. Liu; D.C. Zeng; C.M. Li

    2003-01-01

    Ni-Cr and Fe-Cr-Al films deposited on the Al2O3 substrate are studied by a method of vacuum evaporation in this paper. Influence of resistance value on density and evaporation parameters of the films reveals that the resistance of films and the adhesion of films to substrates are determined by the evaporation time and the substrate temperate under the condition of the maximum vacuity of 6.2×10-4 pa, respectively.

  18. Asymmetric co-evaporated Co-Cr films: magnetic parameters and reversal mechanism

    NARCIS (Netherlands)

    Kranenburg, van Herma; Lodder, Cock; Popma, Theo J.A.

    1993-01-01

    The magnetic parameters of co-evaporated Co-Cr films, where Cr was deposited obliquely, are investigated. Process-induced compositional separation enhanced the energy product. When the substrate was rotated during evaporation, the perpendicular characteristics were lost.

  19. Bitumen immobilization of aqueous radwaste by thin-film evaporation

    International Nuclear Information System (INIS)

    In the early 1980s, AECL built a Waste Treatment Centre (WTC) for managing low-level solid and aqueous liquid wastes for converting CANDU wastes. At present, two liquid waste streams are being treated at the WTC. The liquid waste streams are volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis (TRO) membrane technologies. The concentrate produced from the TRO system and the volume-reduced MF backwash solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200-L galvanized steel drums for storage. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200-L drum ranges from 25 to 35%. Encapsulated in the bitumen matrix are a variety of nonradiochemical salts, which comprise the bulk of the total solids that are in the product drum. This report discusses the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Simulated bituminized waste forms were leached in accordance with the ANS/ANSI 16.1 leach test. In this test, the waste form is immersed under water for an extended period of time, and the leachate is periodically removed and chemically analysed. The Leachability index varied between 7 and 9 for the emulsified bitumen waste forms produced at the WTC. Bitumen samples were unconfined and subjected to immersion and frequent leachate replenishment. The results of leach tests will be a lower bound for the performance of the bitumen waste product in an unsaturated environment. The Leachability indexes reported exceeds the USNRC minimum requirement for wasteform criteria. Adding protective overcoats of either Portland cement or oxidized bitumen enhanced the Leachability index. 8 refs., 3 tabs., 6 figs

  20. Development of hydrocolloid Bi-layer dressing with bio-adhesive and non-adhesive properties.

    Science.gov (United States)

    Khan, M Iqbal H; Islam, Jahid M M; Kabir, Wasifa; Rahman, Ataur; Mizan, Maria; Rahman, M Fizur; Amin, Jakia; Khan, Mubarak A

    2016-12-01

    Bio-active bi-layer thin film having both bio-adhesive and non-adhesive end composed of polyvinyl alcohol (PVA) and gelatin/chitosan/polyethylene glycol (PEG) blend was developed for biomedical applications especially as an alternative of advanced tissue scaffold. The developed composite film was subjected to mechanical, thermal and physico-chemical characterization such as tensile strength (TS) and elongation at break (Eb), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), fluid drainage capacity and biocompatibility. Suitable packaging was also selected and stability study and aging test of the composite film were performed after packing. The incorporation of chitosan and PEG into gelatin showed improved mechanical properties of both TS and Eb, which suggested the occurrence of interaction among gelatin, chitosan and PEG molecules in the composite film. The presence of crosslinking as an interaction of above three polymers was also confirmed by FTIR study. Results from the DSC study suggested increased thermal stability after crosslinking. On the other hand, water uptake studies suggested excellent fluid drainage capability and hydro-stability of the composite film. The proposed dressing also showed excellent biocompatibility. Based on the studies related to the performance with confirmed identity, we concluded that our developed bi-layer film is very potential as an ideal wound dressing material. PMID:27612753

  1. Optical properties of rubrene thin film prepared by thermal evaporation

    Science.gov (United States)

    Chen, Liang; Deng, Jin-Xiang; Kong, Le; Cui, Min; Chen, Ren-Gang; Zhang, Zi-Jia

    2015-04-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence. Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835).

  2. Studies on Thin Films of Antimony Vacuum Evaporated from a Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K.L. Chaudhary

    2000-10-01

    Full Text Available A Knudsen-type evaporation source was used for the deposition of thin films of antimony to study their growth and microstructure under different rates of evaporation and substrate temperatures when vacuum evaporated onto air-cleaved KC1, mica, amorphous carbon and doped KCl substrates. The crystallisation of these films on exposure to an electron beam of moderate intensity inside the electron microscope was studied, and the orientations of the crystallised films wrt the substrate were established. It has been concluded that antimony films prepared by this source compare well with those prepared by other sources of vacuum evaporation.

  3. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  4. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  5. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    Institute of Scientific and Technical Information of China (English)

    Duan Chao-Yang; Ma Bin; Wei Fu-Lin; Zhang zong-Zhi; Jin Qing-Yuan

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated.Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L10 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe49Pt51/Fe bi-layers by their exchange coupling.

  6. Optical studies on electron beam evaporated Lithium Triborate films

    Science.gov (United States)

    Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.

  7. Electron diffraction studies on CVD grown bi-layered graphene

    Science.gov (United States)

    Lingam, Kiran; Karakaya, Mehmet; Podila, Ramakrishna; Quin, Haijun; Rao, Apparao; Dept. of Physics and Astronomy, Clemson University, Clemson, SC USA 29634. Team; Advanced Materials Research Laboratories, Clemson University, Anderson, SC USA 29625 Collaboration

    2013-03-01

    Graphene has generated enormous interest in the scientific community due to its peculiar properties like electron mobility, thermal conductivity etc. Several recent reports on exfoliated graphene emphasized the role of layer stacking on the electronic and optical properties of graphene in case of bi-layered and few layered graphene and several synthesis techniques like chemical vapor deposition (CVD) on Copper foils are employed to prepare graphene for applications at a large scale. However, a correlated study pertinent to the stacking order in CVD grown graphene is still unclear. In this work, using a combination of Raman spectroscopy and selected area electron diffraction analysis we analyzed the preferred misorientation angles in a CVD grown bi-layered graphene and also the role of Cu crystal facets on the graphene stacking order will be presented.

  8. STM-induced light emission from vacuum-evaporated gold film

    Indian Academy of Sciences (India)

    J U Ahamed; S Katano; Y Uehara

    2015-09-01

    A vacuum evaporation system has been used to evaporate gold film on glass substrate in order to probe the scanning tunneling microscope-light emission (STM-LE) from the evaporated film. The surface morphology of the evaporated Au film has been checked by atomic force microscope (AFM). In order to estimate the appropriate thickness of the Au film, which is essential for the enhancement of STM-LE in the prism-coupled geometry, a theoretical calculation has been performed. Our theoretical simulation revealed that the light emission from the prism-coupled STM junction is strongly enhanced when the Au film has a thickness of 40 nm. AFM observation also showed that the morphology of the gold films strongly depends on the cleanliness of glass substrates and the deposition temperature. Relatively smooth surface was observed when a 40-nm-thick Au film was evaporated at room temperature on the preannealed glass substrate. Finally, the evaporated films were deposited on the flat bottom of a hemispherical glass prism, and STM-LE from the tip–sample gap into the vacuum (tip-side emission) and into the prism (prism-side emission) were measured. It was found from the experimental results that the prism-side emission is much stronger than the tip-side emission by virtue of the enhancement of the prism-coupled geometry.

  9. Thin Film Mediated Phase Change Phenomena: Crystallization, Evaporation and Wetting

    Science.gov (United States)

    Wettlaufer, John S.

    1998-01-01

    We focus on two distinct materials science problems that arise in two distinct microgravity environments: In space and within the space of a polymeric network. In the former environment, we consider a near eutectic alloy film in contact with its vapor which, when evaporating on earth, will experience compositionally induced buoyancy driven convection. The latter will significantly influence the morphology of the crystallized end member. In the absence of gravity, the morphology will be dominated by molecular diffusion and Marangoni driven viscous flow, and we study these phenomena theoretically and experimentally. The second microgravity environment exists in liquids, gels, and other soft materials where the small mass of individual molecules makes the effect of gravity negligible next to the relatively strong forces of intermolecular collisions. In such materials, an essential question concerns how to relate the molecular dynamics to the bulk rheological behavior. Here, we observe experimentally the diffusive motion of a single molecule in a single polymer filament, embedded within a polymer network and find anomalous diffusive behavior.

  10. Influence of organic films on the evaporation and condensation of water in aerosol

    OpenAIRE

    Davies, James F.; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water fromatmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporat...

  11. Heat and mass transfer in binary film evaporation and condensation in vertical channel

    OpenAIRE

    Abdelaziz Nasr; Abdulmajeed S. Al-Ghamdi

    2015-01-01

    Evaporation and condensation in the presence of binary liquid film flowing on one of two parallel vertical plates by mixed convection have been studied numerically. The first plate is adiabatic and wetted by a binary liquid film while the second one is dry and isothermal. The results concern the effects of the inlet parameters on the ethylene glycol evaporation and on the water condensation. Results obtained show that the increase of the inlet vapor concentration of water benefits its condens...

  12. Desertification of the Peritoneum by Thin-Film Evaporation During Laparoscopy

    OpenAIRE

    Ott, Douglas E.

    2003-01-01

    Objective: To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Methods: Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. Results: High-velocity gas interface conditions during laparoscopic gas insufflation result in perit...

  13. Performance of a solar energy powered falling film evaporator with film promoter

    International Nuclear Information System (INIS)

    A solar energy powered falling film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO2, making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO2 from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector, and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position

  14. Characterisation of CdO thin films deposited by activated reactive evaporation

    Science.gov (United States)

    Ramakrishna Reddy, K. T.; Sravani, C.; Miles, R. W.

    1998-02-01

    The paper describes the preparation of cadmium oxide thin films produced by "activated reactive evaporation" onto heated glass substrates. The structural, electrical and optical properties of the deposited films were investigated and the effect of substrate temperature on the different physical properties of the films investigated. Highly conducting, polycrystalline CdO films with good transmittances were prepared by controlling the deposition temperature. These layers can be used to produce CdO/CdTe solar cells with efficiencies > 7%.

  15. Role of evaporation time on the structural and optical properties of ZnO films deposited by thermal evaporator

    Science.gov (United States)

    Khan, Ijaz Ahmad; Noor, Mamoona; Rehman, Aatiqa; Farid, Amjad; Shahid, M. Attique Khan; Shafiq, M.

    2015-12-01

    Zinc oxide films are deposited on Si substrates by thermal evaporator for different evaporation times (ET). XRD pattern shows the development of different diffraction peaks related to Zn, ZnO and Zn2SiO4 phases which confirms the deposition of composite film. The orientation transformation is observed with increasing ET. The maximum peak intensity of ZnO (1 0 1) plane is observed at 3 h ET. The dislocation density observed in ZnO (1 0 1) plane varies from 1.53 × 10-3 nm-2 to 8.94 × 10-3 nm-2. The lattice parameters of ZnO are found to be a = 3.243 Å and c = 5.197 Å. FTIR analysis confirms the formation of ZnO films. SEM microstructures exhibit the formation nano-wires, nano-bars, nano-strips and nano-needles. The optical energy band gap of ZnO films deposited for various ET varies from 3.98 eV to 4.06 eV. Results show that the peak intensity of ZnO (1 0 1) plane, orientation transformation and the presence of Si content are responsible to increase the energy band gap of ZnO films.

  16. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  17. Experimental and numerical analysis for optimal design parameters of a falling film evaporator

    Indian Academy of Sciences (India)

    RAJNEESH KAUSHAL; RAJ KUMAR; GAURAV VATS

    2016-06-01

    Present study exhibits an experimental examination of mass transfer coefficient and evaporative effectiveness of a falling film evaporator. Further, a statistical replica is extended in order to have optimal controlling parameters viz. non-dimensional enthalpy potential, film Reynolds number of cooling water, Reynolds number of air and relative humidity of up-streaming air. The models not only give an optimal solution but also help in establishing a correlation among controlling parameters. In this context, response surface methodology is employed by aid of design of experiment approach. Later, the response surface curves are studied using ANOVA. Finally, the relations established are confirmed experimentally to validate the models. The relations thus established are beneficent in furtherance of designing evaporators. Additionally, the presentstudy is among the first attempts to reveal the effect of humidity on the performance of falling film evaporator.

  18. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.;

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  19. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter;

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...... that from a water ice matrix. (C) 2007 Elsevier B.V. All rights reserved....

  20. Vibration analysis of bi-layered FGM cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Shahid Hussain; Sultana, Nazra; Iqbal, Zafar [University of Sargodha, Department of Mathematics, Sargodha, Punjab (Pakistan); Naeem, Muhammad Nawaz [G C University Faisalabad, Department of Mathematics, Faisalabad, Punjab (Pakistan); Shah, Abdul Ghafar [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur, Punjab (Pakistan)

    2011-03-15

    In the present study, a vibration frequency analysis of a bi-layered cylindrical shell composed of two independent functionally graded layers is presented. The thickness of the shell layers is assumed to be equal and constant. Material properties of the constituents of bi-layered functionally graded cylindrical shell are assumed to vary smoothly and continuously through the thickness of the layers of the shell and are controlled by volume fraction power law distribution. The expressions for strain-displacement and curvature-displacement relationships are utilized from Love's first approximation linear thin shell theory. The versatile Rayleigh-Ritz approach is employed to formulate the frequency equations in the form of eigenvalue problem. Influence of material distribution in the two functionally graded layers of the cylindrical shells is investigated on shell natural frequencies for various shell parameters with simply supported end conditions. To check the validity, accuracy and efficiency of the present methodology, results obtained are compared with those available in the literature. (orig.)

  1. Investigation of annular flow at high evaporation rates in view of liquid film cooling

    Science.gov (United States)

    Nahstoll, Juergen

    1988-01-01

    The process of liquid film cooling of combustion chamber walls which are subjected to extremely high heat rates was investigated. A theoretical model was developed for a reliable prediction of the film cooling length. The mass transfer at the liquid-gas interface results from evaporated liquid and entrained liquid droplets. The film cooling length analysis, which includes the physical effects in detail, is separated into two regions: heating the liquid and evaporating the liquid. The theoretical results were experimentally verified at high pressures and temperatures using a modified H2/O2-rocket motor. There is a good agreement between the theoretical and the experimental results over the experimental range.

  2. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    OpenAIRE

    Jie Zhang; Bo Long; Shuying Cheng; Weibo Zhang

    2013-01-01

    Copper zinc tin sulfur (CZTS) thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1), appropriate band gap (~1.5 eV), and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS). In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT) precursors were deposited by thermal evaporation and then s...

  3. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of Tsat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  4. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  5. Characteristics of deposition process of thin films by ion-beam evaporation

    International Nuclear Information System (INIS)

    Intense pulsed ion-beam evaporation (IBE) has been proposed as one of the new techniques for the preparation of thin films. To understand the basic process of thin film deposition, the energy deposition on the substrate surface by ablation plasma was measured by using calorimetric technique. The characteristics of prepared thin films were studied with deposition energy. In addition, the substrate temperature was calculated, based on the experimental results, by using one-dimensional simulations only considering heat conduction. (author)

  6. Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation

    Science.gov (United States)

    Thi Trinh, Cham; Nakagawa, Yoshihiko; Hara, Kosuke O.; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    We have succeeded in the observation of high photoresponsivity of orthorhombic BaSi2 film grown on crystalline Si by a vacuum evaporation method, raising the prospect of its promising application in high-efficiency thin-film solar cells. Photocurrent was observed at photon energies larger than 1.28 eV, which corresponds to the band gap of evaporated BaSi2 film, indicating that the photoresponsivity originates from the BaSi2 film. The effect of the substrate temperature on the film’s properties was also investigated. The films grown at a substrate temperature larger than 500 °C are single-phase polycrystalline BaSi2 films, while those grown at a substrate temperature of 400 °C is a mixture of phases. We confirmed that undoped evaporated BaSi2 films are an n-type material with high carrier concentration. High carrier lifetime of 4.8 and 2.7 μs can be found for the films grown at 500 °C and 400 °C, respectively. BaSi2 film grown at a substrate temperature of 500 °C, which is crack-free and single-phase, shows the best photoresponsivity. The maximum value of photocurrent was obtained at photon energy of 1.9 eV, corresponding to an external quantum efficiency of 22% under reverse applied voltage of 2 V.

  7. Inhomogeneity and microstructure in e-beam evaporated ZrO2 films

    International Nuclear Information System (INIS)

    In this paper thin films of zirconium dioxide are deposited by e-beam evaporation on optically polished borosilicate crown glass. Two different oxygen partial pressures in the chamber are used. The optical properties of the films are characterized by ellipsometry. The influence of oxygen stoichiometry on the composition and microstructure of the material is investigated by polycrystalline X-ray diffraction for different film thicknesses. The films are found to be inhomogeneous, and a composition gradient (i.e. amorphous ↔ tetragonal ↔ monoclinic) is observed from the substrate to the surface. The oxygen partial pressure influences the growth of the films

  8. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus;

    2013-01-01

    Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...... because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  9. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter. © 2013 American Chemical Society.

  10. Experimental investigation of convective structure evolution and heat transfer in quasi-steady evaporating liquid films

    Science.gov (United States)

    Kimball, J. T.; Hermanson, J. C.; Allen, J. S.

    2012-05-01

    The stability, convective structure, and heat transfer characteristics of upward-facing, evaporating, thin liquid films were studied experimentally. Dichloromethane, chloroform, methanol, and acetone films with initial thicknesses of 2-5 mm were subjected to constant levels of superheating until film rupture occurred (typically at a thickness of around 50 μm). The films resided on a temperature controlled, polished copper plate incorporated into a closed pressure chamber free of non-condensable gasses. The dynamic film thickness was measured at multiple points using a non-intrusive ultrasound ranging system. Instability wavelength and convective structure information was obtained using double-pass schlieren imaging. The sequence of the convective structures as the film thins due to evaporation is observed to be as follows: (1) large, highly variable cells, (2) concentric rings and spirals, and (3) apparent end of convection. The transition from large, variable cells to concentric rings and spirals occurs at a Rayleigh number of 4800 ± 960. The apparent end of convection occurs at a Rayleigh number of 1580 ± 180. At the cessation of convection, the Nusselt number is nearly unity, indicating that there is little heat transfer in the film due to convection. In films where the Rayleigh number is above this transitional value, the Nusselt number increases with increasing Rayleigh number. The current results suggest that the equilibrium condition at the evaporating surface suppresses surface temperature variation, effectively eliminating thermocapillary-driven instability.

  11. Finite-time Thin Film Rupture Driven by Generalized Evaporative Loss

    CERN Document Server

    Ji, Hangjie

    2016-01-01

    Rupture is a nonlinear instability resulting in a finite-time singularity as a fluid layer approaches zero thickness at a point. We study the dynamics of rupture in a generalized mathematical model of thin films of viscous fluids with evaporative effects. The governing lubrication model is a fourth-order nonlinear parabolic partial differential equation with a non-conservative loss term due to evaporation. Several different types of finite-time singularities are observed due to balances between evaporation and surface tension or intermolecular forces. Non-self-similar behavior and two classes of self-similar rupture solutions are analyzed and validated against high resolution PDE simulations.

  12. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M F [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Durrani, S M A [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khawaja, E E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2004-04-21

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide.

  13. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    International Nuclear Information System (INIS)

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide

  14. Tube Falling-film Evaporator%管式降膜蒸发器

    Institute of Scientific and Technical Information of China (English)

    毕旺华; 牛量; 王继舜

    2012-01-01

    介绍了管式降膜蒸发器的结构、工作原理和特点,并介绍了以管式降膜蒸发器组成的管式降膜蒸发站在草浆、苇浆、竹浆及木浆制浆黑液等的碱回收项目中的应用.%The structure, working principle and characteristics of tube falling-film evaporator and the application of tube falling-film evaporator in the recovery of hlack liquor in straw, reed, bamboo and wood pulping were introduced in the paper.

  15. Raman shift on n-doped amorphous carbon thin films grown by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P., B. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Freire L., F. Jr. [Departamento de Fisica, Pontificia Universidad Catolica de Rio de Janeiro (Brazil); Lozada M., R.; Palomino M., R. [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla (Mexico); Jimenez S., S. [Centro de Investigacion y de Estudios Avanzados del IPN, Laboratorio de Investigacion en Materiales, Queretaro (Mexico); Zelaya A., O. [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, CINVESTAV-IPN, P.O. Box 14-740, Mexico 07360 D.F. (Mexico)

    2007-04-15

    The structural properties of carbon thin films synthesized under an atmosphere of nitrogen by means of electron beam evaporation were studied by Raman scattering spectroscopy. The electron beam evaporation technique is an important alternative to grown layers of this material with interesting structural properties. The observed shift of the Raman G band shows that the structure of the films tends to become more graphitic upon the increase of the deposition time. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly

    OpenAIRE

    Li, Han

    2015-01-01

    In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficie...

  17. Characterization of ZnO:Si nanocomposite films grown by thermal evaporation

    International Nuclear Information System (INIS)

    Composite films were fabricated by co-evaporating Zinc Oxide with Silicon at room temperatures. The resulting films had polycrystalline grains of Zinc Oxide whose grain size were few hundred nanometers, embedded in the silicon matrix. These nanocrystalline grains of ZnO showed good photoluminescence emission at 520 nm along with a photoluminescence emission at 620 nm being contributed by the silicon background. Thus, the nanocomposite films gave a board emission, making it a potentially useful candidate for optoelectronic devices. The photo-luminescent property of the films was found to be stable since the homgenously dispersed ZnO nanocrystals were not allowed to agglomerate by the silicon background

  18. Influence of solvent evaporation rate on crystallization of poly(vinylidene fluoride) thin films

    Indian Academy of Sciences (India)

    K Pramod; R B Gangineni

    2015-08-01

    The processes for obtaining crystalline and smooth poly(vinylidene fluoride) (PVDF) thin films using 2-butanone solvent are explored. The in-situ substrate temperature has been systematically controlled to observe the crystallization process. The in-situ substrate temperature is manipulated to control the rate of evaporation of 2-butanone solvent and is found to have played a vital role in the crystallization of PVDF thin films. Further, X-ray diffraction and Raman microscope were utilized to understand the crystalline phase of PDVF thin films, while atomic force microscopy and scanning electron microscopy have been utilized to investigate the surface morphology and surface roughness of the films.

  19. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  20. Matrix-assisted pulsed laser evaporation of polyimide thin films and the XPS study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is ob-vious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.

  1. Structural and Optoelectrical Properties of ZnTe Thin Films Prepared by E-Beam Evaporation

    Science.gov (United States)

    Zia, Rehana; Saleemi, Farhat; Riaz, Madeeha; Nassem, Shahzad

    2016-10-01

    ZnTe thin films have been prepared by an electron-beam evaporation technique on glass substrates, changing the accelerating voltage and the substrate temperature at accelerating voltage of 2 kV. Structural analysis showed that all the films had cubic structure with preferential orientation along (111) direction, though (220) and (311) orientations were also present. The (111) peak intensity increased with increasing film thickness. The crystallite size increased with increasing film thickness. Conductivity measurements showed that the films were p-type. Films prepared at accelerating voltage of 2 kV exhibited minimum resistivity. Optical characterization indicated that both absorbing and transparent thin films can be achieved by using different deposition conditions. The optical bandgap value was found to vary with substrate temperature.

  2. Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Shang, Yingrui;

    2013-01-01

    and dendritic morphologies with radial periodic variation of thicknesses were formed in dilute solution driven by micro-evaporation of the solvent. Bunched morphologies stacked with a flat-on lozenge-shaped lamellae were created in thinner films. The formation of the concentric ring banded structures......Self-assembly of poly(L-lactide) (PLLA) in thin films induced by chloroform micro-evaporation was investigated by microscopic techniques and X-ray diffraction studies. A film-thickness dependent on highly ordered structures has been derived from disordered films. Ring-banded spherulitic...... was attributed to the periodic rhythmic growth associated with radial periodic changes in the concentration gradient of PLLA. A diffusion-induced rhythmic growth mechanism was proposed to explain the formation of the ring banded morphologies with periodic variation of thicknesses....

  3. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  4. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  5. Preparation and Characterization of Thermally Evaporated Octa Substituted Zinc Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Vinu T. Vadakel

    2012-12-01

    Full Text Available Thin films of Zinc Octakis Octyloxy Phthalocyanine (ZnPcOC8 are prepared at a base pressure of 10 – 5 Torr using Hind Hi-Vac-12A4 thermal evaporation plant. The films are deposited onto precleaned glass substrates kept at room temperature. Absorption spectra of the films are recorded using the Shimadzu 160A UV-Visible spectrophotometer. The effect of post deposition annealing on the optical constants are studied. The nature of optical transition is found to be direct type. The optical band gap energy of the annealed samples remains almost the same. The invariance of the optical band gap shows the thermal stability of the material for optical applications. The X-ray diffraction analysis of vacuum evaporated films reveals that the crystallinity increases with increase in annealing temperature. The variation of the surface morphology with annealing is also studied using Scanning Electron Micrograph (SEM.

  6. Gadolinium scandate thin films as an alternative gate dielectric prepared by electron beam evaporation

    OpenAIRE

    Wagner, M.; Heeg, T.; Schubert, J.; Lenk, S.; Mantl, S.; Zhao, C; Caymax, M.; De Gendt, M. A.

    2006-01-01

    Gadolinium scandate thin films deposited on silicon substrates using electron beam evaporation were investigated. Measurements with Rutherford backscattering spectrometry, high temperature x-ray diffraction, x-ray reflectometry, transmission electron microscopy, and atomic force microscopy were performed. A stoichiometric transfer of material from the source to the substrate in high vacuum could be demonstrated. Homogeneous, amorphous, and smooth films (root mean square surface roughness < 1 ...

  7. Polycrystalline GaSb thin films grown by co-evaporation

    Institute of Scientific and Technical Information of China (English)

    Qiao Zaixiang; Sun Yun; He Weiyu; He Qing; Li Changjian

    2009-01-01

    We report optical and electrical properties of polycrystalline GaSb thin films which were successfully grown by co-evaporation on soda-lime glass substrates. The thin films have preferential orientation of the (111)direction. SEM results indicate that the average grain size of GaSb thin film is 500 nm with the substrate temperature of 560 ℃. The average reflectance of GaSb thin film is about 30% and the absorption coefficient is of the order of 104 cm-1. The optical bandgap of GaSb thin film is 0.726 eV. The hole concentration shows a clear increasing trend as the Ga-evaporation-temperature/Sb-evaporation-temperature (TGa/TSb) ratio increases. When the Ga crucible temperature is 810 ℃ and the antinomy crucible temperature is 415 ℃, the hole concentration of polycrystalline GaSb is 2 x 1017 cm-3 and the hole mobility is 130 cm2/(V-s). These results suggest that polycrystalline GaSb thin film is a good candidate for the use as a cheap material in TPV cells.

  8. Numerical study of heat and mass transfer during evaporation of a thin liquid film

    Directory of Open Access Journals (Sweden)

    Oubella M’hand

    2015-01-01

    Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.

  9. The effect of interfacial evaporation on heat and mass transfer of falling liquid film

    Institute of Scientific and Technical Information of China (English)

    王补宣; 张金涛; 彭晓峰

    2001-01-01

    Analysis of experimental data and estimation of the order of magnitude for interfacial mass diffusion have demonstrated that considerable excess evaporation exists on the free interface of falling liquid film, and that the capillary pressure caused by surface tension is the driving force of this excess interfacial evaporation, which we called the “capillarity-induced interfacial evaporation”. By correlating the experimental data, an empirical expression of the effective capillary radius, r\\-e, is obtained with which the evaporative rate formula we derived and reported previously has been modified to improve the prediction of the critical heat flux for film breakdown. Comparisons with the available predicting models show that our modified equation can predict the experimental results with much lower relative deviation.

  10. -Ti-Based Homogeneous and Bi-layered Composites

    Science.gov (United States)

    Gupta, Neha; Parameswaran, Venkitanarayanan; Basu, Bikramjit

    2014-09-01

    The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-( x wt pct Ti), ( x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (~36 GPa) and indentation fracture toughness (~12 MPa m1/2). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in α-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s-1. The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

  11. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini;

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin...

  12. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions

    OpenAIRE

    Thiele, U.; Vancea, I; Archer, A J; Robbins, M. J.; Frastia, L.; Stannard, A.; Pauliac-Vaujour, E.; Martin, C. P.; Blunt, M. O.; Moriarty, P. J.

    2010-01-01

    We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodyn...

  13. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPL...

  14. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  15. BI-LAYER HYBRID BIOCOMPOSITES: CHEMICAL RESISTANT AND PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mohammad Jawaid,

    2012-02-01

    Full Text Available Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability, and chemical resistant properties of hybrid composites were evaluated. When the jute fibre loading increased in hybrid composites, physical and chemical resistant properties of hybrid composites were enhanced. Void content of hybrid composites decreased with an increase in jute fibre loading because jute fibres showed better fibre/matrix interface bonding, which leads to a reduction in voids. The density of hybrid composite increased as the quantity of jute fibre loading increased. The hybridization of the jute fibres with EFB composite improved the dimensional stability of the hybrid composites. The performance of hybrid composites towards chemical reagents improved with an increase in jute fibre loading as compared to the EFB composite. The combination of oil palm EFB/jute fibres with epoxy matrix produced hybrid biocomposites material that is competitive to synthetic composites.

  16. The effect of interfacial evaporation on heat and mass transfer of falling liquid film

    Institute of Scientific and Technical Information of China (English)

    WANG; Buxuan; (

    2001-01-01

    [1]Wasden, F.K., Dukler, A.E., Insight into the hydrodynamics of free falling wavy films, AIChE J., 1989, 35(2): 187.[2]Jayanti, S., Hewitt, G.F., Hydrodynamics and heat transfer of wavy thin film flow, Int. J. Heat Mass Transfer, 1997, 40(10): 179.[3]Seban, R.A., Faghri, A., Evaporation and heating with turbulent falling liquid films, ASME J. Heat Transfer, 1976, 98C: 315.[4]Yang, W.M., Evaporation cooling of liquid film in turbulent mixed convection channel flows, Int. J. Heat Mass Transfer, 1998, 41(23): 3719.[5]Wang, B.X., Zhang, J.T., Peng, X.F., Experimental study on the dryout heat flux of falling liquid film, accepted by Int. J. Heat Mass Transfer as HMT# 2507.[6]Udell, K.S., Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects, ASME J. Heat Transfer, 1983, 105: 485.[7]Carey, V.P., Liquid-Vapor Phase-Change Phenomena——An Introduction to the Thermophysics of Vaporization and Conduction Processes in Heat Transfer Equipment, Washington: Hemisphere Publishing Corporation, 1992, 112.[8]Eames, I.W., Marr, N.J., Sabir, H., The evaporation coefficient of water: a review, Int. J. Heat Mass Transfer, 1997, 40(12): 2963.[9]Israelachvili, J.N., Intermolecular and Surface Forces, San Diego: Academic Press, 1990, 16-30.[10]Holman, J.P., Heat Transfer, 5th ed., Tokyo: McGraw-Hill, Inc, 1981.[11]Zhang, J.T., Wang, B.X., Peng, X.F., Falling liquid film thickness measurement by optical-electronic method, Rev. Scientific Instruments, 2000, 71(4): [12]Zhang, J.T., Wang, B.X., Peng, X.F., Investigation on the interfacial evaporation of falling liquid film with wall heating, accepted by J. Tsinghua University.[13]Fujita, T., Ueda, T., Heat transfer to falling liquid films and film breakdown, Int. J. Heat Mass Transfer, 1978, 21: 97.[14]Bohn, M.S., Davis, S.H., Thermocapillary breakdown of falling liquid films at high Reynolds numbers, Int. J. Heat Masss Transfer, 1993, 36

  17. Effect of He+ irradiation on the optical properties of vacuum evaporated silver indium selenide thin films

    International Nuclear Information System (INIS)

    We prepared polycrystalline silver indium selenide thin films by vacuum evaporation on glass substrate at a high temperature using the stoichiometric powder. The samples were subjected to the irradiation of 1.26 M eV He+ ion. The effect of irradiation on the optical properties has been investigated for different fluencies of He+. The thin films were characterized by X-ray diffraction and UV-vis-NIR spectroscopy. It is observed that the band gap of silver indium selenide thin films decreases gradually from 1.17 to 0.82 eV with ion fluency.

  18. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  19. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  20. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  1. Thin-Film Evaporative Cooling for Side-Pumped Laser

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  2. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals

    Science.gov (United States)

    Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T.

    2016-07-01

    Two-photon photoemission (2PPE) spectroscopy and ultraviolet photoemission spectroscopy (UPS) have been performed for rubrene single crystals and evaporated thin films on highly oriented pyrolytic graphite (HOPG). The changes in the 2PPE intensity from the single crystals by the polarization of the light and by the angle of the light incident plane against the crystalline axes indicate that the molecular arrangement on the surface is similar to that in the bulk crystal. On the other hand, in the case of evaporated films, the polarization dependence of 2PPE indicates that the tetracene backbone becomes standing upright as the thickness increases. In spite of the alignment of molecules, the broadened 2PPE spectral features for thick films suggest that the films are amorphous and molecules are in largely different environments. The film structures are confirmed by scanning tunneling microscopy (STM). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) derived levels of the single crystal are shifted by + 0.18 and - 0.20 eV, respectively, from those of the 0.8 ML film. The shifts are attributed to the packing density of molecules. It is shown that the unoccupied electronic structure is more sensitively affected by the film structure than the occupied electronic structure.

  3. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  4. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Provo, James L., E-mail: jlprovo@verizon.net [Consultant, J.L. Provo Consulting, Trinity, Florida 34655-7179 (United States)

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be

  5. Non-Evaporable Getter Thin Film Coatings for Vacuum Applications

    CERN Document Server

    Prodromides, A E

    2002-01-01

    Getters are solid materials capable of chemisorbing gas molecules on their surface: getters are chemical pumps. They are widely used for a variety of applications such as in particle accelerators, vacuum tubes, field-emission display (FED), inert gas purification systems, H2 plasma purification, hydrogen species recycling as in the Tokamak Fusion Test Reactor. Among the different Non-Evaporable Getter (NEG) materials tested, the TiZrV alloys have the lowest activation temperature. For this reason, the TiZrV coatings were the object of this work. In particular, the aim of this investigation was to understand how to optimise three important properties of TiZrV coatings: to achieve the lowest possible activation temperature (Ta), and to obtain the highest pumping speed and surface pumping capacity. This objective is important in the context of the Large Hadron Collider (LHC) accelerator, since, before this work, the understanding and the knowledge of the TiZrV coatings properties were insufficient to adopt it fo...

  6. Chemisorption kinetics of hydrogen on evaporated iron films

    Science.gov (United States)

    Shanabarger, M. R.

    1975-01-01

    An investigation is conducted of the kinetics of isothermal adsorption-desorption processes involving molecular hydrogen which is chemisorbed onto thin (20 to 50 A) polycrystalline Fe films at temperatures near 300 K. The results of the investigation indicate that chemisorption in the H2-Fe system occurs via a precursor state of molecularly adsorbed hydrogen. Contamination of the surface from unknown impurities in the gas phase is found to affect the number of available adsorption sites and to modify the prefactor for the absolute desorption rate constant for the precursor state.

  7. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    International Nuclear Information System (INIS)

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV–VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells. (paper)

  8. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Science.gov (United States)

    Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    Summary This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process. PMID:25977868

  9. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2015-04-01

    Full Text Available This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm, which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  10. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions.

    Science.gov (United States)

    Thiele, U; Vancea, I; Archer, A J; Robbins, M J; Frastia, L; Stannard, A; Pauliac-Vaujour, E; Martin, C P; Blunt, M O; Moriarty, P J

    2009-07-01

    We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin 'postcursor film' that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the 'coffee-stain' effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions. PMID:21828464

  11. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, U; Vancea, I; Archer, A J; Robbins, M J; Frastia, L [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Stannard, A; Pauliac-Vaujour, E; Martin, C P; Blunt, M O; Moriarty, P J [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)], E-mail: u.thiele@lboro.ac.uk

    2009-07-01

    We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin 'postcursor film' that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the 'coffee-stain' effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions.

  12. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  13. Evaluation of thin-film evaporation for decontamination and immobilization of aqueous nuclear waste

    International Nuclear Information System (INIS)

    In the early 1980's, AECL, at the Chalk River Laboratory (CRL) site, built a Waste Treatment Centre (WTC) for managing low level solid and aqueous liquid wastes. The objective was to demonstrate processes for converting Canadian Deuterium Uranium (CANDU) waste to a form suitable for disposal while meeting or exceeding current environmental regulations. At present, two liquid waste streams are being treated at the Waste Treatment Centre. The liquid waste streams are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies [1]. The solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200 L galvanized steel drums for storage and eventual disposal in the CRL Waste Management Area. The feed stream to the thin-film evaporator typically has a β/γ activity of about 1 - 3 μCi/mL. This intermediate-level radioactive stream is concentrated by a factor of about 10, while simultaneously being immobilized. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200 L drum ranges from 25% to 35%. Encapsulated in the bitumen matrix are a variety of non-radiochemical salts (including sodium phosphate, sodium sulphate, and sodium carbonate) which comprise the bulk of the total solids in the product drum. The drum contains less than 1% of free water. The paper will discuss the volume reduction capability of the plant, with an emphasis on the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Operations experience gained from over 200 campaigns is documented in the paper. (author)

  14. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  15. Numerical simulation and modeling of liquid film evaporation inside axisymmetric reentrant cavities

    Directory of Open Access Journals (Sweden)

    Dietl Jochen

    2014-01-01

    Full Text Available Evaporation of thin liquid films inside reentrant cavities occurs in several boiling processes where enhanced surfaces are utilized. In this work, evaporation from a single reentrant cavity with an additional thin channel is studied. The channel allows the backflow of liquid from the pool into the cavity during bubble growth. Direct numerical simulations were performed, showing a strong relation between flow to the film inside the cavity and bubble growth at the pore. Additionally, a model was created with a novel modeling approach which is based on solving the Young-Laplace equation. From the model characteristic nondimensional parameters can be obtained and the influence of geometry variations on hydrodynamics can be studied.

  16. Study on heat transfer for falling liquid film flow with consideration of interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial evaporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.

  17. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    Science.gov (United States)

    Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.

    2016-03-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.

  18. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Science.gov (United States)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  19. Water ice as a matrix for film production by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Schou, Jørgen; Christensen, Bo Toftmann;

    2007-01-01

    We have studied water ice as a matrix for the production of PEG (polyethylene glycol) films by MAPLE at 355 nm. The deposition rate is small compared with other matrices typically used in MAPLE, but the deposition of photofragments from the matrix can be avoided. At temperatures above -50 degrees...... of the target holder the deposition rate increases strongly, but the evaporation pressure in the MAPLE chamber also increases drastically....

  20. Use of a thin-film evaporator for bitumen coating of radioactive concentrates

    International Nuclear Information System (INIS)

    Following the development in the laboratory of a process for coating evaporation concentrates with bitumen, a technological study of this coating process has been undertaken. The report describes a pilot installation for the bitumen coating of concentrates, which uses a thin-film evaporator LUWA L 150. The first, inactive series of tests was designed to determine the maximum and optimum capacities of the evaporator by varying the amounts of bitumen and of concentrate, the rotor speed and the thermo-fluid temperature. Two rotors were tested, one of conventional type, the other a model especially designed for high viscosity products. The maximum capacity of evaporation of the apparatus is 72 kg/hr for a heating temperature of 221 deg. C. During normal operation, the evaporator can produce 50 kg/hr of coated product containing 55 to 60 per cent of bitumen (Mexphalte 40/50), the water content of the product remaining under 0.5 per cent. A second series of tests will shortly be carried out on this pilot installation using, in particular, bituminous emulsions containing mainly Mexphalte 40/50 and 80/100. (authors)

  1. Bi-layer ^3He: a simple two dimensional heavy fermion system with quantum criticality

    Science.gov (United States)

    Saunders, John

    2008-03-01

    Two dimensional helium films provide simple model systems for the investigation of quantum phase transitions in two dimensions. Monolayer ^3He absorbed on graphite, with various pre-platings, behaves as a two dimensional Mott-Hubbard system, complete with a density driven ``metal-insulator'' transition [1, 2] into what appears to be a gapless spin-liquid. In two dimensions the corrections to the temperature dependence of the fluid heat capacity, beyond the term linear in T, are anomalous and attributed to quasi-1D scattering [3]. On the other hand, bi-layer ^3He films adsorbed on the surface of graphite show evidence of two-band heavy-fermion behavior and quantum criticality [4, 5]. The relevant control parameter is the total density of the ^3He film. The ^3He bilayer system can be driven toward a quantum critical point (QCP) at which the effective mass appears to diverge, the effective inter-band hybridization vanishes, and a local moment state appears. A theoretical model in terms of a ``Kondo breakdown selective Mott transition'' has recently been suggested [6]. * In collaboration with: A Casey, M Neumann, J Nyeki, B Cowan. [1] Evidence for a Mott-Hubbard Transition in a Two-Dimensional ^3He Fluid Monolayer, A. Casey, H. Patel, J. Ny'eki, B. P. Cowan, and J. Saunders Phys. Rev. Lett. 90, 115301 (2003) [2] D Tsuji et al. J. Low Temp. Phys. 134, 31 (2004) [3] A V Chubukov et al. Phys. Rev. B71, 205112 (2005) [4] Bilayer ^3He; a simple two dimensional heavy fermion system with quantum criticality, Michael Neumann, Jan Nyeki, Brian Cowan, John Saunders. Science 317, 1356 (2007) [5] Heavy fermions in the original Fermi liquid. Christopher A Hooley and Andrew P Mackenzie. Science 317, 1332 (2007) [6] C Pepin, Phys. Rev. Lett. 98, 206401 (2007) and A Benlagra and C Pepin, arXiv: 0709.0354

  2. Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.C.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Ciucu, A.A. [Univeristy of Bucharest, Chemistry Department, Bucharest (Romania); Andronie, A.; Iordache, S.; Stamatin, I. [University of Bucharest, 3 Nano-SAE Research Center, P.O. Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, Department of Organic Chemistry, 300223 Timisoara (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Department of Materials Science and Engineering, Troy 12180-3590, NY (United States)

    2010-05-25

    We report the first successful deposition of functionalized and nanostructured Zn(II)- and Co(II)-metalloporphyrin thin films by matrix assisted pulsed laser evaporation onto silicon wafers, quartz plates and screen-printed electrodes. The deposited nanostructures have been characterized by Raman spectrometry and cyclic voltammetry. The novelty of our contribution consists of the evaluation of the sensitivity of the MAPLE-deposited Zn(II)- and Co(II)-metalloporphyrin thin films on screen-printed carbon nanotube electrodes when challenged with dopamine.

  3. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.; Grigorescu, S.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, Bucharest-Magurele (Romania); Mihaiescu, D. [University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest (Romania); Gittard, S.D.; Narayan, R.J. [Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Buruiana, T. [Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, Iasi (Romania); Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, NY (United States)

    2009-09-30

    We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.

  4. Electroluminescence and its excitation mechanism of SiOx films deposited by electron-beam evaporation

    International Nuclear Information System (INIS)

    Blue electroluminescence from SiOx films deposited by electron beam evaporation was observed. This blue emission blueshifted from 450 to 410 nm with increasing applied voltage. The dependences of blue emission on applied voltage, frequency and conduction current were studied. Our experimental data support that blue emission from SiOx films is the result of both recombination of charge carriers injected from opposite electrodes and impact excitation of hot electrons, the recombination of carriers injected is dominant in low and medium electric fields but hot electron impact excitation is dominant under high electric fields

  5. Dynamic Scaling in Growth of ZrO2 Thin Films Prepared by Electronic Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    齐红基; 黄立华; 袁景梅; 程传福; 邵建达; 范正修

    2003-01-01

    The growth front evolution of ZrO2 thin films deposited by electronic beam evaporation has been studied with atomic force microscopy. The dynamic scaling characteristics are observed during the deposition process. After numerical correlation analysis, the roughness exponent α = 0.80 ± 0.005 and the growth exponentβ = 0.141are all obtained. Based on these results, we suggest that the growth of ZrO2 thin films can be described by the combination of the Edwards-Wilkinson equation, the Mullins diffusion equation and the shadowing effect.

  6. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.

  7. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    Science.gov (United States)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  8. Electrical properties of silver selenide thin films prepared by reactive evaporation

    Indian Academy of Sciences (India)

    M C Santhosh Kumar; B Pradeep

    2002-10-01

    The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V–1s–1 and carrier concentration of 1018 cm–3 at room temperature. The carriers are of -type. X-ray diffraction study indicates that the as-prepared films are polycrystalline in nature. The lattice parameters were found to be = 4.353 Å, = 6.929 Å and = 7.805 Å.

  9. Electrical bistable characteristics of poly (phenylene sulfide) thin film deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    GUO XiaoChun; DONG GuiFang; QIU Yong

    2007-01-01

    Poly(phenylene sulfide) (PPS) is a well-known organic insulator. However, the PPS thin film, deposited by thermal evaporation in vacuum, showed electrical bistable characteristics. The structure of the PPS thin-film device was glass/ITO/PPS (300 nm)/Au. The thin film can be converted to a high conductance state by applying a pulse of 80 V (5 s), and brought back to a low conductance state by applying a pulse of 100 V (5 s). This kind of thin film is potential for active layer of a memory device. The critical voltage of the device is about 40 V, while the read-out voltage is 5 V. We tentatively ascribe the bistable phenomenon to the charge transfer from S to C atoms in the PPS molecule chains.

  10. Electrical Characterization of Electron Beam Evaporated Cd1-xSex Thin Films

    Directory of Open Access Journals (Sweden)

    S.R. Vishwakarma

    2011-01-01

    Full Text Available CdSe is an important compound semiconducting material for the development of various applications in solid state devices such as solar cells, high efficiency thin film transistors. In recent years major attention has been given to the investigation of structural properties for the improvement of performance of such devices and applications. The prepared starting materials have composition Cd1 – xSex (0.22 ≤ x ≤ 0.40 was used to fabrication of thin films. The n-type cadmium selenide thin films have been deposited by electron beam evaporation technique on well cleaned glass substrate in vacuum ~10 – 5 torr keeping substrate temperature at 300 K. The resistivity, conductivity, Hall mobility and carrier concentration of the deposited films were calculated of different compositions ratio of Cd/Se.

  11. Metal doped polymer films prepared by simultaneous plasma polymerization of tetrafluoromethane and evaporation of gold

    Energy Technology Data Exchange (ETDEWEB)

    Martinu, L.; Biederman, H. (Karlova Univ., Prague (Czechoslovakia). Fakulta Matematicko-Fyzikalni); Zemek, J. (Ceskoslovenska Akademie Ved, Prague. Fyzikalni Ustav)

    The incorporation of gold from an evaporation source during plasma polymerization of tetrafluoromethane CF/sub 4/ in an RF (20 MHz) glow discharge excited by means of a planar magnetron has been investigated. Optical emission spectroscopy was used to monitor the deposition process in situ. The structure of the films was studied by transmission electron microscopy (TEM) observations. The sheet resistance and optical transmission measurements have been performed showing a dramatic influence of gold concentration on the film properties. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis were used for determining the concentration depth profiles through the films. It has been shown that the presence of gold in the layers substantially reduces the fluorine content. The effect of various gold incorporation methods on the film characteristics has been discussed.

  12. Micro and macro scale electrohydrodynamic enhancement of thin-film evaporation

    Science.gov (United States)

    Darabi, Jafar

    2000-11-01

    Evaporation of thin liquid films has long been recognized as one of the most effective methods of heat removal. As a result, techniques that employ this mechanism have potential for use in many practical applications such as electronic cooling, heat pipes, and process heat exchangers. Demand for high-power density electronics, along with the associated requirements including temperature uniformity and the limitation on maximum temperature, will require the development of new methods of heat removal for these devices. The electrohydrodynamic (EHD) technique offers a promising alternative for the uniform distribution of temperature and the removal of heat at high power levels. These factors directly affect the performance, cost, and reliability of such devices. An experimental investigation was undertaken to study the feasibility of applying the EHD technique for heat transfer enhancement of thin-film evaporation. Macro-scale experiments were conducted on several heat transfer surfaces in both horizontal and vertical orientations and the mechanisms involved in heat transfer enhancement were clarified. For the various heat transfer surface/electrode geometries tested, enhancement factors ranging from 25% to 390% were obtained. The novel concept of EHD-enhanced source level cooling utilizing MEMS and thin-film evaporation was then introduced. The device was designed and fabricated using VLSI fabrication technology. This technology allowed the integration of an active cooling device, a micropump, and temperature sensors into a single chip, greatly facilitating the manufacturing process, increasing the cooling capacity, and improving the thermal management of future high-power density electronics. The results indicate a maximum cooling capacity of 65 W/cm2 and a corresponding pumping head of 250 Pa. This unique microcooling device has high commercialization potential and can pave the way for practical utilization of thin-film evaporation in microelectronics cooling and

  13. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  14. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  15. Thermally Evaporated Methylammonium Tin Triiodide Thin Films for Lead-Free Perovskite Solar Cell Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Zhao, Dewei; Grice, Corey R.; Meng, Weiwei; Wang, Changlei; Liao, Weiqiang; Cimaroli, Alexander J.; Zhang, Hongmei; Zhu, Kai; Yan, Yanfa

    2016-09-16

    We report on the synthesis of methylammonium tin triiodide (MASnI3) thin films at room temperature by a hybrid thermal evaporation method and their application in fabricating lead (Pb)-free perovskite solar cells. The as-deposited MASnI3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the <100> direction. By incorporating this film with an inverted planar device architecture, our Pb-free perovskite solar cells are able to achieve an open-circuit voltage (Voc) up to 494 mV. The relatively high Voc is mainly ascribed to the excellent surface coverage, the compact morphology, the good stoichiometry control of the MASnI3 thin films, and the effective passivation of the electron-blocking and hole-blocking layers. Our results demonstrate the potential capability of the hybrid evaporation method to prepare high-quality Pb-free MASnI3 perovskite thin films which can be used to fabricate efficient Pb-free perovskite solar cells.

  16. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  17. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren;

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  18. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  19. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Science.gov (United States)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  20. Photoluminescence of electron beam evaporated CaS:Bi thin films

    CERN Document Server

    Smet, P F; Poelman, D R; Meirhaeghe, R L V

    2003-01-01

    For the first time, the photoluminescence (PL) of electron beam evaporated CaS:Bi thin films is reported. Luminescent CaS:Bi powder prepared out of aqueous solutions was used as source material. The influence of substrate temperature on the PL and the morphology of thin films is discussed, and an optimum is determined. Substrate temperatures between 200 deg. C and 300 deg. C lead to good quality thin films with sufficient PL intensity. As-deposited thin films show two emission bands, peaking at 450 and 530 nm. Upon annealing the emission intensity increases, and annealing at 800 deg. C is sufficient to obtain a homogeneously blue emitting thin film (CIE colour coordinates (0.17; 0.12)), thanks to a single remaining emission band at 450 nm. The influence of ambient temperature on the PL of CaS:Bi powder and thin films was also investigated and it was found that CaS:Bi thin films show a favourable thermal quenching behaviour near room temperature.

  1. Electrical and Optical Properties of GeSi−:H Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Thin a-GeSi1−:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As, and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the Ge0.5Si0.5:H thin films as pure, doped with 3.5% of Al (p-type and that doped with 3.5% As (n-type, were proposed.

  2. Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films

    Indian Academy of Sciences (India)

    Ziaul Raza Khan; M Zulfequar; Mohd Shahid Khan

    2012-04-01

    Highly-oriented CdTe thin films were fabricated on quartz and glass substrates by thermal evaporation technique in the vacuum of about 2 × 10-5 torr. The CdTe thin films were characterized by X-ray diffraction (XRD), UV–VIS–NIR, photoluminescence spectroscopy and scanning electron microscopy (SEM). X-ray diffraction results showed that the films were polycrystalline with cubic structure and had preferred growth of grains along the (111) crystallographic direction. Scanning electron micrographs showed that the growth of crystallites of comparable size on both the substrates. At the room temperature, photoluminescence spectra of the films on both the substrates showed sharp peaks with a maximum at 805 nm. This band showed significant narrowing suggesting that it originates from the transitions involving grain boundary defects. The refractive index of CdTe thin films was calculated using interference pattern of transmission spectra. The optical band gap of thin films was found to allow direct transition with energy gap of 1.47–1.50 eV. a.c. conductivity of CdTe thin films was found to increase with the increase in frequency whereas dielectric constant was observed to decrease with the increase in frequency.

  3. CdS thin films growth by fast evaporation with substrate rotation

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R., E-mail: romano@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida, Yucatan (Mexico); Mendez-Gamboa, J.; Perez-Quintana, I.; Medina-Ezquivel, R. [Yucatan Autonomous University, Faculty of Engineering. AP 150 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-09-01

    CdS thin films were grown by fast evaporation technique combined with substrate rotation. The source evaporation temperature was maintained at 600 deg. C and the substrate temperature at 350 deg. C with background pressure of 1.0 m Torr. The substrates were corning glass 2947 with dimension of 1 in. x 1 in. rotate at 500 rpm during the growth. In order to verify the quality of the CdS films, the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The films shown a flat uniformity thickness with growth rate of {approx}3.5 nm/s, the orientation was in the cubic-(1 1 1) and hexagonal-(0 0 2) plane in dependence of the growth time, grain size {approx}5 nm, roughness uniformity {approx}2.7 nm, transmittance in the visible region spectrum {approx}80%, energy band gap between 2.39 and 2.42 eV and short circuit photocurrent density (J{sub SC}) losses in the CdS films of 4.7 mA/cm{sup 2}.

  4. Development of novel control system to grow ZnO thin films by reactive evaporation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2016-07-01

    Full Text Available This work describes a novel system implemented to grow ZnO thin films by plasma assisted reactive evaporation with adequate properties to be used in the fabrication of photovoltaic devices with different architectures. The innovative aspect includes both an improved design of the reactor used to activate the chemical reaction that leads to the formation of the ZnO compound as an electronic system developed using the virtual instrumentation concept. ZnO thin films with excellent opto-electrical properties were prepared in a reproducible way, controlling the deposition system through a virtual instrument (VI with facilities to control the amount of evaporated zinc involved in the process that gives rise to the formation of ZnO, by means of the incorporation of PID (proportional integral differential and PWM (pulse width modulation control algorithms. The effectiveness and reliability of the developed system was verified by obtaining with good reproducibility thin films of n+-ZnO and i-ZnO grown sequentially in situ with thicknesses and resistivities suitable for use as window layers in chalcopyrite based thin film solar cells.

  5. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  6. Electron-gun Evaporation of Cu and In thin Films as Precursors for CuInSe, Formation

    International Nuclear Information System (INIS)

    In the present invigorations CuInSe, is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm2, and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs

  7. Influence of multi-depositions on the final properties of thermally evaporated TlBr films

    International Nuclear Information System (INIS)

    Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 109 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.

  8. Properties of CdTe films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Murali, K.R.; Radhakrishna, I.; Nagaraja Rao, K.; Venkatesan, V.K. (Central Electrotechnical Research Inst., Karaikudi (India))

    1990-04-01

    Cadmium telluride thin films were prepared by electron beam evaporation on glass substrates kept at different temperatures in the range 30-300degC. The films were characterized by X-ray diffraction, scanning electron microscopy and optical absorption measurements. The conductivity of the films was measured in the temperature range 100-300 K. While the low temperature data (100-200 K) could be explained by the variable range hopping process, the high temperature data (200-300 K) could be explained on the basis of Seto's model for thermionic emission of the carriers over the grain boundaries. Transmission spectra have indicated a direct and gap around 1.55 eV. (orig.).

  9. Morphology, surface topography and optical studies on electron beam evaporated MgO thin films

    Indian Academy of Sciences (India)

    A Chowdhury; J Kumar

    2006-10-01

    Electron beam evaporated thin films of MgO powder synthesized by burning of magnesium ribbon in air and sol–gel technique are studied for their microstructure (SEM), surface topography (AFM), and optical transmission behaviour (UV-visible spectroscopy). MgO thin films are shown to be either continuous or have mesh like morphology. The bar regions are believed to be of magnesium hydroxide formed due to absorption of moisture. Their AFM images exhibit columnar/pyramidal/truncated cone structure, providing support to the 3D Stranski–Krastanov model for film growth. Further, they are shown to have high transmittance (∼90%) in the wavelength range 400–600 nm, but absorb radiation below 350 nm substantially giving signature of a band transition.

  10. Visualization and minimization of clustering of micro-pillars and walls due to liquid film evaporation

    Science.gov (United States)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young

    2013-11-01

    The spin drying, in which a rinsing liquid deposited on a wafer is rapidly dried by wafer spinning, is an essential step in the semiconductor manufacturing process. While the liquid evaporates, its meniscus straddles neighboring submicron-size patterns such as pillars and walls. Then the capillary effects that pull the patterns together may lead to direct contact of the patterns, which is often referred to as pattern leaning. This poses a problem becoming more and more serious as the pattern size shrinks and the aspect ratio of the patterns increases. While the clustering behavior of high-aspect-ratio micro- and nanopillars was investigated before, a technical strategy to prevent such clustering has been pursed in industrial practices without being supported by the recently established theory of elastocapillarity. Here we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the leaning of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern leaning in semiconductor manufacturing. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  11. Photovoltaic structures using thermally evaporated SnS and CdS thin films

    International Nuclear Information System (INIS)

    Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 °C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Ω cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 × 1015 cm−3 and 30.7 cm2V−1 s−1 respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In:CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1–2 Ω cm and was reduced to 40 × 10−3 Ω cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. - Highlights: • Solar cells fabricated using SnS absorber and CdS, indium-doped CdS window layer • Resistivity of CdS film is 1–2 Ω cm and reduced to 40 × 10−3 Ω cm by In doping (1.5 at.%). • Optical band gap increased from 2.42 eV for pure CdS to 2.51 eV for In:CdS thin films. • Efficiency increased from 0.31% to 0.4% for solar cells with In:CdS window layer

  12. Intercalation studies on electron beam evaporated MoO{sub 3} films for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R. [Department of Physics, Alagappa University, Karaikudi 630003 (India); Manisankar, P. [Deptartment of Industrial Chemistry, Alagappa University, Karaikudi 630003 (India); Jayachandran, M.; Sanjeeviraja, C. [ECMS Division, Central Electrochemical Research Institute, Karaikudi 630006 (India)

    2006-09-22

    Now-a-days a large number of extensive research has been focused on electrochromic oxide thin films, owing to their potential applications in smart windows, low cost materials in filters, low cost electrochemical devices and also in solar cell windows. Among the varieties of electrochromic transition metal oxides, the molybdenum oxide (MoO{sub 3}) and tungsten oxide (WO{sub 3}), form a group of predominant ionic solids that exhibit electrochromic effect. The electrochromic response of these materials are aesthetically superior to many other electrochromic materials, because WO{sub 3} and MoO{sub 3} absorb light more intensely and uniformly. In the present case, we have discussed about the electrochromic behaviour of electron beam evaporated MoO{sub 3} films. Moreover, the MoO{sub 3} film can also be used as a potential electro-active material for high energy density secondary lithium ion batteries; because it exhibits two-dimensional van der Waals bonded layered structure in orthorhombic phase. The films were prepared by evaporating the palletized MoO{sub 3} powder under the vacuum of the order of 1 x 10{sup -5}mbar. The electrochemical behaviour of the films was studied by intercalating/deintercalating the K{sup +} ions from KCl electrolyte solutions using three electrode electrochemical cell by the cyclic-voltammetry technique. The studies were carried out for different scanning rates. The films have changed their colour as dark blue in the colouration process and returns to the original colour while the bleaching process. The diffusion coefficient values (D) of the intercalated/deintercalated films were calculated by Randle's Servcik equation. The optical transparency of the coloured and bleached films was studied by the UV-Vis-NIR spectrophotometer. The change in bonding assignment of the intercalated MoO{sub 3} films was studied by FTIR spectroscopic analysis. A feasible study on the effect of substrate temperatures and annealing temperatures on optical

  13. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  14. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4He adsorbed on metallic films. In contrast to measurements of 4He adsorbed on all other insulating substrates, we have shown that 4He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4He adsorbed on sapphire and on Ag films and H2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  15. Characteristics of electron beam evaporated nanocrystalline SnO2 thin films annealed in air

    International Nuclear Information System (INIS)

    Tin oxide (SnO2) thin films (about 200 nm thick) have been deposited by electron beam evaporation followed by annealing in air at 350-550 deg. C for two hours. Optical, electrical and structural properties were studied as a function of annealing temperature. The as-deposited film is amorphous, while all other annealed films are crystalline (having tetragonal structure). XRD suggest that the films are composed of nanoparticles of 5-10 nm. Raman analysis and optical measurements suggest quantum confinement effects that are enhanced with annealing temperature. For instance, Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk SnO2. Blue shift becomes more pronounced with annealing temperature. Optical band gap energy of amorphous SnO2 film is 3.61 eV, which increases to about 4.22 eV after crystallization. Two orders of magnitude decrease in resistivity is observed after annealing at 350-400 deg. C due to structural ordering and crystallization. The resistivity, however, increases slightly with annealing temperature above 400 deg. C, possibly due to improvement in stoichiometry and associated decrease in charge carrier density.

  16. Annealing effect for SnS thin films prepared by high-vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Revathi, Naidu, E-mail: revathi.naidu@ttu.ee; Bereznev, Sergei; Loorits, Mihkel; Raudoja, Jaan; Lehner, Julia; Gurevits, Jelena; Traksmaa, Rainer; Mikli, Valdek; Mellikov, Enn; Volobujeva, Olga [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)

    2014-11-01

    Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300 °C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400 °C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1 h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2 h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.

  17. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  18. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  19. Electronic Emition Properties of Bi Layer Novel Organic Semiconductor Systems

    OpenAIRE

    Salazar-Valencia, P. J.; Bolivar-Marinez, L. E.; Perez-Merchancano, S. T.

    2007-01-01

    The perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) and 1,4,5,8-naphthalene-tetracaboxylic-dianhydride (NTCDA) are planar pi-stacking organic molecules that have been shown to be excellent model compounds for studying the growth and optoelectronic properties of organic semiconductor thin films, particularly organic diodes. Some observations have shown that this molecules, particularly PTCDA a brick-like shaped molecule easily forms well-ordered films on various substrates due to its uni...

  20. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    International Nuclear Information System (INIS)

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  1. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Filho, A.M. [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil); Mulato, M., E-mail: mmulato@ffclrp.usp.b [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2011-04-21

    Some semiconductor materials such as lead iodide (PbI{sub 2}) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10{sup 8} {Omega} cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  2. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films

    International Nuclear Information System (INIS)

    In this paper, we report on physical properties of pure and Cu doped cadmium telluride (CdTe) films deposited onto corning 7059 microscopic glass substrates by electron beam evaporation technique. X-ray diffraction study showed that all the deposited films belong to amorphous nature. The average transmittance of the films is varied between 77% and 90%. The optical energy band gap of pure CdTe film is 1.57 eV and it decreased to 1.47 eV upon 4 wt. % of Cu addition, which may be due to the extension of localized states in the band structure. The refractive index of the films was calculated using Swanepoel method. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, and oscillator energy (Eo) of CdTe and CdTe:Cu films were calculated and discussed in detail with the light of possible mechanisms underlying the phenomena. The variation in intensity of photoluminescence band edge emission peak observed at 820 nm with Cu dopant is due to the change in surface state density. The observed trigonal lattice of Te peaks in the micro-Raman spectra confirms the p-type conductive nature of films, which was further corroborated by the Hall effect measurement. The lowest resistivity of 6.61 × 104 Ω cm was obtained for the CdTe:Cu (3 wt. %) film

  3. Effect of porous polymer films (track membranes) on the isothermal evaporation kinetics of water

    Science.gov (United States)

    Novikov, S. N.; Ermolaeva, A. I.; Timoshenkov, S. P.; Korobova, N. E.; Goryunova, E. P.

    2016-06-01

    The kinetics of isothermal evaporation of distilled water that was in remote (10-15-mm) contact with porous polymer films (track membranes (TMs)) was studied by microgravimetry (derivatograph). When the H2O-TM system contained a disperse medium, the supramolecular structure of water changed, and the number of clusters (coherent domains) drastically decreased. The extraction of the light phase from liquid water was correlated with the chemisorption of H2O molecules containing the para-isomer of hydrogen, which predominantly form coherent domains of water.

  4. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  5. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor

    Science.gov (United States)

    Fan, Libo; Wang, Peng; Guo, Qiuquan; Lei, Yan; Li, Ming; Han, Hongpei; Zhao, Haifeng; Yang, Dongluo; Zheng, Zhi; Yang, Jun

    2015-08-01

    Good stoichiometry of cadmium sulfide (CdS) film facilitates its application in photovoltaic devices; however, traditional thermal evaporation usually results in a Cd-deficient CdS film at a low-substrate temperature. In this study, Cd-rich CdS quantum dots (QDs) were synthesized by a facile co-precipitation method and used as the precursor to thermally evaporate CdS film on indium tin oxide-coated glass (ITO/glass). As a consequence, the stoichiometry of CdS film was greatly improved with atomic ratio of Cd to S restored to unity. More importantly, the newly developed CdS film, with its rod-like surface microstructure, acted as an efficient photoanode in a photoelectrochemical (PEC) cell. Its properties, including surface morphology and roughness, crystal structure, chemical composition, film thickness, energy-level structure and photosensitivity, are studied in detail.

  6. Biaxial stresses, surface roughness and microstructure in evaporated TiO2 films with different deposition geometries

    International Nuclear Information System (INIS)

    The residual stresses, surface roughness and microstructure in titanium oxide films prepared by electron-beam evaporation and deposited with different geometries were investigated, with particular focus on the in-plane anisotropy of the biaxial stresses and microstructures. Thin films were deposited with various deposition angles on B270 glass substrates and silicon wafers. Two different types of deposition geometries were studied. The residual stress in the thin films was examined by a phase-shifting Twyman-Green interferometer. The optical constants, biaxial stress and surface roughness were found to be related to the evolution of the anisotropic microstructures in the films. The results revealed that the anisotropic stresses that developed in the evaporated titanium oxide films were dependent upon the deposition geometry and microstructure of the films.

  7. Study on Physical Properties of Inx Se1-x Thin Films Synthesized by Vacuum Evaporation Method

    Directory of Open Access Journals (Sweden)

    Mahdi Hasan SUHAIL

    2014-06-01

    Full Text Available Indium Selenide (InxSe1-x thin films were synthesized in a sealed ampoule in a vacuum of 10-2 Torr using high purity elemental indium and selenium with different x concentration (0, 10, 15 % at.wt. using vacuum evaporation technique. The structural properties of InxSe1-x alloys for (x = 10 and 15 % at. wt. were examined by x-ray diffraction and exhibited a polycrystalline structure with hexagonal unit cell. The effects of the indium concentration and post deposition heat treatment on the structural and optical properties of the films were studied. The direct band gap of InxSe1-x thin films were estimated in the range (2.35 - 3.95 eV and the energy gap (Egopt increases with increasing annealing temperatures. Optical constants (included refractive index (n, extinction coefficient (k, and real (er and imaginary parts (ei of dielectric constant for the above films were calculated. The results were discussed in detail in relation with film recrystallization during the heating process.doi:10.14456/WJST.2014.82

  8. Characterization of activated reactive evaporated MoO3 thin films for gas sensor applications

    International Nuclear Information System (INIS)

    Thin films of molybdenum trioxide (MoO3) were prepared by activated reactive evaporation technique on Pyrex glass substrates. The influence of oxygen partial pressure, substrate temperature and glow power on the structure, surface morphology and optical properties of MoO3 thin films was studied. The MoO3 films deposited in an oxygen partial pressure of 1x10-3 Torr, glow power of 10 W and substrate temperature of 573 K exhibited predominantly a (0 k 0) orientation corresponding to the orthorhombic layered structure of α-MoO3. The evaluated optical band gap was 3.24 eV. The sensing property of these MoO3 films for gases like NH3 and CO was also studied to see the applicability for environmental monitoring. We have observed that the MoO3 thin films of α-phase are capable of detecting NH3 and CO gases at concentrations lower than 10 ppm in dry air

  9. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Science.gov (United States)

    Xinkun, Wu; Wei, Liu; Shuying, Cheng; Yunfeng, Lai; Hongjie, Jia

    2012-02-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature, and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 °C for 3 h Fabricated CZTS thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, ultraviolet-visible-near infrared spectrophotometry, the Hall effect system, and 3D optical microscopy. The experimental results show that, when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15, the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV, and a direct band gap of about 1.47 eV. The carrier concentration, resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3, 6.96 Ω·cm, and 12.9 cm2/(V·s), respectively and the conduction type is p-type. Therefore, the CZTS thin films are suitable for absorption layers of solar cells.

  10. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    吴新坤; 柳伟; 程树英; 赖云锋; 贾宏杰

    2012-01-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature,and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 ℃ for 3 h.Fabricated CZTS thin films were characterized by X-ray diffraction,energy dispersive X-ray spectroscopy,ultraviolet-visible-near infrared spectrophotometry,the Hall effect system,and 3D optical microscopy.The experimental results show that,when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15,the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV,and a direct band gap of about 1.47 eV.The carrier concentration,resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3,6.96 Ω.cm,and 12.9 cm2/(V.s),respectively and the conduction type is p-type.Therefore,the CZTS thin films are suitable for absorption layers of solar cells.

  11. Structural and optical properties of electron beam evaporated CdSe thin films

    Indian Academy of Sciences (India)

    N J Suthan Kissinger; M Jayachandran; K Perumal; C Sanjeevi Raja

    2007-12-01

    Thin films of cadmium selenide (CdSe) as a semiconductor is well suited for opto-electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, a preliminary and thorough study of optical and structural properties of the host material is an important step. Based on the above view, the structural and optical properties of CdSe films have been studied thoroughly in the present work. The host material, CdSe film, has been prepared by the physical vapour deposition method of electron beam evaporation (PVD: EBE) technique under a pressure of 5 × 10-5 mbar. The structural properties have been studied by XRD technique. The hexagonal structure with a preferred orientation along the (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films have been analysed for optical band gap and absorbed a direct intrinsic band gap of 1.92 eV.

  12. Prevention of Intra-Abdominal Adhesion by Bi-Layer Electrospun Membrane

    OpenAIRE

    Cunyi Fan; Hede Yan; Wei Wang; Shichao Jiang

    2013-01-01

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdomin...

  13. Preparation of Indium Tin Oxide films deposited by reactive evaporation at different substrate-temperature and the properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Indium Tin Oxide films have been prepared at different substrate-temperature on glass substrates by reactive evaporation of In-Sn alloy with an oxygen pressure of 1.3 × 10-1 Pa and a deposition rate of 10-2 nm/s. The best ITO films obtained cm2v-1s-1. The influence of the substrate-temperature on the structural, optical and electrical properties of the obtained films has been investigated.

  14. Sol–Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol

    Directory of Open Access Journals (Sweden)

    Mahmoud Sawsan

    2009-01-01

    Full Text Available Abstract In the present work, thermal evaporation and sol–gel coating techniques were applied to fabricate nanostructured thin ZnO films. The phase structure and surface morphology of the obtained films were investigated by X-ray diffractometer (XRD and scanning electron microscope (SEM, respectively. The topography and 2D profile of the thin ZnO films prepared by both techniques were studied by optical profiler. The results revealed that the thermally evaporated thin film has a comparatively smoother surface of hexagonal wurtzite structure with grain size 12 nm and 51 m2/g. On the other hand, sol–gel films exhibited rough surface with a strong preferred orientation of 25 nm grain size and 27 m2/g surface area. Following deposition process, the obtained films were applied for the photodegradation of 2,4,6-trichlorophenol (TCP in water in presence of UV irradiation. The concentrations of TCP and its intermediates produced in the solution during the photodegradation were determined by high performance liquid chromatography (HPLC at defined irradiation times. Complete decay of TCP and its intermediates was observed after 60 min when the thermal evaporated photocatalyst was applied. However, by operating sol–gel catalyst, the concentration of intermediates initially increased and then remained constant with irradiation time. Although the degradation of TCP followed first-order kinetic for both catalysts, higher photocatalytic activity was exhibited by the thermally evaporated ZnO thin film in comparison with sol–gel one.

  15. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  16. Study of transport properties co - evaporated lead telluride (PbTe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, G.P. [Thin film laboratory, Physics Department Pratap College, Amalner (India); Pawar, P.H. [Department of Electronics, Jai-Hind College, Dhule (India)

    2002-07-01

    Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 A to 2500 A have been prepared by co-evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four-probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p-type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X-ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  17. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.;

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per...... pulse at a fluence of 1–2 J/cm2 and decreases slowly with increasing fluence. This rate is presumably determined by the matrix rather by the proteins. A significant fraction of the proteins are intact in the film as determined by MALDI (Matrix assisted laser desorption ionization) spectrometry....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  18. Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles

    Science.gov (United States)

    Lopez-Santos, C.; Alvarez, R.; Garcia-Valenzuela, A.; Rico, V.; Loeffler, M.; Gonzalez-Elipe, A. R.; Palmero, A.

    2016-09-01

    Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2.

  19. The anomalous low temperature resistivity of thermally evaporated alpha-Mn thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ampong, F.K., E-mail: kampxx@yahoo.co [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Boakye, F.; Nkum, R.K. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2010-08-15

    Electrical resistivity measurements have been carried out on thermally evaporated alpha-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10{sup -6} Torr. The results show a resistance minimum, a notable characteristic of alpha-Mn but at a (rather high) temperature of 194+-1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 muOMEGAm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  20. Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation

    Science.gov (United States)

    Li, Denian; Tai, Qile; Feng, Qiang; Li, Qi; Xu, Xizhe; Li, Hairong; Huang, Jing; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2014-08-01

    Aluminized poly(vinyl chloride) (PVC) film with high reflectivity and strong adhesion was facilely fabricated by vacuum evaporation. The technical study revealed that both alkali-pretreatment of the PVC matrix and thermal annealing after aluminization could greatly promote the peeling adhesion force of this metal/polymer composite by producing interfacial active chemical groups and removing the inner stress, respectively. Reflectivity test and AFM study indicated that the reflecting capacitance of the aluminum coating was closely related to the surface roughness, which can be easily controlled by modulating deposition of aluminum. Moreover, the formation of aluminum layer follows an island model process, and a continuous and smooth coating with highest reflectivity and lowest surface resistance was achieved at deposition time of 60 s. We anticipate that the cost-effective metallized PVC film by this strategy may find extensive applications in light harvesting, solar energy, and flexible mirrors, among others.

  1. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  2. Magnetoresistance effect and magnetoanisotropy of Co/Cu multilayered films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Adachi, H.; Takakura, W.; Rizal, C.L.S.; Chikazawa, S. [Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan)

    2004-05-01

    We attempted to prepare Co/Cu ferromagnetic layer films with uniaxial magnetic anisotropy by oblique incidence angle electron beam method. The purpose of the present note is to show the effect of the magnetic orientation in the ferromagnetic layer on the magnetoresistance of both GMR and AMR. The induced uniaxial magnetic anisotropy was observed in the all multilayer films formed by varying the oblique incidence angle of evaporation direction and the easy axis of the anisotropy is along the perpendicular direction (x-direction) of the incidence of evaporation. The sample produced near the oblique incidence angle of 45 shows the remarkable uniaxial magnetic anisotropy. The MR ratio of anisotropic sample is less than that of isotropic sample. In the weak magnetic field, the difference for the magnetic field dependence of MR is clearly observed with depending on the orientation of magnetization, that is, it is corresponding to the shape of the magnetization curves. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Modeling of thin film explosive boiling—surface evaporation and electron thermal conductivity effect

    International Nuclear Information System (INIS)

    Phase transition in a thin liquid Al film during its rapid (sub) nanosecond homogeneous heating is studied in the framework of molecular dynamics simulation with electron thermal conductivity. The results are compared with our previous results without consideration of electron thermal conductivity. Surface evaporation leads to surface cooling and this effect is more pronounced at lower heating rates in the case without electron thermal conductivity. For the case with electron thermal conductivity, the obtained results suggest the existence of four different regimes of film behavior depending on the heating rate: quasi-stationary surface evaporation regime with relatively small fluctuations at the low heating rates, explosive (volume) boiling which is initiated as growth of a single fluctuation, spinodal decomposition with many fluctuations growing simultaneously and supercritical fluid expansion with no pronounced fluctuations at the high heating rates. Our calculations also show that the duration and magnitude of the explosive boiling pressure pulse, which occurs at the threshold heating rate, are about 0.3 ns and one third of the critical pressure value, respectively. Information of this kind is needed to determine the optimal conditions for the measurement of the critical parameters of different materials in laser ablation experiments. (paper)

  4. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  5. Nonlinear dynamics of non-isothermal thin films and droplets with evaporation and condensation on a rigid wall

    OpenAIRE

    Colinet, Pierre; Rossomme, Séverine; Rednikov, Alexei

    2008-01-01

    Evaporation/condensation processes of thin films of pure liquids lying on heated or cooled horizontal homogeneous and flat substrates are studied thanks to a lubrication-type equation describing the evolution of their deformable free surface. The one-sided model is restricted to a pure vapour phase at constant pressure, and includes the interfacial kinetic resistance to evaporation, the capillary and disjoining pressures, together with the thermodynamic influence of these last two effects on ...

  6. Investigation in morphology and optical properties of electron beam gun evaporated nanostructured Bromoindium phthalocyanine thin films

    Science.gov (United States)

    Azim-Araghi, M. E.; Sahebi, R.

    2014-01-01

    Bromoindium phthalocyanine in thin film form was prepared by electron beam gun evaporation technique, using pre-cleaned polyborosilicate glass as substrate. 2D AFM image confirms that the surface of BrInPc thin film is granular with a grain size of 40-60 nm. 3D AFM image confirms that surface is homogeneous and its RMS roughness is 4.9 nm. The UV-VIS absorption spectrum showed two well-known absorption bands of the phthalocyanines, B and Q bands and characteristics Davydov splitting were observed. The optical transition determined to be direct allowed and the value of optical band gap was obtained. The value of Urbach energy was calculated. To investigation in the effect of thermal annealing on optical properties of BrInPc thin films, we annealed some thin films at 473 and 603 K for 1 h. As the result of thermal annealing we observed another absorption peak, named N-band, in absorption spectrum. A red shift observed in the position of B-band and Q-band peaks. There was not changing in optical transition mechanism. The value of optical band gap decreased and the Urbach energy increased as the result of thermal annealing.

  7. Characterization of Cu2O thin films prepared by evaporation of CuO powder

    Science.gov (United States)

    Gevorkyan, V. A.; Reymers, A. E.; Nersesyan, M. N.; Arzakantsyan, M. A.

    2012-03-01

    Among the potential photovoltaic devices based on semiconductor oxides as active layer is cuprous oxide (Cu2O). This oxide semiconductor shows many attractive characteristics useful for solar cells production such as low cost, nontoxicity, high mobility and diffusion length of minority carriers, high absorption coefficient and direct energy gap. In this work we report our results of optical and structural investigations of Cu2O thin films fabricated by thermal vacuum evaporation of CuO powder. The effects of the deposition velocity on structural and optical properties of Cu2O films were investigated. The X-ray investigations have shown that at low deposition velocity the films consist only of Cu2O phase without any interstitial phase and have a nano-grain structure. The grains have an average dimensions about (25-30) nm and all these grains showed (200) preferential crystallographic orientation. Optical investigations have shown that the absorption edge of prepared films is due to a direct allowed transition. The value of determined optical band gap is 2.05 eV which corresponds to band gap of bulk Cu2O.

  8. Low temperature, fast deposition of metallic titanium nitride films using plasma activated reactive evaporation

    International Nuclear Information System (INIS)

    Titanium and titanium nitride thin films were deposited on silica glass and W substrates at a high coating growth rate by plasma-activated reactive evaporation (ARE). The crystal structure, preferred orientation and grain size of the coatings were determined by x-ray diffraction (XRD) technique using Cu-Kα x rays. The analysis of the coating morphology was performed by field-emission scanning electron microscopy (FE-SEM). The composition of the films was analyzed by Auger electron spectroscopy (AES) and electron-probe microanalysis (EPMA). The titanium and titanium nitride condensates were collected on a carbon-coated collodion film then characterized by transmission electron microscopy (TEM) in order to study the structures of the deposits at very short deposition times. The resistivity of the films was measured by using the four-point-probe method. The titanium coatings were found to consist of very fine particles (40 nm in grain size) and to exhibit a strong (002) texture. The titanium nitride coatings were substoichiometric (TiNx,xx coatings obtained at low temperature and a high growth rate in this work exhibited a rather high electrical conductivity

  9. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pritty [National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad 500062 (India); Kumar, Sanjiv, E-mail: sanjucccm@rediffmail.com [National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad 500062 (India); Sahoo, N.K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-01-15

    The paper describes the deposition of thin films of gallium sulphide on soda-lime glass substrates by thermal evaporation of chemically synthesized powders consisting of gallium sulphide and gallium oxyhydroxide from a Mo or Ta boat and the evolution of their compositional, structural and optical properties on vacuum annealing. The films deposited from Mo or Ta boats possessed distinctly different properties. The Mo-boat evaporated pristine films were amorphous, transparent (α ∼ 10{sup 3} cm{sup −1}) in visible region and had a direct band gap of about 3.2 eV. Vacuum annealing at 723 K brought about their crystallization predominantly into cubic γ-Ga{sub 2}S{sub 3} and a blue shift by about 0.2 eV. The Ta-boat evaporated pristine films were also amorphous but were absorbing (α ∼ 10{sup 4} cm{sup −1}) and had a direct band gap of about 2.1 eV. These crystallized into hexagonal GaS and experienced a blue shift by more than 1.0 eV on vacuum annealing at 723 K. The dissimilar properties of the two kinds of films arose mainly from their different atomic compositions. The Mo-boat evaporated pristine films contained Ga and S in ∼1:1 atomic proportions while those prepared using Ta-boat were Ga rich which impaired their transmission characteristics. The former composition favoured the stabilization of S rich gallium sulphide (Ga{sub 2}S{sub 3}) phase while the latter stabilised S deficient species, GaS. Besides inducing crystallization, vacuum annealing at 723 K also caused the diffusion of Ga in excess of atomic composition of the phase formed, into soda-lime glass which improved the optical transmission of the films. Gallium oxyhydroxide, an inevitable co-product of the chemical synthetic process, in the evaporant introduced oxygen and hydrogen impurities in the films which do not seem to significantly influence their optical properties. - Highlights: • Gallium sulphide films are prepared by thermal evaporation from a Mo or Ta boat. • Mo

  10. SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption

    Science.gov (United States)

    Zhu, Chaoting; Li, Jia; Yang, Ye; Huang, Jinhua; Lu, Yuehui; Zhao, Xunna; Tan, Ruiqin; Dai, Ning; Song, Weijie

    2016-10-01

    In this work, near-infrared (NIR) perfect absorbers with a silicon dioxide (SiO2)/gallium-doped zinc oxide (GZO)/silver (Ag) multi-layer structure were designed and experimentally demonstrated. The results show that a broadband perfect absorption (PA) from 1.24 µm to 1.49 µm was achieved by adopting bi-layer GZO thin films with different carrier concentrations. This absorption remained higher than 97% for incident angles up to 60°. The perfect NIR absorber reported here has a simple structure as well as broadband and wide-angle absorption features, which is promising for practical applications.

  11. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques

    Indian Academy of Sciences (India)

    Nishat Arshi; Junqing Lu; Chan Gyu Lee; Jae Hong Yoon; Bon Heun Koo; Faheem Ahmed

    2013-10-01

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD pattern revealed that the films deposited using d.c. magnetron sputtering have HCP symmetry with preferred orientation along (002) plane, while those deposited with e-beam evaporation possessed fcc symmetry with preferred orientation along (200) plane. The presence of metallic Ti was also confirmed by XPS analysis. FESEM images depicted that the finite sized grains were uniformly distributed on the surface and AFM micrographs revealed roughness of the film. The electrical resistivity measured using four-point probe showed that the film deposited using d.c. magnetron sputtering has lower resistivity of ∼13 cm than the film deposited using e-beam evaporation technique, i.e. ∼60 cm. The hardness of Ti films deposited using d.c. magnetron sputtering has lower value (∼7.9 GPa) than the film deposited using e-beam technique (∼9.4 GPa).

  12. Improved Modeling Approaches for Constrained Sintering of Bi-Layered Porous Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Esposito, Vincenzo;

    2012-01-01

    Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow and densificat...

  13. Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies

    Science.gov (United States)

    Sima, F.; Axente, E.; Sima, L. E.; Tuyel, U.; Eroglu, M. S.; Serban, N.; Ristoscu, C.; Petrescu, S. M.; Toksoy Oner, E.; Mihailescu, I. N.

    2012-12-01

    We introduce a combinatorial approach for the fabrication of organic biopolymer thin films. Structures with compositional gradient are obtained by simultaneous laser vaporization of two distinct targets. Matrix-assisted pulsed laser evaporation deposition method was applied to obtain a compositional library of levan and oxidized levan in form of thin film. The gradient of film composition and structure was demonstrated by infrared spectroscopy while in vitro cell culture assays illustrated characteristic responses of cells to specific surface regions. The method can rapidly generate discrete areas of organic film compositions with improved properties than starting materials.

  14. Growth of thin fullerene films by Matrix Assisted Pulsed Laser Evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was di-rected onto a frozen target...... with high amount of material concentrated at edges. These features, observed over a wide range of laser flu-ences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours...

  15. High conductivity a-C:N thin films prepared by electron gun evaporation

    International Nuclear Information System (INIS)

    By employing electron beam evaporation, amorphous carbon nitride (a-C:N) thin films, with a low nitrogen content (∼ 1%), were prepared on Si(110) and glass substrates at about 150 deg. C. The source was a graphite target and an ambient of N2 was introduced into the growing chamber. The source-substrate distance (SSD) was the main parameter that was intentionally varied. Electron dispersion spectroscopy measurements indicate the nitrogen concentration in the layer as ∼ 1%. The dark electrical conductivity (σ) of layers was very sensitive to SSD variation, changing up to six orders of magnitude when this parameter was varied from 10.5 to 23.5 cm. A maximum value of σ = 1 x 103 Ω-1 cm-1 at room temperature was obtained when the SSD was equal to 15.5 cm. We have deduced that, in accordance with the Ferrari-Robertson model (FRM), our samples are localized in the second stage of the amorphization trajectory of FRM. When the SSD increases the C atoms have more probability to collide with N2 molecules, and the content of nitrogen in the a-C film increases. The amorphization trajectory followed by the films with an SSD increase is from nanocrystalline graphite to amorphous carbon. The changes in the amorphization are due to the nitrogen content in the layers

  16. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    Science.gov (United States)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  17. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  18. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  19. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    Science.gov (United States)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  20. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

    Science.gov (United States)

    Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart

    2016-02-01

    In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

  1. Comparison of two turbulent models in simulating evaporating liquid film in a wiped molecular distillator

    Institute of Scientific and Technical Information of China (English)

    XIANG; Aishuang

    2005-01-01

    Velocity field of evaporating liquid film in a wiped molecular distillator was simulated with a computational fluid dynamics (CFD) software, and two turbulent models treating near-wall flow were compared. Differences between wiped and other molecular distillations were introduced to explain why turbulent model should be used in this simulation. Three assumptions were made in order to simplify simulating processes. In rotating coordinate system, fixed other settings, the above two turbulent models were used, and the volume of fluid (VOF) multiphase model was also applied to tracking the liquid-gas surface. Both of the simulating results are basically identical with real situation and were compared in several aspects. It was concluded that both of the turbulent models are suitable in this simulation.

  2. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  3. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  4. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    International Nuclear Information System (INIS)

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  5. 降膜蒸发器的研究进展%Research Progress of Falling-film Evaporator

    Institute of Scientific and Technical Information of China (English)

    张猛; 周帼彦; 朱冬生

    2012-01-01

    A review of the prior research on falling film evaporator is presented, which is widely used in all field of modem industry. Optimal design and efficient application energy are of significance for saving and environment protection. This paper looks back on fundamental principles of falling film evaporators including flow characteristics, heat transfer performance, and the effects of parameters which provide some help for design and manufacture of falling film evaporators, and introduces Enhance Technology of Twisted Tube into the application of falling film evaporator. Finally, some suggestions for further research is described.%降膜蒸发器广泛应用在现代工业的各个领域,其优化设计和高效应用对于节能和环保具有重要意义.本文分析了降膜蒸发器基本原理及特点,综述了国内外降膜蒸发器流动与传热特性、布膜及强化传热的研究情况,在此基础上,将扭曲扁管强化传热技术引入降膜蒸发器,并对降膜蒸发器的进一步研究指出方向.

  6. A Simulation Study on Effect of SurfaceFilm-Forming{1mmMaterial on Water Evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A greenhouse experiment was conducted to investigate the effect ofsurface film-forming material (SFFM), a mixture of1618-octadecanols by emulsification, on water evaporation.Air-dried soil with distilled water was incubated firstly for 7 days toreestablish soil biological activity and then for another 7 days aftertreated with SFFM at rates of 0, 1, 2, 4, 6 and 8 g m{-2,respectively. Everyday during the 7-day incubation after addition ofSFFM, water losses due to evaporation were measured by an electronicbalance. The rate of water evaporation with the addition of SFFM wasreduced significantly compared with the control treatment and theeffectiveness of SFFM on water evaporation reduced with time. Accordingto the equation expressions of the effect of SFFM on water evaporation,the half-life of effectiveness of SFFM on water evaporation wasintroduced and calculated to analyze quantitative relationship betweenthe effectiveness of SFFM on water evaporation and the addition rate ofSFFM. The calculated half-life increased with the addition rate of SFFMand the confidence of the calculated values of the half-life was high,suggesting that the half-life of effectiveness of SFFM on waterevaporation could be described quantitatively and may be helpful forameliorating application method of SFFM and screening surface-filmforming materials in order to improve nitrogen fertilizer useefficiency in flooded rice fields.

  7. Structural, optical and photoluminescence properties of electron beam evaporated CdSe sub 1-x Te sub x films

    Energy Technology Data Exchange (ETDEWEB)

    Mangalhara, J.P.; Thangaraj, R.; Agnihotri, O.P. (Indian Inst. of Tech., New Delhi (India). Semiconductor Engineering Lab.)

    1989-11-01

    CdSe{sub 1-x}Te{sub x} (0lexle1) films have been prepared by electron beam evaporation using pellets made by mixing CdSe and CdTe powder in appropriate ratios. For the films prepared at 200deg C substrate temperature, the XRD pattern of CdTe (x=1) showed the presence of free Te while films of all other compositions were single phase in nature. The effect of composition and substrate temperature on transmission spectra was studied. The photoluminescence studies showed sub-band-gap luminescence throughout the composition range. Annealed CdSe{sub 0.8}Te{sub 0.2} films showed better photoluminescence efficiency as compared to as-grown films. The refractive index was found to increase with substrate temperature for CdSe{sub 0.8}Te{sub 0.2} films. (orig.).

  8. CONTEMPORARY APPROACHES FOR BI-LAYER TECHNOLOGY OF DRUGS THROUGH ORAL ROUTE: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Rishikesh*, M. A. Bhuiyan, S. M. Ashraful Islam, I. Dewan, Md. A. Islam and Md. S.- Ul H. Miah

    2013-04-01

    Full Text Available ABSTRACT: Bi-layer tablet technology for bimodal release of drug and co-administration of drugs via oral route has been engaged a significant place in the field of drug delivery technology. At present, several pharmaceutical companies are developing bilayer tablet for co-administration of drugs to improve the therapeutic efficacy as well as to reduce the chances of drug-drug interaction. This review indicates the different aspects of drug release mechanism, different strategies of drug release, various techniques for bilayer tablet, and the influence of different process and formulation parameters must be considered during the development of bilayer tablet. Bi-layer tablet is suitable for sequential release of two drugs in combination, separate two incompatible substances, and also for sustained release tablet in which one layer is immediate release as initial dose and second layer is maintenance dose.

  9. An experimental investigation of angular resolved energy distributions of atoms sputtered from evaporated aluminum films

    International Nuclear Information System (INIS)

    A study of angular resolved velocity (energy) distributions of atoms sputtered from in situ prepared metal films is described in this contribution. The velocity resolution of the set-up is based on the pulsed laser-induced fluorescence technique, i.e., scanning the narrow bandwidth dye laser radiation over the Doppler broadened absorption profile of the sputtered particles. The arrangement of the vacuum vessel and fluorescence detection optics provides the means for an independent selection of the observed emission direction and the angle of incidence. A pulsed ion gun is applied to bombard the target with noble gas ions in the energy range between 200 and 500 eV. The target assembly allows the preparation of thin metal films by evaporation on optically polished glass substrates without break of the vacuum. We report on measurements obtained with this arrangement, i.e., the determination of energy distributions of sputtered aluminum atoms. The bombardment at both the normal and the oblique incidence of the ion beam are contained in the investigation. Pronounced anisotropic effects are observed in both cases. In the case of oblique bombardment the shape of the distributions reflects cascade effects as well as single collision properties. The energy distribution is approximated with the aid of an energy spectrum involving a superposition of exponential functions. The experimental results are compared with simulations obtained by the Monte Carlo code TRIM.SP

  10. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  11. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.;

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements....... There was a clear difference between the films produced below and above the melting point of PEG. For temperatures above the melting point, the polymer material was distributed non-uniformly over the substrate with growths areas, where cluster-like structures merge into large islands of micrometer size...

  12. Effect of He{sup +} irradiation on the optical properties of vacuum evaporated silver indium selenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh Kumar, M.C., E-mail: santhoshmc@yahoo.co [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015 (India); Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2010-04-09

    We prepared polycrystalline silver indium selenide thin films by vacuum evaporation on glass substrate at a high temperature using the stoichiometric powder. The samples were subjected to the irradiation of 1.26 M eV He{sup +} ion. The effect of irradiation on the optical properties has been investigated for different fluencies of He{sup +}. The thin films were characterized by X-ray diffraction and UV-vis-NIR spectroscopy. It is observed that the band gap of silver indium selenide thin films decreases gradually from 1.17 to 0.82 eV with ion fluency.

  13. On the evaporation rate of ultra-thin liquid film at the nanostructured surface: A molecular dynamics study

    OpenAIRE

    Nagayama, Gyoko; Kawagoe, Masako; Tokunaga, Atsushi; Tsuruta, Takaharu

    2010-01-01

    Molecular dynamic (MD) simulations have been carried out to study the effect of the nanostructures on the evaporation rate of the ultra-thin liquid film at the solid surface. Simple Lennard-Jones (LJ) fluids are simulated as the ultra-thin liquid film in the non-equilibrium simulation system. The liquid film is confined in a nanochannel composed of two solid surfaces designed with nanostructures in a shape of molecular-scale unevenness. The potential function between solid and liquid molecule...

  14. Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems

    International Nuclear Information System (INIS)

    We report the first successful deposition of cinnamate-pullulan polysaccharide thin films by Matrix Assisted Pulsed Laser Evaporation (MAPLE). Thin film depositions were performed in vacuum using a KrF* excimer laser source (λ = 248 nm, τ ∼ 20 ns) operated at a repetition rate of 10 Hz. The dependence on incident laser fluence of the induced surface morphology is studied. We demonstrated by Raman spectroscopy that our MAPLE-deposited cinnamate-pullulan thin films are composed of starting materials preserving their chemical structures, with no impurities

  15. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M.I. Ahymah; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkura@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India)

    2013-06-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  16. Unraveling the impacts of IXP in internet ecosystem using bi-layered network

    Science.gov (United States)

    Fan, Zhongyan; Tang, Wallace K. S.

    2016-08-01

    The Internet is a huge complex network, consisting of tens thousands of Autonomous Systems (ASes). Being a logical fabric of the Internet, the AS-level topology serves as a manageable and useful vehicle for the study of Internet characteristics. However, Internet exchange points (IXPs) have been ignored in previous studies despite of being one of the primary mechanisms for AS interconnections and playing an important role for improving data traffic. In this paper, a novel bi-layered network model is proposed to present an IXP-AS topology. The bi-layered network is built based on the actual architecture, from which a comprehensive study of current AS ecosystem and the impacts of IXP can be made. As revealed by network metrics applied onto the bi-layered network, IXP is always of higher centrality as compared with ASes, well matching its role. By comparing the results in 2009 and 2014, rapid growth in IXP number, membership and impacts are noticed. There are over 98% source-destination pairs routes (with shortest path routing protocol) affected by IXP in 2014. Our results also show that, being an IXP member is more favorable than being a non-member, hence it attracts many ASes, especially those with low centrality, in recent years.

  17. Interplay between intrinsic and stacking-fault magnetic domains in bi-layered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M.A; Burkhardt, Mark H.; Sarkar, S.; Ohldag, H.; Chuang, Y.-D.; Scholl, A.; Young, A.T.; Doran, A.; Dessau, D.S.; Zheng, H.; Mitchell, J.F.; Durr, H.A.; Stohr, J.

    2012-09-11

    We present a low temperature X-ray photoemission electron microscopy study of the bi-layered manganite compound La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} (BL-LSMO) to investigate the influence of stacking faults, which are structurally and magnetically different from the bi-layered host. In BL-LSMO small magnetic moment persists to T* = 300K, well above the Curie temperature of 120K (T{sub C}). Our magnetic images show that 3D stacking faults are responsible for the T* transition. Furthermore, close to the T{sub C}, stacking faults are well coupled to the bi-layered host with latter magnetic domains controlling the spin direction of the stacking faults. Contrary to recent reports, we find that stacking faults do not seed magnetic domains in the host via an exchange spring mechanism and the intrinsic T{sub C} of the BL-LSMO is not lower than 120K.

  18. Preparation and Characterization of Antimony Doped Tin Oxide Thin Films Synthesized by Co-Evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    C. Jariwala

    2013-05-01

    Full Text Available Tin oxide (SnO2 thin films are having promising properties such as high visible transmittance and low electric resistivity, makes them very important transparent conductor in a variety of optoelectronics devices. Further, doping with pentavalent impurity such as Antimony (Sb enhances its conductivity considerably. In order to study the effect of Antimony doping, Antimony doped tin oxide (SnO2 : Sb thin films have been prepared by the co-evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation (PATE in oxygen (O2 partial pressure at various doping level from 4% to 25%. The influence of various Sb doping levels on the compositional, electrical, optical and structural properties have been investigated using Energy Dispersive X-ray (EDX spectroscopy, Ultraviolet-Visible (UV-VIS transmission spectroscopy, four-probe resistivity measurement and X-ray Diffraction (XRD, respectively. EDX studies confirmed the different Sb doping levels in the grown films from 4 % to 25 %, while electrical resistivity is obtained in range of 0.36 to 9.5 Ohmcm using four-probe setup for 4 % to 25 % Sb doping levels. Transmittance spectra measured in UV-VIS range for Sb doped films show reduction in an average transmittance in respect to increase in Sb doping levels in the grown films. Whereas, XRD analysis reveals that higher Sb doping of 25 % induce the precipitation of antimony oxide (Sb2O3 phase and its precipitation suppressed the growth of SnO2 peaks as well as responsible for reduction in conductivity and transparency. The best electrical resistivity of optimized SnO2 : Sb (5 % is 0.36 Ohmcm without deteriorating the high (~ 80 % average transmittance in the wavelength region 300-800 nm in comparison to undoped SnO2 film (6.57 Ohmcm , confirm the usefulness of SnO2 : Sb (5 % films for device applications.

  19. Characterization of Ta{2}O{5} thin films prepared by reactive evaporation

    Science.gov (United States)

    Asghar, M. H.; Placido, F.; Naseem, S.

    2006-11-01

    Reactively evaporated thin films of tantalum oxide are prepared on glass substrate, using electron beam heating, for optical applications. Firstly, the deposition was carried out at 0.20 nm/s, with substrate temperature of 200 circC, and oxygen flow rate was varied from 0.0 to 30.0 sccm to study the effect of flow rate on optical constants. The optical constants evaluated by using transmission data of the samples, with curve fitting, show a strong dependence on oxygen flow rate. Oxygen flow rate of 10.0 sccm has been found to give reasonably high index (n:2.11 at λ =500 nm) and low absorption of the order of 10-3 in most part of the desired spectrum (380 850 nm). However, for oxygen flow rates below 10.0 sccm and above 20.0 sccm the films have exhibited low index and comparatively high absorption. In the next step, deposition rates were varied from 0.10 0.30 nm/s with steps of 0.01, keeping oxygen flow rate and substrate temperature constant at 10.0 sccm and 200 circC respectively, to optimize the film properties. A variation in refractive index and extinction coefficient values is observed with varying deposition rates. An increase in refractive index (n:2.125 at λ =500 nm) with reduced absorption (“k” of the order of 10-4) is achieved over the entire spectrum for the film deposited at 0.10 nm/s. The film was found to be highly adherent to the substrate as revealed by qualitative adhesive tape peel test. Keeping in view the application of the work, calculation of optical constants was extended up to 1100 nm for the sample deposited at 0.10 nm/s. The results have shown nearly constant optical constant values over the extended range making the film useful over a broad spectral region. AFM studies show that the surface is extremely smooth and compact, giving average and rms roughness values of 5.51 and 7.174 Å respectively, for the studied area of 2.5 μ ×2.5 μ. XRD and SEM studies carried out for structural analysis show that the film is generally amorphous

  20. Development of New Electrode System for High Field Dielectric Properties Measurement Using Evaporated Polypropylene Thin Guard Film

    Science.gov (United States)

    Fujii, Masayuki; Tohyama, Kazuyuki; Tokoro, Tetsuro; Mizuno, Yukio; Nagao, Masayuki; Kosaki, Masamitsu

    Non-polar polymers such as polyethylene (PE) and polypropylene (PP) are widely used as very important electrical insulating and dielectric materials. They are used in the increasingly high AC electric field strength region approaching to the limit of electrical breakdown strength of the materials. Therefore the study of high-field dielectric property is very important in terms of understanding the AC breakdown mechanism of materials. A three-terminals electrode system with a guard film (new type electrode system) was developed in our laboratory for the precise measurement of high-field tanδ, where the guard film was used to reduce the disturbance of electric field around the edge of a main electrode. However, minute air sometimes steals between a sample film and the guard film. The air sometimes generates partial discharge in the high electric field region. Therefore, when the sample had minute air, the new type electrode system was limited under 100kVrms/mm application that didn't reach to an intrinsic breakdown strength of the 30μm-thick sample. We tried to improve the new electrode system without minute air between a sample film and the guard film. We also tried to make very thin guard film to reduce the field disturbance at the edge of main electrode. In this paper a PP-guard film on a biaxially oriented polypropylene (BOPP) film was made by evaporation. This improvement of the electrode system using the evaporated PP-guard film was in success so that high-field dielectric properties of BOPP film could be measured up to near the intrinsic breakdown field of the sample.

  1. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Science.gov (United States)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  2. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  3. High-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    章宁琳; 万青; 宋志棠; 沈勤我; 祝向荣; 林成鲁

    2002-01-01

    Zirconium oxide films were deposited on p-type Si(l00) substrates using high vacuum electron beam evaporation (HVEBE) at room temperature. X-ray photoelectric spectroscopy shows that the dominant chemical state of zirconia thin films is in the fully oxidized state of Zr4+, no matter whether annealed in oxygen. The structural information from x-ray diffraction shows that zirconia thin films deposited at room temperature by HVEBEwere completely amorphous before and after the annealing. The spreading resistance profile indicates that ZrO2 thin films have excellent insulation property (with a resistance of more than 10s Ω) and the thickness is 800A.After thermal treatment at 600°C in O2 ambient, the root-mean-square roughness changed from 8.09 A of the as-deposited film to 13.8A across an area of i × 1μm2.

  4. A study on the nonlinear microwave electrodynamic response of e-beam evaporated MgB2 superconducting thin films

    Science.gov (United States)

    Andreone, A.; Di Gennaro, E.; Lamura, G.; Salluzzo, M.; Purnell, A.; Cohen, L. F.; Hao, L.; Gallop, J.; Cantoni, C.; Paranthaman, M.

    2003-02-01

    We present a study on the temperature and field dependence of the microwave surface impedance Zs in thin films of the superconducting MgB2 compound. Samples were prepared by e-beam evaporation of boron on r-plane sapphire followed by an ex situ annealing in Mg vapour. Critical temperature values range between 26 and 38 K. Surface impedance measurements (Zs = Rs + iXs) were performed from 2 K close to Tc in the microwave region up to 20 GHz via parallel plate or dielectrically loaded resonators in 'symmetric' (two MgB2 films) and asymmetric (an MgB2 film and a commercial YBCO control film) configurations. At high microwave power, frequency domain measurements show a characteristic signature associated with weak links and this appears to be the limiting factor governing the performance of these films.

  5. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  6. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  7. Fabrication of multi-electrode array platforms for neuronal interfacing with bi-layer lift-off resist sputter deposition

    International Nuclear Information System (INIS)

    We report a bi-layer lift-off resist (LOR) technique in combination with sputter deposition of silicon dioxide (SiO2) as a new passivation method in the fabrication of a multi-electrode array (MEA). Using the photo-insensitive LOR as a sacrificial bottom layer and the negative photoresist as a patterning top layer, and performing low-temperature sputter deposition of SiO2 followed by lift-off, we could successfully fabricate damage-free indium-tin oxide (ITO) and Au MEA. The bi-layer LOR sputter deposition processed Au MEA showed an impedance value of 6 × 105 Ω (at 1 kHz), with good consistency over 60 electrodes. The passivation performance of the bi-layer LOR sputter-deposited SiO2 was tested by electrodepositing Au nanoparticles (NPs) on the Au electrode, resulting in the well-confined and uniformly coated Au NPs. The bi-layer LOR sputter deposition processed ITO, Au, and Au NP-modified MEAs were evaluated and found to have a neuronal spike recording capability at a single unit level, confirming the validity of the bi-layer LOR sputter deposition as an effective passivation technique in fabrication of a MEA. These results suggest that the damage-free Au MEA fabricated with bi-layer LOR sputter deposition would be a viable platform for screening surface modification techniques that are available in neuronal interfacing. (technical note)

  8. Investigation on thermal evaporated CH{sub 3}NH{sub 3}PbI{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Youzhen; Xu, Xuemei; Yang, Junliang [School of Physics and Electronics, Central South University, Changsha, Hunan, 410083 (China); Wang, Chenggong; Wang, Congcong; Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627 (United States); Xie, Fangyan [Instrumental Analysis Center, Sun Yat-Sen University, Guangzhou, 510275 (China)

    2015-09-15

    CH{sub 3}NH{sub 3}I, PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The XPS results indicate that the PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films are more uniform and stable than the CH{sub 3}NH{sub 3}I film. The atomic ratio of the CH{sub 3}NH{sub 3}I, PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH{sub 3}NH{sub 3}PbI{sub 3} is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH{sub 3}NH{sub 3}PbI{sub 3} film is crystalline. The valence band maximum (VBM) and work function (WF) of the CH{sub 3}NH{sub 3}PbI{sub 3} film are about 0.85eV and 4.86eV, respectively.

  9. Numerical studies of temperature profile and hydrodynamic phenomena during excimer laser assisted heteroepitaxial growth of patterned silicon and germanium bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati Roma (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-01-01

    In this manuscript, a 3-D axisymmetric model for the heteroepitaxial growth induced by irradiating thin patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers on Si (100) with pulsed UV-laser radiation, is presented. For reducing optimization steps, an efficient simulation of the laser induced processes that include rapid heating and solidification phenomena in the range of several tenth of nanoseconds, must be performed, if alloy composition and quality has to be adjusted. In this study, the effects of various laser energy densities on different amorphous Si/Ge bi-layer structures has been predicted and adjusted to obtain the desired Ge concentration profiles for applications as sacrificial layers, i.e. a Ge containing film buried under a Si rich surface layer. The numerical model includes the temperature dependent variations of the thermophysical properties and takes the coupled effects of temperature and hydrodynamic phenomena for a Boussinesq fluid, to estimate the element interdiffusion during the process and predicting the concentration profiles.

  10. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  11. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO2 thin film

    Science.gov (United States)

    El Fissi, Lamia; Vandormael, Denis; Houssiau, Laurent; Francis, Laurent A.

    2016-02-01

    Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO2/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO2 film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO2/COC hybrid material in the visible domain reached 80%. The TiO2/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO2/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  12. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Application Oriented Coating Development, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); PLANSEE Composite Materials GmbH, Siebenbuergerstrasse 23, D-86983 Lechbruck am See (Germany)

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  13. Dewatering of liquid radioactive wastes in thin-film rotary evaporators

    International Nuclear Information System (INIS)

    A sizable amount of liquid radioactive waste of different levels of radioactivity is formed during the operation of an atomic power plant and during reprocessing of spent nuclear fuel. Current concepts for handling such wastes require reliable isolation of them from the biosphere. At present, bituminization and cementation for medium- and low-level liquid radioactive waste and vitrification for high- and perhaps medium-level liquid radioactive waste are considered promising methods of waste disposal. Solidification can be implemented in a one- or a two-stage process. In the one-stage process, liquid radioactive wastes are fed together with glass-forming additives into a melter (an electric furnace, a crucible furnace, etc.), where they are successively put through dewatering, calcination, and melting with the formation of glassy materials. Implementation of the two-stage process leads to some complication of the process flow diagram, but allows a reduction of the dimensions of basic equipment and makes possible remote replacement and repair of the equipment. The object of this work was to study the possibility of using a thin-film rotary evaporator in the first stage of the liquid radioactive waste solidification process (bituminization, cementation, vitrification), to give an evaluation of the effect of process parameters on process stability and on the physical and chemical characteristics of the concentrates produced

  14. Analytical Solutions of Heat Transfer and Film Thickness with Slip Condition Effect in Thin-Film Evaporation for Two-Phase Flow in Microchannel

    Directory of Open Access Journals (Sweden)

    Ahmed Jassim Shkarah

    2015-01-01

    Full Text Available Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is assumed that the capillary pressure is neglected (Morris, 2003. Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. The calculated results from the current model match closely with those of analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.

  15. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  16. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.;

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI...

  17. Yb-doped SnTe semimetal thin films deposited by thermal evaporation: Structural, electrical, and thermoelectric properties

    Science.gov (United States)

    Hmood, A.; Kadhim, A.; Hassam, H. A.

    2014-12-01

    Sn monochalcogenide and Yb-doped Sn1-xYbxTe (0.0 ⩾ x ⩽ 0.1) semimetals, which are known for their usefulness as efficient thermoelectric (TE) materials, were prepared by solid-state microwave technique. Polycrystalline thin films of Sn1-xYbxTe were deposited onto clean glass substrates by using vacuum evaporation technique at 10-6 bar. The structures of the polycrystalline thin films were examined by X-ray diffraction patterns. A rock salt structure was observed. Grain size increased with increasing Yb content but not according to a sequence. The morphology of the nanosheet structures for these thin films was determined by field emission scanning electron microscopy. TE properties were measured at a temperature range of 298-523 K. The carrier concentrations of the films were determined by Hall effect measurements at 300 K.

  18. Optical Properties and Microstructure of Ta2O5 Thin Films Prepared by Ion Assisted Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guangyong; XUE Yiyu; GUO Peitao; WANG Hanhua; MA Zhongjie

    2008-01-01

    An effective method for determining the refractive index of weak absorption transparent thin films was presented, which is also applicable to other weak absorption dielectric thin films.The as-deposited Ta2O5 thin films prepared by ion assisted electron beam evaporation showed a maxima transmittance as high as 93% which was close to that of the bare substrate, and exhibited a blue shift when the substrate temperature increased from room temperature to 250 ℃. The refractive index seemed to be immune to the substrate temperature and film thickness with its value about 2.14 at incidence wavelength of 550 nm. The surface morphology measured by atomic force microscopy (AFM) revealed that the microstructures lead to the slim optical difference, which was the interplay of substrate temperature and assisted ion beam.

  19. Growth Structural and Optical Properties of the Thermally Evaporated Tin Diselenide (SnSe2 Thin Films

    Directory of Open Access Journals (Sweden)

    R. Sachdeva1,

    2011-01-01

    Full Text Available Tin diselenide (SnSe2 compound was prepared by melt-quenching technique from its constituent elements. The phase structure and composition of the chemical constituents present in the bulk has been determined using X-ray diffraction (XRD and energy dispersion X-ray analysis (EDAX respectively. SnSe2 thin films were grown using direct thermal evaporation of SnSe2 compound material on chemically cleaned glass substrate, which were held at different substrate temperatures. X-ray diffraction and Scanning Electron Microscopy (SEM were used to examine structure and surface morphology of the films. The investigations show that the films grown above 150 °C are single phase and polycrystalline in nature. VIS-IR Spectra of the films were recorded in the wavelength range 380 nm to 1300 nm. The data has been analyzed to find optical parameters like absorption coefficient and energy bandgap.

  20. Experimental investigation of evaporation and condensation in the contact line region of a thin liquid film experiencing small thermal perturbations.

    Science.gov (United States)

    Argade, Rajendra; Ghosh, Sombuddha; De, Sirshendu; DasGupta, Sunando

    2007-01-30

    Image-analyzing interferometry technique is successfully used to study microscale transport processes related to a curved microfilm on a solid substrate. Digital image processing is used to analyze the images of interference fringes, leading to the evaluation of liquid (heptane) film thickness and curvature profiles at different inclinations on a high refractive index glass surface. The curvature profiles obtained at different inclinations clearly demonstrate that there is a maximum in curvature near the junction of the adsorbed film (of uniform thickness) and the curved film, and then it becomes constant in the thicker portions of the film. The adsorbed film thickness is measured for horizontal as well as inclined positions. Experimentally obtained values of the dispersion constants are compared to those predicted from the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory, and reasonable agreements were obtained. A parameter alpha is defined and experimentally evaluated to quantify the closeness of the system to equilibrium. The nonequilibrium behavior of this parameter alpha is also observed with certain heat input at a particular inclination. A small thermal perturbation is used to force the liquid meniscus to undergo a cycle of alternating condensation and evaporation. High-speed video-microscopy and subsequent image analysis are used for data analysis. The numerical solution of a model that takes into account the balance between the suction and the capillary force is compared with the data to elicit new insights into the evaporation/condensation phenomena and to estimate the interfacial temperature differences for near-equilibrium situations. PMID:17241038

  1. Schottky barriers based on n-In2S3 films obtained by laser-induced evaporation

    International Nuclear Information System (INIS)

    The method of evaporation of starting targets with subsequent deposition onto glass substrates at temperatures of 480-720 K is used to grow homogeneous thin (0.6-1.5 μm) n-In2S3 films on which the In/n-In2S3 Schottky barriers were formed for the first time; evaporation was induced by a pulsed laser. The temperature dependence of resistivity of the films with the n-type conductivity was studied and the activation energy of donor centers in these films was determined. Spectral dependences of the photoconversion quantum efficiency η(ℎω) for the barriers obtained were studied. An analysis of the spectral dependences η(ℎω) made it possible to identify the type of band-to-band transitions and estimate the band gap in the In2S3 films. It is concluded that the thin In2S3 films can be used in broadband photoconverters of optical radiation

  2. Experimental investigation of nucleate boiling and thin-film evaporation on enhanced silicon surfaces

    Science.gov (United States)

    Malla, Shailesh

    The present work consists of two major studies. The first study investigates the effects of surface energy or wettability on nucleate pool boiling and the second study investigates the thin-film evaporative cooling for near junction thermal management. For the first study, effects of surface energy or wettability on critical heat flux (CHF) and boiling heat transfer (BHT) of smooth heated surfaces was studied in saturated pool boiling of water at 1 atm. For this purpose hydrophilic and hydrophobic surfaces were created on one side of 1cm x 1cm double-side polished silicon substrates. A resistive heating layer was applied on the opposite side of each substrate. The surface energies of the created surfaces were characterized by measuring the static contact angles of water sessile drops. To provide a wide range of surface energies, surfaces were made of Teflon (hydrophobic), bare silicon (hydrophilic) and aluminum oxide (most hydrophilic). The measured contact angles on these surfaces were ˜108, ˜57 and ˜13 degrees respectively. The results of pool boiling tests on these surfaces clearly illustrate the connection between surface energy and CHF. CHF was shown to linearly decrease with contact angle increase, from ˜125 W/cm2 on aluminum oxide (most hydrophilic) to nearly one tenth of this value on Teflon (hydrophobic). The most hydrophilic surface also produced increasingly better BHT than plain silicon and Teflon as heat flux increased. However, below ˜5 W/cm2 the hydrophobic surface demonstrated better heat transfer due to earlier onset of nucleate boiling, reducing surface superheats by up to ˜5 degrees relative to the other two surfaces. Above ˜5 W/cm2 the BHT of the hydrophobic surface rapidly deteriorated as superheat increased towards the value at CHF. To further understand the effect of surface energy on pool boiling performance, the growth and departure of bubbles from single nucleating sites on each surface were analyzed from high-speed video recordings

  3. Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion.

    Science.gov (United States)

    Li, Laifeng; Zheng, Xianyou; Fan, Dapeng; Yu, Shiyang; Wu, Di; Fan, Cunyi; Cui, Wenguo; Ruan, Hongjiang

    2016-04-01

    Posttraumatic tendon adhesion limits the motion of the limbs greatly. Biomimetic tendon sheaths have been developed to promote tendon healing and gliding. However, after introduction of these biomaterials, the associated inflammatory responses can decrease the anti-adhesion effect. Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) that can decrease inflammation responses. We blended hyaluronic acid and poly(l-lactic acid)-polyethylene glycol (PELA) with microgel electrospinning technology to form an inner layer of a bi-layer biomimetic sheath using sequential electrospinning of an outer celecoxib-PELA layer. Electrospun bi-layer fibrous membranes were mechanically tested and characterized by morphology, surface wettability, and drug release. The tensile strength showed a decreased trend and water contact angles were 114.7 ± 3.9°, 103.6 ± 4.4°, 116.3 ± 5.1°, 122.8 ± 4.7°, and 126.5 ± 4.2° for the surface of PELA, hyaluronic acid-PELA, 2, 6, and 10% celecoxib-PELA electrospun fibrous membranes, respectively. In vitro drug release studies confirmed burst release and then sustained release from the fibrous membranes containing celecoxib for 20 days. In a chicken model of flexor digitorum profundus tendon surgery, the outer celecoxib/PELA layer offered advanced anti-adhesion roles compared to the outer PELA layer and the inner hyaluronic acid-loaded PELA layer still offered tendon healing and gliding. Thus, celecoxib-loaded anti-adhesive tendon sheaths can continuously offer bi-layer biomimetic tendon sheath effects with celecoxib release from the outer layer to prevent tendon adhesion. PMID:26838844

  4. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid.

    Science.gov (United States)

    Glass, Samuel V; Park, Seong-Chan; Nathanson, Gilbert M

    2006-06-22

    Vacuum evaporation and molecular beam scattering experiments have been used to monitor the loss of water and dissolution of HCl and HBr in deuterated sulfuric acid at 213 K containing 0 to 100 mM hexanol. The addition of 1-hexanol to the acid creates a surface film of hexyl species. This film becomes more compact with decreasing acidity, ranging from approximately 62% to approximately 68% of maximum packing on 68 to 56 wt % D(2)SO(4), respectively. D(2)O evaporation from 68 wt % acid remains unaltered by the hexyl film, where it is most porous, but is impeded by approximately 20% from 56 and 60 wt % acid. H --> D exchange experiments further indicate that the hexyl film on 68 wt % acid enhances conversion of HCl and HBr into DCl and DBr, which is interpreted as an increase in HCl and HBr entry into the bulk acid. For this permeable hexyl film, the hydroxyl groups of surface hexanol molecules may assist uptake by providing extra sites for HCl and HBr hydrogen bonding and dissociation. In contrast, HCl --> DCl exchange in 60 wt % D(2)SO(4) at first rises with hexyl surface coverage but then drops back to the bare acid value as the hexyl species pack more tightly. HCl entry is actually diminished by the hexyl film on 56 wt % acid, where the film is most compact. These experiments reveal a transition from a porous hexanol film on 68 wt % sulfuric acid that enhances HCl and HBr uptake to one on 56 wt % acid that slightly impedes HCl and D(2)O transport.

  5. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  6. Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-05-01

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.

  7. Multi-scale modeling of shape distortions during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Bjørk, Rasmus; Olevsky, Eugene;

    2014-01-01

    theories like the continuum theory of sintering. A new multi-scale numerical approach for modeling of shape distortions during sintering of macroscopically inhomogeneous structures combined with a microstructure model is developed. The microstructures of the porous body are described by unit cells based on...... unit cells simulated by the kMC model. Examples of simulation of sintering of bi-layers based on different material systems are presented to illustrate the multi-scale model. The approach can be considered as an extension to the continuum theory of sintering combined with the meso-scale kinetic Monte...

  8. A theoretical study of symmetry-breaking organic overlayers on single- and bi-layer graphene

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, T. L.

    2013-03-01

    An ``overlayer'' of molecules that breaks the AB symmetry of graphene can produce (modify) a band gap in single- (bi-) layer graphene.[2] Since the triangular shaped trimesic acid (TMA) molecule forms two familiar symmetry breaking configurations, we are motivated to model TMA physisorption on graphene surfaces in conjunction with experiments by Groce et al. at UMD. Using VASP, with ab initio van der Waals density functionals (vdW-DF), we simulate adsorption of TMA onto a graphene surface in several symmetry-breaking arrangements in order to predict/understand the effect of TMA adsorption on experimental observables. Supported by NSF-MRSEC Grant DMR 05-20471.

  9. Bulk waves excited by a laser line pulse in a bi-layer cylinder

    Science.gov (United States)

    Pan, Y.; Chigarev, N.; Audoin, B.

    2010-03-01

    In this paper, the transient displacement excited by a laser line source is calculated for a bi-layer cylinder made of homogeneous and isotropic materials. A sample made by welding tin in a copper tube and a sample of cooper rod are considered. Experimental displacements are observed by the laser ultrasonic technique, and corresponding theoretical waveforms are calculated. Good agreement is found in the arrival time, shape and relative amplitude of various longitudinal and shear bulk waves propagating through the sample or reflected by the interface.

  10. Sintering of bi-layered porous structures: Stress development and shape evolution

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Ramousse, Severine;

    Ce0.9Gd0.1O1.95 (CGO) and (La, Sr)MnO3 (LSM) are electro-ceramics materials with high potential for several electrochemical applications such as solid Oxide Fuel Cell (SOFC), gas separation membranes, and flue gas purification application. In the latter case, these materials are shaped as thick...... porous layers and sintered by co-firing process. In this work, porous CGO and LSM/CGO single layers were prepared by tape casting, and CGO-LSM/CGO bi-layer structures were obtained by lamination. The shrinkage characteristics of individual layers were measured by optical dilatometry and the uniaxial...

  11. Evaporate prediction and compensation of intake port wall-wetting fuel film for spark ignition engines fueled with ethanol-gasoline blends

    Institute of Scientific and Technical Information of China (English)

    Dong-wei YAO; Xin-chen LING; Feng WU

    2012-01-01

    The fuel dynamic transfer process,including fuel injection,fuel film deposition and evaporation in the intake port,was analyzed for spark ignition (SI) engines with port fuel injection (PFI).The influence of wall-wetting fuel film,especially its evaporation rate,upon the air-fuel ratio of in-cylinder mixtures was also discussed.According to the similarity principle,Fick's law,the ideal gas equation and the Gilliland correlation,an evaporate prediction model of wall-wetting fuel film was set up and an evaporate prediction based dynamic fuel film compensator was designed.Through engine cold start tests,the wall-wetting temperature,which is the key input of the fuel film evaporate prediction model,was also modeled and predicted.Combined with the experimental data of the evaporation characteristics of ethanol-gasoline blends and engine calibration tests,all the parameters of the wall-wetting fuel film evaporate prediction model used in the fuel film compensator were identified.Square-wave disturbance tests of fuel injection showed that with the help of the fuel film compensator the response of the in-cylinder air-fuel ratio was significantly improved and the real air-fuel ratio always closely matched the expected ratio.The fuel film compensator was then integrated into the final air-fuel ratio controller,and the engine tests showed that the air-fuel ratio control error was less than 2% in steady-state conditions,and less than 4%in transient conditions.The fuel film compensator also showed good adaptability to different ethanol-gasoline blends.

  12. Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Qu Wei; Ma Tongze

    2001-01-01

    The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate.

  13. Fabrication of patterned flexible graphene devices via facile direct transfer of as-grown bi-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heun; Kim, Kyung Hoon; Yoon, Jangyeol [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Kuk Ki; Park, Seung Min [Department of Chemistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Ha, Jeong Sook, E-mail: jeongsha@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-02-15

    Highlights: • Patterned bi-layer graphene was directly transferred onto various polymer substrates by using micro-contact printing technique. • Coating of dimethylformamide onto the polydimethylsiloxane (PDMS) stamp enhanced the adhesion between the bi-layer graphene and the PDMS stamp. • Patterned graphene devices showed mechanically stable electrical properties upon repeated bending cycles. - Abstract: We report on the fabrication of patterned flexible graphene devices via a facile direct transfer of bi-layer graphene grown on alumina (Al{sub 2}O{sub 3}) substrate, and the use of Ag nanowire stickers as flexible electrodes. Patterned polydimethylsiloxane (PDMS) stamps coated with vaporized dimethylformamide (DMF) are utilized to transfer as-grown graphene directly onto a flexible polyethylene terephthalate (PET) substrate. The facile direct transfer is attributed to the enhanced adhesion of the bi-layer graphene to PDMS, due to DMF-coating, as well as the weak adhesion between the bi-layer graphene and the Al{sub 2}O{sub 3} substrate. In this way, flexible patterned graphene devices have been fabricated with Ag nanowire stickers as electrodes. Stable electrical conduction characteristics were measured over repetitive bending with a bending radius down to 5 mm.

  14. Fabrication of patterned flexible graphene devices via facile direct transfer of as-grown bi-layer graphene

    International Nuclear Information System (INIS)

    Highlights: • Patterned bi-layer graphene was directly transferred onto various polymer substrates by using micro-contact printing technique. • Coating of dimethylformamide onto the polydimethylsiloxane (PDMS) stamp enhanced the adhesion between the bi-layer graphene and the PDMS stamp. • Patterned graphene devices showed mechanically stable electrical properties upon repeated bending cycles. - Abstract: We report on the fabrication of patterned flexible graphene devices via a facile direct transfer of bi-layer graphene grown on alumina (Al2O3) substrate, and the use of Ag nanowire stickers as flexible electrodes. Patterned polydimethylsiloxane (PDMS) stamps coated with vaporized dimethylformamide (DMF) are utilized to transfer as-grown graphene directly onto a flexible polyethylene terephthalate (PET) substrate. The facile direct transfer is attributed to the enhanced adhesion of the bi-layer graphene to PDMS, due to DMF-coating, as well as the weak adhesion between the bi-layer graphene and the Al2O3 substrate. In this way, flexible patterned graphene devices have been fabricated with Ag nanowire stickers as electrodes. Stable electrical conduction characteristics were measured over repetitive bending with a bending radius down to 5 mm

  15. Thickness dependence of dispersion parameters of the MoO{sub x} thin films prepared using the vacuum evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Akın, Ümmühan, E-mail: uakin@selcuk.edu.tr; Şafak, Haluk

    2015-10-25

    The optical behaviors of molybdenum oxide thin films are highly important due to their widespread applications. In the present paper, the effect of thickness on the structure, morphology and optical properties of molybdenum oxide (MoO{sub x}) thin films prepared on Corning glass substrates using thermal evaporation technique was studied. The structure and morphology of films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, while their optical properties were investigated by UV-VIS-NIR spectrophotometry in the spectral range from 300 to 2500 nm. It was observed that whole films have amorphous structure and also they showed rather high transmittance values reached nearly up to 90%. Absorption analysis showed two types of electronic transitions; both direct and indirect interband transition energy values of films decrease from 4.47 to 3.45 eV and from 3.00 to 2.75 eV, respectively, with increasing the film thickness, while the width of the localized states tail increases with thickness. This decrease in the band gap value can be attributed to the rising oxygen-ion vacancy densities with the thickness. The refractive indices of films were calculated from Sellmeier coefficients determined by nonlinear curve fitting method based on the measured transmittance spectral data. The dispersion of the refractive index was discussed in terms of the Wemple-DiDomenico single-oscillator model. The dispersion parameters such as average oscillator energy, E{sub o}, the dispersion energy, E{sub d}, and static refractive index n{sub o} were evaluated and they found to vary significantly with the film thickness. - Highlights: • MoO{sub x} thin films with different thickness were prepared using the vacuum evaporation technique. • The variation of fundamental absorption edge with the film thickness was determined. • A detailed dispersion analysis based on the Wemple-DiDomenico model was performed. • The dependence of all

  16. Flux pinning properties of MgB{sub 2} thin films on Al tape substrates deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K., E-mail: kenji@st.cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T.; Sueyoshi, T. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Doi, T.; Nishikawa, T. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan)

    2011-11-15

    MgB{sub 2} thin films were deposited on Al tape substrates by EBE. The MgB{sub 2} thin films on Al tapes show much higher J{sub c} values compared to those of MgB{sub 2} wires fabricated by PIT method. The MgB{sub 2} thin films on Al tapes have c-axis correlated pinning centers. The scaling analysis of macroscopic pinning force indicates that a main pinning center is grain boundary. Flux pinning properties have been investigated in two kinds of MgB{sub 2} thin films deposited on Al tapes by electron beam evaporation: One is a stoichiometric composition and the other is a slightly B-rich composition. The values of critical current density J{sub c} in both MgB{sub 2} thin films on Al tape substrates at 10 K in the magnetic field parallel to the c-axis are higher than those in MgB{sub 2} thin films on Si and Al{sub 2}O{sub 3} substrates prepared by the same method. Both the MgB{sub 2} thin films on Al tapes show the large peaks for a magnetic field, B//c in the field-angular dependence of J{sub c}. This result indicates that the MgB{sub 2} thin films have the c-axis correlated pinning centers. Scaling analysis in the reduced macroscopic pinning force density versus the reduced magnetic field at 20 K implies that a main pinning center in both the MgB{sub 2} thin films is grain boundaries. In addition, it was suggested that a nonstoichiometric MgB{sub 2} thin film has additional pinning centers which act effectively in a high magnetic field.

  17. Optical characteristics of ZnS {sub x}Se{sub 1-x} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Hassan, Khedr M.M. [Department of Physics and Mathematics, School of Engineering, UCSI, Lot 18113, Off Jalan Cerdas, Taman Connaught, 56000 Cheras, Kuala Lumpur (Malaysia)]. E-mail: khedr@ucsi.edu.my; Muhamad, M.R. [Department of Physics, University of Malaya, K.L. Malaysia (Malaysia); Radhakrishna, S

    2005-11-22

    The optical transmission measurements are used to determine various optical constants and properties of ZnS {sub x}Se{sub 1-x} thin films prepared by electron beam evaporation onto glass substrates at 60 deg. C. The dispersion of the complex refractive index, the complex dielectric function and the absorption coefficient is studied in the transparent region of the spectrum and compared with the theoretical results calculated based on the model dielectric function. The fundamental optical energy gap is estimated by fitting the absorption coefficient data in the high absorption region to the direct transition expression. The variation of the energy gap with the composition in the film is investigated and compared with the results reported previously by other workers. The shift in the energy gap caused by the uniaxial stress inside the film and the grain size effect is estimated.

  18. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  19. Structural, electrical and optical properties of thermochromic VO{sub 2} thin films obtained by reactive electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, J.; Bessaudou, A., E-mail: annie.bessaudou@xlim.fr; Cosset, F.; Crunteanu, A.

    2012-05-01

    We present the structural and physical characterization of vanadium dioxide (VO{sub 2}) thin films prepared by reactive electron beam evaporation from a vanadium target under oxygen atmosphere. We correlate the experimental parameters (substrate temperature, oxygen flow) with the films structural properties under a radiofrequency incident power fixed to 50 W. Most of the obtained layers exhibit monocrystalline structures matching that of the monoclinic VO{sub 2} phase. The temperature dependence of the electrical resistivity and optical transmission for the obtained films show that they present thermoelectric and thermochromic properties, with a phase transition temperature around 68 Degree-Sign C. The results show that for specific experimental conditions the VO{sub 2} layers exhibit sharp changes in electrical and optical properties across the phase transition.

  20. AES depth profile and photoconductive studies of AgInS2 thin films prepared by co-evaporation

    Directory of Open Access Journals (Sweden)

    C. A Arredondo

    2014-06-01

    Full Text Available In this study, thin films of AgInS2 with chalcopyrite-type tetragonal structure were grown by means of a procedure based on the sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process. The effect of the growth temperature and the proportion of the evaporated Ag mass in relation to the evaporated In mass (mAg/mIn on the phase and homogeneity in the chemical composition were researched through X-ray diffraction measurements and Auger electrons spectroscopy. These measurements evidenced that the conditions for preparing thin films containing only the AgInS2 phase, grown with tetragonal chalcopyrite-type structure and good homogeneity of the chemical composition in the entire volume, are a temperature of 500 °C and a 0.89 mAg/mIn proportion. The transient photocurrent measurements indicated that the electricity transmission is affected by recombination processes via band-to-band transitions and trap-assisted transitions.

  1. Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory

    International Nuclear Information System (INIS)

    A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained

  2. Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Eui Guk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Boo, Joon Hong [Korea Aerospace University, Goyang (Korea, Republic of)

    2010-12-15

    A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

  3. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  4. The research and preparation of a bi-layer biodegradable external sheath with directional drug release profiles for vein graft

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenjie, E-mail: lawson3001@gmail.com [Department of Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou (China); Institute of Vascular Surgery, Fudan University, Shanghai (China); Department of Surgery, University of Wisconsin-Madison, WI (United States); Guo, Zhenying [Department of Pathology, Zhejiang Cancer Hospital, Hangzhou (China); Si, Yi [Department of Surgery, University of Wisconsin-Madison, WI (United States); Zhang, Xiangman; Shi, Zhenyu [Institute of Vascular Surgery, Fudan University, Shanghai (China); Chen, Feng [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou (China); Fu, Weiguo [Institute of Vascular Surgery, Fudan University, Shanghai (China)

    2013-11-01

    External sheath has been suggested for autologous vein grafts to inhibit neointimal hyperplasia and prevent anastomosis stricture. In this study, we prepared a bi-layer biodegradable paclitaxel-loaded sheaths with a synthetic copolymer poly(ethylene carbonate-ε-caprolactone) at room temperature. The bi-layer drug release profiles of the Paclitaxel-loaded (PTX-loaded) sheath significantly slow down the paclitaxel (PTX) release rates and result in a directional drug release way. Moreover, the nanofibrous layer of PTX-loaded poly(EC-CL) sheaths reduced the cytotoxicity and provided a better support for fibroblast adhesion and proliferation than the PTX-loaded layer of the sheaths. Thus, this study demonstrates that the bi-layer PTX-loaded poly(EC-CL) sheath with directional drug release profiles have a promising application for vein graft to against neointimal hyperplasia and anastomotic stricture.

  5. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  6. Effects of deposition rate on the structure and electron density of evaporated BaSi2 films

    Science.gov (United States)

    Hara, Kosuke O.; Trinh, Cham Thi; Arimoto, Keisuke; Yamanaka, Junji; Nakagawa, Kiyokazu; Kurokawa, Yasuyoshi; Suemasu, Takashi; Usami, Noritaka

    2016-07-01

    In order to control the electrical properties of an evaporated BaSi2 film, which is an emerging candidate for the absorber-layer material of earth-abundant thin-film solar cells, we have investigated the effects of deposition rate on the produced phases, microstructure, and carrier density of the thin films grown by thermal evaporation of BaSi2. X-ray diffraction results show that a high substrate temperature is necessary for BaSi2 formation at a high deposition rate, which is discussed from viewpoints of vapor composition and diffusion time. Microstructural characteristics such as grain size of 30-120 nm, oxide particle arrays present around the interface, and partial oxidation at a low substrate temperature are revealed by cross-sectional transmission electron microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy combined with an energy-dispersive X-ray spectroscopy. With increasing deposition rate, the crystalline quality of BaSi2 is found to improve, as evidenced by a decrease in full-width at half maximum of a [ Si 4 ] 4 - vibration band in Raman spectra. At the same time, electron density, which is determined by Hall measurement, decreases with deposition rate. The variation of electron density is discussed on the basis of microstructural characteristics and BaSi2 formation mechanism. The most probable reason is concluded to be composition deviation from stoichiometry.

  7. Substrate heating effect on the growth of a CdTe film on an InSb substrate by vacuum evaporation

    Science.gov (United States)

    Jiann-Ruey, Chen; Mau-Phon, Houng; Fenq-Lin, Jenq; Chien-Shyong, Fang; Wan-Sun, Tse

    1991-07-01

    Epitaxial CdTe thin films were grown on the (111) oriented InSb substrate by vacuum evaporation, with the substrate kept at 190-225°C during the film deposition. The chamber pressure during film deposition was at 3.5 × 10-6 mbar. X-ray diffraction was used to determine the film structure, while the full width at half maximum (FWHM) of the X-ray diffraction peak was used to examine the crystallinity of the as-deposited films. The film morphology was observed by the scanning electron microscope (SEM), and the film composition was determined by electron probe microanalysis (EPMA). The film quality was examined by infrared transmission spectroscopy. Results indicate that the quality of the grown CdTe films was improved with the higher substrate temperature during the film deposition.

  8. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y. Q.

    2016-05-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness.

  9. Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

    Science.gov (United States)

    Mesa, F.; Arredondo, C. A.; Vallejo, W.

    2016-03-01

    This work presents the results of synthesis and characterization of polycrystalline n-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity (σ) was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and σ versus T measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap (Eg) of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

  10. Preparation and Properties of Evaporated CdTe and All Thin Film CdTe/CdS Solar Cells

    Science.gov (United States)

    Shahzad, Naseem

    1991-05-01

    Cadmium telluride thin films were prepared by vacuum evaporation of CdTe powder in an attempt to fabricate all thin film solar cells of the type CdTe/CdS. Characterization of CdTe has shown it to have a band gap of 1.522 eV and a resistivity of 22Ω-cm. As prepared, solar cells exhibited low values of output parameters. Given quantity of copper was then deposited on top of the CdTe/CdS solar cells and the whole system was annealed at 350° C. This copper doping changed the output parameters favorably with a maximum efficiency of 1.9%.

  11. 薄膜蒸发器的分离效率%Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R. Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  12. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-07-01

    Full Text Available Nanocrystalline Cadmium Telluride (CdTe thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111 preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decreased from 2.87 eV to 2.05 eV with the increase of the crystallite size.

  13. Effect of the spin-twist structure on the spin-wave dynamics in Fe55Pt45/Ni80Fe20 exchange coupled bi-layers with varying Ni80Fe20 thickness

    International Nuclear Information System (INIS)

    We have investigated optically induced ultrafast magnetization dynamics of a series of Fe55Pt45/Ni80Fe20 exchange spring bi-layers with varying Ni80Fe20 thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni80Fe20 layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni80Fe20 layer gives rise to new modes in the composite system as opposed to the bare Ni80Fe20 films

  14. SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Víctor, E-mail: victor.robles@ciemat.es; Trigo, Juan Francisco; Guillén, Cecilia; Herrero, José

    2015-05-01

    Tin sulfide thin films were prepared by co-evaporation on soda-lime glass substrates, for use as absorber layers. The synthesis was carried out at 350 °C substrate temperature and varying the growth rate in the 2-6 Å/s range, adjusting the deposition time in order to obtain thicknesses in the 700-1500 nm range. After evaporation, the samples were heated at 400 °C and 500 °C under various atmospheres. The evolution of the morphological, structural and optical properties has been analyzed as a function of the thickness and deposition rate, before and after annealing. For the samples grown at the lowest rate, SnS and Sn{sub 2}S{sub 3} phase mixing has been observed by X-ray diffraction. Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers become richer in the Sn{sub 2}S{sub 3} phase. The sulfur treatment of samples prepared at the lowest rate results in the formation of SnS{sub 2} phase. Otherwise, the samples obtained at the highest rates show single-phase SnS after heating at 400 °C in sulfur atmosphere, with gap energy values around 1.24 eV. - Highlights: • Tin sulfide thin films were deposited by co-evaporation at different growth rates. • The influence of the growth rate and post-annealing at different conditions was studied. • The SnS phase was obtained by optimizing the growth rate and the annealing process. • The SnS phase presented properties for use as absorber layer.

  15. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    Science.gov (United States)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  16. Raman scattering of polycrystalline GaSb thin films grown by the co-evaporation process

    Institute of Scientific and Technical Information of China (English)

    Qiao Zai-Xiang; Sun Yun; He Wei-Yu; Liu Wei; He Qing; Li Chang-Jian

    2009-01-01

    This paper reports that GaSb thin films have been co-deposited on soda-lime glass substrates. The GaSb thin film structural properties are characterized by Raman spectroscopy. The Sb-A1g/GaSb-TO ratio decreases rapidly with the increase of substrate temperature, which suggests a small amount of crystalline Sb in the GaSb thin film and suggests that Sb atoms in the thin film decrease. In Raman spectra, the transverse optical (TO) mode intensity is stronger than that of the longitudinal optical (LO) mode, which indicates that all the samples arc disordered. The LO/TO intensity ratio increases with increasing substrate temperature which suggests the improved polycrystalline quality of the GaSb thin film. A downshift of the TO and LO frequencies of the polycrystalline GaSb thin film to single crystalline bulk GaSb Raman spectra is also observed. The uniaxial stress in GaSb thin film is calculated and the value is around 1.0 Gpa. The uniaxial stress decreases with increasing substrate temperature. These results suggest that a higher substrate temperature is beneficial in relaxing the stress in GaSb thin film.

  17. Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/SnS/ZnS stack

    Science.gov (United States)

    Sánchez, T. G.; Mathew, X.; Mathews, N. R.

    2016-07-01

    Cu2ZnSnS4 (CZTS) thin films were obtained by the sequential thermal evaporation of metal binary sulfides in the order CuS/SnS/ZnS, followed by annealing in Ar/S atmosphere. The as-grown films were annealed at different temperatures ranging between 350 and 600 °C, for 10 min. Based on the preliminary results, the temperatures 550 °C and 600 °C were selected for further optimization and a second batch of films were annealed for different time durations (10 min, 30 min and 60 min) at these temperatures in order to identify the conditions to obtain phase-pure CZTS films. The structural properties and chemical compositions at each temperature were investigated in order to optimize the phase purity and film stoichiometry. We have identified adequate and reproducible conditions to obtain the elemental ratio Cu/(Zn+Sn) and Zn/Sn close to 0.78 and 1.19 respectively, which is in the range of material composition required for promising solar cells. In addition the optimized material showed excellent optical and electrical properties to be used as a photovoltaic absorber layer. The optical band gap was found to be about 1.52 eV, and the carrier concentration, hall mobility, and resistivity were in the range of 8.372×1015 cm-3, 3.103 cm2/Vs and 340.3 Ω-cm respectively. Three traps with activation energies 4.39, 8.1, and 34 meV were detected.

  18. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  19. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range

    Science.gov (United States)

    Condeles, J. F.; Mulato, M.

    2016-02-01

    Lead iodide polycrystalline films have been deposited on corning glass substrates using solution evaporation in oven. Films 6 μm-thick were obtained with full coverage of the substrates as verified by scanning electron microscopy. Some pin-holes were observable. X-ray diffraction revealed a crystalline structure corresponding to the 4 H-PbI2 polytype formation. Polarized Raman scattering experiments indicated a lamellar structure. Anisotropy was also investigated using depolarization ratio calculations. The optical and electrical properties of the samples were investigated using photoluminescence and dark conductivity as a function of temperature, respectively. Activation energies of 0.10 up to 0.89 eV were related to two main electrical transport mechanisms. Films were also exposed to X-ray irradiation in the mammography X-ray energy range. The detector produced was also exposed to X-ray from 5 mR up to 1450 mR. A linear response was observed as a function of dose with a slope of 0.52 nA/mm2 per mR.

  20. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  1. Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    Jyun-Min Lin

    2013-01-01

    Full Text Available Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3 thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3 thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.

  2. Optical properties on thermally evaporated and heat-treated disodium phthalocyanine derivative thin films

    Indian Academy of Sciences (India)

    M E Sánchez-Vergara; M Rivera; R A Torres-García; C O Perez-Baeza; E A Loza-Neri

    2014-08-01

    Thin films were grown on quartz substrates and crystalline silicon wafers using disodium phthalocyanine and the organic ligands 2,6-diaminoanthraquinone, 2,6-dihydroxianthraquinone and its potassium derivative salt. The surface morphology of these films was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). IR spectroscopy was employed in order to investigate possible changes of the intra-molecular bonds between the powder compounds and thin films. The optical parameters have been investigated using spectrophotometric measurements of absorbance in the wavelength range of 200–1100 nm and the effects of post-deposition heat treatment were analysed. The absorption spectra recorded in the UV–Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient in the absorption region reveals non-direct transitions. In addition, the optical gap dependence upon the thickness of these thin films was evaluated.

  3. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

    Science.gov (United States)

    Gajbhiye, Sachin O.; Singh, S. P.

    2016-05-01

    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  4. A study on DPL model of heat transfer in bi-layer tissues during MFH treatment.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2016-08-01

    In this paper, dual-phase-lag bioheat transfer model subjected to Fourier and non-Fourier boundary conditions for bi-layer tissues has been solved using finite element Legendre wavelet Galerkin method (FELWGM) during magnetic fluid hyperthermia. FELWGM localizes small scale variation of solution and fast switching of functional bases. It has been observed that moderate hyperthermia temperature range (41-46°C) can be better achieved in spherical symmetric coordinate system and treatment method will be independent of the Fourier and non-Fourier boundary conditions used. The effect of phase-lag times has been observed only in tumor region. FCC FePt magnetic nano-particle produces more effective treatment with respect to other magnetic nano-particles. The effect of variability of magnetic heat source parameters (magnetic induction, frequency, diameter of magnetic nano-particles, volume fractional of magnetic nano-particles and ligand layer thickness) has been investigated. The physical property of these parameters has been described in detail during magnetic fluid hyperthermia (MFH) treatment and also discussed the clinical application of MFH in Oncology. PMID:27289539

  5. Strain-modulated excitonic gaps in mono- and bi-layer MoSe2

    Science.gov (United States)

    Jianting, Ji; Anmin, Zhang; Tianlong, Xia; Po, Gao; Yinghao, Jie; Qian, Zhang; Qingming, Zhang

    2016-07-01

    Photoluminescence (PL) and Raman spectra under uniaxial strain were measured in mono- and bi-layer MoSe2 to comparatively investigate the evolution of excitonic gaps and Raman phonons with strain. We observed that the strain dependence of excitonic gaps shows a nearly linear behavior in both flakes. One percent of strain increase gives a reduction of ∼ 42 meV (∼ 35 meV) in A-exciton gap in monolayer (bilayer) MoSe2. The PL width remains little changed in monolayer MoSe2 while it increases rapidly with strain in the bilayer case. We have made detailed discussions on the observed strain-modulated results and compared the difference between monolayer and bilayer cases. The hybridization between 4d orbits of Mo and 4p orbits of Se, which is controlled by the Se–Mo–Se bond angle under strain, can be employed to consistently explain the observations. The study may shed light into exciton physics in few-layer MoSe2 and provides a basis for their applications. Project supported by the National Basic Research Program of China (Grant No. 2012CB921701) and the National Natural Science Foundation of China (Grant Nos. 11474357 and 11004245). Qingming Zhang and Tianlong Xia were supported by the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China.

  6. Pilot-Scale Test Results Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At The Hanford Site Washington USA -11364

    International Nuclear Information System (INIS)

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  7. A study of the initial oxidation of evaporated thin films of aluminum by AES, ELS, and ESD

    Science.gov (United States)

    Bujor, M.; Larson, L. A.; Poppa, H.

    1982-01-01

    The room temperature, low pressure, oxidation of evaporated aluminum thin films has been studied by AES, ELS, and ESD. ESD was the most sensitive of the three methods to characterize a clean aluminum surface. Two oxidation stages were distinguished in the 0-3000 L oxygen exposure range. Between 0 and 50 L, the chemisorption of oxygen atoms was characterized by a fast decrease of the 67 eV AES Al peak and the 10 eV surface plasmon peak, and by a simultaneous increase of the oxygen AES and ESD signals. After 50 L, a change in slope in all AES and ESD signal variations was attributed to the slow growth of a thin layer of aluminum oxide, which after 3000 L was still only a few angstroms thick.

  8. Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    For the realization of vacuum in-line process in the fabrication of Cu(In,Ga)Se2 (CIGS) solar cells, In2S3 thin film buffer layers for CIGS have been deposited on glasses and CIGS layers with a thickness of about 650 Å by thermal evaporation process. During the thermal evaporation, the temperature of the substrate was varied from room temperature to 500 °C by heating and the grown In2S3 films were investigated and analyzed in terms of the optimized buffer layer for CIGS solar cells. From the results of scanning electron microscope and X-ray diffraction, the In2S3 thin film deposited at a higher substrate temperature showed the larger grain size and the films have amorphous structural characteristics. Although the structural characteristics such as the atomic ratio of In to S and transmittance of the In2S3 thin films were not proportional to temperature, it was possible to obtain the large optical band gap of In2S3 films of about 3.8–3.9 eV enough to be used as the buffer layer of CIGS. - Highlights: • In2S3 films were deposited at various substrate temperatures by thermal evaporation. • The atomic ratio of In to S in the In2S3 film has the highest value at 300 °C. • The In2S3 film has a band gap of about 3.8 eV because of its amorphous structure. • The In2S3 film is expected to be used as a buffer layer by in-line vacuum process

  9. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride

    Science.gov (United States)

    Han, Fei; Dong, Yang; Song, Aihua; Yin, Ran; Li, Sanming

    2014-08-01

    The aims of this research were to develop and evaluate a novel ciprofloxacin hydrochloride loaded bi-layer composite membrane based on alginate and chitosan. In vitro antimicrobial activity, drug permeation study, morphology, cytotoxicity, primary skin irritation and in vivo pharmacodynamics were investigated. Results showed that the membranes could inhibit the growth of microorganisms for longer than 7 days. And there was no significant decrease in the metabolic activity of the Hacat fibroblasts cells were treated with the membranes. No edema and erythema were observed after administration of membranes on the rabbit skin after 14 days. Moreover, the results of pharmacodynamics showed that the membranes were more effective in improving the wound healing process. In conclusion, a novel bi-layer composite membrane was developed and results suggested that it could be exploited as sustained-release wound dressings.

  10. Microstructures and properties of Cr-Cu/W-Cu bi-layer composite coatings prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaping; Feng, Xiaomei; Shen, Yifu; Chen, Cheng; Duan, Cuiyuan [Nanjing Univ. of Aeronautics and Astronautics (China). Dept. of Materials Science and Technology

    2016-06-15

    Cr-Cu/W-Cu bi-layer coatings with composite structures were fabricated by means of mechanical alloying. The Cr-Cu layer and the W-Cu layer were deposited successively and the as-synthesized bi-layer coating was made up of an inner Cr-Cu layer and an outer W-Cu layer. Microstructures, chemical and phase compositions of the as-prepared coatings were characterized. The results indicated that the bonding between the inner coating and the substrate was improved with the increase of Cu in the raw powder. The annealing treatment of the inner Cr-Cu layer was beneficial to the bonding between the inner Cr-Cu coating and the outer W-Cu coating layer. Mechanical properties such as microhardness, friction and wear resistance were tested. The as-synthesized coating could effectively improve the hardness and wear resistance of the Cu substrate.

  11. Corrosion performance of bi-layer Ni/Cr2C3-NiCr HVAF thermal spray coating

    Science.gov (United States)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.; Björklund, S.

    2016-04-01

    The corrosion behavior of three HVAF thermal spray coating systems (A: single-layer Ni, B: single-layer Cr2C3-NiCr coatings, and C: bi-layer Ni/Cr2C3-NiCr coating) was comparatively studied using immersion, salt spray, and electrochemical tests. Polarization and EIS results showed that the corrosion behavior of Cr2C3-NiCr coatings in 3.5 wt.% NaCl solution was significantly improved by adding the intermediate layer of Ni. It was illustrated that the polarization resistance of the bi-layer Ni/Cr2C3-NiCr and single-layer Cr2C3-NiCr coatings were around 194 and 38 kΩ cm2, respectively. Microstructure analysis revealed that the bond coating successfully prevented the corrosion propagation toward the coating.

  12. Structure of MoCN films deposited by cathodic arc evaporation

    International Nuclear Information System (INIS)

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C2H2 flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated

  13. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  14. Vacuum properties of TiZrV non-evaporable getter films [for LHC vacuum system

    CERN Document Server

    Benvenuti, Cristoforo; Costa-Pinto, P; Escudeiro-Santana, A; Hedley, T; Mongelluzzo, A; Ruzinov, V; Wevers, I

    2001-01-01

    Sputter-deposited thin films of TiZrV are fully activated after 24 h "in situ" heating at 180 degrees C. This activation temperature is the lowest of some 18 different getter coatings studied so far, and it allows the use of the getter thin film technology with aluminium alloy vacuum chambers, which cannot be baked at temperatures higher than 200 degrees C. An updated review is given of the most recent results obtained on TiZrV coatings, covering the following topics: influence of the elemental composition and crystal structure on activation temperature, discharge gas trapping and degassing, dependence of pumping speed and surface saturation capacity on film morphology, ageing consequent to activation-air-venting cycles and ultimate pressures. Furthermore, the results obtained when exposing a coated particle beam chamber to synchrotron radiation in a real accelerator environment (ESRF Grenoble) are presented and discussed. (13 refs).

  15. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis.

    Science.gov (United States)

    Strickland, Phyllis; Shin, Grace C; Plump, Andrew; Tessier-Lavigne, Marc; Hinck, Lindsay

    2006-03-01

    Development of many organs, including the mammary gland, involves ductal morphogenesis. Mammary ducts are bi-layered tubular structures comprising an outer layer of cap/myoepithelial cells (MECs) and an inner layer of luminal epithelial cells (LECs). Slit2 is expressed by cells in both layers, with secreted SLIT2 broadly distributed throughout the epithelial compartment. By contrast, Robo1 is expressed specifically by cap/MECs. Loss-of-function mutations in Slit2 and Robo1 yield similar phenotypes, characterized by disorganized end buds (EBs) reminiscent of those present in Ntn1(-/-) glands, suggesting that SLIT2 and NTN1 function in concert during mammary development. Analysis of Slit2(-/-);Ntn1(-/-) glands demonstrates an enhanced phenotype that extends through the ducts and is characterized by separated cell layers and occluded lumens. Aggregation assays show that Slit2(-/-);Ntn1(-/-) cells, in contrast to wild-type cells, do not form bi-layered organoids, a defect rescued by addition of SLIT2. NTN1 has no effect alone, but synergistically enhances this rescue. Thus, our data establish a novel role for SLIT2 as an adhesive cue, acting in parallel with NTN1 to generate cell boundaries along ducts during bi-layered tube formation.

  17. Investigation of elastic and optical properties of electron beam evaporated ZrO2–MgO composite thin films

    International Nuclear Information System (INIS)

    Thin films of composite materials are being progressively explored for achieving tunability in the optical constants for application in multilayer optical devices. In the present study, a set of ZrO2–MgO binary mixed composite thin films have been prepared by reactive electron beam evaporation of solid solution of ZrO2 and MgO at different oxygen partial pressures. Since elastic properties of the thin films are very important for their environmental stability under high power laser application, elastic moduli (indentation moduli) of the films have been measured by atomic force acoustic microscopy measurements. The optical properties especially refractive index of such films has been determined from the optical transmission measurement using an inverse synthesis method, while the density of such films has been measured by grazing incidence X-ray reflectivity. The variation of the elastic moduli of the thin films as a function of oxygen partial pressure used during deposition has been studied and the above variation has been corroborated with the variation of density and refractive index of the thin films. - Highlights: • Indentation modulus of ZrO2–MgO films estimated by atomic force acoustic microscopy • The thin film deposited without oxygen pressure depicts highest indentation modulus. • Indentation modulus of the films decreases monotonically with oxygen pressure. • Correlation between indentation modulus, refractive index and film density established

  18. Reflectance of evaporated Ruthenium films from 300 A to 50 microns

    Science.gov (United States)

    Hass, G.; Hunter, W. R.

    1981-07-01

    Results of an experimental investigation are presented for the reflectance spectra of vacuum-deposited Rhodium and Ruthenium films. Comparison of normal incidence reflectance data between 0.22 and 15.0 microns shows Rhodium to be the superior front surface mirror material, due both to its greater reflectance and exceptional hardness and resistance to atmospheric corrosion.

  19. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  20. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.;

    2010-01-01

    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method. © 2010 American Institute of Physics....

  1. Effect of H{sup +} irradiation on the optical properties of vacuum evaporated AgInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.C. Santhosh, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015 (India); Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2009-07-30

    We prepared polycrystalline AgInSe{sub 2} thin films by vacuum evaporation on glass substrate at a high temperature using the stoichiometric powder. The thin films were characterized by X-ray diffraction and UV-vis-NIR spectroscopy. The samples were subjected to the irradiation of 1.26 MeV protons (H{sup +}). The effect of irradiation on the optical properties has been investigated for different doses of H{sup +}. It is observed that the band gap of silver indium selenide thin films decreases gradually with ion irradiation dose.

  2. Film boiling heat transfer characteristics of sodium in droplet evaporation on heated tantalum

    International Nuclear Information System (INIS)

    For gaining background information on possible vapor explosion in a hypothetical core disruptive accident of liquid metal cooled fast breeder reactors, the experiment on the film boiling characteristics of sodium was conducted in association with Leidenfrost phenomenon. In a steel container filled with 1.0bar argon gas, sodium droplets were put on a heated disk and the behavior of droplets was observed through pyrex glass windows by a 35mm camera and a color videotape-recorder. A tantalum disk of 70mm dia. and 30mm height was induction-heated by an oil-cooled coil and a high frequency power supply of 20kHz and 30kW rating. The wall temperature of the disk was measured by a 1.6mm O.D. Ta-sheathed W-5%Re/W-26%Re thermocouple embedded beneath the disk. The experimental conditions were the initial droplet temperature and volume : 400-5000C and about 1.0cm3, the initial tantalum disk temperature : 1390-18900C. The heat flux was estimated from the volumetric reducing rate of droplet due to vaporization, based on photographic observation. The data plots of heat flux, though widely scattering, showed a decreasing trend with the wall superheat in the temperature range of 1390-16000C, while an increasing trend in the range of 1600-18900C. The former range suggests to correspond to the transition boiling region and the latter to the film boiling region. Thus, the minimum film boiling point was roughly estimated to be around 16000C and 45W/cm2. In the film boiling region the plots came slightly above the theoretical prediction. (author)

  3. Controlling interfacial curvature in nanoporous silica films formed by evaporation-induced self-assembly from nonionic surfactants. II. Effect of processing parameters on film structure.

    Science.gov (United States)

    Urade, Vikrant N; Bollmann, Luis; Kowalski, Jonathan D; Tate, Michael P; Hillhouse, Hugh W

    2007-04-10

    The double-gyroid phase of nanoporous silica films has been shown to possess facile mass-transport properties and may be used as a mold to fabricate a variety of highly ordered inverse double-gyroid metal and semiconductor films. This phase exists only over a very small region of the binary phase diagram for most surfactants, and it has been very difficult to synthesize metal oxide films with this structure by evaporation-induced self-assembly (EISA). Here, we show the interplay of the key parameters needed to synthesize these structures reproducibly and show that the interfacial curvature may be systematically controlled. Grazing angle of incidence small-angle X-ray scattering (GISAXS) is used to determine the structure and orientation of nanostructured silica films formed by EISA from dilute silica/(poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl) surfactant solutions. Four different highly ordered film structures are observed by changing only the concentration of the surfactant, the relative humidity during dip-coating, and the aging time of the solution prior to coating. The highly ordered films progress from rhombohedral (Rm) to 2D rectangular (c2m) to double-gyroid (distorted Iad) to lamellar systematically as interfacial curvature decreases. Under all experimental conditions investigated, increasing the aging time of the coating solution was found to decrease the interfacial curvature. In particular, this parameter was critical to being able to synthesize highly ordered, pure-phase double-gyroid films. The key role of the aging time is shown via processing diagrams that map out the interplay between the aging time, composition, and relative humidity. 29Si nuclear magnetic resonance (NMR) spectroscopy and solution-phase small-angle X-ray scattering (SAXS) of the aged coating solutions presented in part I of this series are then used to interpret the effects of aging prior to dip-coating. Specifically, it was found that a predictive model based on volume

  4. Deposition and Characterization of Vacuum Evaporated Rubrene Films%真空蒸镀红荧烯薄膜及其形貌分析

    Institute of Scientific and Technical Information of China (English)

    邓金祥; 康成龙; 杨冰; 满超; 崔敏; 孔乐; 杨萍

    2012-01-01

    红荧烯(rubrene)即5,6,11,12-四苯基并四苯,是一种重要的小分子有机半导体材料,可以用以制备红荧烯有机场效应管和太阳能光伏器件.本文首先对传统的热蒸发真空系统进行改造,使之能蒸镀有机薄膜.在一定的蒸发温度下,经过不同蒸镀时间蒸镀红荧烯薄膜,蒸镀时间分别为5,6,7,8h,获得了具有多晶结构的红荧烯薄膜,并对其形貌进行了分析.结果表明非晶结构的红荧烯薄膜首先在硅衬底上生长,非晶红荧烯薄膜生长至一定厚度后,多晶结构的红荧烯从其中形成.%The rubrene (5,6,11,12-tetraphenylnaphthacene) films were deposited by vacuum evaporation on Si substrates. The impacts of the deposition conditions, such as the pressure, evaporation temperature, and deposition time, on microstructures and properties of the small molecule, semiconductor, organic rubrene films were evaluated. The surface morphologies of the rubrene films were characterized with optical microscope and multimode atomic force microscopy. The results show that the vacuum evaporation time strongly affects the microstructures of the rubrene films, For example, after vacuum evaporation at 100~110 ℃ for 7~8 h, the rubrene films were found to be polycrystalline. The growth of polycrys-talline rubrene started only after a certain thickness of the amorphous rubrene films formed at the initial stage on the Si substrate.

  5. Size-dependent structure and magnetic properties of co-evaporated Fe-SiO2 nanoparticle composite film under high magnetic field

    Science.gov (United States)

    Ma, Yonghui; Li, Guojian; Du, Jiaojiao; Li, Mengmeng; Wang, Jianhao; Wang, Qiang

    2016-05-01

    Composite film of Fe nanoparticles embedded in a SiO2 matrix has been prepared by the co-evaporation of Fe and SiO2. Both source temperature and in-situ high magnetic field (HMF) have been used to adjust the Fe particle size and the growth of Fe-SiO2 film. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the film grown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO2. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe) of the 1300 °C film is much higher than that (6 Oe) of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO2.

  6. SHEAR BOND STRENGTHS BETWEEN CERAMIC CORES AND VENEERING CERAMICS OF DENTAL BI-LAYERED CERAMIC SYSTEMS AND THE SENSITIVITY TO THERMOCYCLING

    OpenAIRE

    SUN TING, BDS, DDS; SHAO LONQUAN, DDS, MS; DENG BIN, DDS, MS; WEN NING, DDS, MS

    2012-01-01

    The purpose of this study was to investigate the bond strength between various commercial ceramic core materials and veneering ceramics of dental bi-layered ceramic combinations and the effect of thermocycling. The shear bond strength of four dental bi-layered ceramic combinations (white Cercon, yellow Cercon, white Lava, yellow Lava, IPS E.max) were tested. Metal ceramic combinations were conducted as a control group. Half of each group was subjected to thermocycling. All specimens were ther...

  7. Orientation of CdTe epitaxial films on GaAs(100) grown by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Houng Mauphon; Fu Shenli; Jenq Fenqlin (Dept. of Electrical Engineering, National Cheng-Kung Univ., Tainan (Taiwan)); Chen Jiannruey (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-08-15

    The growth of (100)- and (111)-oriented CdTe epitaxial layers on (100)-oriented GaAs substrates were investigated. Ar{sup +} plasma bombardment was used to remove the surface oxide layer, while preheating the substrate before evaporation was performed to deplete arsenic on the GaAs substrate surface. Results indicate that the CdTe(100) will grow on GaAs(100) with an oxide layer remaining on the surface. For the GaAs(100) substrate with the oxide layer removed by plasma bombardment, CdTe(100) will grow on the arsenic-depleted GaAs substrate, while CdTe(111) will grow on the GaAs substrate without arsenic depletion. A model is proposed that a tellurium-rich surface is formed on the arsenic-depleted GaAs surface through Ga-Te bonding on which the CdTe(100) will grow, whereas CdTe(111) will grow on a tellurium-poor surface. The photoluminescence investigation conforms to our proposed model. (orig.).

  8. Influence of LiBaO5 Structure on Microstructure and Optical Properties of ZrO2 Thin Films Prepared by Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    TAN Tian-Ya; ZHANG Da-Wei; ZHAN Mei-Qiong; SHAO Jian-Da; FAN Zheng-Xiu

    2005-01-01

    @@ ZrO2 thin films were deposited by using an electron beam evaporation technique on three kinds of lithium triborate (LiB3O5 or LBO) substrates with the surfaces at specified crystalline orientations. The influences of the LBO structure on the structural and optical properties of ZrO2 thin films are studied by spectrophotometerand x-ray diffraction. The results indicate that the substrate structure has obvious effects on the structural and optical properties of the film: namely, the ZrO2 thin film deposited on the X-LBO, Y-LBO and Z-LBO orients to m(-212), m(021) and o(130) directions. It is also found that the ZrO2 thin film with m(021) has the highest refractive index and theleast lattice misfit.

  9. Properties of annealed indium-rich In sub 2 O sub 3 film deposited by plasma enhanced reactive evaporation (PERE) technique

    International Nuclear Information System (INIS)

    Indium rich In sub 3 O sub 3 film is grown by plasma enhanced reactive evaporation (PERE) technique. The film is deposited onto glass and silicon substrate at ∼ 300 degree C. The flowrates of N sub 2 O in He as the reacting gases are 47.65 sccm and 11.65 sccm respectively. Film thicknesses of ∼ 5000 A are obtained, as measured from Tolansky and ellipsometric methods. The optical, electrical and structural properties of the film are studied at different annealing temperatures in the 100 degree C to 500 degree C range in oxygen for one hour. The refractive index calculated at a wavelength of 632.8 nm is measured by 4-point probe, is ∼ 20 Ω/□. The structure of the film as illustrated from XRD analysis shows predominant (110) In and (222) In sub 2 O sub 3 peaks, where the former decreases with increasing annealing temperatures

  10. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  11. A study on the nonlinear microwave electrodynamic response of e-beam evaporated MgB{sub 2} superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Andreone, A [I.N.F.M. and Dipartimento Scienze Fisiche, Universita Federico II, Napoles (Italy); Gennaro, E Di [I.N.F.M. and Dipartimento Scienze Fisiche, Universita Federico II, Napoles (Italy); Lamura, G [I.N.F.M. and Dipartimento Scienze Fisiche, Universita Federico II, Napoles (Italy); Salluzzo, M [I.N.F.M. and Dipartimento Scienze Fisiche, Universita Federico II, Napoles (Italy); Purnell, A [Imperial College of Science, Technology and Medicine, London (United Kingdom); Cohen, L F [Imperial College of Science, Technology and Medicine, London (United Kingdom); Hao, L [National Physical Laboratory, Teddington, Middlesex (United Kingdom); Gallop, J [National Physical Laboratory, Teddington, Middlesex (United Kingdom); Cantoni, C [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Paranthaman, M [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2003-02-01

    We present a study on the temperature and field dependence of the microwave surface impedance Z{sub s} in thin films of the superconducting MgB{sub 2} compound. Samples were prepared by e-beam evaporation of boron on r-plane sapphire followed by an ex situ annealing in Mg vapour. Critical temperature values range between 26 and 38 K. Surface impedance measurements (Z{sub s} = R{sub s} + iX{sub s}) were performed from 2 K close to T{sub c} in the microwave region up to 20 GHz via parallel plate or dielectrically loaded resonators in 'symmetric' (two MgB{sub 2} films) and asymmetric (an MgB{sub 2} film and a commercial YBCO control film) configurations. At high microwave power, frequency domain measurements show a characteristic signature associated with weak links and this appears to be the limiting factor governing the performance of these films.

  12. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO{sub 2} thin films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhongdan [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Jiang Xiaohong, E-mail: jiangxh24@mail.njust.edu.cn [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Zhou Bing; Wu Xiaodong; Lu Lude [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2011-10-01

    Transparent Si-doped TiO{sub 2} thin films (Si-TiO{sub 2}) were deposited on quartz glasses using electron beam evaporation (EBE) and annealed at different temperature in an air atmosphere. The structure and morphology of these films were analyzed by X-ray diffraction (XRD), Raman microscopy (Raman), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Meanwhile the photocatalytic activity of the films has also been evaluated on the basis of the degradation degree of rhodamine B in aqueous solution. Our experimental results suggest that the annealing temperature impact a strong effect on the structure, morphology and photocatalytic activity of Si-TiO{sub 2} thin films. Furthermore the enhanced thermal stability of Si-TiO{sub 2} films enabled them to elevate the phase transformation temperature of TiO{sub 2} from anatase to rutile and enhanced the photocatalytic efficiency.

  13. Plasmonics and single-molecule detection in evaporated silver-island films

    Energy Technology Data Exchange (ETDEWEB)

    Moula, G.; Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Ontario (Canada); Rodriguez-Oliveros, R.; Sanchez-Gil, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Albella, P. [Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, San Sebastian (Spain)

    2012-11-15

    The plasmonic origin of surface-enhanced Raman scattering (SERS) leads to the concept of hotspots and plasmon coupling that can be realized in the interstitial regions, or on specially engineered, silver and gold nanostructures. It is also possible to achieve spatial locations of high local field or hotspots on silver-island films (SIF) allowing single-molecule detection (SMD). When a single monomolecular layer coating the SIFs contains dye molecules dispersed in it, single-molecule impurities, (with an average of one hundred dye molecules in 1 {mu}m{sup 2}, which is the field of view of the micro-Raman system), SMD is observed as a rare statistical event. Here, the SMD results for silver-island films are presented, with the same nominal mass thickness, but differing in the localized surface plasmon resonance that is a function of the temperature of substrate during deposition. A blue-shifted plasmon can be seen as a decrease in plasmon coupling for deposition at higher temperature. A simple two-particle model for localized plasmon resonance coupling calculations, including the shape and substrate effects seems to explain the trend of observations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A study of the electronic processes in evaporated thin films of nickel phthalocyanine

    CERN Document Server

    Anthopoulos, T D

    2003-01-01

    Design and development of electronic devices based on organic semiconductors requires knowledge of the electronic conduction processes that occur within these solids. In this thesis the structural, optical and electrical properties of nickel phthalocyanine (NiPc) are investigated. In particular, various electrical properties of NiPc were studied (to the best of knowledge for the first time) in situ employing a fabrication and characterisation method developed in-house for this particular purpose. Films deposited onto quartz substrates, maintained at room temperature, were identified by X-ray diffractometry to be of the alpha-form. Optical studies of absorption in the ultraviolet (UV) and visible (Vis) spectrum of the same films showed the existence of two absorption bands. The absorption maxima in the Vis and UV were identified as the Q and Soret band, respectively, and were both attributed to pi-> pi sup * transition. Analysis of optical data yielded a value of 2.32 eV for the optical energy band gap (E sub ...

  15. MgB{sub 2} thin films with high J{sub c} fabricated on Al tape substrates by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujiyoshi, T., E-mail: fuji@cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Sueyoshi, T.; Okita, K. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Doi, T. [Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yoshihara, K. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan); Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-10-15

    MgB{sub 2} thin films on nontextured Al tape substrates were fabricated by electron beam evaporation. MgB{sub 2} thin film with a boron buffer layer of about 3 nm thickness was also prepared. The thickness of MgB{sub 2} thin films is 250 nm. The obtained MgB{sub 2} thin films on Al tape substrates were boron rich in composition and c-axis oriented. The self-field J{sub c} of the MgB{sub 2} thin film with a boron buffer layer at 10 K and 20 K are 9.45 Multiplication-Sign 10{sup 10} A/m{sup 2} and 4.85 Multiplication-Sign 10{sup 10} A/m{sup 2}, respectively. The magnetic field reduction of J{sub c} in MgB{sub 2} thin films on Al tape substrates is smaller compared with MgB{sub 2} wires fabricated by a powder-in-tube method and MgB{sub 2} thin films fabricated by a hybrid physical chemical vapor deposition method. The field angular dependences of J{sub c} of MgB{sub 2} thin films on Al tape substrates are similar to that of the MgB{sub 2} thin film on Si, which was reported previously. This result indicates that grain boundaries act as a dominant pinning center in MgB{sub 2} thin films on Al tape substrates.

  16. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  17. Anisotropic In-Plane Conductivity and Dichroic Gold Plasmon Resonance in Plasma-Assisted ITO Thin Films e-Beam-Evaporated at Oblique Angles.

    Science.gov (United States)

    Parra-Barranco, Julián; García-García, Francisco J; Rico, Víctor; Borrás, Ana; López-Santos, Carmen; Frutos, Fabián; Barranco, Angel; González-Elipe, Agustín R

    2015-05-27

    ITO thin films have been prepared by electron beam evaporation at oblique angles (OA), directly and while assisting their growth with a downstream plasma. The films microstructure, characterized by scanning electron microscopy, atomic force microscopy, and glancing incidence small-angle X-ray scattering, consisted of tilted and separated nanostructures. In the plasma assisted films, the tilting angle decreased and the nanocolumns became associated in the form of bundles along the direction perpendicular to the flux of evaporated material. The annealed films presented different in-depth and sheet resistivity as confirmed by scanning conductivity measurements taken for the individual nanocolumns. In addition, for the plasma-assisted thin films, two different sheet resistance values were determined by measuring along the nanocolumn bundles or the perpendicular to it. This in-plane anisotropy induces the electrochemical deposition of elongated gold nanostructures. The obtained Au-ITO composite thin films were characterized by anisotropic plasmon resonance absorption and a dichroic behavior when examined with linearly polarized light. PMID:25938593

  18. In-situ growth of a CdS window layer by vacuum thermal evaporation for CIGS thin film solar cell applications

    International Nuclear Information System (INIS)

    Highly crystalline and transparent CdS films are grown by utilizing the vacuum thermal evaporation (VTE) method. The structural, surface morphological, and optical properties of the films are studied and compared with those prepared by chemical bath deposition (CBD). It is found that the films deposited at a high substrate temperature (200 °C) have a preferential orientation along (002) which is consistent with CBD-grown films. Absorption spectra reveal that the films are highly transparent and the optical band gap values are found to be in a range of 2.44 eV–2.56 eV. CuIn1−xGaxSe2 (CIGS) solar cells with in-situ VTE-grown CdS films exhibit higher values of Voc together with smaller values of Jsc than those from CBD. Eventually the conversion efficiency and fill factor become slightly better than those from the CBD method. Our work suggests that the in-situ thermal evaporation method can be a competitive alternative to the CBD method, particularly in the physical- and vacuum-based CIGS technology. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Thickness and annealing effects on thermally evaporated InZnO thin films for gas sensors and blue, green and yellow emissive optical devices

    Science.gov (United States)

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Sivaraj, Manoj

    2016-08-01

    Indium zinc oxide (InZnO) thin films with thicknesses of 100 nm and 200 nm were deposited on glass plate by thermal evaporation technique. Fourier transform infrared spectra showed a strong metal-oxide bond. X-ray diffraction patterns revealed amorphous nature for as-deposited film whereas polycrystalline structure for annealed films. Scanning electron microscope images showed a uniform distribution of spherical shape grains. Grain size was found to be higher for 200 nm film than 100 nm film. The presence of elements (In, Zn and O) was confirmed from energy dispersive X-ray analysis. Photoluminescence study of 200 nm film showed a blue, blue-green and blue-yellow emission whereas 100 nm film showed a broad green and green-yellow emissions. Both 100 nm and 200 nm films showed good oxygen sensitivity from room temperature to 400 °C. The observed optical and sensor results indicated that the prepared InZnO films are highly potential for room temperature gas sensor and blue, green and yellow emissive opto-electronic devices.

  20. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  1. YBCO films grown by reactive co-evaporation on simplified IBAD-MgO coated conductor templates

    International Nuclear Information System (INIS)

    We demonstrate coated conductors fabricated by reactive co-evaporation of YBa2Cu3Oy (YBCO) by cyclic deposition and reaction (RCE-CDR) on ion-beam-assisted-deposition- (IBAD-) textured templates simplified by the elimination of the epitaxial buffer layer. Hastelloy substrates, both polished and unpolished, were used as a starting material for the IBAD templates. Y2O3 bed layers were then deposited followed by IBAD-textured MgO and a thin homoepitaxial MgO layer. The MgO-terminated templates were used for direct deposition of YBCO by RCE-CDR. Critical current densities obtained for the undoped YBCO material are comparable to the best values measured previously with the use of LaMnO3 or SrTiO3 epitaxial buffer layers and state-of-the-art coated conductor results. The structural characterization data indicate a well oriented YBCO film with a robust template. Electrical measurements also indicate no weak links and a typical magnetic field behavior of undoped YBCO, characterized by a low density of naturally occurring strong pinning centers and correlations along the ab direction.

  2. Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs

    Energy Technology Data Exchange (ETDEWEB)

    Samavati, Alireza, E-mail: alireza.samavati@yahoo.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Othaman, Z., E-mail: zulothaman@gmail.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-10-15

    We report the influence of Si spacer thickness variation (10–40 nm) on structural and optical properties of Ge quantum dots (QDs) in Ge/Si(1 0 0) bi-layer grown by radio frequency magnetron sputtering. AFM images reveal the spacer dependent width, height, root mean square roughness and number density of QDs vary in the range of ∼12–25 nm, ∼2–6 nm, ∼1.95–1.05 nm and ∼0.55×10{sup 11}–2.1×10{sup 11} cm{sup −2}, respectively. XRD patterns exhibit the presence of poly-oriented structures of Ge with preferred growth along (1 1 1) direction accompanied by a reduction in strain from 4.9% to 1.2% (estimated from Williamson–Hall plot) due to bi-layering. The room temperature luminescence displays strong blue–violet peak associated with a blue shift as much as 0.05 eV upon increasing the thickness of Si spacer. This shift is attributed to the quantum size effect, the material intermixing and the strain mediation. Raman spectra for both mono and bi-layer samples show intense Ge–Ge optical phonon mode that is shifted towards higher frequency. Furthermore, the first order features of Raman spectra affirm the occurrence of interfacial intermixing and phase formation during deposition. The excellent features of the results suggest that our systematic method may constitute a basis for the tunable growth of Ge QDs suitable in nanophotonics. - Highlights: • High quality bilayered hetero-structure Ge/Si using economic and easy rf magnetron sputtering fabrication method. • The role of phonon-confinement and strain relaxation mechanisms. • Influence of bilayering on evolutionary growth dynamics. • Band gap shift of visible PL upon bilayering.

  3. Wetting and Photocatalytic Properties of TiO2 Nanotube Arrays Prepared via Anodic Oxidation of E-Beam Evaporated Ti Thin Films

    Directory of Open Access Journals (Sweden)

    Soon Wook Kim

    2015-01-01

    Full Text Available TiO2 nanotube arrays (TNAs are fabricated on quartz substrate by anodizing E-beam evaporated Ti films. E-beam evaporated Ti films are directly anodized at various anodizing voltages ranging from 20 to 45 V and their morphological, wetting, and photocatalytic properties are examined. The photocatalytic activity of the prepared TNAs is evaluated by the photodecomposition of methylene blue under UV illumination. The TNAs prepared at an anodizing voltage of 30 V have a high roughness of 30.1 nm and a low water contact angle of 7.5°, resulting in a high photocatalytic performance. The surface roughness of the TNAs is found to correlate inversely with the water contact angle. High roughness (i.e., high surface area, which leads to high hydrophilicity, is desirable for effective photocatalytic activity.

  4. Effect of annealing on the structural and optical properties of (3 1 1)B GaAsBi layers

    International Nuclear Information System (INIS)

    The influence of post-growth annealing on the microstructure and photoluminescence (PL) of GaAsBi alloys grown on (3 1 1)B GaAs is analyzed. Conventional transmission electron microscopy (TEM) performed on as-grown samples evidence the presence of structural defects and a mosaic structure in the GaAsBi layer. A sequence of stacking faults at regions close to the GaAs/GaAsBi interface are observed in high resolution TEM images. After annealing at 473 K during 3 h the mosaic structure disappears, the presence of defects is reduced and the PL peak intensely enhances.

  5. Preparation of PbTiO3 Films Utilizing Self-Control Mechanism of Stoichiometric Composition in Dual-Beam Vacuum Evaporation Method

    Science.gov (United States)

    Ueno, Satoshi; Ishiwara, Hiroshi

    1992-09-01

    Optimum conditions for preparing PbTiO3 films on Si and SrTiO3 substrates are investigated in the dual-beam vacuum evaporation method using PbO and TiO2. It has been found that tetragonal PbTiO3 films are formed on Si substrates at temperatures ranging from 550°C to 600°C, and that the stoichiometric composition of the films is easily obtained at 600°C by supplying excess PbO molecules to the substrate. It has also been found that PbTiO3 films grow epitaxially on SrTiO3 substrates at temperatures around 550°C.

  6. Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Yttrium oxide thin films are deposited using indigenously developed metal organic precursor (2,2,6,6-tetra methyl-3,5-hepitane dionate) yttrium, commonly known as Y(thd)3 (synthesized by ultrasound method). Microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition process was used for these depositions. Depositions were carried out at a substrate temperature of 350 oC with argon to oxygen gas flow rates fixed to 1 sccm and 10 sccm respectively throughout the experiments. The precursor evaporation temperature (precursor temperature) was varied over a range of 170-275 oC keeping all other parameters constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and refractive index of the coatings are measured by the spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. C-Y2O3 phase is deposited at lower precursor temperature (170 oC). At higher temperature (220 oC) cubic yttrium oxide is deposited with yttrium hydroxide carbonate as a minor phase. When the temperature of the precursor increased (275 oC) further, hexagonal Y2O3 with some multiphase structure including body centered cubic yttria and yttrium silicate is observed in the deposited film. The properties of the films drastically change with these structural transitions. These changes in the film properties are correlated here with the precursor evaporation characteristics obtained at low pressures.

  7. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  8. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors

    Science.gov (United States)

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong; Kim, Dahye; Kim, Hakseong; Sung, Ji Ho; Lee, Myoung Jae; Seo, David H.; Lee, Sang Wook; Jo, Moon-Ho; Seo, Sunae

    2015-12-01

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS2 transistors. Ti-MoS2-graphene heterojunction transistors using both single-layer MoS2 (1M) and 4-layer MoS2 (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS2-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS2-Ti, which resulted in VDS polarity dependence of device parameters such as threshold voltage (VTH) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μFE) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS2 thickness for both SG and BG contacts. Differential conductance (σd) of 1M increases with VDS irrespective of VDS polarity, while σd of 4M ceases monotonic growth at positive VDS values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σd saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.

  9. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  10. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.

    Science.gov (United States)

    Kinneberg, K R C; Nelson, A; Stender, M E; Aziz, A H; Mozdzen, L C; Harley, B A C; Bryant, S J; Ferguson, V L

    2015-11-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970

  11. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.

    Science.gov (United States)

    Kinneberg, K R C; Nelson, A; Stender, M E; Aziz, A H; Mozdzen, L C; Harley, B A C; Bryant, S J; Ferguson, V L

    2015-11-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.

  12. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors

    International Nuclear Information System (INIS)

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS2 transistors. Ti-MoS2-graphene heterojunction transistors using both single-layer MoS2 (1M) and 4-layer MoS2 (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS2-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS2-Ti, which resulted in VDS polarity dependence of device parameters such as threshold voltage (VTH) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μFE) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS2 thickness for both SG and BG contacts. Differential conductance (σd) of 1M increases with VDS irrespective of VDS polarity, while σd of 4M ceases monotonic growth at positive VDS values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σd saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors

  13. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  14. Dynamics of complete wetting liquid under evaporation

    Science.gov (United States)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, FranC.{C.}Ois; Limat, Laurent

    2009-11-01

    We study the dynamics of a contact line under evaporation and complete wetting conditions taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827]. The model we propose shows the existence of a precursor film at the edge of the liquid. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  15. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    Science.gov (United States)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  16. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  17. Cu2ZnSnSe4 Thin Films by Selenization of Simultaneously Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications

    Science.gov (United States)

    Shao, Lexi; Zhang, Jun; Zou, Changwei; Xie, Wei

    Cu2ZnSnSe4 (CZTSe) thin films were prepared by selenization of simultaneously evaporated metallic Cu-Zn-Sn on soda lime glass (SLG) substrates. The selenization were performed in elemental selenium vapor ambient at 450 °C for 1.5 h using Argon as the carrier gas. The compositions and structural properties of the films were characterized by using EDS, XRD, and Raman, respectively. The results show that the synthesized CZTSe thin films are nearly stoichiometric and single-phase with a kesterite structure. The measurement for electrical and optical properties indicated that a high absorption coefficient of 104 cm-1 and a low resistivity of 30 Ωcm are obtained. The optical band-gap energy of the CZTSe thin film can be fitted to be as 1.52 eV, which closes to the optimum value for solar cell absorber. The preparation processing for CZTSe developed in this woek is more attractive than others reported in the industrialization applications because the atomic ratio of Cu:Sn:Zn in the precursor can be easily controlled by adjusting the ratio of the evaporation sources, meanwhile, it is more suitable for large-scale production.

  18. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  19. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  20. Structure and superconducting properties of YBa2Cu3O7-x films prepared by nitrogen laser evaporation and CO2 laser annealing in oxygen

    International Nuclear Information System (INIS)

    Superconducting YBa2Cu3O7-x thin films were obtained under high vacuum (10-5 Torr) on substrates of polycrystalline Al2O3 sapphire, SrTiO3, and Si, having zero resistance at 81, 85, 87, and 79 K, respectively. A N2 laser of 3.5 J cm-2 energy density was used for the evaporation. The substrates were heated by a cw single-mode CO2 laser and the annealing was performed by the same laser in O2 atmosphere. Local planar superconducting regions were obtained by focusing the radiation of the cw CO2 laser upon the films. The films were investigated by scanning electron microscope, x-ray microanalysis, and x-ray diffraction

  1. Full-Scale Testing Technology Maturation Of A Thin Film Evaporator For High-Level Liquid Waste Management At Hanford - 12125

    International Nuclear Information System (INIS)

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m2 (50 ft2) heated transfer area Rototherm(regsign) evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  2. Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique

    Science.gov (United States)

    Hussain, Arshad; Ahmed, R.; Ali, N.; Butt, Faheem K.; Shaari, A.; Shamsuri, W. N. Wan; Khenata, R.; Prakash, Deo; Verma, K. D.

    2016-01-01

    Copper antimony sulfide (CuSbS2) thin films were fabricated by combinatorial thermal evaporation technique on well cleaned glass substrates. The deposited thin films were annealed in argon gas atmosphere for 1 h at temperature range of 150-350 °C. The effect of annealing temperature on structural, morphological, optical and electrical properties was studied using the different characterization techniques. The XRD analysis confirmed the crystallinity of the obtained samples with CuSbS2 phase in chalcostibite structure. Optical properties of the deposited samples showed good response in the visible and NIR region, envisaging the potential of CuSbS2 as an efficient solar cell material. The optical band gap of CuSbS2 thin films was measured to be 1.5 eV. A decrease (12.5-1.43 KΩ-cm) was observed for the resistivity of samples with the increase in annealing temperature. The plot of sheet resistance with annealing temperature confirmed the uniformity of samples. These thin films were found as a sustainable substitute material for the absorber layer in conventional thin film solar cell system, because of the abundance and low cost of its constituent elements. This study opens new avenue of research for scalable synthesis of CuSbS2 thin films for solar cell and photovoltaic applications.

  3. Characterization of thin films of a-SiOx (1.1evaporation of SiO

    International Nuclear Information System (INIS)

    Thin films of a-SiOx with values of x ranging from 1.13 to 1.89 were prepared by reactive evaporation of SiO in a controlled oxygen environment. The oxygen pressure in the deposition chamber was varied so as to obtain films with different values of x. The films were studied by x-ray photoelectron spectroscopy and optical spectrophotometry. An attempt was made to analyse the Si 2p core-level spectra in terms of five chemically shifted components corresponding to basic Si bonding units Si-(Si4-nOn) with n 0,1,...,4. The concentration of these bonding units as a function of oxygen concentration was in reasonable agreement with the random-bonding model, with the exception that the Si-(Si3O) component was almost completely suppressed for all stoichiometries. Films with x2) as the values of x increase. For the films with the largest value of x (= 1.89), the refractive index is smaller than that of fused silica. The density of these films was estimated to be smaller than that of fused silica by about 13%

  4. Influences of oxygen partial pressure on structure and related properties of ZrO2 thin films prepared by electron beam evaporation deposition

    International Nuclear Information System (INIS)

    ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances

  5. Influence of substrate temperature on structural, electrical and optical properties of flash evaporated CuIn0.60Al0.40Se2 thin films

    International Nuclear Information System (INIS)

    CuIn0.60Al0.40Se2 thin films were grown by the flash evaporation method onto glass substrates held at temperatures in the range 303-623 K. The influence of substrate temperature on growth of the films was studied. The growth of the highly (111) oriented CuIn0.60Al0.40Se2 thin films was observed at TS=598 K exhibiting sphalerite structure. The surface morphology of CuIn0.60Al0.40Se2 films deposited at TS=623 K indicates segregation of Cu2-xSe binary phase. The electrical resistivity was around 66 Ωcm (300 nm) with p-type conductivity for the films deposited at 598 K. The temperature dependence of the electrical conductivity suggested that above 493 K the conduction mechanism was intrinsic, whereas extrinsic/impurity conduction dominated in the range 303-473 K. The single phase CuIn0.60Al0.40Se2 films showed an optical bandgap of 1.37 eV. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Structural and optical properties of Sn{sub 1−x}Fe{sub x}O{sub 2} thin films prepared by flash evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuppan, M., E-mail: skaleemulla@gmail.com; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana, E-mail: skaleemulla@gmail.com; Krishna, N. Sai, E-mail: skaleemulla@gmail.com; Begam, M. Rigana, E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India)

    2014-04-24

    Sn{sub 1−x}Fe{sub X}O{sub 2} (x = 0, 0.05) thin films were prepared on glass substrate using the flash evaporation technique. The samples were annealed at 773 K for 2 hrs in air atmosphere. A systematic study was carried out on the structural and optical properties of the as deposited and annealed thin films. From the X-ray diffraction analysis it was found that the Sn{sub 1−x}Fe{sub X}O{sub 2} films deposited at 623 K were amorphous in nature and the Sn{sub 1−x}Fe{sub X}O{sub 2} films annealed at 773 K exhibited the tetragonal structure of the SnO{sub 2}. The optical band gap of the SnO{sub 2} thin films was found to be as 3.17 eV whereas the optical band gap of the Sn{sub 1−x}Fe{sub X}O{sub 2} films was found to be as 3.01 eV after air annealing.

  7. 伞板型布膜器对降膜蒸发性能的影响%UMBRELLA DISTRIBUTOR IN FALLING FILM EVAPORATOR

    Institute of Scientific and Technical Information of China (English)

    李瑞; 董伟志; 史晓平; 张少峰

    2000-01-01

    Falling film evaporator(FFE)is a kind of effective,energy-saving evaporating equipment,while the calculation of the heat transfer coefficient is not as accurate as is expected,which is partially due to neglecting the impact of distributor on heat transfer in FFE.For this purpose,a coefficient named Distributor Influence Coefficient is introduced which enable us to get the heat transfer coefficient form a new point of view.It is carried out with a new-type distributor--Umbrella Distributor,and furthermore,the influence of various factors is analyzed,which provides new thoughts for the calculation of heat transfer coefficient in the practical design.

  8. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  9. In vitro and in vivo studies on the thin and defect-free calcium phosphate films formed by electron-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Kwon, S.H.; Hong, S.H.; Kim, H.E.; Lee, I.S. [Seoul National Univ. (Korea). School of Materials Science and Engineering; Jung, Y.C. [Yonsei Univ. (Korea). Coll. of Dentistry

    2001-07-01

    The thin and defect-free calcium phosphate film deposited to a thickness of 1 {mu}m by electron beam evaporation was characterized in vivo and in vitro. For the in vivo study, as-machined, as-blasted, and calcium phosphate coating on machined surface of commercially pure titanium screw implants were inserted in the rabbit tibiae. Twelve screws of each condition were implanted, and the total of 144 implants were evaluated. The various Ca/P ratios of calcium phosphate films were formed by e-beam evaporation without simultaneous Ar ion bombardment. The as-deposited films had the average bonding strengths of 64.8 MPa to metal implant and different dissolution rates with the Ca/P ratio. After a healing period of 12-week, at the day of sacrifice, the implants were unscrewed with a torque gauge instrument. The coated sample showed the highest removal torque in both normal and ovariectomized group indicating direct chemical bond with bone tissues. (orig.)

  10. Magnetoelectric properties of particulate and bi-layer PMN-PT/CoFe{sub 2}O{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, V.L., E-mail: vlmathe@physics.unipune.ernet.in [Novel Materials Research Laboratory, Department of Physics, University of Pune, Pune, 411 007 Maharastra (India); Sheikh, A.D. [Novel Materials Research Laboratory, Department of Physics, University of Pune, Pune, 411 007 Maharastra (India); Srinivasan, G. [Physics Department, Oakland University, Rochester, MI 48309 (United States)

    2012-03-15

    Our studies comprise electrical dielectric and magnetoelectric properties of CoFe{sub 2}O{sub 4} (CFO) and Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.67}Ti{sub 0.33}O{sub 3} [PMN-PT] magnetoelectric composites. The individual phases were prepared by conventional ceramic method. The particulate composites of ferrite and ferroelectric phases were prepared in ferroelectric rich region. Presence of both the phases in the composites was confirmed using X-ray diffraction techniques. The scanning electron microscopic images recorded in backscattered mode were used to study the microstructure of composites. Lattice constant, dielectric constant, electrical resistivity, ferroelectric, and magnetic properties of individual as well as particulate composites were studied. Further the bi-layer composites were made using the discs obtained from the powders of individual phases where hot press technique was employed to obtain disc of individual phases. CFO phase used in bi-layer composites was obtained using chemical co-precipitation technique. Magnetoelectric (ME) measurements were carried out on both, particulate and layered magnetoelectric composites. Comparison of ME signal obtained from particulate and layered composites revealed that the layered composites gives superior magnetoelectric signal. ME data obtained for layered composites show good agreement with the theoretical model. - Highlights: Black-Right-Pointing-Pointer Study on dielectric, electrical, ferroelectric, and magnetic properties of particulate magnetoelectric composite of PMN-PT/CFO. Black-Right-Pointing-Pointer These properties are correlated with the magnetoelectric effect in particulate composites. Black-Right-Pointing-Pointer Magnetoelectric properties of particulate composites are compared with bilayer magnetoelectric composites of PMN-PT/CFO. Black-Right-Pointing-Pointer Magnetoelectric signal obtain for bilayer composites show good agreement with theoretical model suggested by Bichurin et al.

  11. Design of Thermopile-Based Infrared Detectors with Suspended Absorber-Thermopile Bi-Layers%一种基于悬浮吸收层的双层结构的热电堆红外探测器

    Institute of Scientific and Technical Information of China (English)

    陈媛婧; 毛海央; 谭秋林; 薛晨阳; 欧文; 陈大鹏; 熊继军

    2014-01-01

    A novel infrared ( IR ) detector is designed and presented. The detector takes advantage of suspended absorber-thermopile bi-layers to achieve high performance with a relatively small size. The bi-layers are realized by using two separated sacrificial layers, which include a Poly-Si film beneath the thermopiles and a polyimide deposition over the thermopiles. Simulation results demonstrate that the detectivity,responsibility and response time of the IR detectors can reach 2. 85×108 cmHz(1/2)/W,1 800 V/W and 6 ms,respectively. Moreover,the fabrication of the IR detector is highly compatible with standard CMOS process, which as a result, makes the high-yield and low-cost production possible.%提出一种新颖红外传感器,这种传感器采用悬浮吸收层的双层结构的优势,来实现相对小尺寸下的高探测性能。双层结构采用2种牺牲层材料,分别为聚酰亚胺牺牲层和预埋在热偶条和沉底之间的多晶硅材料。仿真结果证明了该种结构的探测率、响应率和响应时间分别达到2.85×108 cm Hz(1/2)/W、1800 V/W和6 ms。本文给出了该种热电堆红外探测器高度兼容于CMOS工艺的制备流程,使器件的高效量产和低成本生产成为可能。

  12. Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.; Sharma, V.; Padha, N. [Department of Physics and Electronics, Dr. Ambedkar Road, University of Jammu, Jammu-180 006, Jammu and Kashmir State (India); Shah, N.M.; Desai, M.S.; Panchal, C.J. [Applied Physics Department, Faculty of Technology and Engineering, M. S. University of Baroda, Vadodara-390 001, Gujarat State (India); Protsenko, I.Yu. [Appl. Physics Dept., Faculty of Electronic and Information Technologies, Sumy State University (Ukraine)

    2010-01-15

    Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350-550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (T{sub s}) on the structural, morphological, optical, and electrical properties of the films were investigated using x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall-effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80-330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all T{sub s}. With the increase of T{sub s} the intensity of the diffraction peaks increased and well-resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38-1.18 eV. Hall-effect measurements revealed the resistivity of films in the range 112-20 {omega} cm for films deposited at different T{sub s}. The activation energy for films deposited at different T{sub s} was in the range of 0.14 eV-0.28 eV as derived from the analysis of the data of low-temperature resistivity measurements. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Characterization of thin films of a-SiO{sub x} (1.1evaporation of SiO

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, S M A [Centre for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Kuhaili, M F [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khawaja, E E [Centre for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2003-12-03

    Thin films of a-SiO{sub x} with values of x ranging from 1.13 to 1.89 were prepared by reactive evaporation of SiO in a controlled oxygen environment. The oxygen pressure in the deposition chamber was varied so as to obtain films with different values of x. The films were studied by x-ray photoelectron spectroscopy and optical spectrophotometry. An attempt was made to analyse the Si 2p core-level spectra in terms of five chemically shifted components corresponding to basic Si bonding units Si-(Si{sub 4-n}O{sub n}) with n 0,1,...,4. The concentration of these bonding units as a function of oxygen concentration was in reasonable agreement with the random-bonding model, with the exception that the Si-(Si{sub 3}O) component was almost completely suppressed for all stoichiometries. Films with x<1.65 consisted of elemental Si and oxides of silicon, while those with x {>=} 1.65 were almost free of Si. Films containing Si have higher refractive indices and degrees of absorption in the visible region compared with those which were free of Si. The optical properties of the films approach those of fused silica (SiO{sub 2}) as the values of x increase. For the films with the largest value of x (= 1.89), the refractive index is smaller than that of fused silica. The density of these films was estimated to be smaller than that of fused silica by about 13%.

  14. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS=CdTe Heterojunction Devices

    OpenAIRE

    BAYHAN, Habibe; ERÇELEBİ, Çiğdem

    1998-01-01

    CdTe, CdS thin films and n-CdS/p-CdTe heterostructures have been prepared by conventional vacuum evaporation technique. Some post deposition treatments to optimize the device efficiency have been analyzed and the effects of the individual process steps on the material and device properties were investigated. Annealing in air with and without CdCl2-treatment decreased the CdTe resistivity. The CdCl2-dip followed by annealing in air at 300\\circC for 5 min improved the grain size and polycrystal...

  15. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Matei, Andreea; Marinescu, Maria; Constantinescu, Catalin; Ion, Valentin; Mitu, Bogdana; Ionita, Iulian; Dinescu, Maria; Emandi, Ana

    2016-06-01

    We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm2. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60-100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films' thickness.

  16. Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation

    International Nuclear Information System (INIS)

    ZrO2 films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3x10-3 Pa to 11x10-3 Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064 nm Nd: yttritium-aluminum-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold values increased from 18.5 to 26.7 J/cm2 for oxygen partial pressures varying from 3x10-3 Pa to 9x10-3 Pa, but decreased to 17.3 J/cm2 in the case of 11x10-3 Pa

  17. Effects of sulfurization temperature on Cu2ZnSnS4 thin film deposited by single source thermal evaporation method

    Science.gov (United States)

    Zakaria, Zaihasraf; Chelvanathan, Puvaneswaran; Junaebur Rashid, Mohammad; Akhtaruzzaman, Md; Mezbaul Alam, Mohammad; Abdullah Al-Othman, Zeid; Alamoud, Abdulrahman; Sopian, Kamaruzzaman; Amin, Nowshad

    2015-08-01

    In this study, the effects of sulfurization temperature on the properties of thermally evaporated Cu2ZnSnS4 (CZTS) thin films were investigated. Molybdenum (Mo) coated soda lime glass (SLG) was used as substrates and stoichiometric CZTS powder (99.95%) was used as the source material. XRD patterns showed that CZTS were formed with preferential orientations of (112) > (220) > (312) for all the investigated films. The intensity of (112) peak is found increasing until a certain temperature indicating that the highest degree of crystallinity is achieved together with secondary phases such as ZnS and SnS. It was confirmed by raman shift at 338 cm-1 from Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM) results showed a trend for surface roughness as well as morphology. From Hall effect measurement, all deposited films exhibited p-type conductivity. From UV-vis spectroscopy measurement, the optical band gap of all the films are found in the range of potential absorbers for CZTS based thin film solar cells.

  18. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher;

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  19. Analysis of Evaporation Heat Transfer of Thin Liquid Film in a Capillary of Equilateral Triangular Cross-Section

    Institute of Scientific and Technical Information of China (English)

    Miao Jianyin; Wang Jinliang; Ma Tongze

    2001-01-01

    In this paper, theoretical analysis on evaporating heat transfer in capillary with equilateral triangular cross section is presented and numerical calculations based on glass-water system are carried out. Considering evaporation mechanism in capillary with polygonal section, one-dimensional model is used to describe the three-dimensional case. The evaporating meniscus in the capillary along axis can be divided into six regions. The following conclusions are obtained: (1) The local heat transfer coefficients and heat fluxes in capillary increase quickly in the first and second regions, and slowly in the third region. The maximum value appears at interline between the third and fourth regions, then gradually decreases in the last three regions. (2) The average heat transfer coefficients decrease when the sizes of the capillary section increase, and become larger under higher wall temperature.

  20. Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films.

    Science.gov (United States)

    Xu, Haitao; Wu, Yanglin; Cui, Jian; Ni, Chaowei; Xu, Fuzong; Cai, Jiang; Hong, Feng; Fang, Zebo; Wang, Wenzhen; Zhu, Jiabin; Wang, Linjun; Xu, Run; Xu, Fei

    2016-07-21

    The interface chemistry and evolution of the evaporated perovskite films on ITO, pedot/ITO, Si and glass substrates are studied. As evidenced by X-ray diffraction and X-ray photoemission spectroscopy (XPS) results, the PbI2 phase is found to be inevitably formed at the very initial growth stage, even under the conditions of a MAI-rich environment. The extremely low binding energy of adsorbed MAI particles on all the above substrates, as compared to that of PbI2 particles, is responsible for the presence of the PbI2 phase at the interface. The formation of both hole and electron barriers at the interface of PbI2/MAPbI3, as evidenced by XPS measurements, could block carrier transport into the electrode and thus deteriorate solar cell performance. This result reveals the origin of the poor performance of perovskite solar cells (PSCs) by the vacuum evaporation method, and may help to improve the performance of PSCs made using the vacuum evaporation method. PMID:27346149

  1. The optimization functions of ICP discharge in preparation of Cu-Zn-Sn precursors and CZTS films by co-evaporation

    Science.gov (United States)

    Ye, Li; Junfang, Chen; Junhui, Ma; Lifen, Zhou

    2016-02-01

    Cu-Zn-Sn (CZT) precursors were successfully prepared on glass substrate with the introduction of the assistant technology ICP (inductively coupled plasma) based on the conventional co-evaporation process. The deposition was performed with the substrate temperature at 220 °C and the chamber pressure at 6.5 × 10-2 Pa. Argon plasma was investigated with a Langmuir probe. The plasma density and the electron temperature increased with the increasing of the discharge power. The impact of ICP discharge power on the structural and morphological properties of the CZT film were investigated with energy dispersive X-ray spectrometers (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). XRD and EDS were combined to investigate the structure of the film. The results show that Zn loss exists during the evaporation and the loss can be reduced by increasing the ICP discharge power. From the observation on the scanning electron microscope, the grain size becomes larger with argon plasma's assistance. The preparation of the Cu2ZnSnS4 (CZTS) film and the measured properties demonstrate that the ICP would optimize the growth of the film. Project supported by the Natural Science Foundation of Guangdong Province, China (No. S2013010012548), the Natural Science Foundation of Guangdong Province, China (No. 10151063101000048), the Key Program of the National Natural Science Foundation of China (No. 61072028), the Guangdong Provincial Natural Science Foundation of China (No. 2014A030313441), and the Guangdong Province and Chinese Ministry of Education Cooperation Project of Industry, Education and Academy (No. 2013B090600063).

  2. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    Science.gov (United States)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  3. Preparation of multiband structure with Cu2Se/Ga3Se2/In3Se2 thin films by thermal evaporation technique for maximal solar spectrum utilization

    Science.gov (United States)

    Mohan, A.; Rajesh, S.; Gopalakrishnan, M.

    2016-10-01

    The paper investigates and discusses the formation of multiband structure through the Cu2Se-Ga3Se-In3Se2 thin films for maximal solar spectrum utilization. Stacking different semiconductor materials with various band gaps were done by successive evaporation method. Based on the band gap values the layers are arranged (low to high bandgap from the substrate). The XRD results exhibits the formation of CIGS composites through this successive evaporation of Cu2Se/Ga3Se/In3Se2 and treating then with temperature. Scanning Electron Microscope images shows improved crystallinity with the reduction in the larger grain boundary scattering after annealing. Optical spectra shows the stronger absorption in an UV-Visible region and higher transmission in the infrared and near infrared region. The optical band gap values calculated for as prepared films is 2.20 eV and the band gap was split into 1.62, 1.92 eV and 2.27eV for annealed samples. This multiband structures are much needed to utilize the full solar spectrum.

  4. ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells

    Science.gov (United States)

    Dalal, Paresh V.; Deshpande, Milind P.; Solanki, Bharat G.; Soni, Saurabh S.

    2016-05-01

    Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2 and conversion efficiency 1.05% are observed for ZnO/CdS_10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.

  5. Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty.

    Science.gov (United States)

    Algarrahi, Khalid; Franck, Debra; Ghezzi, Chiara E; Cristofaro, Vivian; Yang, Xuehui; Sullivan, Maryrose P; Chung, Yeun Goo; Affas, Saif; Jennings, Russell; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2015-06-01

    Surgical management of long-gap esophageal defects with autologous gastrointestinal tissues is frequently associated with adverse complications including organ dysmotility, dysphagia, and donor site morbidity. In order to develop alternative graft options, bi-layer silk fibroin (SF) scaffolds were investigated for their potential to support functional tissue regeneration in a rodent model of esophageal repair. Onlay esophagoplasty was performed with SF matrices (N = 40) in adult rats for up to 2 m of implantation. Parallel groups consisted of animals implanted with small intestinal submucosa (SIS) scaffolds (N = 22) or sham controls receiving esophagotomy alone (N = 20). Sham controls exhibited a 100% survival rate while rats implanted with SF and SIS scaffolds displayed respective survival rates of 93% and 91% prior to scheduled euthanasia. Animals in each experimental group were capable of solid food consumption following a 3 d post-op liquid diet and demonstrated similar degrees of weight gain throughout the study period. End-point μ-computed tomography at 2 m post-op revealed no evidence of contrast extravasation, fistulas, strictures, or diverticula in any of the implant groups. Ex vivo tissue bath studies demonstrated that reconstructed esophageal conduits supported by both SF and SIS scaffolds displayed contractile responses to carbachol, KCl and electrical field stimulation while isoproterenol produced tissue relaxation. Histological (Masson's trichrome and hematoxylin and eosin) and immunohistochemical (IHC) evaluations demonstrated both implant groups produced de novo formation of skeletal and smooth muscle bundles positive for contractile protein expression [fast myosin heavy chain (MY32) and α-smooth muscle actin (α-SMA)] within the graft site. However, SF matrices promoted a significant 4-fold increase in MY32+ skeletal muscle and a 2-fold gain in α-SMA+ smooth muscle in comparison to the SIS cohort as determined by histomorphometric

  6. Josephson coupling between superconducting islands on single- and bi-layer graphene

    Science.gov (United States)

    Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander

    2016-05-01

    We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.

  7. Coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun

    2003-01-01

    Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.

  8. Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane.

    Science.gov (United States)

    Ben Ali, M; Korpan, Y; Gonchar, M; El'skaya, A; Maaref, M A; Jaffrezic-Renault, N; Martelet, C

    2006-12-15

    A novel formaldehyde sensitive biosensor based on bacterial formaldehyde dehydrogenase (FDH) as a bio-recognition element has been developed. The bio-recognition membrane had bi-layer architecture and consisted of FDH, cross-linked with albumin, and of the cofactor NAD at a high concentration level (first layer). The second layer was a negatively charged Nafion membrane, which prevented a leakage of negatively charged NAD molecules from the bio-membrane. As transducers, gold electrodes SiO(2)/Si/SiO(2)/Ti/Au and electrolyte-insulator-semiconductor Si/SiO(2) (EIS) structures have been used. Changes in capacitance and impedance properties of the bio-recognition membrane have been used for monitoring formaldehyde concentration in a bulk solution. It has been shown that formaldehyde can be detected within a concentration range from 1 microM to 20mM depending on the type of transduction used, with a detection limit of 1 and 100 microM for gold-based and EIS-based transducers, respectively. PMID:16516460

  9. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam

    2012-12-21

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  10. Metglas–Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    International Nuclear Information System (INIS)

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 µm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni–Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 µm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP−1 over a 1.1–8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg−1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. (paper)

  11. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    DEFF Research Database (Denmark)

    Bordo, K.; Rubahn, H. G.

    2012-01-01

    with increase of the deposition rate. Quantitative AFM characterization showed that for all substrates the root mean square surface roughness increases monotonically with increasing the deposition rate from 0.1 nm/s to 2 nm/s. The observed effects of the deposition rate on the grain size and surface roughness....... The structure and surface morphology of the as-deposited Al films were studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM imaging of the films showed that the mean grain size of thin Al films on all of the substrates increased from 20 nm - 30 nm to 50 nm - 70 nm...

  12. Films of brookite TiO{sub 2} nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO{sub 2} gas-sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M. [University of Salento, Department of Physics, Lecce (Italy); Buonsanti, R. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); Catalano, M.; Manera, M.G.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy); Cozzoli, P.D. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); University of Salento, Department of Innovation Engineering, Lecce (Italy)

    2011-09-15

    Titanium dioxide (TiO{sub 2}) nanorods in the brookite phase, with average dimensions of 3-4 nm x 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO{sub 2}) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm{sup 2} and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of {proportional_to}150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO{sub 2} nanorods and crystalline spherical nanoparticles with an average diameter of {proportional_to}13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO{sub 2} mixed in dry air were obtained. (orig.)

  13. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  14. XPS analysis and structural and morphological characterization of Cu{sub 2}ZnSnS{sub 4} thin films grown by sequential evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G. [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Calderón, C., E-mail: clcalderont@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia); Bartolo-Pérez, P. [Departamento de Física Aplicada, CINVESTAV-IPN, Mérida, Yuc. (Mexico)

    2014-06-01

    This work describes a procedure to grow single phase Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films with tetragonal-kesterite type structure, through sequential evaporation of the elemental metallic precursors under sulphur vapor supplied from an effusion cell. X-ray diffraction analysis (XRD) is mostly used for phase identification but cannot clearly distinguish the formation of secondary phases such as Cu{sub 2}SnS{sub 3} (CTS) because both compounds have the same diffraction pattern; therefore the use of a complementary technique is needed. Raman scattering analysis was used to distinguish these phases. The influence of the preparation conditions on the morphology and phases present in CZTS thin films were investigated through measurements of scanning electron microscopy (SEM) and XRD, respectively. From transmittance measurements, the energy band gap of the CZTS films was estimated to be around 1.45 eV. The limitation of XRD to identify some of the remaining phases after the growth process are investigated and the results of Raman analysis on the phases formed in samples grown by this method are presented. Further, the influence of the preparation conditions on the homogeneity of the chemical composition in the volume was studied by X-ray photoelectron spectroscopy (XPS) analysis.

  15. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    OpenAIRE

    D'Arcy, Julio Marcelo

    2012-01-01

    A new solution processing technique is developed for depositing continuously conductive transparent thin films comprised of conducting polymer nanostructures. The deposition mechanism is driven by interfacial surface tension gradients leading to rapid directional fluid flow known as the Marangoni effect. This technique is a universal solution to thin film deposition for coating any type of substrate at ambient conditions within seconds. The versatility of this method of deposition is further ...

  16. How do evaporating thin films evolve? Unravelling phase-separation mechanisms during solvent-based fabrication of polymer blends

    KAUST Repository

    Wodo, Olga

    2014-10-13

    © 2014 AIP Publishing LLC. Solvent-based fabrication is a flexible and affordable approach to manufacture polymer thin films. The properties of products made from such films can be tailored by the internal organization (morphology) of the films. However, a precise knowledge of morphology evolution leading to the final film structure remains elusive, thus limiting morphology control to a trial and error approach. In particular, understanding when and where phases are formed, and how they evolve would provide rational guidelines for more rigorous control. Here, we identify four modes of phase formation and subsequent propagation within the thinning film during solvent-based fabrication. We unravel the origin and propagation characteristics of each of these modes. Finally, we construct a mode diagram that maps processing conditions with individual modes. The idea introduced here enables choosing processing conditions to tailor film morphology characteristics and paves the ground for a deeper understanding of morphology control with the ultimate goal of precise, yet affordable, morphology manipulation for a large spectrum of applications.

  17. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    Institute of Scientific and Technical Information of China (English)

    XU Zhang-Cheng; ZHANG Ya-Ting; J(φ)rn M. Hvam; Yoshiji Horikoshi

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which can be explained by considering the resonant F(o)rster energy transfer between the wetting layer states at elevated temperatures.

  18. Formulation and In Vitro and In Vivo Evaluation of Lipid-Based Terbutaline Sulphate Bi-layer Tablets for Once-Daily Administration.

    Science.gov (United States)

    Hashem, Fahima M; Nasr, Mohamed; Fathy, Gihan; Ismail, Aliaa

    2016-06-01

    The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4 × 2(2) factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug-lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1-F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug-Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets. PMID:26335420

  19. Thermoluminescence of Y{sub 2}O{sub 3}:Tb{sup 3+} thin films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Philip R., E-mail: armst230@umn.edu; Mah, Merlin L.; Kim, Sangho S.; Talghader, Joseph J.

    2014-04-15

    Most thermoluminescent materials are created using crystal growth techniques; however, it would be of great utility to identify those few thermoluminescent materials that can be deposited using simpler methods, for example to be compatible with the early portions of a silicon integrated circuit or microelectromechanical fabrication process. In this work, thin films of yttrium oxide with a terbium impurity (Y{sub 2}O{sub 3}:Tb) were deposited on silicon wafers by electron beam evaporation. The source for the Y{sub 2}O{sub 3}:Tb was made by combining Y{sub 2}O{sub 3} and Tb{sub 4}O{sub 7} powders. The approximate thicknesses of the deposited films were 350 nm. After deposition, the films were annealed at 1100 °C for 30 s to improve crystallinity. There is a strong correlation between the x-ray diffraction (XRD) peak intensity and the thermoluminescent glow curve intensity. The glow curve displays at least two peaks at 140 °C and 230 °C. The emission spectra was measured using successive runs with a monochromator set to a different wavelength for each run. There are two main emission peaks at 490 nm and 540 nm. The terbium impurity concentration of approximately 1 mol% was measured using Rutherford backscattering spectrometry (RBS). The Y{sub 2}O{sub 3}:Tb is sensitive to UV, x-ray, and gamma radiation. The luminescent intensity per unit mass of UV irradiated Y{sub 2}O{sub 3}:Tb was about 2 times that of x-ray irradiated TLD-100. -- Highlights: • Y{sub 2}O{sub 3}:Tb{sup 3+} thin film can be deposited using the common microfabrication technique of electron beam evaporation. • The Y{sub 2}O{sub 3}:Tb{sup 3+} requires an anneal of at least 900 °C to show thermoluminescence and 1100 °C anneal for the strongest thermoluminescent signal. • The Y{sub 2}O{sub 3}:Tb{sup 3+} will show a glow curve after being exposed to ionizing radiation from UV, x-ray, and gamma ray sources. • The luminescent intensity per unit mass of the UV irradiated Y{sub 2}O{sub 3}:Tb{sup 3

  20. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt)

    2005-08-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E{sub 1} {approx}1.55 eV (fundamental gap) and E{sub 2}{approx}2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness {>=}300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Working Pressure Dependence of Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    ZHAN Mei-Qiong; Wu Zhong-Lin; FAN Zheng-xiu

    2008-01-01

    The effects of working pressure of Al2O3 thin films are investigated.Transmittance of the Al2Oa thin film is measured by a Lambda 900 spectrometer.Laser-induced damage threshold(LIDT)is measured by a Nd:YAG laser at 355nm with 8 pulse width of 7ns.Microdefects were observed under a Nomarski microscope.The samples are characterized by optical properties and defect,as well as LIDT under the 355nm Nd:YAG laser radiation.It js found that the working pressure has fundamental effect on the LIDT.It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.

  2. YBCO thin film formation near the stability line by resistive evaporation of BaF2, Cu, and Y

    International Nuclear Information System (INIS)

    A single resistivity heated source was used to deposit a mixture of BaF2, Cu, and Y to form precursor films onto MgO substrates held at room temperature. Different heat treatment conditions were applied to study the stability diagram of YBa2Cu3O7-x. It was found that the stability line is shifted toward the higher oxygen partial pressure and lower temperature side of the pure YBCO line in the presence of fluorine and fluorides in the precursor. Films of good quality were obtained when the annealing conditions were in close proximity to this line

  3. Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2013-01-01

    In this work, we report on the development of a lab-on-a-chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrated linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations ranging from 1 μM to 30 μM and a calculated detection limit of 60 nM. The sensor was also able to successfully detect zinc in a bovine serum extract and the results were verified with independent AAS measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time and high accuracy at low concentrations of analyte. PMID:24436575

  4. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS=CdTe Heterojunction Devices

    Science.gov (United States)

    Bayhan, Habibe; Erçelebý, Çiðdem

    1998-05-01

    CdTe, CdS thin films and n-CdS/p-CdTe heterostructures have been prepared by conventional vacuum evaporation technique. Some post deposition treatments to optimize the device efficiency have been analyzed and the effects of the individual process steps on the material and device properties were investigated. Annealing in air with and without CdCl2-treatment decreased the CdTe resistivity. The CdCl2-dip followed by annealing in air at 300°C for 5 min improved the grain size and polycrystalline nature of CdTe thin films. Solar efficiency improvements were achieved when heterojunctions were prepared on successively treated (i.e. etched, air annealed, CdCl2-processed) CdTe surfaces. Etching of the CdTe surface with potassium dichromate solution prior to metal contact deposition lead to the formation of low-resistance Au contacts and increase in open circuit voltage and fill factor values.

  5. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongil [Restorative Dentistry, School of Dental Medicine, University at Buffalo, NY 14214 (United States); Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Chung, Sung-Min; Li, Long-Hao [Dentium Clinic Implantium Institute, Seoul 135-879 (Korea, Republic of); Lee, In-Seop, E-mail: inseop@yonsei.ac.k [Atomic-Scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of {approx}500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 {sup 0}C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  6. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation.

    Science.gov (United States)

    Kim, Hyeongil; Choi, Seong-Ho; Chung, Sung-Min; Li, Long-Hao; Lee, In-Seop

    2010-08-01

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  7. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation

    International Nuclear Information System (INIS)

    With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of ∼500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 0C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.

  8. Study of annealing effects on the physical properties of evaporated SnS thin films for photovoltaic applications

    OpenAIRE

    Tariq, GH; Hutchings, K; Asghar, G; Lane, DW; Anis-ur-Rehman, M.

    2014-01-01

    Tin Sulphide (SnS) thin films have been deposited on glass slides by thermal evaporation using SnS powder. The improvements in the structural and optical properties of SnS thin films on annealing at different temperatures (200 degrees C, 300 degrees C, 400 degrees C, and 500 degrees C) in vacuum for one hour are presented in this work. The thin films annealed at 500 degrees C were decomposed, which limits the annealing temperature below than 500 degrees C. X-ray diffraction characterization s...

  9. Effect of Annealing On Thin Film Fabrication of Cadmium Zinc Telluride by Single-R.F. Magnetron Sputtering Unit

    Directory of Open Access Journals (Sweden)

    Dr. Monisha Chakraborty A,

    2014-01-01

    Full Text Available In this work, formation of Cd1-xZnxTe thin films under various annealing-environments, created by layer by layer deposition of individual CdTe and ZnTe targets from a Single-R.F. Magnetron Sputtering unit is investigated. Structural and optical characterization results show that Vacuum Annealing is the best suitable for the formation of better Cd1-xZnxTe XRD peaks of higher intensities in comparison to Argon or Nitrogen-Annealing, for a bi-layered deposited CdTe and ZnTe film on glass substrate. The crystallography of the Cd1-xZnxTe films formed appeared to be either Cubic or Rhombohedral type. Also, it has been noticed, that the more inert the annealing-environment is, the lesser is the heat loss by the film-substrate and this results in better fusing of the deposited particles to move more from the poly-crystalline to the mono-crystalline structure. Also higher inert environment causes more Cadmium evaporation and this consequently drives the lattice-constant and the band-gap energy of the formed Cd1-xZnxTe thin film to move from the CdTe side to the ZnTe side. The method developed here with proper annealing ambiance for Cd1-xZnxTe fabrication can be implemented in laboratories lacking in Co-Sputtering machine.

  10. Substate and evaporation rate dependent orientation and crystalline organization of sexithiophene films vacuum deposited onto Au and HOPG

    Science.gov (United States)

    El Ardhaoui, M.; Lang, P.; Garnier, F.; Roger, J. P.

    1998-06-01

    The orientation and the crystalline organization of the films depend largely on the nature of the substrate and the deposition rate. The substrate effect is related to its interactions with the oligomers and also to the molecular mobility at the surface. It depends also largely on the deposition rate. L'orientation et l'organisation structurale des films de sexithiophène évaporés sous vide sont fortement liées à la nature du substrat (Au, HOPG) et à la vitesse de dépôt. L'effet du substrat est lié aux interactions avec les oligomères ainsi qu'à la mobilité de ces derniers sur la surface. Cet effet dépend largement de la vitesse d'évaporation.

  11. Controlling interfacial curvature in nanoporous silica films formed by evaporation-induced self-assembly from nonionic surfactants. I. Evolution of nanoscale structures in coating solutions.

    Science.gov (United States)

    Bollmann, Luis; Urade, Vikrant N; Hillhouse, Hugh W

    2007-04-10

    The double-gyroid phase of nanoporous silica films formed by evaporation-induced self-assembly (EISA) has been shown to possess facile mass-transport properties and may be used as a robust template for the nanofabrication of metal and semiconductor nanostructures. Recently, we developed a new synthesis of double-gyroid nanoporous silica films where the aging time of the coating solution prior to EISA was the key parameter required to control the interfacial curvature that results upon self-assembly of the film. Here, we use 29Si nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) to investigate the nanoscale structure of the coating solutions used to obtain double-gyroid nanoporous silica films. NMR and SAXS were carried out on the water, ethanol, silica, and poly(ethylene oxide)-b-poly(propylene oxide)-b-alkyl (EO17-PO12-C14) surfactant coating solutions as well as similar solutions that excluded either the silica or the surfactant. NMR data reveal that the silica monomers in the coating solution condense very rapidly to form rings and connected ring species. After 1 day of aging, all monomers and dimers have disappeared, and the distribution is dominated by Q2 and Q3 species, where the superscript in Qn describes the number of silicon atoms in the second coordination shell of the central silicon. Over the course of the next 9 days, the Q3 population slowly rises at the expense of the Q2 and Q3t populations. Absolute intensity SAXS measurements reveal that the size of the silica clusters increases steadily during this aging period, reaching an average radius of gyration of 9.0 A after 9 days of aging. Longer aging results in the continued growth of clusters with a mass fractal dimension of 1.8. Absolute intensity SAXS data also reveals that micelles are not present in the coating solution. At 9% volume fraction of surfactant, the coating solution is far above the aqueous critical micellar concentration. However, even a small amount of ethanol

  12. (112) and (220)/(204)-oriented CuInSe{sub 2} thin films grown by co-evaporation under vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ruffenach, Sandra; Robin, Yoann; Moret, Matthieu, E-mail: matthieu.moret@univ-montp2.fr; Aulombard, Roger-Louis; Briot, Olivier

    2013-05-01

    CuInSe{sub 2} (CIS) layers were grown by co-evaporation in a molecular beam epitaxy system onto soda lime glass substrates by using both two-step and three step processes. The physical properties of the layers were investigated using X-ray diffraction (XRD) and optical spectroscopy. The sample atomic composition was assessed by energy dispersive analysis of X-rays. Cu-rich or In-rich CIS thin films were obtained exhibiting strong preferential (112) and (220)/(204) orientations in both cases. We performed thermal annealing at 450 °C under nitrogen, keeping Se overpressure to avoid Se desorption from the layer. The annealed layers all exhibit improved crystalline quality, with reduced stoichiometric discrepancy. The secondary phases like Cu{sub x}Se{sub 1−x} or In{sub x}Se{sub 1−x} are no more observable by XRD measurements. Regarding the preferential orientation, thermal annealing of Cu-rich CIS layers favours the (112) orientation leading to a more (112) textured layer after annealing, whatever the initial preferential growth orientation was. In opposite, thermal annealing of In-rich samples increases the (220)/(204) texture of the sample. - Highlights: ► We have studied the thermal annealing effect of Cu-rich and In-rich CuInSe{sub 2}. ► Thermal annealing improves the optical and crystalline quality. ► Secondary phase turned to CuInSe{sub 2} through a recrystallization process or evaporated. ► Thermal annealing of Cu-rich layers leads to an increase of the (112) texture. ► Thermal annealing of In-rich layers leads to an increase of the (220)/(204) texture.

  13. Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells.

    Science.gov (United States)

    Vasseur, Karolien; Broch, Katharina; Ayzner, Alexander L; Rand, Barry P; Cheyns, David; Frank, Christian; Schreiber, Frank; Toney, Michael F; Froyen, Ludo; Heremans, Paul

    2013-09-11

    To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate (rdep). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low rdep, thereby leading to solar cells that exhibit a higher maximum in short circuit current density (JSC) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of JSC with thickness that is independent of rdep. Consequently, without decreasing rdep we could achieve JSC=10 mA/cm2, yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.

  14. Research on the Comprehensive Heat Transfer Coefficient of Horizontal Tube Falling Film Evaporator%水平管降膜蒸发器综合传热系数研究

    Institute of Scientific and Technical Information of China (English)

    邹龙生; 谢加才; 周伟国; 陈德珍

    2011-01-01

    介绍了油田废水的特性及主要成分的参数值.基于在水平管降膜蒸发器传热性能研究现状的基础上,以及热法高倍数蒸发浓缩油田废水的具体任务与要求,建立水平管降膜蒸发器传热系数与污垢热阻的模型,通过有关方程建立污垢热阻与蒸发浓缩时浓度变化的关联式.依据各部分的关联式,经过详细推导,得到水平管降膜蒸发器综合传热系数关联式.根据物理模型和关联式,讨论浓缩倍数和流量变化对水平管降膜蒸发器综合传热系数的影响.结果表明:在蒸发浓缩油田废水时,浓缩倍数的提高降低了水平管降膜蒸发器的综合传热系数.油田废水处理量的增加,在一定程度上强化了水平管降膜蒸发器的传热效率.模拟计算得到水平管降膜蒸发器的综合传热系数在936~940 W/(m2·K)的范围内.%The characteristics of oil-field wastewater and parameter values of primary component were introduced. Based on the research status on heat transfer performances of the horizontal tube falling film evaporator, and the specific tasks and requirements of high multiples of evaporated and concentrated oil-field wastewater by the thermal method, the heat transfer coefficient of horizontal tube falling film evaporator and the modeling of fouling resistance were established; the correlation equations of fouling resistance and concentration variations during the process of evaporation and concentration were also established through the relevant equations. According to each part of the correlation equations, the correlation of the comprehensive heat transfer coefficient of the horizontal tube falling film evaporators was derived by detail derivation. Based on the physical model and correlation, the influence of concentration factors and flow changes on the comprehensive heat transfer coefficients of the horizontal tube falling film evaporators were discussed. The results show that the comprehensive heat

  15. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  16. Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces

    OpenAIRE

    Reina, Alfonso; Thiele, Stefan; Jia, Xiaoting; Bhaviripudi, Sreekar; Dresselhaus, Mildred S.; Schaefer, Juergen A.; Kong, Jing

    2009-01-01

    We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, one- or two- layer graphene regions occupy up to 87% of the film area. Single layer coverage accounts for 5%–...

  17. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  18. Origins of Highly Stable Al-evaporated Solution-processed ZnO Thin Film Transistors: Insights from Low Frequency and Random Telegraph Signal Noise

    Science.gov (United States)

    Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo

    2015-11-01

    One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.

  19. A pore network study on water distribution in bi-layer gas diffusion media: Effects of inlet boundary condition and micro-porous layer properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Zhu, Xun; Liao, Qiang; Wang, Hong; Ding, Yu-dong; Li, Jun; Ye, Ding-ding [Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044 (China)

    2010-09-15

    Water flooding in gas diffusion material (GDM) is an important limit in performance of proton exchange membrane fuel cell (PEFMC). Some efforts, such as modifying the pore structures in the GDM, have been made in order to facilitate water transport and to reduce flooding in PEMFC. Recent experimental studies have demonstrated that using a bi-layer GDM, consisting of a fine micro-porous layer (MPL) and a coarse gas diffusion layer (GDL), can be advantageous for water management in PEMFC. In this work, a pore network model with an invasion percolation algorithm is developed and used to investigate the effects of MPL properties, including thickness, wettability and connectivity, on water distribution in the bi-layer GDM from the viewpoint at the pore level. Furthermore, a reasonable inlet boundary condition is proposed to describe the actual phenomenon that the CL surface is covered with many independent water droplets which are much larger than pore sizes in MPL. Influences of water droplet size and coverage fraction are also clarified in the present study. (author)

  20. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    Science.gov (United States)

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1).

  1. Bi-layer structure of counterstreaming energetic electron fluxes: a diagnostic tool of the acceleration mechanism in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2010-02-01

    Full Text Available For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS instrument that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008. The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an

  2. Effect of post-sulfurization on the structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin films deposited by vacuum evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Touati, R., E-mail: rym.touati@gmail.com [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Ben Rabeh, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, le Belvédère, 1002 Tunis (Tunisia); Laboratoire de Photovoltaïques et Matériaux Semi-conducteurs, ENIT, IPEITunis Montfleury, Université de Tunis (Tunisia)

    2015-05-01

    The influence of post deposition annealing in sulfur atmosphere on the structural and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films was investigated. The samples were deposited by thermal evaporation under vacuum method at different glass substrate temperatures ranging from 60 °C to 210 °C. After the deposition, all CZTS thin films were annealed in a furnace in sulfur atmosphere at a temperature of 400 °C during 2 h so as to optimize the kesterite CZTS phase. Structural characterization was carried out using X-ray diffraction and Raman Scattering whereas optical characterization was performed by recording transmittance and reflectance of the samples in the spectral range of 300 nm-2400 nm. The X-ray diffraction spectra indicated that polycrystalline CZTS films were obtained after annealing and the samples exhibit (112) preferred diffraction plane. Hence, crystallinity was enhanced with substrate temperature as well as with post deposition annealing due to the diffusion of sulfur in the film during the annealing process. Optical study reveals that after annealing, the absorption coefficient is found to be higher than 10{sup 5} cm{sup −1} whereas the direct band gap energy varies in the range of 1.4 eV-1.6 eV. - Highlights: • Growth of Cu{sub 2}ZnSnS{sub 4} (CZTS) films on heated substrates by thermal evaporation method • Annealing of CZTS thin films in sulfur vapor under vacuum at 400 °C • XRD and Raman results revealed that Kesterite CZTS is the major crystalline phase. • Post-annealed films demonstrated a high absorption coefficient (> 10{sup 4} cm{sup −1}). • Post-annealed films showed an optical band gap between 1.46 eV and 1.66 eV.

  3. Synthesis, structure and optical properties of thin films from GeS{sub 2}–In{sub 2}S{sub 3} system deposited by thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R., E-mail: rossen@iomt.bas.bg [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Petkov, K. [Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Kincl, M. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic); Černošková, E. [Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice (Czech Republic); Vlček, Mil.; Tichý, L. [Institute of Macromolecular Chemistry of Czech Academy of Science, Heyrovsky sq. 2, 162 06 Prague 6 (Czech Republic)

    2014-05-02

    This paper deals with the properties of the glasses and thin films from multi-component chalcogenide prepared by co-evaporation technique. The thin chalcogenide layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation of GeS{sub 2} and In{sub 2}S{sub 3}. Using X-ray microanalysis it was found that the film compositions are closed to the expected ones. X-ray diffraction analysis shows that the thin films deposited by co-evaporation are amorphous. The refractive index, n and the optical band gap, E{sub g}{sup opt} were calculated from the transmittance and reflectance spectra. The thin film's structure was investigated by infrared spectroscopy. It was found that the photo-induced optical changes decrease with increase of indium content while significant thermo-induced changes in the optical properties and structure were observed at 14 at.% indium. The infrared spectra demonstrated high transmittance of the thin films in the range 4000–500 cm{sup −1}. The far-infrared spectra indicated that the indium participates in the glass network of the layers from Ge–S–In system in four coordinated InS{sub 4/2}{sup −} tetrahedral and six-coordinated InS{sub 6/2}{sup 3−} octahedral units. The changes in infrared spectra after annealing of the thin films evidence an increase of population of ethane-like S{sub 3}Ge–GeS{sub 3} units and/or structural or phase change of indium contain units. - Highlights: • The thin layers from GeS{sub 2}–In{sub 2}S{sub 3} system were deposited by thermal co-evaporation. • The photo-induced optical changes decrease with increase of indium content. • The thermo-induced changes in the optical properties and structure were investigated. • The structure of the thin films was investigated by infrared spectroscopy.

  4. Structural and spectroscopic ellipsometry studies on vacuum-evaporated Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} (m = 2.5, 3 and 4) thin films deposited on glass and Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, D., E-mail: dhaferabdelkader@gmail.com [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Akkari, F. Chaffar; Khemiri, N. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Gallas, B. [Institut des NanoSciences de Paris-CNRS-Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05 (France); Antoni, F. [ICube-Laboratoire des sciences de l’Ingénieur, de l' Informatique et de l’Imagerie, Université de Strasbourg-CNRS, 23, rue du Loess, 67037 Strasbourg Cedex (France); Kanzari, M. [Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs-ENIT, Université Tunis ElManar, BP37, Lebelvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d' Ingénieurs de Tunis-IPEIT, Université de Tunis, 2, Rue Jawaher Lel Nehru, 1089 Montfleury (Tunisia)

    2015-10-15

    Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} (m = 2.5, 3 and 4) thin films were deposited on glass and Si substrates using vacuum evaporation technique. The structural properties have been investigated by X-ray diffraction (XRD) and Raman spectroscopy. The XRD patterns revealed the polycrystalline nature of the films on substrates even when they are not heated during evaporation process. Raman spectra revealed four main peaks. The main structural units of Sn–Sb–S thin films are tetrahedral [SnS{sub 4}] and pyramidal [SbS{sub 3}]. The cross-section morphology was obtained by scanning electron microscopy (SEM). Spectroscopic ellipsometry (SE) measurements (ψ and Δ) were carried out to study the optical properties of the films. SE measured data were analyzed by considering double layer optical model for all the samples, with the two oscillators Tauc-Lorentz and Gaussian dispersion relations. Surface roughness was taken into consideration as shown in SEM micrographs. From the ellipsometric study, we determined the thicknesses of the modeled layers and their optical parameters (refractive index, absorption coefficient …). All the films exhibit high absorption coefficient α in the visible range (>10{sup 5} cm{sup −1}). The values of the band gap energy E{sub g} of Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} thin films deposited on glass were 1.52, 1.29 and 1.28 eV, respectively for m = 2.5, 3 and 4. For the samples deposited on silicon, E{sub g}(SnSb{sub 4}S{sub 7}) = 1.29 eV, E{sub g}(SnSb{sub 2}S{sub 4}) = 1.13 eV and E{sub g}(Sn{sub 2}Sb{sub 2}S{sub 5}) = 1.48 eV. - Highlights: • Sn{sub 2m−4}Sb{sub 4}S{sub 2m+2} films were thermally evaporated on glass and Si substrates. • The films have polycrystalline nature without any heat treatment. • [SnS{sub 4}] tetrahedral and [SbS{sub 3}] pyramidal are the main structural units. • Thicknesses and optical parameters were determined by ellipsometric study. • The films exhibit high absorption coefficient α in the visible

  5. Structural ordering, morphology and optical properties of amorphous Al{sub x}In{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mehdipour, H. [Plasma Nanoscience @ Complex Systems, The University of Sydney, New South Wales 2006 (Australia); Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Nazarudin, N.F.F.; Goh, B.T.; Shuhaimi, A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-25

    Highlights: • In-rich and Al-rich Al{sub x}In{sub 1−x}N films were grown by plasma-aided reactive evaporation. • The A{sub 1}(LO) phonon mode of the Al-rich films exhibits two-mode behavior. • The band gap of the films was tuned from 1.08 to 2.50 eV. • A bowing parameter of 4.3 eV was calculated for the grown Al{sub x}In{sub 1−x}N films. • The morphology was changed from clusters to uniformly shaped grains by decreasing x. - Abstract: Amorphous aluminum indium nitride (Al{sub x}In{sub 1−x}N) thin films were deposited on quartz substrates by plasma-assisted dual source reactive evaporation system. In-rich (x = 0.10 and 0.18) and Al-rich (x = 0.60 and 0.64) films were prepared by simply varying an AC voltage applied to indium wire. The X-ray-diffraction patterns revealed a small broad peak assigned to Al{sub 0.10}In{sub 0.90}N (0 0 2) plane, but no perceivable peaks assigned to crystalline Al{sub x}In{sub 1−x}N were observed for the films with x = 0.18, 0.60 and 0.64. The morphology of the film was changed from clusters of small grains to uniformly shaped particles with decrease of x. The band gap energy of the films increased from 1.08 eV to 2.50 eV as the Al composition varied from 0.1 to 0.64. Also, Raman results indicated that E{sub 2}(high) and A{sub 1}(LO) peaks of the Al{sub x}In{sub 1−x}N films are remarkably blue-shifted by increasing x and the A{sub 1}(LO) phonon mode of the Al-rich films exhibits two-mode behavior. A bowing parameter of 4.3 eV was obtained for AlInN films. The extrapolated value from bowing equation was 0.85 eV for band gap energy of InN.

  6. Ultra-large current transport in thick SmBa2Cu3O7−x films grown by reactive co-evaporation

    International Nuclear Information System (INIS)

    Highlights: • Transport properties of 5 μm thick SmBa2Cu3O7−x thin films were investigated. • Laser scanning microscopy was used to demonstrate local transport properties. • Temperature variable laser scanning microscopy shows correlation between structural and transport properties. • Optical measurements described nature of current transport properties in the coated conductors. - Abstract: Structural and transport properties of high performance SmBa2Cu3O7−x coated conductors produced by a dual-chamber co-evaporation are presented. The 5 μm-thick SmBCO coated conductors grown on IBAD-MgO based Hastelloy metal templates show critical currents larger than 1020–1560 A/cm at 77 K and self-field. The current transport characteristics of the conductors are investigated by room-temperature thermoelectric microscopy and low-temperature bolometric microscopy. The local thermoelectric images show the tilted grains, grain boundaries, and microstructural defects on the surface of the coated conductors. The bias current-dependent bolometric response at low temperature displays the current of the local flux flow dissipation as an increasing bias. Furthermore, we measured micro-Raman scattering microscopic imaging on oxygen-related peaks of the conductors. Comparing the Raman signal images with the low temperature optical scanning maps, it is remarkable that the structural disorders represented by oxygen-related Raman peaks are closely related to the low temperature bolometric abnormalities. From this result, a nature of the dissipative current distribution in coated conductors is revealed. The scanning optical microscopic study will provide a promising method for quality assurance of coated conductors

  7. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  8. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 2 This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al,...

  9. 地膜残留量对新疆棉田蒸散及棵间蒸发的影响%Effects of plastic film residue on evapotranspiration and soil evaporation in cotton field of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    王亮; 林涛; 严昌荣; 王静; 郭瑞霞; 岳璐珂; 汤秋香

    2016-01-01

    为探讨残膜对干旱区农田蒸散耗水特征的影响,在新疆阿克苏典型覆膜滴灌棉田开展2 a 小区试验研究,设计0、225、450 kg/hm2共3种不同的地膜残留量,采用水量平衡法,微型棵间蒸发仪法,于主要生育时期测定并计算土壤含水量、蒸散量、棵间蒸发量、作物蒸腾量、棵间蒸发占蒸散的比例。结果表明:随着地膜残留量增加棵间蒸发量、棵间蒸发占蒸散的比例呈增大趋势,而蒸散量及作物蒸腾量则逐渐减小。与无残膜处理相比,225和450 kg/hm2处理全生育期田间无效耗水的棵间蒸发量分别增加了9.27和22.20 mm,棵间蒸发占蒸散的比例增幅分别为2.6%和6.1%,作物蒸腾量降低34.89和55.94 mm。在棉花生育期内,棵间蒸发占蒸散的比例(E/ET)与叶面积指数(leaf area index,LAI)呈幂函数关系,各处理间棵间蒸发占蒸散的比例对叶面积指数的响应差异不同,450 kg/hm2处理蒸发占蒸散的比例随着 LAI 的增加,曲线下降趋势较明显;无残膜处理棵间蒸发占蒸散的比例与 LAI 的决定系数最高,均在0.9以上。土壤水分利用率也随残膜量的增加依次降低,当残膜量由0增加到450 kg/hm2时,土壤水分利用率从28.25%降至24.91%,可见,残膜增大了农田的无效耗水,不利于土壤水分的有效利用。研究可为制定缓解或克服残膜危害的应变调控技术提供依据。%Plastic film mulching plays an important role in cotton production. However, its widespread use has generate large amounts of plastic film residue and damage the physical structure of soil, which blocks the infiltration of capillary water and natural water and affects the moisture absorption in soil. Little is known about the impact of film residue on crop evapotranspiration (ETc), and soil evaporation and transpiration. This study aimed to determine the effects of different amount of plastic film residue on

  10. Electron-gun Evaporation of Cu and In thin films as Precursors for CuInSe{sub 2} Formation; Evaporacion mediante Canon de Electrones de Laminas Delgadas de Cu e In como Precursores para la Obtencion de CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R.; Guillen, C.

    2001-07-01

    In the present investigation CuInSe{sub 2} is obtained in two stages: sequential evaporation of Cu and In using an electron gun evaporator on substrates up to 30 x 30 cm''2, and a posterior selenization of the deposited films. The study is mainly focused on the first stage, in where the control of the different evaporation parameters of the metal precursors is essential. Electrical measurements are carried out, and also the topography and the thickness are determined with the object of studying the properties and homogeneity of the thin films. (Author) 19 refs.

  11. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis%残膜对土壤水分入渗和蒸发的影响及不确定性分析

    Institute of Scientific and Technical Information of China (English)

    牛文全; 邹小阳; 刘晶晶; 张明智; 吕望; 古君

    2016-01-01

    Pollution of residual plastic film, a continuous pollutant and difficult to degrade, is a major limiting factor for sustainable development of agriculture in northwest China. Residual plastic film can destroy homogeneity of soil texture and seriously impede the movement of soil water and solute, and thus greatly enhance the uncertainties in soil water movement. In order to reveal the negative effects of residual plastic film on soil water infiltration, evaporation and their uncertainties, soil column simulation experiments were conducted to observe the processes of soil water infiltration and evaporation with different amounts of residual plastic film in the Key Laboratory of Agricultural Soil and Water Engineering in Arid Area (108°02′E, 34°17′N), at Northwest A&F University, in Yangling, Shaanxi Province of China, from September to October, 2015. Six amounts of residual plastic film were designed including 0, 80, 160, 320, 640, 1 280 kg/hm2 with triplicate. During the experiment, the wetting front, the cumulative infiltration and the cumulative evaporation were investigated. Meanwhile, gravimetric soil moisture was measured after the evaporation process. To mimic the actual distribution characteristic of residual plastic film in field, fragile plastic film and soil samples were mixed evenly with a blender. During infiltration, when the wetting front arrived at 40 cm, irrigation water was cut off. Soil columns were covered with waterproof plastic film to reduce atmospheric evaporation. Soil columns stood for 12 h until the infiltration process completely stopped. In the consequent process of soil water evaporation, the columns were continuously heated by infrared lamps of 275 W from morning till night. Soil columns were weighed with an electronic balance at 9:00 a.m. every day to calculate mass change and standard daily evaporation. Furthermore, an evaporation pan that had the same diameter as soil column was used to measure daily evaporation from free water

  12. 竖管内溴化锂溶液降膜蒸发数值研究%NUMBERICAL RESEARCH OF FALLING FILM EVAPORATION OF LITHIUM BROMIDE SOLUTION IN VERTICAL TUBE

    Institute of Scientific and Technical Information of China (English)

    杨颖; 王洋; 石程名; 徐灿君

    2012-01-01

    The heat transfer performance of falling film evaporating LiBr solution in-vertical tube was investigated,which was directly driven by hot air from solar collector.Based on the coupled models of heat transfer and mass transfer,the numerical method of falling film evaporation of lithium bromide solution in vertical tube was presented.Using reasonable mathematical solution and MATLAB,the concentration and temperature distributions were calculated,the heat transfer coefficient was weaken with the increasing of inlet Re number,but the mass transfer coefficient was enhanced,and dimensionless relation of falling film evaporation was obtained.The compared results show that mass transfer will restrain heat transfer in falling film,and the affection can't be neglected.%研究以太阳集热板制取的高温空气为热源,直接驱动竖管内溴化锂溶液降膜蒸发的传热性能.提出适用于竖管内溴化锂溶液降膜蒸发传热传质耦合的数学模型,根据合理的数值解法,运用MATLAB软件编程,计算出降膜区域内温度场和浓度场,入口Re数越大,换热效果相对降低,而传质效果增强,并得到量纲为1的降膜换热准则式.通过与经验公式对比发现,溴化锂溶液中传质对传热有抑制作用,且其影响不可忽略.

  13. Separation of cinnamaldehyde and cinnamyl acetate by thin-film evaporation coupling distillation technology%薄膜蒸发与精馏耦合技术分离肉桂醛和乙酸肉桂酯

    Institute of Scientific and Technical Information of China (English)

    柴坤刚; 张玉姣; 杨祖金; 禤耀明; 纪红兵

    2014-01-01

    Separation of cinnamaldehyde and cinnamyl acetate by thin-film evaporation/molecular distillation coupled technology was studied. Based on the experimental results of separating cinnamaldehyde and cinnamyl acetate by molecular distillation,a novel separation method by thin-film evaporation/molecular distillation was investigated. For separation of cinnamaldehyde and cinnamyl acetate with the coupled method,the effect of reflux ratio was discussed firstly. Then,the mixtures with different mass fractions of cinnamaldehyde were separated at various evaporator temperatures under the optimum reflux ratio of 2∶1. The content of cinnamaldehyde in distillate obtained by thin-film evaporation/molecular distillation was generally higher than that obtained by molecular distillation only for the same mixtures,which indicated higher separation efficiency of thin-film evaporation/molecular distillation coupled technology than molecular distillation in the case of separating materials with similar volatilities.%采用分子蒸馏技术和薄膜蒸发与精馏耦合技术分离肉桂醛和乙酸肉桂酯。在采用分子蒸馏分离肉桂醛和乙酸肉桂酯的实验研究基础上,重点阐述了薄膜蒸发与精馏耦合技术分离实验。首先研究了回流比对分离效果的影响,在确定回流比为2∶1后,分别以不同肉桂醛质量分数的混合物作为待分离物料,在不同蒸发器温度下进行了分离实验。对于具有相同肉桂醛质量分数的混合物料,薄膜蒸发与精馏耦合技术收集的馏出物中肉桂醛的含量普遍高于通过分子蒸馏技术收集的馏出物中肉桂醛的含量,实验结论表明薄膜蒸发与精馏耦合技术在分离挥发性相似物料方面具有更高的分离效率。

  14. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao

    2016-01-22

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  15. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Z. J. Zuo

    2013-12-01

    Full Text Available Magnetoelectric (ME coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,TiO3 composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (HDC, showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the HDC shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the HDC patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  16. SHEAR BOND STRENGTHS BETWEEN CERAMIC CORES AND VENEERING CERAMICS OF DENTAL BI-LAYERED CERAMIC SYSTEMS AND THE SENSITIVITY TO THERMOCYCLING

    Directory of Open Access Journals (Sweden)

    SUN TING, BDS, DDS

    2012-09-01

    Full Text Available The purpose of this study was to investigate the bond strength between various commercial ceramic core materials and veneering ceramics of dental bi-layered ceramic combinations and the effect of thermocycling. The shear bond strength of four dental bi-layered ceramic combinations (white Cercon, yellow Cercon, white Lava, yellow Lava, IPS E.max were tested. Metal ceramic combinations were conducted as a control group. Half of each group was subjected to thermocycling. All specimens were thereafter subjected to a shear force. The initial mean shear bond strength values in MPa ± S.D were 28.02 ± 3.04 for White Cercon Base/Cercon Ceram Kiss, 27.54 ± 2.20 for Yellow Cercon Base/Cercon Ceram Kiss, 28.43 ± 2.13for White Lava Frame/Lava Ceram, 27.36 ± 2.25 for Yellow Lava Frame/Lava Ceram, 47.10 ± 3.77 for IPS E.max Press/IPS E.max Ceram and 30.11 ± 2.15 for metal ceramic control. The highest shear strength was recorded for IPS E.max Press/IPS E.max Ceram before and after thermocycling. The mean shear bond strength values of five other combinations were not significantly different (P < 0.05. Lithium-disilicate based combinations produced the highest core-veneer bonds that overwhelmed the metal ceramic combinations. Thermocycling had no effect on the core-veneer bonds. The core-veneer bonds of zirconia based combinations were not weakened by the addition of coloring pigments.

  17. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS{sub 2} field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong; Kim, Dahye; Seo, Sunae, E-mail: sunaeseo@sejong.ac.kr [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Hakseong; Lee, Sang Wook [Divison of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Sung, Ji Ho; Jo, Moon-Ho [Center for Artificial Low-Dimensional Electronic Systems, Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Lee, Myoung Jae [Center for Artificial Low-Dimensional Electronic Systems, Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784 (Korea, Republic of); Seo, David H. [Samsung Electronics Company, Limited, System LSI Division, TD Team, Gyunggi 446-711 (Korea, Republic of)

    2015-12-07

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS{sub 2} transistors. Ti-MoS{sub 2}-graphene heterojunction transistors using both single-layer MoS{sub 2} (1M) and 4-layer MoS{sub 2} (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS{sub 2}-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS{sub 2}-Ti, which resulted in V{sub DS} polarity dependence of device parameters such as threshold voltage (V{sub TH}) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μ{sub FE}) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS{sub 2} thickness for both SG and BG contacts. Differential conductance (σ{sub d}) of 1M increases with V{sub DS} irrespective of V{sub DS} polarity, while σ{sub d} of 4M ceases monotonic growth at positive V{sub DS} values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σ{sub d} saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.

  18. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition

    Science.gov (United States)

    Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.

    2016-02-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.

  19. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  20. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  1. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  2. Magnetic properties and structure of Ni80Fe20/Ni48Fe12Cr40 bilayer films deposited on SiO2/Si(100) by electron beam evaporation

    Institute of Scientific and Technical Information of China (English)

    WU Ping; GAO Yanqing; QIU Hong; PAN Liqing; TIAN Yue; Wang Fengping

    2007-01-01

    Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40underlayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.

  3. Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    黄继杰; 王钰萍; 吕建国; 龚丽; 叶志镇

    2011-01-01

    Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 x 10~3 Ω-1, with a low sheet resistance of12.38Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.%Al-doped ZnO(AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature.The structural,electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer.The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 × 10-3 Ω-1,with a low sheet resistance of 12.38Ω/sq,an acceptable visible transmittance of 73%,and a high near-infrared reflectance of about 50%.

  4. 基于分布参数模型的水平管式降膜蒸发器模拟%Prediction of the Performance of Falling Film Evaporator with Horizontal Tube Bundle Based on a Distributed Parameter Model

    Institute of Scientific and Technical Information of China (English)

    翟玉燕; 黄兴华

    2009-01-01

    A distributed parameter model is developed for predicting the performance of a horizontal-tube falling-film evaporator. In this model, the variation of heat transfer performance along the tube length and array, as well as the effect of the dry patch on the performance are considered. The model is applied to predicting the performance of a commercial falling film evaporator, and the influences of bundle layout, pass layout, refrigerant mass flow rate and the flooded level of refrigerant on the evaporator performances are studied. The results show that the simulation result agrees well with the experimental data, and it is possible to decrease or avoid the dry patch area on the tube bundle and therefore improve the evaporator performance by rationallly designing the layout of the tube bundle and the flooded level of the refrigerant.%建立水平管式降膜蒸发器蒸发换热的分布参数模型,考虑换热性能沿管子轴向、管排方向的变化,以及传热管发生干斑现象时对降膜蒸发的影响.对一降膜蒸发器的性能进行模拟分析,并考察管束布置、制冷剂液膜质量流量、管程布置以及满液位置对降膜蒸发器性能的影响.结果表明,计算结果和试验结果吻合良好,通过合理的设计管排方式和满液位置,可以减少或避免干斑现象的发生,提高降膜蒸发器性能.

  5. Electrical and optical properties of thermally-evaporated thin films from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh{sub 4}) and 1,8-dihydroxyanthraquinone

    Energy Technology Data Exchange (ETDEWEB)

    Carbia-Ruelas, E. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Sanchez-Vergara, M.E., E-mail: elena.sanchez@anahuac.mx [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, D. F (Mexico); Morales-Saavedra, O.G. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM. A. P. 70-186, Coyoacan, 04510, Mexico, D. F (Mexico); Alvarez-Bada, J.R. [Coordinacion de Ingenieria Mecatronica. Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)

    2011-02-01

    In this work, the synthesis of molecular materials formed from A{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Eg{sub d}. The cubic NLO effects were substantially enhanced for materials synthesized from K{sub 2}[TiO(C{sub 2}O{sub 4}){sub 2}], where {chi}{sup (3)} (-3{omega}; {omega}, {omega}, {omega}) values in the promising range of 10{sup -12} esu have been evaluated.

  6. 地铁站全膜流板式蒸发冷却器设置位置分析%Installation location of intact film plate evaporative cooler in underground railway stations

    Institute of Scientific and Technical Information of China (English)

    蒋斌; 付祥钊; 王勇

    2011-01-01

    将板式换热器与蒸发冷却技术相结合,提出采用全膜流板式蒸发冷却器代替冷却塔,解决冷却塔难以设置的问题.对该设备在气液顺流、逆流、叉流条件下的传热性能进行模拟计算,结果表明,叉流条件下局部Nu最大,其次为顺流,逆流最小.通过对计算结果和安装运行的综合分析,提出地铁排风道水平段为全膜流板式蒸发冷却器的最佳设置方案,为该设备的实际应用提供了参考依据.%By applying plate heat exchanger and evaporative cooling technology, presents to substitute the intact film plate evaporative cooler for the cooling tower. Simulates the heat transfer performances of the device on conditions of concurrent flow, counter flow and cross flow. The results show a maximum local Nusselt number on cross flow condition, followed by concurrent flow, and a minimum on counter flow condition. By the comprehensive analysis of simulation results and installation and operation, recommends horizontal segment of extraction air duct in an underground railway station be the optimal location of installing the intact film plate evaporative cooler, providing reference for practical application.

  7. Preparation and microstructural characterization of TiC and Ti0.6W0.4/TiC0.6 composite thin films obtained by activated reactive evaporation

    International Nuclear Information System (INIS)

    Titanium carbide-based coatings were deposited on W substrates at a high coating growth rate by activated reactive evaporation at 500 and 600 deg. C in a L560 Leybold system using propene as reactive atmosphere. The crystal structure, lattice parameter, preferred orientation, and grain size of the coatings were determined by x-ray diffraction technique using Cu Kα. The analysis of the coating morphology was performed by scanning electron microscopy (SEM), and the composition of the films was analyzed by Auger electron spectroscopy and electron-probe microanalysis. Experimental results suggested that temperature was one of the most important parameters in the fabrication of stoichiometric TiC coatings. Thus, TiC coatings were obtained at 600 deg. C, whereas TiC0.6 nonstoichiometric coatings codeposited with a free Ti phase were obtained at 500 deg. C, giving rise to the formation of a composite thin film. After annealing at 1000 deg. C, the stoichiometric films remained stable, but a crack pattern was formed over the entire coating surface. In addition, Ti0.6W0.4/TiC0.6 composite thin coatings were obtained for the films synthesized at 500 deg. C. The formation of a Ti0.6W0.4 ductile phase in the presence of a TiC0.6 phase was responsible to avoid the coating cracking

  8. Properties of YBaCuO superconducting thin films deposited by nitrogen laser evaporation and heat-treated in O2 atmosphere by CW Co2-laser

    International Nuclear Information System (INIS)

    One of successfully applied methods for obtaining high Tc superconducting thin films is the pulsed laser deposition. The advantage of this method is preserving the film stoichiometry in comparison to target if UV eximer lasers, and for Nd-YAG laser in Q-modulation mode are used. In order to obtain the orthorombic phase of YBa2Cu3O7-x, the films are annealed in O2 atmosphere during the deposition process and after that. One problem her is the substrate temperature control. This temperature (Ts) determines to a great extent the vapor condensation mechanism and the chemical-physical processes at the substrate-film interface. This paper describes a method of obtaining high Tc superconducting thin films of YBa2Cu3O7-x by means of an N2 pulse laser and the properties of received films. The substrates used were poly-Al2O3, sapphire, SrTiO3 and Si

  9. Resonant x-ray study on the Bi-layered perovskite Mn oxide LaSr{sub 2}Mn{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Yusuke [Keio Univ., Faculty of Science and Technology, Dept. of Physics, Yokohama, Kanagawa (Japan); Murakami, Youichi; Koyama, Ichiro [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Photon Factory, Tsukuba, Ibaraki (Japan); Kimura, Tsuyoshi; Tokura, Yoshinori [Joint Research Center for Atom Technology, Tsukuba, Ibaraki (Japan); Moritomo, Yutaka [Nagoya Univ., Center for Integrated Research in Scinece and Engineering, Nagoya, Aichi (Japan); Endoh, Yasuo; Hirota, Kazuma [Tohoku Univ., Dept. of Physics, Sendai, Miyagi (Japan)

    2003-03-01

    Charge and orbital ordering behaviors in the half doped bi-layered compound LaSr{sub 2}Mn{sub 2}O{sub 7} have been studied by resonant and non-resonant x-ray scattering. Three different order parameters, which correspond to the A-type antiferromagnetism, charge ordering and orbital ordering, were observed by measuring the magnetostriction and the superlattice peaks characterized by wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice reflections indicating the charge and orbital ordered states were observed below 210 K. Both the intensities reach a maximum at 160 K on cooling and become very weak below 100 K. The peak width of the charge ordered state agrees with that of the orbital ordered state at all temperatures studied. These results indicate that both the states originate from a single phase and that the charge/orbital ordered islands with definite interfaces disperse in the A-type antiferromagnetic phase. The dimensionality of the charge/orbital ordered phase is discussed using this model. (author)

  10. Dye-sensitized solar cells based on composite TiO$_2$ nanoparticle–nanorod single and bi-layer photoelectrodes

    Indian Academy of Sciences (India)

    F REZVANI; E PARVAZIAN; S A HOSSEINI

    2016-10-01

    TiO$_2$ nanoparticle (NP), composite TiO$_2$ nanoparticle–nanorod (NP–NR) and bi-layer TiO2 nanoparticle/ nanorod (NP/NR) with the optimized diameter of NRs had been prepared as anode layer in dye-sensitized solarcells (DSSCs). Morphology and thickness of anode layers were provided by field emission scanning electron microscope (FE-SEM) and scanning electron microscopy (SEM) devices. Current density–voltage diagrams were preparedby potentiostat and solar simulator devices at air mass (AM) 1.5. It is determined that DSSCs based on composite NP–NR photoelectrode had the best conversion efficiency of 5.07%. Also, the results of the electrochemical modelling of these DSSCs indicated that solar cells based on NP–NR electrode had the highest electron transport time ($\\tau_d$) of 312.87 ms, electrons’ recombination lifetime ($\\tau_n$) of 130.4 ms and the lowest transfer resistance ($R_{ct}$) as wellas transport resistance ($R_t$) of 22.46 and 9.4 $\\Omega$, respectively.

  11. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  12. Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings;

    Gadolinium-doped cerium oxide (CGO) and lanthanum strontium manganate (LSM) are electro-ceramics materials with high potential for several electrochemical applications such as solid Oxide Fuel Cell (SOFC), gas separation membranes, and flue gas purification devices. Especially for novel electroch......Gadolinium-doped cerium oxide (CGO) and lanthanum strontium manganate (LSM) are electro-ceramics materials with high potential for several electrochemical applications such as solid Oxide Fuel Cell (SOFC), gas separation membranes, and flue gas purification devices. Especially for novel...... electrochemical flue gas purification devices, multilayer structures with alternating porous layers of CGO and a LSM/CGO mixture are used to achieve specific functional requirements. In a manufacturing process of such ceramic multilayer devices, co-firing is one of the critical steps as many defects...... such as cracks, de-lamination and shape distortion can result as a consequence of sintering mismatch stresses caused by the strain rate difference between layers. This work seeks to understand the underlying mechanisms that occur during the co-firing of porous CGO-LSM/CGO bi-layer laminates, by evaluating...

  13. Analysis of bi-layer oxide on austenitic stainless steel, 316L, exposed to Lead–Bismuth Eutectic (LBE) by X-ray Photoelectron Spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Koury, D., E-mail: dan@physics.unlv.edu [Dept. of Physics and Astronomy, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Johnson, A.L. [Harry Reid Center, MS 4009, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Ho, T. [Dept. of Chemistry, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States); Farley, J.W. [Dept. of Physics and Astronomy, MS 4002, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154 (United States)

    2013-09-15

    Corrosion of the austenitic stainless steel alloy 316L by Lead–Bismuth Eutectic (LBE) was studied using X-ray Photoelectron Spectroscopy (XPS) with Sputter-Depth Profiling (SDP), and compared to data taken by Scanning Electron Microscopy (SEM) and Energy Dispersive X-rays (EDXs). Exposed and unexposed samples were compared. Annealed 316L samples, exposed to LBE for durations of 1000, 2000 and 3000 h, developed bi-layer oxides up to 30 μm thick. Analysis of the charge-states of the 2p{sub 3/2} peaks of iron, chromium, and nickel in the oxide layers reveal an inner layer consisting of iron and chromium oxides (likely spinel-structured) and an outer layer consisting of iron oxides (Fe{sub 3}O{sub 4}). Cold-rolled 316L samples, exposed for the same durations, form a chromium-rich, thin (⩽1 μm) oxide with some oxidized iron in the outermost ∼200 nm of the oxide layer. This is the first experiment to investigate what components of the 316L are oxidized by LBE exposure. It is shown here that nickel is metallic in the inner layer.

  14. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  15. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    International Nuclear Information System (INIS)

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  16. CdxTe薄膜的共蒸发法制备及其表征%Preparation and Characterization of CdxTe Thin Films Deposited by Co-evaporation

    Institute of Scientific and Technical Information of China (English)

    束青; 武莉莉; 冯良桓; 王文武; 曹五星; 张静全; 李卫; 黎兵

    2015-01-01

    CdxTe thin films with differentx values were deposited for the first time through controlling evaporation rates of CdTe and Te powder by vacuum co-evaporation. Then the films were annealed in N2atmosphere at 185℃. The morphological, structural, optical, and electrical properties of the CdxTe films were investigated by X ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectrum and temperature dependence of the dark conductivity. UV-visible absorption spectrum demonstrates that energy band gaps (Eg) of different CdxTe films change from 0.99 eV to 1.46 eV. The absorption edges of different CdxTe films move towards longer wavelength and their transmittances reduce dramatically as thex value decreases from 0.8 to 0.2. XRD shows that as-deposited CdxTe thin films are amorphous when value ofx is less than 0.6. Otherwise, CdxTe thin films are crystalline whose CdTe phase with preferential in (111) direction while value ofx is approaching 1. The result indicates that annealing treatment is helpful for the films shifting from amorphous to polycrystalline. All the films exhibit p-type conductivity and the con-ductivity increases firstly as temperature rises. But it becomes abnormal while the temperature reaches a certain point. Data from this research suggest that CdxTe thin films can potentially be used for CdTe thin film solar cells to improve the long wavelength response.%采用CdTe和Te双源共蒸发的方法,调控CdTe和Te源的蒸发速率,首次制备出一系列不同x组分的CdxTe二元化合物薄膜,并在N2气气氛下进行185℃退火处理。通过XRD、SEM、紫外–可见吸收光谱分析及暗电导率–温度关系对CdxTe薄膜的结构、形貌、光学和电学性质进行表征。紫外–可见吸收光谱分析表明,不同x组分的CdxTe薄膜,其禁带宽度可在0.99~1.46 eV之间变化,随着x值从0.8减小到0.2,吸收边向长波方向移动,而且透过率也显著下降。XRD结果表明, x值小于0

  17. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  18. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (Eg) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  19. CFD analysis of evaporation cooling experimental tests

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, W.; Forgione, N.; Mazzini, D.; Oriolo, F. [Pisa Univ., DIMNP (Italy); He, S. [British Energy Generation Ltd, Barnwood Gloucester (United Kingdom)

    2001-07-01

    Falling film evaporation cooling is investigated by a CFD (computational fluid dynamics) code. The experimental activity, carried out at the University of Pisa using the EFFE facility, is aimed to contribute to the understanding of the heat and mass transfer mechanisms involved in cooling of a metallic wall by evaporation of falling water films in a countercurrent air flow. This problem is relevant for innovative nuclear reactor containment. The mathematical model, the governing equations and the boundary conditions implemented in the code are briefly described; a detailed description of the method adopted to account for mass transfer and the presence of the film follows. Then, the calculated results are analysed and compared with experimental data, highlighting the improvement in the cooling capabilities obtained owing to evaporation with respect to the case of pure convection. (authors)

  20. Determination of the velocity profile of mixture flow in a falling film evaporator with rating blades; Determinacao do perfil de velocidade no escoamento de uma mistura em um evaporador de pelicula cadente com pas rotativas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Reis; Silva, Maria Eugenia Vieira da; Carioca, Jose Oswaldo Beserra; Hiluy Filho, Joao Jose [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2004-07-01

    The Falling Film Evaporator (FFE) is an industrial equipment that processes high viscosity, high heating sensitive and polymerizing capacity compounds. This equipment can be used in processing Cashew Nut Shell Liquid (CNSL), in the distillation of Cardanol, which is a component used to produce additives. The FFE has a cylindrical form with rotating internal blades. In the gap between the blades and the internal cylinder surface, liquid CNSL flows by gravity after being injected on the top of the cylinder. The blades rotate touching the film, transferring turbulence at the interface and increasing the convective heat and mass transfer process. This paper presents the conservation equations of momentum in the CNSL falling film and the necessary boundary conditions to solve the problem. A numerical procedure was used to numerically solve these equations using a finite difference scheme. The results show the axial and radial velocity profiles, which are needed in the solutions of the temperature and the concentration problems. These results are useful in the optimization of the separation processes that uses a FFE, such as in the CNSL process. (author)

  1. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Tao, Jiadong; Hu, Changchang; Chen, Longkun; Zhao, Hongshi; Xu, Guowei; Heng, Boon C; Ouyang, Hong Wei

    2013-08-01

    The repair of osteochondral defects can be enhanced with scaffolds but is often accompanied with undesirable terminal differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Parathyroid hormone-related protein (PTHrP) has been shown to inhibit aberrant differentiation, but administration at inappropriate time points would have adverse effects on chondrogenesis. This study aims to develop an effective tissue engineering strategy by combining PTHrP and collagen-silk scaffold for osteochondral defect repair. The underlying mechanisms of the synergistic effect of combining PTHrP administration with collagen-silk scaffold implantation for rabbit knee joint osteochondral defect repair were investigated. In vitro studies showed that PTHrP treatment significantly reduced Alizarin Red staining and expression of terminal differentiation-related markers. This is achieved in part through blocking activation of the canonical Wnt/β-catenin signaling pathway. For the in vivo repair study, intra-articular injection of PTHrP was carried out at three different time windows (4-6, 7-9 and 10-12 weeks) together with implantation of a bi-layer collagen-silk scaffold. Defects treated with PTHrP at the 4-6 weeks time window exhibited better regeneration (reconstitution of cartilage and subchondral bone) with minimal terminal differentiation (hypertrophy, ossification and matrix degradation), as well as enhanced chondrogenesis (cell shape, Col2 and GAG accumulation) compared with treatment at other time windows. Furthermore, the timing of PTHrP administration also influenced PTHrP receptor expression, thus affecting the treatment outcome. Our results demonstrated that intra-articular injection of PTHrP at 4-6 weeks post-injury together with collagen-silk scaffold implantation is an effective strategy for inhibiting terminal differentiation and enhancing chondrogenesis, thus improving cartilage repair and regeneration in a rabbit model. PMID:23702148

  2. 烃水混合蒸气立式降膜蒸发冷凝器设计%Design of vertical falling film evaporate-condenser of hydrocarbon gas-vapor mixture

    Institute of Scientific and Technical Information of China (English)

    隋军; 李淞平; 袁一

    2001-01-01

    For conquering limitation of the traditional design, based on the mass and heat transfer in the vertical multi-tube falling film evaporate-condenser of hydrocarbon gas-vapor mixture, the isometric integral model along the tube was established and evaluated. Its applicability was proved by example.%为克服传统设计模型的缺陷,在传质传热分析基础上,建立了烃水混合物立式多管式降膜蒸发冷凝器传热设计的管长方向等距积分模型,并对模型进行求解。实例证明,新模型适用性较好。

  3. Microstructure and optical studies of electron beam evaporated ZnSe{sub 1-x}Te{sub x} nanocrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Emam-Ismail, M., E-mail: me_ismail_01@yahoo.com [Physics Department, Collage of Science, Qassim University, P.O. 6644, 51452 Buryadh (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, 11566 Cairo (Egypt); El-Hagary, M. [Physics Department, Collage of Science, Qassim University, P.O. 6644, 51452 Buryadh (Saudi Arabia); Physics Department, Faculty of Science, Helwan University, Helwan, 11792 Cairo (Egypt); Shaaban, E.R. [Physics Department, Faculty of Science, Al-Azhar University, 71452 Assuit (Egypt); Al-Hedeib, A.M. [Physics Department, Collage of Science and Arts, Qassim University, Buryadh (Saudi Arabia)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The structural and optical properties of ZnSeTe thin films were studied. Black-Right-Pointing-Pointer The micro structural parameters of the films have been determined. Black-Right-Pointing-Pointer The room temperature reflectance and transmittance data are analyzed. Black-Right-Pointing-Pointer The refractive index and energy gap are determined. Black-Right-Pointing-Pointer The single oscillator parameters were calculated. - Abstract: Nanocrystalline thin films of ZnSe{sub 1-x}Te{sub x} (0.0 {<=} x {<=} 1.0) were deposited on glass substrate using electron beam deposition technique. The structure of the prepared films was examined using X-ray diffraction technique and revealed that the deposited films have polycrystalline zinc blend structure with lattice constant, a, increasing linearly from 0.55816 to 0.59989 nm as x varies from 0 to 1. The optical studies of the nanocrystalline ZnSe{sub 1-x}Te{sub x} films showed that the refractive index increases and fundamental band gap E{sub g} decreases from 2.58 to 2.21 eV as the tellurium concentration increases from 0 to 1. Furthermore, it was also found that the variation of E{sub g} with composition shows quadratic behavior with bowing parameter equal to 0.105. In addition, the thickness and annealing effects on the structure and optical properties of the deposited films were also investigated. The refractive index dispersion and its dependence on composition were discussed in terms of single oscillator model proposed by Wemple-DiDomenico.

  4. Epitaxial transformation of hcp–fcc Ti sublattices during nitriding processes of evaporated-Ti thin films due to nitrogen-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Feng, Xiaoyi [Department of Metallurgy, Tohoku University, Aramaki-Aza-Aoba 02, Sendai 980-8579 (Japan); Kasukabe, Yoshitaka, E-mail: kasukabe@insc.tohoku.ac.jp [Department of Metallurgy, Tohoku University, Aramaki-Aza-Aoba 02, Sendai 980-8579 (Japan); Center for International Exchange, Tohoku University, 41 Kawauchi, Sendai 980-8576 (Japan); Yamamoto, Shunya; Yoshikawa, Masahito [Quantum Beam Science Directorate, JAEA, 1233 Watanuki, Takasaki 370-1292 (Japan); Fujino, Yutaka [Center for International Exchange, Tohoku University, 41 Kawauchi, Sendai 980-8576 (Japan)

    2013-11-15

    Highlights: ► Atomistic transformation processes of Ti films due to N-implantation have been clarified. ► The N{sub 2}{sup +} ions with 62 keV are implanted into as-deposited Ti film in the in-situ TEM. ► The hcp-fcc transformation is induced by the shear in the <0 1 · 0> direction on the (<0 0 · 1>) plane. ► The shear is promoted by the forming of covalent bonds and by the weakening of Ti–Ti bonds. -- Abstract: Atomistic transformation processes of Ti films due to N-implantation have been clarified through in-situ observations by using transmission electron microscope (TEM) along with molecular orbital calculations. The N{sub 2}{sup +} ions with 62 keV are implanted into as-deposited Ti films which consist of hcp-Ti and TiH{sub x} with preferred orientations, in the 400 kV analytic high resolution TEM combined with ion accelerators. Thus, titanium nitride (TiN{sub y}) films with preferred orientations are epitaxially formed by the inheritance of partial atomic arrangement of hcp-Ti or TiH{sub x} in as-deposited Ti films and by the occupation of octahedral sites by N atoms, which elucidates that epitaxial transformation of hcp–fcc Ti sublattices occurs. The analysis of electronic structure of Ti films during the implantation clarifies that octahedral sites of hcp-Ti with larger space have lower electron density, which leads to the invasion of N ions into octahedral sites. Thus, the hcp–fcc transformation is induced by the shear in the <0 1 · 0> direction on the (0 0 · 1) plane, promoted by the forming of covalent bonds mainly composed of hybridized orbitals due to combination of Ti3d and N2p orbitals, and by the weakening of Ti–Ti bonds.

  5. Quantification of simultaneous solvent evaporation and chemical curing in thermoset coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2010-01-01

    The mechanisms of simultaneous solvent evaporation and film formation in high-solids thermoset coatings are considered. The relevant phenomena, chemical reactions, solvent diffusion and evaporation, gelation, vitrification, network mobility restrictions, and crosslinking, are quantified...

  6. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, A.S., E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Dept., Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia); Akl, Alaa A. [Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2015-11-05

    Non-crystalline thin films of chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} system (30 ≤ x ≤ 50) were obtained by thermal evaporation technique onto a pre-cleaned glass substrate at a vacuum of 8.2 × 10{sup −4} Pa. The deposition rate and film thickness were kept constant at about 8 nm/s and 200 nm, respectively. Amorphous/crystalline nature and chemical composition of films have been checked using X-ray diffraction and energy dispersive X-ray spectroscopy (EDX). Optical properties of thin films were investigated and studied using the corrected transmittance, T(λ) and corrected reflectance, R(λ) measurements. Obtained data reveal that, the indirect optical energy gap (E{sub g}) was decreased from 2.21 to 1.57 eV. On the contrary, Urbach energy (band tail width), E{sub U} was found to be increased from 0.29 to 0.45 eV. This behavior is believed to be associated with the increase of Se-content instead of S-content in the thin films of Cd{sub 50}S{sub 50−x}Se{sub x} system. Chemical bond approach model, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. Optical density, skin depth, extinction coefficient, refractive index and optical conductivity of chalcogenide CdSSe thin films were discussed as functions of Se-content. Using Wemple-DiDomenico single oscillator model, the refractive index dispersion and energy parameters and their dependence on Se content were studied. - Highlights: • Amorphous thin films of thickness 200 nm of Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) have prepared. • Optical properties, indirect optical energy gap and band tail width were studied. • Chemical bond approach, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. • New data of dispersion refractive index parameters were investigated and discussed.

  7. 制冷用水平管降膜蒸发器管束换热特性数值模拟%Numerical Simulation of the Heat Transfer Performance of Horizontal Falling Film Evaporator in the Large Refrigeration Systems

    Institute of Scientific and Technical Information of China (English)

    杨培志; 张营; 李晓

    2015-01-01

    A theoretical thermodynamic model with distributed parameters was developed for simulating the falling film heat transfer performance,and in this model the effect of film breakdown (or dry patch)is considered.In this simulation ,the distribu-tion of dry patch,average falling film factor is obtained,and the effect of the tube bundle layout,refrigerant mass flow rate,tube pitch,the flooded tube row amount is also analyzed.This study is a contribution for the design of horizontal falling film evaporators and promote their application in the field of refrigeration and air conditioning.%采用分布参数法建立水平管降膜蒸发器管束换热模型,模拟计算了水平管降膜蒸发器不同管程布置下换热管干斑分布和平均降膜因子,并进行比较分析;并在下进上出的管程布置形式下研究了制冷剂流量、管间距、满液区排管数对蒸发器换热性能的影响。本文的研究为水平管降膜蒸发器的设计提供理论指导,促进其在制冷空调领域的推广应用。

  8. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  9. A strategy to stabilise the local structure of Ti{sup 4+} and Zn{sup 2+} species against aging in TiO{sub 2}/aluminium-doped ZnO bi-layers for applications in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, Giovanna; La Magna, Antonino; Bongiorno, Corrado; Smecca, Emanuele; Alberti, Alessandra, E-mail: alessandra.alberti@imm.cnr.it [CNR-IMM Zona Industriale VIII Strada 5, 95121 Catania (Italy); Condorelli, Guglielmo G. [Università degli studi di Catania and INSTM UdR Catania V.le A. Doria 6, Catania (Italy); Mocuta, Cristian [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin BP 48, 91192, Gif-sur-Yvette Cedex (France)

    2014-08-07

    We explore a strategy to counteract aging issues in TiO{sub 2}/aluminium-doped ZnO bi-layers used in hybrid solar cells photo-anodes, mainly related to Zn diffusion in the TiO{sub 2} matrix. Different Ti{sup 4+} and Zn{sup 2+} local structures within the anatase grains and along the film thickness were found as a function of post-deposition annealing treatments in the range between 200 °C and 500 °C by synchrotron radiation extended x-ray absorption fine structure analyses. In particular, in the 500 °C-treated sample, diffusion of zinc species along the TiO{sub 2} grain-boundaries has been observed with aging (3 years). In contrast, a mild thermal budget at 200 °C favours a proper atomic arrangement of the zinc-containing anatase lattice which reduces Zn diffusion, thus guaranteeing a good stability with aging.

  10. Regulation of nanoparticle impact on the growth of MoSex films during pulsed laser evaporation of MoSe2 target

    Science.gov (United States)

    Romanov, R. I.; Fominski, V. Y.; Gnedovets, A. G.; Grigoriev, S. N.; Volosova, M. A.

    2016-09-01

    Irradiation of MoSe2 target with intensive laser pulses caused the formation of micro- and nanoparticles. The particles were observed on the target surface and in MoSex films prepared by deposition of the laser-induced plume. Content of nanoparticles on the film surface was markedly larger than that of microparticles. Transport of the plume in vacuum and in a buffer helium (He) gas was studied. The He pressure was high enough to provide effective atom scattering and plume deceleration. For a medium target-substrate distance, the structure of MoSex film was formed due to intensive deposition of atomic flux scattered in the buffer gas. Impact of nanoparticles on the structure was negligible. For a large distance, deposition of the nanoparticles from the plume was assisted by co-deposition of drifting atomic flux. Such deposition resulted in the formation of relatively smooth film containing nanoparticles transferred with plume, as well as the growth of spherical Se particles on the substrate.

  11. Influence of γ-irradiation on optical parameters of electron beam evaporated ZnSe1-xTex nanocrystalline thin films

    Science.gov (United States)

    Emam-Ismail, Mohamed; El-Hagary, Magdy; Ramadan, Essam; Matar, Ahmed; El-Taher, Atef

    2014-01-01

    In the present paper, we reported the effect of γ-irradiation with different doses (100-300 kGy) on the optical parameters of nanocrystalline ZnSe1-xTex (x=0.0, 0.2, 0.5, 0.7, 1.0) thin films. In the wavelength range 400-2500 nm, the optical parameters of the as-deposited and γ-irradiated were extracted from transmission spectra using the Swanepoel method. It was found that the refractive index of the investigated films increases with increasing the doses of γ-radiation. Such post-irradiation increase in the refractive index was attributed to the increase of the density of the investigated films with irradiation doses due to structure transformation induced by thermal effects during irradiation. In addition, the refractive index dispersions of both as-deposited and γ-irradiated of nanocrystalline ZnSe0.8Te0.2 films are found to follow the single oscillator model. The calculated single oscillator parameters; oscillator strength Ed, static refractive index no, increased after irradiation while the oscillator energy Eo, reduced after irradiation. The absorption coefficient was found to increase with the increase of the doses of γ-radiation. Furthermore, the obtained optical energy gap of nanocrystalline ZnSe1-xTex films was found to decrease with increasing the doses of the γ-radiation which is attributed to the increase of the telluride (Te) atoms or defects after irradiation. This is confirmed by the decrease in the Urbach energy Ee after radiation. The γ-irradiation stimulated increase in the absorption coefficient and change in the optical parameters, which can be utilized for industrial dosimetric and detector purposes.

  12. Improving Efficiency of Evaporated Cu2ZnSnS4 Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact

    Directory of Open Access Journals (Sweden)

    Hongtao Cui

    2015-01-01

    Full Text Available A 20 nm Ag coating on Mo back contact was adopted to improve the back contact of evaporated Cu2ZnSnS4 (CZTS solar cells. The Ag layer helped reduce the thickness of MoS2 which improves fill factor (FF significantly; additionally, it reduced secondary phases ZnS and SnS2−x, which may help carrier transport; it was also involved in the doping of the absorber layer, which compensated the intrinsic p-type doping and therefore drags down the doping level. The doping involvement may enlarge the depletion region and improve lifetime of the absorber, which led to enhancing open circuit voltage (VOC, short circuit current density (JSC, and efficiency significantly. However, it degrades the crystallinity of the material slightly.

  13. Characterisation by X-ray diffraction, electron microscopy and X-ray fluorescence of thin films obtained from evaporation of SmS. Crystallographic structures after annealing with electron beam

    International Nuclear Information System (INIS)

    Thin films are obtained from divalent SmS evaporation under a vacuum of 10-6 torr. The layers with a thickness of less than 1500 A are always amorphous. Those with a thickness of more than 2000 A present some properties varying according to the substrate temperature. The samples deposited at 85 K and slowly heated up to 293 K are black-grey and cristallized (f.c.c. structure, a = 5.91 A) which may be characteristic of the 2 + valence state for Sm. At 293 K, samples are yellow and poorly cristallized (f.c.c. structure, a = 5.58 A) which may be characteristic of the 3 + valence state for Sm. Crystallographic results are obtained by X-ray diffraction and electron diffraction. Analysis have been made by the X-ray fluorescence method. The electron beam permits to anneal the films and the following compounds appear: Sm2O2S, C and B-Sm2O3. At high temperature there is formation of new structures with large lattice parameters probably belonging to the Sm-O-S ternary system as X-ray fluorescence analysis shows it

  14. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  15. Localized Rayleigh Instability in Evaporation Fronts

    OpenAIRE

    Diamant, Haim; Agam, Oded

    2009-01-01

    A qualitatively different manifestation of the Rayleigh instability is demonstrated, where, instead of the usual extended undulations and breakup of the liquid into many droplets, the instability is localized, leading to an isolated narrowing of the liquid filament. The localized instability, caused by a nonuniform curvature of the liquid domain, plays a key role in the evaporation of thin liquid films off solid surfaces.

  16. Novel oxide buffer approach for GaN integration on Si(111) platform through Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Tarnawska, Lidia

    2012-12-19

    topography of the films is characterized by scanning electron microscopy and chemical inter-diffusion is investigated by energy-dispersive X-ray spectroscopy. The nucleation processes of the GaN on Sc{sub 2}O{sub 3} buffer are followed in-situ by reflection high energy electron diffraction and the interface chemistry is analyzed by means of X-ray photoelectron spectroscopy. Results: It is found, that the Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer approach provides a template of high structural quality for GaN overgrowth. The bi-layer buffer plays a lattice match mediator role between GaN and Si and acts as a barrier against impurity diffusion. GaN grown on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) templates is single crystalline with a wurtzite structure and (0001) oriented. Due to the -8% lattice mismatch between GaN and Sc{sub 2}O{sub 3}, GaN growth proceeds by the nucleation of 3D islands. The size of the islands, coalescence time and the relaxation process depend on the GaN growth conditions and have a strong influence on the topography of closed layers, crystalline quality (defect density) as well as optical properties. The best GaN material parameters are obtained for the layers grown in Ga-rich regime when the Ga/N ratio is slightly higher than unity. The main three defects found in the um-thick GaN layers are (a) threading dislocation, with density in the order of 10{sup 10} cm{sup -2}, (b) stacking faults, resulting in cubic inclusions in the hexagonal matrix and (c) inversion domain boundaries causing Ga-polar regions in the mainly N-polar film. A theoretical GaN/Sc{sub 2}O{sub 3} interface model is discussed to explain these experimental findings. Despite the relatively large number of structural defects, photoluminescence shows sharp and strong donor-bound exciton transition and very low intensity yellow emission, which indicate that GaN layers grown on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) are promising for future optoelectronic applications. Outlook

  17. Improvements of evaporation drag model

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; XU Ji-Jun

    2004-01-01

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.

  18. 采用薄膜蒸发器从聚氨酯预聚物中分离TDI%Separating TDI From Polyurethane Prepolymer With Thin-Film Evaporator

    Institute of Scientific and Technical Information of China (English)

    胡孝勇; 张欣雅; 沈惠芳; 曲金青; 陈焕琴

    2004-01-01

    There were many ways to eliminate free diisocyanate from polyurethane prepolymer. The best way was to adopt thin - film evaporator to separate it. Separating free TDI from TDI - TMP polyurethane prepolymer was studied in the inner condensation wiped thin - film evaporator. The technique of distilling twice was adopted to separate toluene diisocyanate (TDI). Main factors, which had an effect on separating TDI, were studied. In this study, the content of TDI reduced to less than 0.5% through adjusting the temperature and the vacuum on the MD - S80 inner condensation of the first feed - in was 100 ℃, the temperature of the second feed - in was 110 ℃, the temperature of the first distillation was 150 ℃, the temperature of the second distillation was 200 ℃, the absolute pressure of the first distillation was 5 000 Pa, the absolute pressure of the second distillation pressure was 35 Pa, and the rotating speed of the scraping plank etate. The concentration of TDI in the prepolymer was 0.40%, and the content of NCO was more than 12.7%. The goal of separating TDI from TDI - TMP polyurethane prepolymer was attained. It is feasible to separate TDI from TDI - TMP polyurethane prepolymer with the inner condensation wiped thin- film evaporator through distilling twice.%从聚氨酯预聚体分离游离的二异氰酸酯的方法有许多种,最好的方法是使用薄膜蒸发器进行分离.采用内冷凝式薄膜蒸发器和二次蒸馏技术研究了从甲苯二异氰酸酯(TDI)/三羟甲基丙烷(TMP)型聚氨酯预聚体分离游离TDI的方法及影响TDI分离的主要因素.研究工作通过使用MD-S80内冷式薄膜蒸发器,并调整蒸馏温度和真空度使产物中游离TDI低于0.5%.相应的蒸馏参数是:原料流速1.0 kg/h,原料Ⅰ温度100℃,原料Ⅱ温度110℃,一次蒸馏温度150℃,二次蒸馏温度200℃,第一次蒸馏余压5 000 Pa,二次蒸馏余压35 Pa;刮板转动速度150 r/min.二次蒸馏后用醋酸丁

  19. Novel oxide buffer approach for GaN integration on Si(111) platform through Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Tarnawska, Lidia

    2012-12-19

    topography of the films is characterized by scanning electron microscopy and chemical inter-diffusion is investigated by energy-dispersive X-ray spectroscopy. The nucleation processes of the GaN on Sc{sub 2}O{sub 3} buffer are followed in-situ by reflection high energy electron diffraction and the interface chemistry is analyzed by means of X-ray photoelectron spectroscopy. Results: It is found, that the Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer approach provides a template of high structural quality for GaN overgrowth. The bi-layer buffer plays a lattice match mediator role between GaN and Si and acts as a barrier against impurity diffusion. GaN grown on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) templates is single crystalline with a wurtzite structure and (0001) oriented. Due to the -8% lattice mismatch between GaN and Sc{sub 2}O{sub 3}, GaN growth proceeds by the nucleation of 3D islands. The size of the islands, coalescence time and the relaxation process depend on the GaN growth conditions and have a strong influence on the topography of closed layers, crystalline quality (defect density) as well as optical properties. The best GaN material parameters are obtained for the layers grown in Ga-rich regime when the Ga/N ratio is slightly higher than unity. The main three defects found in the um-thick GaN layers are (a) threading dislocation, with density in the order of 10{sup 10} cm{sup -2}, (b) stacking faults, resulting in cubic inclusions in the hexagonal matrix and (c) inversion domain boundaries causing Ga-polar regions in the mainly N-polar film. A theoretical GaN/Sc{sub 2}O{sub 3} interface model is discussed to explain these experimental findings. Despite the relatively large number of structural defects, photoluminescence shows sharp and strong donor-bound exciton transition and very low intensity yellow emission, which indicate that GaN layers grown on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) are promising for future optoelectronic applications. Outlook

  20. Properties Of Electrochromic Nickel Oxide Coatings Produced By Reactive Evaporation

    Science.gov (United States)

    Bange, Klaus; Baucke, Friedrich G.; Metz, Bernard

    1989-03-01

    Single films of nickel oxide deposited by reactive evaporation and all-solid-state devices (ASSDs) containing such films have been investigated. The as-deposited nickel oxide films were analysed by standard surface and thin film-sensitive methods (AES, ESCA, RBS, NRA), and the findings were correlated with deposition parameters. The electrochromism of single layers was characterized by cyclic voltammetry and photospectrometry and compared with optical and electrical data of electrochromic all-solid-state devices.

  1. Properties of electrochromic nickel oxide coatings produced by reactive evaporation

    International Nuclear Information System (INIS)

    Single films of nickel oxide deposited by reactive evaporation and all-solid-state devices (ASSDs) containing such films have been investigated. The as-deposited nickel oxide films were analysed by standard surface and thin film-sensitive methods (AES, ESCA, RBS, NRA), and the findings were correlated with deposition parameters. The electrochromism of single layers was characterized by cyclic voltammetry and photospectrometry and compared with optical and electrical data of electrochromic all-solid-state devices

  2. Performance potential of low-defect density silicon thin-film solar cells obtained by electron beam evaporation and laser crystallisation

    Directory of Open Access Journals (Sweden)

    Kim K. H.

    2013-01-01

    Full Text Available A few microns thick silicon films on glass coated with a dielectric intermediate layer can be crystallised by a single pass of a line-focused diode laser beam. Under favorable process conditions relatively large linear grains with low defect density are formed. Most grain boundaries are defect-free low-energy twin-boundaries. Boron-doped laser crystallised films are processed into solar cells by diffusing an emitter from a phosphorous spin-on-dopant source, measuring up to 539 mV open-circuit voltage prior to metallisation. After applying a point-contact metallisation the best cell achieves 7.8% energy conversion efficiency, open-circuit voltage of 526 mV and short-circuit current of 26 mA/cm2. The efficiency is significantly limited by a low fill-factor of 56% due to the simplified metallisation approach. The internal quantum efficiency of laser crystallised cells is consistent with low front surface recombination. By improving cell metallisation and enhancing light-trapping the efficiencies of above 13% can be achieved.

  3. 润滑油对水平强化管降膜蒸发传热特性的影响%Effect of Lubricating Oil on Heat Transfer Performance of Falling Film Evaporation on Horizontal Enhanced Tube

    Institute of Scientific and Technical Information of China (English)

    李敏霞; 蔡文生; 孙晗; 党超镔; 吕佳桐

    2015-01-01

    实际制冷系统中的制冷剂含有压缩机的润滑油.本文研究了制冷剂中润滑油不同含油率时水平管降膜式蒸发传热特性.工质为R134a,含油率分别为0.5%、1.2%、5.1%,蒸发温度为6,℃,热流密度范围为30~65,kW/m2,工质喷淋密度分别为0.13,kg/(s·m),0.17,kg/(s·m)、0.21 kg/(s·m),测试段采用表面强化的铜管.实验结果表明:含油率从0.5%增大到5.1%,管外传热性能逐渐提高,当喷淋密度增加,管外换热系数也会提高,但随着含油率的增加,换热系数的增加幅度不大;一定含量的润滑油能增大R134a水平管降膜蒸发的换热系数.%In engineering practice,refrigerant contains lubricating oil form compressor in the refrigerating system. In this study,the impact of different oil contents on evaporation of falling film on horizontal enhanced tube was dis-cussed. Experiments were conducted for R134a at the saturation temperature of 6,℃ on enhanced copper tube,with oil contents being 0.5%,1.2% and 5.1%,respectively,and heat fluxes ranging from 30,kW/m2 to 65,kW/m2, sprinkle densities being 0.13,0.17,and 0.21,kg/(s·m). The experimental results show that heat transfer coefficient of the outside horizontal enhanced tube increases with both oil contents growing from 0.5% to 5.1% and increasing sprinkle densities. However,with the augments of oil contents,the increases of heat transfer coefficient are nearly insensitive to the increasing sprinkle densities. In certain range of content,lubricating oil can improve heat transfer coefficient of R134a falling film evaporation.

  4. Dynamics of a Complete Wetting Liquid Under Evaporation

    Science.gov (United States)

    Pham, C.-T.; Lequeux, F.; Limat, L.

    We describe a simple model of a contact line under purely diffusive evaporation and complete wetting condition taking into account the divergent nature of evaporative flux near the contact line as proposed by Deegan et al. [Nature 389:827, 1997] by using electrostatic analogy. We show the existence of a precursor film at the edge of the liquid and generalize Tanner's law accounting for evaporative effects. We apply this model to the problem of evaporation of a liquid droplet and partly recover the dynamics of spreading and retraction found in experiments [Poulard et al., Langmuir 21:8226-8233, 2005].

  5. Numerical study on flow,heat and mass transfer characteristics of horizontal-tube falling-film evaporators%降膜蒸发器传热传质与流动过程数值模拟

    Institute of Scientific and Technical Information of China (English)

    杨新飞; 郭延柱; 任丽; 王海蕊; 于朋玲

    2016-01-01

    A mathematical model with phase transition was set up based on the principles of fluid dynamics and VOF multiphase flow model. The falling film evaporation procedure code was embedded in FLUENT through the user define functions( UDF). The principles in the circumferential direction of wall film thickness,velocity,temperature,mass transfer rate and local heat transfer coefficient was analyzed. Results show that the thickness of falling film was rather thin when the X was about 0. 5~0. 8,and this is good for the process of the heat transfer. The bottom and the top of the tube have the large value of local heat transfer coefficient,and the biggest value occurs at the top of the tube. In the circumferential direction,the surplus temperature increases with the distance grows,causing the biggest surplus temperature and evaporation rate at the bottom of the tube. The numerical result is in good agreement with the experimental and predicted data in literature,which means that the mathematical model with heat and mass transfer is reasonable and more comprehensive,and can be used in studying the flow,heat and mass transfer characteristics of falling water film outside horizontal tubes.%随着计算机技术的发展,计算流体力学成为深入研究流动传热传质过程的重要方法.文章基于流体动力学基本原理和VOF多相流模型,建立了水平管外降膜流动与相变传热传质过程数学模型,针对降膜蒸发复杂的相变过程,通过用户自定义函数UDF,将编制的计算程序嵌入FLUENT软件相应模块,对降膜蒸发过程进行了模拟研究,阐明了管外液膜、速度、温度分布及其局部传热传质特性沿圆周方向的变化规律.结果表明:在X=0.5~0.8时,液膜厚度较薄,有利于过程传热,圆管底部与顶部局部传热系数较大,并在管顶部出现传热系数最大值;相界面过余温度沿周向距离的增大而增加,圆管下方具有最大的相界面换热温差和最高的蒸发速率;

  6. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather predictio

  7. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  8. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  9. Growth of CdTe thin films on graphene by close-spaced sublimation method

    International Nuclear Information System (INIS)

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes

  10. Optical quality ZnSe films on silicon for mid-IR waveguides

    OpenAIRE

    Mittal, Vinita; Wilkinson, James; Senthil Murugan, Ganapathy

    2016-01-01

    ZnSe films were deposited on silicon substrates by evaporation and RF-sputtering and compared for their structural, morphological and optical properties. The deposited films were tested as waveguide cladding and the evaporated films showed lower loss.

  11. Co-evaporation process study of Cu{sub 2}ZnSnSe{sub 4} thin films by in situ light scattering and in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hartnauer, Stefan; Waegele, Leonard A.; Kaune, Gunar; Scheer, Roland [Photovoltaics Group, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany); Syrowatka, Frank [Martin-Luther-University Halle-Wittenberg, IZM/Nanotechnikum Weinberg, Halle (Saale) (Germany)

    2015-02-01

    Multi-stage co-evaporation processes for the growth of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films are investigated with time-resolved in situ angle-dispersive X-ray diffraction (in situ XRD). Different preparation protocols were applied and controlled by in situ laser light scattering (in situ LLS). The composition of the deposited layers was adjusted by making use of a stoichiometric transitions in the LLS signal at the point where the Cu content equals the [Zn + Sn]. The ability of in situ XRD to distinguish between CZTSe and ZnSe is used to develop new processes that minimize the formation of ZnSe as a secondary phase. At high temperatures, an initially grown ZnSe layer forms at the Mo interface, which may not be incorporated into the CZTSe due to Zn-rich preparation conditions. By using lower temperatures at the beginning, CZTSe growth starts directly and a heating step restores the high temperature of the substrate. Thus, the formation of secondary phases is diminished without losing the benefits of higher preparation temperature. The ZnSe growth is reduced and the formation of a continuous layer is not observed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effects of Sb Content (x) on (Bi(1-x)Sb(x))2Te3 Thermoelectric Thin Film Deposited by Effusion Cell Evaporator.

    Science.gov (United States)

    Yong, Ho; Na, Sekwon; Gang, Jun-Gu; Jeon, Seong-Jae; Hyun, Seungmin; Lee, Hoo-Jeong

    2015-10-01

    This paper investigates the effects of the Sb content (x) on (Bi(1-x)Sb(x))2Te3 thermoelectric films with x changing widely from 0 (Sb2Te3) to 1 (Bi2Te3). First, the XRD analysis discloses that with the Sb content (x) increasing, the phase changed gradually from Bi2Te3 to Sb2Te3 as Sb atoms replaced substitutionally Bi atoms. Further microstructure analysis reveals that an extensive grain growth occurred during post-annealing for the samples with high Sb contents. According to the measurement of electrical and thermoelectric properties, the polarity of the charge carrier and Seebeck coefficient switched n-type to p-type in the range of x = 0.45~0.63. For the n-type samples, the power factor is highest when x = 0.18 around 46.01 μW/K(2) whereas Sb2Te3, for the p-type samples, shows the highest value, 62.48 μW/K(2)cm.

  13. 电子束热蒸发非晶硅薄膜红外光学特性%Infrared optical properties of amorphous silicon films deposited by electron beam evaporation

    Institute of Scientific and Technical Information of China (English)

    潘永强; 黄国俊

    2011-01-01

    采用Ar+离子束辅助电子束热蒸发技术制备非晶硅(a-Si)薄膜,利用正交实验研究了薄膜红外光学常数与工艺参数之间的关系.采用椭偏仪和分光光度计分析了薄膜沉积速率、基底温度和工作真空度对非晶硅薄膜的折射率和消光系数的影响.实验结果表明:影响a-Si薄膜光学特性的主要因素是沉积速率和基底温度,工作真空度的影响最小.随着沉积速率和烘烤温度的升高,a-Si薄膜的折射率先增大后减小;工作真空度越高,薄膜的折射率越大.a-Si薄膜在波长1~5 μm之间,折射率变化范围为2.65~3.38.当沉积速率为0.6 nm/s、基底温为120℃、工作真空度是1.0×10-2Pa时,获得的a-Si薄膜的光学特性比较好,在3 μm处薄膜的折射率为2.87,消光系数仅为1.67×10-5.%The amorphous silicon (a-Si) films were prepared by electron beam evaporation and Ar+ ion beam assisted deposition. The orthogonal experimental method was used to study the relationship of infrared optical properties and the process parameters. The refractive index and extinction coefficient of films deposited with different deposition rate, substrate temperature and working pressure were studied by using ellipsometer and spectrophotometer. The experimental results show that deposition rate and substrate temperature have a strong influence on optical properties of a-Si films. With the increase of deposition rate and substrate temperature, the refractive index of a-Si film increases firstly and then decreases while increasing with the working pressure. The a-Si film refractive index changes in the range of 2.65-3.38 at the range of 1-5 μm. The a-Si films infrared optical properties can be better obtained with the process parameters: deposition rate 0.6nm/s, substrate temperature 120℃ and working pressure 1.0×l0-2Pa. The refractive index of 2.87 and extinction coefficient of 1.67 E-5 can be obtained at 3 μm.

  14. Flash evaporator systems test

    Science.gov (United States)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  15. CAPSULE REPORT: EVAPORATION PROCESS

    Science.gov (United States)

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  16. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  17. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  18. Pattern evaporation process

    Directory of Open Access Journals (Sweden)

    Z. Żółkiewicz

    2007-04-01

    Full Text Available The paper discusses the process of thermal evaporation of a foundry pattern. At several research-development centres, studies have been carried out to examine the physico-chemical phenomena that take place in foundry mould filled with polystyrene pattern when it is poured with molten metal. In the technique of evaporative patterns, the process of mould filling with molten metal (the said mould holding inside a polystyrene pattern is interrelated with the process of thermal decomposition of this pattern. The transformation of an evaporative pattern (e.g. made from foamed polystyrene from the solid into liquid and then gaseous state occurs as a result of the thermal effect that the liquid metal exerts onto this pattern. Consequently, at the liquid metal-pattern-mould phase boundary some physico-chemical phenomena take place, which until now have not been fully explained. When the pattern is evaporating, some solid and gaseous products are evolved, e.g. CO, CO2, H2, N2, and hydrocarbons, e.g. styrene, toluene, ethane, methane, benzene [16, 23]. The process of polystyrene pattern evaporation in foundry mould under the effect of molten metal is of a very complex nature and depends on many different factors, still not fully investigated. The kinetics of pattern evaporation is also affected by the technological properties of foundry mould, e.g. permeability, thermophysical properties, parameters of the gating system, temperature of pouring, properties of pattern material, and the size of pattern-liquid metal contact surface.

  19. Evaporation Analysis of Sintered Wick Microstructures

    OpenAIRE

    Bodla, K. K.; Murthy, J. Y.; Garimella, S V

    2013-01-01

    Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evaporation through sintered copper wicks is performed. X-ray microtomography is employed to generate geom...

  20. Evaporation analysis in sintered wick microstructures

    OpenAIRE

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    2013-01-01

    Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evaporation through sintered copper wicks is performed. X-ray microtomography is employed to generate geom...

  1. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the th

  2. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  3. Growth and characterization of uranium–zirconium alloy thin films for nuclear industry applications

    International Nuclear Information System (INIS)

    Polycrystalline and epitaxial U–Zr thin films have been grown on glass and single-crystal sapphire substrates using ultra-high vacuum magnetron sputtering at high temperatures (T = 800 °C). Mixed α- and γ-U phases were detected for polycrystalline U–Zr alloy thin films with the prevailing crystal structure controlled by composition. Epitaxial U–Zr thin film samples were determined to form bi-layered structures of single-crystal γ-U and α-U phases or γ-U, δ UZr2 and α-U phases depending on the concentration of the alloying element. (paper)

  4. 低碳钢/铝合金双层管的充液弯曲起皱行为%Wrinkling behavior of hydro bending of carbon steel/Al-alloy bi-layered tubes

    Institute of Scientific and Technical Information of China (English)

    滕步刚; 胡蓝; 刘钢; 苑世剑

    2012-01-01

    The bi-layered tubing components provide an alternative solution to make the best use of corrosion-resistant alloys and low-alloy steels.The numerical simulation and hydro bending experiments were carried out to analyze the wrinkling behavior of carbon steel/Al-alloy bi-layered tubes with different thickness ratios and internal pressures.Two types of instabilities,namely the bifurcation instability of inner tube and the limit load instability of outer tube are noticed and examined.It is indicated that the onsets of the wrinkling of inner and outer tube are delayed with increasing the thickness ratio.The bending capacity and the stability of bi-layered tube are remarkably improved as the thickness ratio increases.The optimized range of the thickness ratio is determined by numerical simulation.It is shown that separation between two layers occurs with a lower level of internal pressure,which causes the bifurcation instability of inner tube.However,the stability of inner tube is evidently enhanced with increasing the internal pressure,resulting in larger improvements of bending limit and moment capacity.The numerical predictions are verified by the hydro bending experiments with different internal pressures.Through the analysis,the selection of the internal pressure and outer tube thickness,and the mechanisms of increasing stabilities of the inner and outer tubes are clarified.The knowledge can be transferred to other bi-layered pipes with different materials and dimensions.%双层金属管由内层耐腐蚀合金和外层低碳钢管组成,具有优良的综合性能.通过有限元模拟和实验研究内外层不同厚度比和内部液体压力对低碳钢/铝合金双层管充液弯曲起皱行为的影响,分析双层管充液弯曲出现的两种起皱失稳形式,即分叉失稳和极值点失稳.结果表明:起皱随着厚度比的增加而延缓,双层管稳定性随着厚度比的增加而明显提高.通过有限元模拟确定了最优的厚度比选取

  5. Development of a multi-steps CVD process to produce bi-layers graphene for anode of Organic Light Emitting Diodes

    OpenAIRE

    Trinsoutrot, Pierre; Brignone, Mauro; Vergnes, Hugues; Caussat, Brigitte; Pullini, Daniele

    2014-01-01

    Graphene is one of the most interesting candidates for the next generation of transparent conductive electrodes (TCEs) for electrical devices, because of its unique electronic structure. Furthermore, the optical transparency of graphene films surpasses that of conventional TCEs such as indium tin oxide (ITO) [1]. However, graphene anode for Organic Light Emitting Diodes (OLEDs) still presents several problems owing to its low work function and high sheet resistance [1], which may be related t...

  6. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  7. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  8. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  9. Negative pressure characteristics of an evaporating meniscus at nanoscale.

    Science.gov (United States)

    Maroo, Shalabh C; Chung, Jn

    2011-01-12

    This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating films are obtained at the center of the meniscus. The liquid film in the non-evaporating and adjacent regions is found to be under high absolute negative pressures. Cavitation cannot occur in these regions as the capillary height is smaller than the critical cavitation radius. Factors which determine the critical film thickness for rupture are discussed. Thus, high negative liquid pressures can be stable at the nanoscale, and utilized to create passive pumping devices as well as significantly enhance heat transfer rates.

  10. Negative pressure characteristics of an evaporating meniscus at nanoscale

    Directory of Open Access Journals (Sweden)

    Maroo Shalabh

    2011-01-01

    Full Text Available Abstract This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating films are obtained at the center of the meniscus. The liquid film in the non-evaporating and adjacent regions is found to be under high absolute negative pressures. Cavitation cannot occur in these regions as the capillary height is smaller than the critical cavitation radius. Factors which determine the critical film thickness for rupture are discussed. Thus, high negative liquid pressures can be stable at the nanoscale, and utilized to create passive pumping devices as well as significantly enhance heat transfer rates.

  11. 降膜蒸发器旋液流态化在线自动清洗能力研究%Research on online fouling removal of spiral-flow fluidization in falling film evaporator

    Institute of Scientific and Technical Information of China (English)

    魏彪; 俞天兰; 彭德其; 张梅

    2011-01-01

    针对降膜蒸发器管内结垢问题,提出旋液流态化技术实现自动清洗。由结晶速率等效原理,将饱和溶液在加热面结晶问题等效为在冷却面结晶问题。以0.4m/s平均流速饱和硫酸钠溶液为例进行试验研究。结果表明:近壁面溶液在忽略管壁及污垢热阻的绝对过饱和度Δcsur为4.20%时,与空管连续运行0.5h总传热系数下降80%相比,管内加钢丝螺旋的总传热系数保持不变。Δcsur=5.60%时,钢丝螺旋达到最大清洗速率,超过此值总传热系数下降。Δcsur=6.46%时,加入体积分数1%的粒子,总传热系数未降反升,同未结垢时相比提高6%。降膜蒸发器旋液流态化既能在线自动清洗又可起到对流强化传热效果。其结构简单,便于工业推广。%To solve the fouling problem of falling film evaporator,a new online fouling removal technology of spiral-flow fluidization is developed.According to the equivalence principle of crystallization rate,the crystallization of supersaturated solution on heating tubes in evaporators is equivalent to that on cooling tubes of heat exchanger in experiments.Saturated sodium sulfate solution flows through the cooling tubes at the average speed of 0.4 m/s.The results show that as the absolute supersaturation near the tube surface(Δcsur) is 4.20%,the total heat transfer coefficient is not reduced under the condition of tubes with steel spiral-insert after continuous operation of 0.5h while it decreases by 80% under the condition of hollow tubes.When Δcsur is more than 5.60%,the total heat transfer coefficient will decrease.However,the total heat transfer coefficient does increase by 6% not decrease under the conditions of spiral-insert and fluidization of 1% volume fraction of particles,when Δcsur is 6.46%.The technology of spiral-flow fluidization can not only remove fouling online and automaticly,but also enhance the convection heat transfer in tube side.With its simple structure,it can

  12. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  13. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  14. Evaporation/Hadronization Correspondence

    CERN Document Server

    Allahbakhshi, Davood

    2016-01-01

    A holographic duality is proposed between black hole evaporation in the bulk and hadronization (confinement) in dual field theory. Information paradox is discussed in this duality. We also propose that the recently introduced semi black brane solution is holographically dual to a mixed plasma of quarks, gluons and hadrons in global equilibrium.

  15. 分子蒸馏、薄膜蒸发与精馏耦合技术分离肉桂油组分%Separation of components from cinnamon oil by molecular distillation, thin-film evaporation coupling distillation technology

    Institute of Scientific and Technical Information of China (English)

    吴海波; 张玉姣; 方岩雄; 杨祖金; 芮泽宝; 叶超; 禤耀明; 纪红兵

    2015-01-01

    本文采用分子蒸馏、薄膜蒸发与精馏耦合技术对肉桂油主要成分的分离进行研究.系统的温度、压力和回流比对 5 种组分的得率和纯度的影响分别进行了研究,实验结果表明这种技术成功地用于分离肉桂油.为了进一步理解分离因素相互之间对分离效果的影响,本文选择肉桂醛为模型化合物,采用中心响应面法对肉桂醛分离的影响因素进行研究.实验结果表明:温度 95℃,压力 50 Pa 时,肉桂醛的得率和纯度最高.实验验证的数值与响应面法模拟的数值一致,表明响应面法可以用于指导肉桂油的生产.%In this study, a triple-integration technology including molecular distillation, thin-film evaporation, and distillation was adopted to separate cinnamon oil. The effects of distillation temperature, pressure and reflux ratio on the yield and purity of five components were investigated. Statistical calculations showed that the technology is successful in the separation of cinnamon oil. In order to understand the effects of separation factors, cinnamaldehyde is selected as a model compound. Based on a central composite design, the statistic model shows that distillation temperature and pressure have significant effects on the separation of cinnamaldehyde. The optimal values for highest yield and purity are as follows: temperature 95℃ and pressure 50 Pa. The experimental results are in agreement with the predicted values, indicating a successful application of response surface methodology in the optimization of separation parameters for cinnamon oil.

  16. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  17. Lake Evaporation: A Model Study

    OpenAIRE

    Amayreh, Jumah

    1995-01-01

    Reliable evaporation data are an essential requirement in any water and/or energy budget studies. This includes operation and management of both urban and agricultural water resources. Evaporation from large, open water surfaces such as lakes and reservoirs may influence many agricultural and irrigation decisions. In this study evaporation from Bear Lake in the states of Idaho and Utah was measured using advanced research instruments (Bowen Ratio and Eddy Correlation). Actual over-lake evapor...

  18. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  19. Quantum Soliton Evaporation

    CERN Document Server

    Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio

    2016-01-01

    We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...

  20. Characteristics of groundwater evaporation and water-salt transport in saline soil under different opening ratios of film%覆膜开孔条件下盐渍土壤的潜水蒸发及水盐运移特性

    Institute of Scientific and Technical Information of China (English)

    史文娟; 邢旭光; 张振华; 王粉萍

    2013-01-01

      为研究地下水浅埋区不同覆膜开孔率盐碱土的潜水蒸发和水盐运动情况,在室内进行了土柱蒸发模拟试验(地下水埋深50 cm)。结果表明,与不覆膜相比,覆膜可显著降低潜水蒸发强度、减少潜水累积蒸发量,同时也有效减少了盐分在土表的积累量。蒸发结束时,开孔率分别为3.24%、9.97%和20.27%的潜水累积蒸发量与裸土相比分别减少了79.87%、74.19%和77.93%,土层深度5 cm范围内土壤电导率分别降低了36.93%、34.41%和35.16%,即覆膜开孔率的差异对盐分累积的影响小于对潜水蒸发的影响。三种处理中,9.97%开孔率的土表积盐量和潜水蒸发量均相对较大。随着蒸发历时的增加,不同处理土壤含水量剖面的变化相对较小,但潜水蒸发强度却有所降低,这与蒸发过程中盐壳形成后反过来又抑制了潜水蒸发有关。其次,覆膜阻滞不同盐离子表聚的效果不同,其中Cl-表聚作用受开孔率影响较大,而Na+和SO42-表聚作用受开孔率影响不大。%The indoor simulating experiment of evaporation was carried out in soil columns to observe the behaviors of groundwater evaporation and water-salt movement in saline soil in shallow water-table zone under different opening ra-tios of film .The results showed that film mulching could significantly inhibit the groundwater evaporation and reduce the salt accumulation on the soil surface compared with no plastic mulching .Under the condition of 3 .24% ,9 .97% and 20 .27% opening ratios ,the accumulated groundwater evaporation was reduced by 79 .87% ,74 .17% and 77 .93% re-spectively ,and the conductivity of soil solution was reduced by 33 .18% ,22 .70% ,and 25 .57% respectively ,in con-trast with the control at the end of the ten days .Therefore ,the influence of mulching to groundwater evaporation was more obvious than to salt accumulation .Among these