WorldWideScience

Sample records for bi-dust acoustic waves

  1. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  2. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  3. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  4. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  5. On the Synchronization of Acoustic Gravity Waves

    Science.gov (United States)

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  6. Propagation behavior of acoustic wave in wood

    Institute of Scientific and Technical Information of China (English)

    Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu

    2014-01-01

    We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.

  7. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  8. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  9. Swimming using surface acoustic waves.

    Directory of Open Access Journals (Sweden)

    Yannyk Bourquin

    Full Text Available Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.

  10. Swimming using surface acoustic waves.

    Science.gov (United States)

    Bourquin, Yannyk; Cooper, Jonathan M

    2013-01-01

    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel. PMID:23431358

  11. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  12. Dynamics of coupled light waves and electron-acoustic waves.

    Science.gov (United States)

    Shukla, P K; Stenflo, L; Hellberg, M

    2002-08-01

    The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron plasma is considered. The interaction is governed by a pair of equations comprising a Schrödinger-like equation for the light wave envelope and a driven (by the light pressure) electron-acoustic wave equation. The newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are pointed out.

  13. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  14. Exciton transport by surface acoustic waves

    Science.gov (United States)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  15. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  16. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  17. Topological charge pump by surface acoustic waves

    Science.gov (United States)

    Yi, Zheng; Shi-Ping, Feng; Shi-Jie, Yang

    2016-06-01

    Quantized electron pumping by the surface acoustic wave across barriers created by a sequence of split metal gates is interpreted from the viewpoint of topology. The surface acoustic wave serves as a one-dimensional periodical potential whose energy spectrum possesses the Bloch band structure. The time-dependent phase plays the role of an adiabatic parameter of the Hamiltonian which induces a geometrical phase. The pumping currents are related to the Chern numbers of the filled bands below the Fermi energy. Based on this understanding, we predict a novel effect of quantized but non-monotonous current plateaus simultaneously pumped by two homodromous surface acoustic waves. Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

  18. Broadband acoustic cloak for ultrasound waves.

    Science.gov (United States)

    Zhang, Shu; Xia, Chunguang; Fang, Nicholas

    2011-01-14

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (∼6  dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  19. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  20. Wave Phenomena in an Acoustic Resonant Chamber

    Science.gov (United States)

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  1. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    Science.gov (United States)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  2. Acoustic wave-equation-based earthquake location

    Science.gov (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  3. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  4. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  5. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  6. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  7. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  8. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  9. Acoustic-gravity waves, theory and application

    Science.gov (United States)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  10. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  11. Acoustic Remote Sensing of Rogue Waves

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  12. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  13. Holographic imaging of surface acoustic waves

    CERN Document Server

    Bruno, Francois; Royer, Daniel; Atlan, Michael

    2014-01-01

    We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.

  14. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  15. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  16. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  17. Broadband Acoustic Cloak for Ultrasound Waves

    CERN Document Server

    Zhang, Shu; Fang, Nicholas

    2010-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...

  18. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  19. Simulating acoustic waves in spotted stars

    CERN Document Server

    Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M

    2015-01-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...

  20. Acoustic clouds: standing sound waves around a black hole analogue

    CERN Document Server

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  1. Wave-Flow Interactions and Acoustic Streaming

    CERN Document Server

    Chafin, Clifford E

    2016-01-01

    The interaction of waves and flows is a challenging topic where a complete resolution has been frustrated by the essential nonlinear features in the hydrodynamic case. Even in the case of EM waves in flowing media, the results are subtle. For a simple shear flow of constant n fluid, incident radiation is shown to be reflected and refracted in an analogous manner to Snell's law. However, the beam intensities differ and the system has an asymmetry in that an internal reflection gap opens at steep incident angles nearly oriented with the shear. For EM waves these effects are generally negligible in real systems but they introduce the topic at a reduced level of complexity of the more interesting acoustic case. Acoustic streaming is suggested, both from theory and experimental data, to be associated with vorticity generation at the driver itself. Bounds on the vorticity in bulk and nonlinear effects demonstrate that the bulk sources, even with attenuation, cannot drive such a strong flow. A review of the velocity...

  2. An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization

    Science.gov (United States)

    Noguchi, Y.; Yamada, T.; Otomori, M.; Izui, K.; Nishiwaki, S.

    2015-11-01

    This letter presents an acoustic metasurface that converts longitudinal acoustic waves into transverse elastic waves in an acoustic-elastic coupled system. Metasurface configurations are obtained by a level set-based topology optimization method, and we describe the mechanism that changes the direction of the wave motion. Numerical examples of 2D problems with prescribed frequencies of incident acoustic waves are provided, and transverse elastic wave amplitudes are maximized by manipulating the propagation of the acoustic waves. Frequency analysis reveals that each of the different metasurface designs obtained for different wavelengths of incident waves provides peak response at the target frequency.

  3. Surface acoustic wave propagation in graphene film

    International Nuclear Information System (INIS)

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

  4. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  5. Simulation of dust-acoustic waves

    International Nuclear Information System (INIS)

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter Λ = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit)

  6. Simulating acoustic waves in spotted stars

    Science.gov (United States)

    Papini, Emanuele; Birch, Aaron C.; Gizon, Laurent; Hanasoge, Shravan M.

    2015-05-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the nonmagnetic effects of starspots on global modes with angular degree ℓ ≤ 2 in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow the investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for the ℓ = 2,m = 0 modes are smaller than predicted by linear theory, with avoided-crossing-like patterns forming between the m = 0 and m = 1 mode frequencies. The nonlinear behavior increases with increasing spot amplitude and/or decreasing depth. Linear theory still reproduces the correct shifts for nonaxisymmetric modes. In the nonlinear regime the mode eigenfunctions are not pure spherical harmonics, but rather a mixture of different spherical harmonics. This mode mixing, together with the frequency changes, may lead to misidentification of the modes in the observed acoustic power spectra.

  7. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  8. On extending the concept of double negativity to acoustic waves

    Institute of Scientific and Technical Information of China (English)

    CHAN C.T.; LI Jensen; FUNG K.H.

    2006-01-01

    The realization of double negative electromagnetic wave media, sometimes called left-handed materials (LHMs) or metamaterials, have drawn considerable attention in the past few years. We will examine the possibility of extending the concept to acoustic waves. We will see that acoustic metamaterials require both the effective density and bulk modulus to be simultaneously negative in the sense of an effective medium. If we can find a double negative (negative density and bulk modulus) acoustic medium, it will be an acoustic analogue of Veselago's medium in electromagnetism, and share many novel consequences such as negative refractive index and backward wave characteristics. We will give one example of such a medium.

  9. Wave envelopes method for description of nonlinear acoustic wave propagation.

    Science.gov (United States)

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  10. Visualization of Surface Acoustic Waves in Thin Liquid Films

    OpenAIRE

    Rambach, R. W.; Taiber, J.; C. M. L. Scheck; Meyer, C.; Reboud, J.; Cooper, J M; Franke, T.

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with anWe demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfl...

  11. Mechanism of an acoustic wave impact on steel during solidification

    OpenAIRE

    K. Nowacki; P. Musiał; T. Lis

    2013-01-01

    Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the qual...

  12. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    CERN Document Server

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  13. An effective absorbing boundary algorithm for acoustical wave propagator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.

  14. Ion-acoustic cnoidal waves in a quantum plasma

    CERN Document Server

    Mahmood, Shahzad

    2016-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  15. Raising Photoemission Efficiency with Surface Acoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    A. Afanasev, F. Hassani, C.E. Korman, V.G. Dudnikov, R.P. Johnson, M. Poelker, K.E.L. Surles-Law

    2012-07-01

    We are developing a novel technique that may help increase the efficiency and reduce costs of photoelectron sources used at electron accelerators. The technique is based on the use of Surface Acoustic Waves (SAW) in piezoelectric materials, such as GaAs, that are commonly used as photocathodes. Piezoelectric fields produced by the traveling SAW spatially separate electrons and holes, reducing their probability of recombination, thereby enhancing the photoemission quantum efficiency of the photocathode. Additional advantages could be increased polarization provided by the enhanced mobility of charge carriers that can be controlled by the SAW and the ionization of optically-generated excitons resulting in the creation of additional electron-hole pairs. It is expected that these novel features will reduce the cost of accelerator operation. A theoretical model for photoemission in the presence of SAW has been developed, and experimental tests of the technique are underway.

  16. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    Science.gov (United States)

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  17. Propagation of plate acoustic waves in contact with fluid medium

    Science.gov (United States)

    Ghatadi Suraji, Nagaraj

    The characteristics of acoustic waves propagating in thin piezoelectric plates in the presence of a fluid medium contacting one or both of the plate surfaces are investigated. If the velocity of plate wave in the substrate is greater than velocity of bulk wave in the fluid, then a plate acoustic wave (PAW) traveling in the substrate will radiate a bulk acoustic wave (BAW) in the fluid. It is found that, under proper conditions, efficient conversion of energy from plate acoustic waves to bulk acoustic waves and vice versa can be obtained. For example, using the fundamental anti symmetric plate wave mode (A0 mode) propagating in a lithium niobate substrate and water as the fluid, total mode conversion loss (PAW to BAW and back from BAW to PAW) of less than 3 dB has been obtained. This mode conversion principle can be used to realize miniature, high efficiency transducers for use in ultrasonic flow meters. Similar type of transducer based on conversion of energy from surface acoustic wave (SAW) to bulk acoustic wave (BAW) has been developed previously. The use of plate waves has several advantages. Since the energy of plate waves is present on both plate surfaces, the inter digital transducer (IDT) can be on the surface opposite from that which is in contact with the fluid. This protects the IDT from possible damage due to the fluid and also simplifies the job of making electrical connections to the IDT. Another advantage is that one has wider choice of substrate materials with plate waves than is the case with SAWs. Preliminary calculations indicate that the mode conversion principle can also be used to generate and detect ultrasonic waves in air. This has potential applications for realizing transducers for use in non-contact ultrasonic's. The design of an ASIC (Application Specific Integrated Circuit) chip containing an amplifier and frequency counter for use with ultrasonic transducers is also presented in this thesis.

  18. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    OpenAIRE

    Yihao Yang; Huaping Wang; Faxin Yu; Zhiwei Xu; Hongsheng Chen

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the re...

  19. Theoretical and Experimental Study on the Acoustic Wave Energy After the Nonlinear Interaction of Acoustic Waves in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦

    2015-01-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  20. Waveform inversion of acoustic waves for explosion yield estimation

    Science.gov (United States)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  1. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  2. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  3. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  4. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  5. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  6. Optical transition radiation in presence of acoustic waves

    CERN Document Server

    Mkrtchyan, A R; Saharian, A A

    2009-01-01

    Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.

  7. Acoustic Kappa-Density Fluctuation Waves in Suprathermal Kappa Function Fluids

    OpenAIRE

    Collier, Michael R.; Roberts, Aaron; Vinas, Adolfo

    2007-01-01

    We describe a new wave mode similar to the acoustic wave in which both density and velocity fluctuate. Unlike the acoustic wave in which the underlying distribution is Maxwellian, this new wave mode occurs when the underlying distribution is a suprathermal kappa function and involves fluctuations in the power law index, kappa. This wave mode always propagates faster than the acoustic wave with an equivalent effective temperature and becomes the acoustic wave in the Maxwellian limit as kappa g...

  8. Nozzleless Spray Cooling Using Surface Acoustic Waves

    Science.gov (United States)

    Ang, Kar Man; Yeo, Leslie; Friend, James; Hung, Yew Mun; Tan, Ming Kwang

    2015-11-01

    Due to its reliability and portability, surface acoustic wave (SAW) atomization is an attractive approach for the generation of monodispersed microdroplets in microfluidics devices. Here, we present a nozzleless spray cooling technique via SAW atomization with key advantage of downward scalability by simply increasing the excitation frequency. With generation of micron size droplets through surface destabilization using SAW, the clogging issues commonly encountered by spraying nozzle can be neutralized. Using deionised water, cooling is improved when the atomization rate is increased and the position of the device is optimized such that the atomized droplets can be easily seeded into the upstream of the flow circulation. Cooling is further improved with the use of nanofluids; a suspension of nanoparticles in water. By increasing nanoparticle mass concentration from 1% to 3%, cooling is enhanced due to the deposition and formation of nanoparticle clusters on heated surface and eventually increase the surface area. However, further increase the concentration to 10% reduces the cooling efficiency due to drastic increase in viscosity μ that leads to lower atomization rate which scales as ṁ ~μ - 1 / 2 .

  9. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  10. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  11. Nonlinear acoustic waves in micro-inhomogeneous solids

    CERN Document Server

    Nazarov, Veniamin

    2014-01-01

    Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m

  12. Development of Surface Acoustic Wave Electronic Nose

    Directory of Open Access Journals (Sweden)

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  13. Surface wave patterns on acoustically levitated viscous liquid alloys

    Science.gov (United States)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  14. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  15. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizian, R., E-mail: rtabrizi@umich.edu [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ayazi, F. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308 (United States)

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  16. Propagation of acoustic gravity waves excited by explosions

    International Nuclear Information System (INIS)

    Acoustic gravity waves excited by low-altitude nuclear explosions have been observed in the ionosphere, by H.F. Doppler soundings, at horizontal distances from the source between 100 and 1200 km. The characteristics of the initial shock wave, which is observed at short range, are progressively replaced by those of the atmospheric wave guide. In particular, the dispersion properties of the signal observed in the ionosphere at long range are those of the first acoustic and gravity modes. Detailed study of the propagation times to middle and long range shows that the wave guide is mainly excited by the focalisation of acoustic energy which is produced by non-linear mechanisms at an altitude of about 100 km and at a small horizontal distance from the explosion

  17. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  18. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    International Nuclear Information System (INIS)

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic

  19. Propagation of Acoustic Waves in Troposphere and Stratosphere

    CERN Document Server

    Kashyap, J M

    2016-01-01

    Acoustic waves are those waves which travel with the speed of sound through a medium. H. Lamb has derived a cutoff frequency for stratified and isothermal medium for the propagation of acoustic waves. In order to find the cutoff frequency many methods were introduced after Lamb's work. In this paper, we have chosen the method to determine cutoff frequencies for acoustic waves propagating in non-isothermal media. This turning point frequency method can be applied to various atmospheres like solar atmosphere, stellar atmosphere, earth's atmosphere etc. Here, we have analytically derived the cutoff frequency and have graphically analyzed and compared with the Lamb's cut-off frequencyfor earth's troposphere, lower and upper stratosphere.

  20. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  1. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  2. Oblique amplitude modulation of dust-acoustic plasma waves

    OpenAIRE

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on ...

  3. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    Science.gov (United States)

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  4. Dissipation of acoustic-gravity waves: an asymptotic approach.

    Science.gov (United States)

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed. PMID:25480091

  5. High coupling materials for thin film bulk acoustic wave resonators

    OpenAIRE

    Conde, Janine

    2009-01-01

    Radio frequency (RF) filters based on bulk acoustic wave resonances in piezoelectric thin films have become indispensable components in mobile communications. The currently used material, AlN, exhibits many excellent properties for this purpose. However, its bandwidth is often a limiting factor. In addition, no tuning is possible with AlN. Ferroelectrics would offer both larger coupling to achieve larger bandwidths, and tunability. However, their acoustic properties are not well known, especi...

  6. On acoustic wave generation in uniform shear flow

    Science.gov (United States)

    Gogoberidze, G.

    2016-07-01

    The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.

  7. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  8. Resonance scattering of radio waves in the acoustically disturbed ionosphere

    International Nuclear Information System (INIS)

    It is known that acoustic waves are excited in the atmosphere for a variety of reasons, including seismic oscillations of the earth's surface as a result of earthquakes, volcanic eruptions, explosions, and in the operation of other powerful sources of natural or artificial origin. When sound waves are sufficiently intense, they can create disturbances in the electron density at ionospheric heights. In this paper, we consider the properties of radio wave scattering off such disturbances created by infrasound waves, i.e., we consider Mandel'shtam-Brillouin scattering in the ionosphere. The authors discuss the possibility of a radiophysical enhancement of the effect connected with the phenomenon of resonance scattering of the radiowaves off the disturbances created in the medium by the acoustic wave

  9. A metasurface carpet cloak for electromagnetic, acoustic and water waves

    Science.gov (United States)

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  10. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    Science.gov (United States)

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-01

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429

  11. Precessional magnetization switching by a surface acoustic wave

    Science.gov (United States)

    Thevenard, L.; Camara, I. S.; Majrab, S.; Bernard, M.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.

    2016-04-01

    Precessional switching allows subnanosecond and deterministic reversal of magnetic data bits. It relies on triggering a large-angle, highly nonlinear precession of magnetic moments around a bias field. Here we demonstrate that a surface acoustic wave (SAW) propagating on a magnetostrictive semiconducting material produces an efficient torque that induces precessional switching. This is evidenced by Kerr microscopy and acoustic behavior analysis in a (Ga,Mn)(As,P) thin film. Using SAWs should therefore allow remote and wave control of individual magnetic bits at potentially GHz frequencies.

  12. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

    Directory of Open Access Journals (Sweden)

    Zhi-Kai Fu

    2015-01-01

    Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

  13. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  14. Reflection and Transmission of Acoustic Waves at Semiconductor - Liquid Interface

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2011-09-01

    Full Text Available The study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace underlying an inviscid liquid has been carried out. The reflection and transmission coefficients of reflected and transmitted waves have been obtained for quasi-longitudinal (qP wave incident at the interface from fluid to semiconductor. The numerical computations of reflection and transmission coefficients have been carried out with the help of Gauss elimination method by using MATLAB programming for silicon (Si, germanium (Ge and silicon nitride (Si3N4 semiconductors. In order to interpret and compare, the computer simulated results are plotted graphically. The study may be useful in semiconductors, seismology and surface acoustic wave (SAW devices in addition to engines of the space shuttles.

  15. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  16. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  17. Numerical modelling of nonlinear full-wave acoustic propagation

    International Nuclear Information System (INIS)

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed

  18. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  19. Acoustic nonlinearity of ultrasonic wave by crack face contacting effect

    International Nuclear Information System (INIS)

    Nonlinear acoustic effect accompanied by the propagation of ultrasonic wave has been discussed from log time before and the effort to evaluate material degradation or degree of damage by measuring this effect has been tried in recent. The mechanism for the generation of nonlinear acoustic effect was proposed by several researchers and these previous studies have identified two primary sources of the nonlinearity. One source is the anharmonicity of lattice itself. The other source is associated with the contribution of dislocation displacement. In this paper, an another new source of nonlinearity generated due to the partial contact of crack face when the ultrasonic wave passes through tiny crack is considered. At first, the mechanism of the generation of acoustic nonlinearity at the crack face by half wave model was explained and the relationship between the separation distance of crack faces and. the magnitude of nonlinearity was investigated quantitatively by fourier transform of the half wave and computer simulation. In next, the existence of the proposed new source of nonlinearity at crack face was shown experimentally in the actual case, SAM signal obtained for the Newton ring. From the result, we confirmed that the crack face contacting effect should be considered as a additive source of acoustic nonlinearity when we apply the ultrasonic nonlinearity analysis to the evaluation of material degradation.

  20. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    Science.gov (United States)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  1. Ion Acoustic Waves in the Presence of Langmuir Oscillations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    The dielectric function for long-wavelength, low-frequency ion acoustic waves in the presence of short-wavelength, high-frequency electron oscillations is presented, where the ions are described by the collision-free Vlasov equation. The effect of the electron oscillations can be appropriately...

  2. Gasoline identifier based on SH0 plate acoustic waves.

    Science.gov (United States)

    Kuznetsova, Iren E; Zaitsev, Boris D; Seleznev, Eugenii P; Verona, Enrico

    2016-08-01

    The present paper is devoted to the development of gasoline identifier based on zero order shear-horizontal (SH0) acoustic wave propagating in piezoelectric plate. It has been found that the permittivity of gasoline is increased when its octane number rises. The development of such identifier is experimentally demonstrated to be possible. PMID:27125559

  3. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas or a...

  4. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    OpenAIRE

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  5. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  6. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  7. Synchronization of self-excited dust acoustic waves

    Science.gov (United States)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  8. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  9. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  10. Chromospheric heating by acoustic waves compared to radiative cooling

    CERN Document Server

    Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F

    2016-01-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...

  11. Seismic wave imaging in visco-acoustic media

    Institute of Scientific and Technical Information of China (English)

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  12. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  13. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  14. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  15. Superresolution through the topological shaping of sound with an acoustic vortex wave antenna

    CERN Document Server

    Guild, Matthew D; Martin, Theodore P; Rohde, Charles A; Orris, Gregory J

    2016-01-01

    In this paper, we demonstrate far-field acoustic superresolution using shaped acoustic vortices. Compared with previously proposed near-field methods of acoustic superresolution, in this work we describe how far-field superresolution can be obtained using an acoustic vortex wave antenna. This is accomplished by leveraging the recent advances in optical vortices in conjunction with the topological diversity of a leaky wave antenna design. In particular, the use of an acoustic vortex wave antenna eliminates the need for a complicated phased array consisting of multiple active elements, and enables a superresolving aperture to be achieved with a single simple acoustic source and total aperture size less than a wavelength in diameter. A theoretical formulation is presented for the design of an acoustic vortex wave antenna with arbitrary planar arrangement, and explicit expressions are developed for the radiated acoustic pressure field. This geometric versatility enables variously-shaped acoustic vortex patterns t...

  16. A Statistical Study of Mid-latitude Thunderstorm Characteristics associated with Acoustic and Gravity Waves

    Science.gov (United States)

    Lay, E. H.; Shao, X. M.; Kendrick, A.

    2014-12-01

    Gravity waves with periods greater than 5 minutes and acoustic waves with periods between 3 and 5 minutes have been detected at ionospheric heights (250-350 km) and associated with severe thunderstorms. Modeling results support these findings, indicating that acoustic waves should be able to reach 250-350 km within ~250 km horizontally of the source, and gravity waves should be able to propagate significantly further. However, the mechanism by which the acoustic waves are generated and the ubiquity of occurrence of both types of wave is unknown. We use GPS total electron content measurements to detect gravity and acoustic waves in the ionosphere. We perform a statistical study from 2005 May - July to compare the occurrence rate and horizontal extent of the waves to storm size and convective height from NEXRAD radar measurements. It is found that both gravity waves and acoustic wave horizontal extent is primarily associated with storm size and not convective height.

  17. A device for locating acoustic wave emitting sources

    International Nuclear Information System (INIS)

    The invention relates to a device for locating acoustic wave emitting sources. A two dimensional sensor network, with diamond-shaped (or the like) meshes, is placed on the surface of a structure in which acoustic wave emitting sources are to be located. The sensors are arranged according to two groups, each of which is connected to a clock and a counter. Every signal fed into a mesh of the network inhibits all the other sensors not belonging to said mesh; the location of the source within the diamond-shaped mesh is achieved by triangulation. This can be applied to the detection of flaws in metal structures, e.g. in nuclear reactor vessels

  18. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    Science.gov (United States)

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  19. HF Doppler observations of acoustic waves excited by the earthquake

    Science.gov (United States)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  20. Electron acoustic solitary waves with kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S; Singh, S V; Lakhina, G S, E-mail: satyavir@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai (India)

    2011-08-01

    Electron acoustic solitary waves are studied in a three-component, unmagnetized plasma composed of hot electrons, fluid cold electrons and ions having finite temperatures. Hot electrons are assumed to have kappa distribution. The Sagdeev pseudo-potential technique is used to study the arbitrary amplitude electron-acoustic solitary waves. It is found that inclusion of cold electron temperature shrinks the existence regime of the solitons, and soliton electric field amplitude decreases with an increase in cold electron temperature. A decrease in spectral index, {kappa}, i.e. an increase in the superthermal component of hot electrons, leads to a decrease in soliton electric field amplitude as well as the soliton velocity range. The soliton solutions do not exist beyond T{sub c}/T{sub h}>0.13 for {kappa}=3.0 and Mach number M=0.9 for the dayside auroral region parameters.

  1. Impact of Acoustic Standing Waves on Structural Responses

    Science.gov (United States)

    Kolaini, Ali R.

    2014-01-01

    For several decades large reverberant chambers and most recently direct field acoustic testing have been used in the aerospace industry to test larger structures with low surface densities such as solar arrays and reflectors to qualify them and to detect faults in the design and fabrication. It has been reported that in reverberant chamber and direct acoustic testing, standing acoustic modes may strongly couple with the fundamental structural modes of the test hardware (Reference 1). In this paper results from a recent reverberant chamber acoustic test of a composite reflector are discussed. These results provide further convincing evidence of the acoustic standing wave and structural modes coupling phenomenon. The purpose of this paper is to alert test organizations to this phenomenon so that they can account for the potential increase in structural responses and ensure that flight hardware undergoes safe testing. An understanding of the coupling phenomenon may also help minimize the over and/or under testing that could pose un-anticipated structural and flight qualification issues.

  2. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  3. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa; Kulikov, Stanislav; Osorio, Ivan; Raptis, Apostolos C.

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  4. Surface acoustic wave applications of lithium niobate thin films

    International Nuclear Information System (INIS)

    A technique combining metalorganic decomposition and rf sputtering is used to grow lithium niobate (LiNbO3) thin films on diamond/silicon substrates, and surface acoustic wave (SAW) filters are fabricated by depositing interdigital transducers onto the multilayer LiNbO3/diamond/silicon structures. Microwave characterization is achieved by using a network analyzer. Evidence is found for SAW propagation in these structures. These experimental findings agree with theoretical predictions

  5. Electron-acoustic plasma waves: oblique modulation and envelope solitons

    OpenAIRE

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot electrons and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been considered. The stability analysis, based on a nonlinear Schroedinger equation (NLSE), reveals that the EAW may become unstable; the stability criteria depend on the angle $\\theta$...

  6. Extremely Low-Loss Acoustic Phonons in a Quartz Bulk Acoustic Wave Resonator

    CERN Document Server

    Goryachev, Maxim; Ivanov, Eugene N; Galliou, Serge; Bourquin, Roger; Tobar, Michael E

    2012-01-01

    Low-loss, high frequency acoustic resonators cooled to millikelvin temperatures are a topic of great interest for application to hybrid quantum systems. When cooled to 20 mK, we show that resonant acoustic phonon modes in a Bulk Acoustic Wave (BAW) quartz resonator demonstrate exceptionally low loss (with $Q$-factors of order billions) at frequencies of 15.6 and 65.4 MHz, with a maximum $f.Q$ product of 7.8$\\times10^{16}$ Hz. Given this result, we show that the $Q$-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained. Such resonators possess the low losses crucial for electromagnetic cooling to the phonon ground state, and the possibility of long coherence and interaction times of a few seconds, allowing multiple quantum gate operations.

  7. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  8. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  9. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  10. VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS

    Institute of Scientific and Technical Information of China (English)

    冯文杰; 邹振祝

    2003-01-01

    A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.

  11. Ion acoustic shock wave in collisional equal mass plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  12. Ion acoustic shock wave in collisional equal mass plasma

    International Nuclear Information System (INIS)

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments

  13. Dual mode acoustic wave sensor for precise pressure reading

    Science.gov (United States)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  14. Acoustic Wave Stimulated Enhanced Oil Recovery

    Science.gov (United States)

    Reichmann, Sven; Giese, Rüdiger; Amro, Mohammed

    2013-04-01

    High demand and the finite oil deposits will be a problem in the future. To temper the impact of a shortage in crude oil, a lot of research in the field of enhanced oil recovery (EOR) is worldwide ongoing. Using seismic waves to stimulate recovery of oil is known as seismic-EOR. The development of a stimulation procedure using seismic sources and the evaluation of the obtained data in a real oil field is the aim of the project WAVE.O.R. The project is funded by the German scientific society for oil, gas and coal (DGMK). The Technical University of Freiberg (TUBAF) and the German Research Center for Geosciences (GFZ) in Potsdam developed a flooding cell connected with magnetostrictive actuators as sources for seismic energy. This device is eligible to survey the impact of different seismic stimulation parameter like frequency, alignment, amplitude and rock characteristics on oil recovery. The obtained laboratory data of flooding experiments using seismic waves were analyzed for key features like water breakthrough point, oil recovery and oil fraction. New approach has been developed, which consists of the connection of a principal component analysis with a clustering algorithm. This new technique allows us a better understanding and thus prediction of the recovery behavior of oil bearing sediments. The experiments show promising possibilities to enhance oil recovery with seismic stimulation. Especially the combination of different frequencies between 100 Hz and 4000 Hz had a positive impact on oil recovery. The responsible mechanisms were identified and discussed. Data obtained with the laboratory device will be applied in a field test using a borehole device developed by the GFZ in the project "Seismic Prediction While Drilling" (SPWD). For this purpose experiments are conducted to obtain the radiation pattern of the seismic sources used by the SPWD device in a borehole. In addition, the development of a control setup for the 1-D actuator array is an aim of the

  15. Guided wave opto-acoustic device

    Energy Technology Data Exchange (ETDEWEB)

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  16. Acoustic tests of Lorentz symmetry using Bulk Acoustic Wave quartz oscillators

    CERN Document Server

    Goryachev, M; Haslinger, Ph; Mizrachi, E; Anderegg, L; Müller, H; Hohensee, M; Tobar, M E

    2016-01-01

    A new method of probing Lorentz invariance in the neutron sector is described. The method is baed on stable quartz bulk acoustic wave oscillators compared on a rotating table. Due to Lorentz-invariance violation, the resonance frequencies of acoustic wave resonators depend on the direction in space via a corresponding dependence of masses of the constituent elements of solids. This dependence is measured via observation of oscillator phase noise built around such devices. The first such experiment now shows sensitivity to violation down to the limit $\\tilde{c}^n_Q=(-1.8\\pm2.2)\\times 10^{-14}$ GeV. Methods to improve the sensitivity are described together with some other applications of the technology in tests of fundamental physics.

  17. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  18. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    International Nuclear Information System (INIS)

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches

  19. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J

    2008-08-14

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.

  20. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  1. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  2. Overstability of acoustic waves in strongly magnetized anisotropic MHD shear flows

    CERN Document Server

    Uchava, E S; Tevzadze, A G; Poedts, S

    2014-01-01

    We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that takes into account not only the effect of pressure anisotropy, but also the effect of anisotropic heat fluxes. In this model the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also impor...

  3. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    Science.gov (United States)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  4. Synchronization of the dust acoustic wave under microgravity

    Science.gov (United States)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  5. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    Science.gov (United States)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  6. Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-09-01

    Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  7. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    Science.gov (United States)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  8. Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu

    2010-01-01

    Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.

  9. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  10. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial

    Science.gov (United States)

    Li, Bing; Tan, K. T.

    2016-08-01

    Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.

  11. THE INFLUENCE OF WAVE PATTERNS AND FREQUENCY ON THERMO-ACOUSTIC COOLING EFFECT

    Directory of Open Access Journals (Sweden)

    CHEN BAIMAN

    2011-06-01

    Full Text Available With the increasing environmental challenges, the search for an environmentally benign cooling technology that has simple and robust architecture continues. Thermo-acoustic refrigeration seems to be a promising candidate to fulfil these requirements. In this study, a simple thermo-acoustic refrigeration system was fabricated and tested. The thermo-acoustic refrigerator consists of acoustic driver (loudspeaker, resonator, stack, vacuum system and testing system. The effect of wave patterns and frequency on thermo-acoustic cooling effect was studied. It was found that a square wave pattern would yield superior cooling effects compared to other wave patterns tested.

  12. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    CERN Document Server

    Jukna, Vytautas; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-01-01

    Acoustic signals generated by filamentation of ultrashort TW laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  13. Theoretical study of the anisotropic diffraction of light waves by acoustic waves in lithium niobate crystals.

    Science.gov (United States)

    Rouvaen, J M; Waxin, G; Gazalet, M G; Bridoux, E

    1990-03-20

    The anisotropic diffraction of light by high frequency longitudinal ultrasonic waves in the tangential phase matching configuration may present some definite advantages over the same interaction using transverse acoustic waves. A systematic search for favorable crystal cuts in lithium niobate was worked out. The main results of this study are reported here; they enable the choice of the best configuration for a given operating center frequency.

  14. Visualization of Surface Acoustic Waves in Thin Liquid Films.

    Science.gov (United States)

    Rambach, R W; Taiber, J; Scheck, C M L; Meyer, C; Reboud, J; Cooper, J M; Franke, T

    2016-01-01

    We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect. PMID:26917490

  15. Focusing of Surface Acoustic Wave on a Piezoelectric Crystal

    Institute of Scientific and Technical Information of China (English)

    QIAO Dong-Hai; WANG Cheng-Hao; WANG Zuo-Qing

    2006-01-01

    @@ We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitation on the crystal we developed previously is used to evaluate the convergent SAW field instead of the prevalent scalar angular spectrum used in optics. The theoretical results show that the anisotropy of a medium has great impact on the focusing properties of the acoustic beams, such as focal length and symmetrical distributions near the focus. A dark field method is used in experiment to observe the focusing of the SAW field optically. Although the convergent phenomena of SAW field on the anisotropic media or piezoelectric crystals are very complicated,the experimental data are in agreement with those from the rigorous theory.

  16. Modulational instability of ion-acoustic waves in a warm plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 段文山; 郎和

    2002-01-01

    Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.

  17. Molding acoustic, electromagnetic and water waves with a single cloak

    KAUST Repository

    Xu, Jun

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.

  18. Molding acoustic, electromagnetic and water waves with a single cloak.

    Science.gov (United States)

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  19. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  20. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic...

  1. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  2. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA...

  3. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard;

    of engineering fields such as mechanism design, fluid problems and photonic and phononic band-gap materials and structures [1,2]. In this project topology optimization is first applied to control acoustic properties in a room [3]. It is shown how the squared sound pressure amplitude in a certain part of a room......The work of this PhD-project is concerned with the method of topology optimization1, which has been developed and used since the late eighties to optimize the material distribution of structures in order to minimize static compliance. Since then it has successfully been applied to a range......, Machines and Materials, Status and Perspectives, Series: Solid Mechanics and Its Applications , Vol. 137, M.P. Bendsoe, N. Olhoff and O. Sigmund (Eds.), Springer (2006). ISBN: 1-4020-4729-0. [4] K.-Y. Hashimoto, ``Surface acoustic wave devices in telecommunications modeling and simulation'', Springer...

  4. Group and energy velocities of acoustic surface waves in piezoelectrics

    Science.gov (United States)

    Chen, Yu

    1996-07-01

    This paper offers a simple proof of the equivalence of the energy velocity and the group velocity for acoustic waves on the flat surface of a piezoelectric half space in the usual quasistatic approximation. The interface conditions of free stresses and the open circuited electric condition are considered. Both the energy velocity and the group velocity are expressed in terms of a Lagrangian density. The energy velocity is obtained by the definition and the group velocity is derived by implicit differentiation from a dispersion equation in an implicit form.

  5. Scattering of acoustic waves by a magnetic cylinder

    CERN Document Server

    Gizon, L; Birch, A C

    2008-01-01

    With the aim of studying magnetic effects in time-distance helioseismology, we use the first-order Born approximation to compute the scattering of acoustic plane waves by a magnetic cylinder embedded in a uniform medium. We show, by comparison with the exact solution, that the travel-time shifts computed in the Born approximation are everywhere valid to first order in the ratio of the magnetic to the gas pressures. We also show that, for arbitrary magnetic field strength, the Born approximation is not valid in the limit where the radius of the magnetic cylinder tends to zero.

  6. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  7. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2015-09-01

    Full Text Available It is introduced that the mass sensitivity (Sm of an acoustic wave (AW device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.

  8. Acoustic measurements above a plate carrying Lamb waves

    CERN Document Server

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  9. Helioseismology and asteroseismology: looking for gravitational waves in acoustic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2014-10-10

    Current helioseismology observations allow the determination of the frequencies and surface velocity amplitudes of solar acoustic modes with exceptionally high precision. In some cases, the frequency accuracy is better than one part in a million. We show that there is a distinct possibility that quadrupole acoustic modes of low order could be excited by gravitational waves (GWs), if the GWs have a strain amplitude in the range 10{sup –20} h {sub –20} with h {sub –20} ∼ 1 or h {sub –20} ∼ 10{sup 3}, as predicted by several types of GW sources, such as galactic ultracompact binaries or extreme mass ratio inspirals and coalescence of black holes. If the damping rate at low order is 10{sup –3}η {sub N} μHz, with η {sub N} ∼ 10{sup –3}-1, as inferred from the theory of stellar pulsations, then GW radiation will lead to a maximum rms surface velocity amplitude of quadrupole modes of the order of h{sub −20}η{sub N}{sup −1}∼ 10{sup –9}-10{sup –3} cm s{sup –1}, on the verge of what is currently detectable via helioseismology. The frequency and sensitivity range probed by helioseismological acoustic modes overlap with, and complement, the capabilities of eLISA for the brightest resolved ultracompact galactic binaries.

  10. Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    CERN Document Server

    Goryachev, Maxim

    2014-01-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency ($10^6-10^9$~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at $20$~mK. We show that spectral strain sensitivities reaching $10^{-22}$ per $\\sqrt{\\text{Hz}}$ per mode is possible, which in principle can cover the frequency range with multiple ($>100$) modes with quality factors varying between $10^6-10^{10}$ allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  11. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  12. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  13. Matrix methods applied to acoustic waves in multilayers

    Science.gov (United States)

    Adler, Eric L.

    1990-11-01

    Matrix methods for analyzing the electroacoustic characteristics of anisotropic piezoelectric multilayers are described. The conceptual usefulness of the methods is demonstrated in a tutorial fashion by examples showing how formal statements of propagation, transduction, and boundary-value problems in complicated acoustic layered geometries such as those which occur in surface acoustic wave (SAW) devices, in multicomponent laminates, and in bulk-wave composite transducers are simplified. The formulation given reduces the electroacoustic equations to a set of first-order matrix differential equations, one for each layer, in the variables that must be continuous across interfaces. The solution to these equations is a transfer matrix that maps the variables from one layer face to the other. Interface boundary conditions for a planar multilayer are automatically satisfied by multiplying the individual transfer matrices in the appropriate order, thus reducing the problem to just having to impose boundary conditions appropriate to the remaining two surfaces. The computational advantages of the matrix method result from the fact that the problem rank is independent of the number of layers, and from the availability of personal computer software that makes interactive numerical experimentation with complex layered structures practical.

  14. Experimental and numerical studies on standing surface acoustic wave microfluidics.

    Science.gov (United States)

    Mao, Zhangming; Xie, Yuliang; Guo, Feng; Ren, Liqiang; Huang, Po-Hsun; Chen, Yuchao; Rufo, Joseph; Costanzo, Francesco; Huang, Tony Jun

    2016-02-01

    Standing surface acoustic waves (SSAW) are commonly used in microfluidics to manipulate cells and other micro/nano particles. However, except for a simple one-dimensional (1D) harmonic standing waves (HSW) model, a practical model that can predict particle behaviour in SSAW microfluidics is still lacking. Herein, we established a two-dimensional (2D) SSAW microfluidic model based on the basic theory in acoustophoresis and our previous modelling strategy to predict the acoustophoresis of microparticles in SSAW microfluidics. This 2D SSAW microfluidic model considers the effects of boundary vibrations, channel materials, and channel dimensions on the acoustic propagation; as an experimental validation, the acoustophoresis of microparticles under continuous flow through narrow channels made of PDMS and silicon was studied. The experimentally observed motion of the microparticles matched well with the numerical predictions, while the 1D HSW model failed to predict many of the experimental observations. Particularly, the 1D HSW model cannot account for particle aggregation on the sidewall in PDMS channels, which is well explained by our 2D SSAW microfluidic model. Our model can be used for device design and optimization in SSAW microfluidics. PMID:26698361

  15. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  16. PROGRESS OF ACOUSTIC WAVE TECHNIQUE AND ITS APPLICATION IN UNDERGROUND PRESSURE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    周楚良; 李新元; 张晓龙

    1994-01-01

    This paper carries out the experiment study on the correlation between full stress-strain process of rock samples and the acoustic parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastic to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustic parameters include wave amplitude, spectral amplitude, spectrum area, spectral density, wave velocity and attenuation coefficient etc.

  17. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  18. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    International Nuclear Information System (INIS)

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration

  19. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...... in the solar photosphere....

  20. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik;

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or t...

  1. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  2. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  3. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  4. A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media

    NARCIS (Netherlands)

    Stolk, C.C.

    2004-01-01

    A one-way wave equation is an evolution equation in one of the space directions that describes (approximately) a wave field. The exact wave field is approximated in a high frequency, microlocal sense. Here we derive the pseudodifferential one-way wave equation for an inhomogeneous acoustic medium us

  5. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  6. An acoustic wave equation for pure P wave in 2D TTI media

    KAUST Repository

    Zhan, Ge

    2011-01-01

    In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.

  7. Ion acoustic waves in multi-species plasmas

    International Nuclear Information System (INIS)

    This thesis is concerned with the propagation of small amplitude ion acoustic waves through plasmas consisting of electrons and two species of ions, each with a Maxwellian velocity distribution function. The dispersion relation, derived from the Vlasov and Poisson equations, can easily be solved by numerical methods. The thesis is divided into two parts: 1. Stationary ions: when the average velocities of all the species are zero, the waves propagate in two different ways depending on electron-to-ion temperature ratio Theta, heavy-to-light ion mass ratio M, and the light ion concentation f. Either the principal mode in two different ways of the pure heavy ion plasma can be traced continuously to the principal mode of the light ion plasma as the proportion of light ions is steadily increased, or it becomes unobservable due to damping, while a second wave appears and develops into the principal light ion mode. It is shown that critical values of f and Theta governing this behaviour are associated with certain saddle points in the dielectric function. 2. Ion beams: If a mixture of ions is electrostatically accelerated, the two species assume different velocities and an instability may develop. The dependence of marginal stability on Theta, M and f and accelerating voltage E is investigated numerically. The unstable mode may be linked to the principal slow mode of the light ion beam. Higher order mode behaviour is also investigated, and the angular dependence of the instability in three dimensions is discussed. In both cases, a degeneracy appears in the dispersion relation at critical values of parameters. The excitation level of the waves is then very large. This phenomenon is interpreted as a resonance between the two species supporting the wave

  8. Temporal characteristics of surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Science.gov (United States)

    Gell, J. R.; Ward, M. B.; Shields, A. J.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Ritchie, D. A.

    2007-07-01

    Short radio frequency pulses were used to study the surface-acoustic-wave-driven light emission from a molecular beam epitaxy regrown GaAs /AlGaAs lateral p-n junction. The luminescence provides a fast probe of the signals arriving at the junction allowing the authors to temporally separate the effect of the surface-acoustic-wave from pickup of the free space electromagnetic wave. Oscillations in the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  9. Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions

    Indian Academy of Sciences (India)

    Zhi-Jian Zhou; Hong-Yan Wang; Kai-Biao Zhang

    2012-01-01

    By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.

  10. Multiple scattering of a spherical acoustic wave from fluid spheres

    Science.gov (United States)

    Wu, J. H.; Liu, A. Q.; Chen, H. L.; Chen, T. N.

    2006-02-01

    The multiple scattering of a spherical acoustic wave from an arbitrary number of fluid spheres is investigated theoretically. The tool to attack the multiple scattering problem is a kind of addition formulas for the spherical wave functions, which are presented in the paper, based on the bicentric expansion form of Green function in the spherical coordinates. For an arbitrary configuration of N fluid spheres, the kind of addition formulas permits the field expansions (all referred to the center of each sphere). With these the sound fields scattered by each sphere can be described by a set of N equations. The interactions between any two fluid spheres are taken into account in these equations exactly and their coefficients are coupled through double sums in the spherical wave functions. By truncating the infinite series in the equations depending on certain calculation accuracy and solving the coefficients matrix by using the Gauss-Seidel iteration method, we can obtain the scattered sound field by the configuration of the fluid spheres. Finally, the scattering calculations by using the kind of addition formulas are carried out.

  11. A Schamel equation for ion acoustic waves in superthermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  12. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  13. Statistical analysis of acoustic wave parameters near active regions

    CERN Document Server

    Soares, M Cristina Rabello; Scherrer, Philip H

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  14. Flow induced dust acoustic shock waves in a complex plasma

    Science.gov (United States)

    Jaiswal, Surabhi; Bandyopadhyay, Pintu; Sen, Abhijit

    2015-11-01

    We report on experimental observations of particle flow induced large amplitude shock waves in a dusty plasma. These dust acoustic shocks (DAS) are observed for strongly supersonic flows and have been studied in a U-shaped Dusty Plasma Experimental (DPEx) device for charged kaolin dust in a background of Argon plasma. The strong flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of the dust density near the potential hill is used to trigger the onset of high velocity dust acoustic shocks. The dynamics of the shocks are captured by fast video pictures of the structures that are illuminated by a laser sheet beam. The physical characteristics of the shock are delineated from a parametric scan of their dynamical properties over a range of plasma parameters and flow speeds. Details of these observations and a physical explanation based on model calculations will be presented.

  15. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Science.gov (United States)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  16. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  17. Surface acoustic wave sensing of VOCs in harsh chemical environments

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, K.B.; Martin, S.J.; Ricco, A.J.

    1993-06-01

    The measurement of VOC concentrations in harsh chemical and physical environments is a formidable task. A surface acoustic wave (SAW) sensor has been designed for this purpose and its construction and testing are described in this paper. Included is a detailed description of the design elements specific to operation in 300{degree}C steam and HCl environments including temperature control, gas handling, and signal processing component descriptions. In addition, laboratory temperature stability was studied and a minimum detection limit was defined for operation in industrial environments. Finally, a description of field tests performed on steam reforming equipment at Synthetica Technologies Inc. of Richmond, CA is given including a report on destruction efficiency of CCl{sub 4} in the Synthetica moving bed evaporator. Design improvements based on the field tests are proposed.

  18. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 解文军; 魏炳波

    2003-01-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt. %Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves.Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  19. Meshless RBF based pseudospectral solution of acoustic wave equation

    CERN Document Server

    Mishra, Pankaj K

    2015-01-01

    Chebyshev pseudospectral (PS) methods are reported to provide highly accurate solution using polynomial approximation. Use of polynomial basis functions in PS algorithms limits the formulation to univariate systems constraining it to tensor product grids for multi-dimensions. Recent studies have shown that replacing the polynomial by radial basis functions in pseudospectral method (RBF-PS) has the advantage of using irregular grids for multivariate systems. A RBF-PS algorithm has been presented here for the numerical solution of inhomogeneous Helmholtz's equation using Gaussian RBF for derivative approximation. Efficacy of RBF approximated derivatives has been checked through error analysis comparison with PS method. Comparative study of PS, RBF-PS and finite difference approach for the solution of a linear boundary value problem has been performed. Finally, a typical frequency domain acoustic wave propagation problem has been solved using Dirichlet boundary condition and a point source. The algorithm present...

  20. Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas

    Directory of Open Access Journals (Sweden)

    G. S. Lakhina

    2008-11-01

    Full Text Available Large amplitude ion-acoustic and electron-acoustic waves in an unmagnetized multi-component plasma system consisting of cold background electrons and ions, a hot electron beam and a hot ion beam are studied using Sagdeev pseudo-potential technique. Three types of solitary waves, namely, slow ion-acoustic, ion-acoustic and electron-acoustic solitons are found provided the Mach numbers exceed the critical values. The slow ion-acoustic solitons have the smallest critical Mach numbers, whereas the electron-acoustic solitons have the largest critical Mach numbers. For the plasma parameters considered here, both type of ion-acoustic solitons have positive potential whereas the electron-acoustic solitons can have either positive or negative potential depending on the fractional number density of the cold electrons relative to that of the ions (or total electrons number density. For a fixed Mach number, increases in the beam speeds of either hot electrons or hot ions can lead to reduction in the amplitudes of the ion-and electron-acoustic solitons. However, the presence of hot electron and hot ion beams have no effect on the amplitudes of slow ion-acoustic modes. Possible application of this model to the electrostatic solitary waves (ESWs observed in the plasma sheet boundary layer is discussed.

  1. Theoretical Analysis of Shear Wave Interference Patterns by Means of Dynamic Acoustic Radiation Forces.

    Science.gov (United States)

    Hoyt, Kenneth

    2011-03-01

    Acoustic radiation forces associated with high intensity focused ultrasound stimulate shear wave propagation allowing shear wave speed and shear viscosity estimation of tissue structures. As wave speeds are meters per second, real time displacement tracking over an extend field-of-view using ultrasound is problematic due to very high frame rate requirements. However, two spatially separated dynamic external sources can stimulate shear wave motion leading to shear wave interference patterns. Advantages are shear waves can be imaged at lower frame rates and local interference pattern spatial properties reflect tissue's viscoelastic properties. Here a theoretical analysis of shear wave interference patterns by means of dynamic acoustic radiation forces is detailed. Using a viscoelastic Green's function analysis, tissue motion due to a pair of focused ultrasound beams and associated radiation forces are presented. Overall, this paper theoretically demonstrates shear wave interference patterns can be stimulated using dynamic acoustic radiation forces and tracked using conventional ultrasound imaging.

  2. The dust acoustic waves in three dimensional scalable complex plasma

    CERN Document Server

    Zhukhovitskii, D I

    2015-01-01

    Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...

  3. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  4. Excitation of nonlinear ion acoustic waves in CH plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...

  5. Radiative Amplification of Acoustic Waves in Hot Stars

    Science.gov (United States)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  6. Thickness measurement of Ni thin film using dispersion characteristics of a surface acoustic wave

    International Nuclear Information System (INIS)

    In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

  7. Evidence of slow magneto-acoustic waves in photospheric observations of a sunspot

    CERN Document Server

    Zharkov, S; Erdélyi, R; Thompson, M J

    2009-01-01

    We show the observational evidence for the presence of MHD waves in the solar photosphere deduced from SOHO MDI Dopplergram velocity observations. The magneto-acoustic oscillations are observed as acoustic power enhancement in the sunspot umbra at high frequency bands in the velocity component transverse to the magnetic field. We use numerical modelling of the wave propagation through localised non-uniform magnetic field concentration along with the same filtering procedure as applied to the observations to identify the observed waves. Underpinned by the results of the numerical simulations we classify the observed oscillations as slow magneto-acoustic waves excited by the trapped sub-photospheric acoustic waves. We consider the potential application of the presented method as a diagnostic tool for magnetohelioseismology.

  8. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    Science.gov (United States)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  9. Generation of surface acoustic wave by laser line array and its frequency characteristics

    International Nuclear Information System (INIS)

    Surface acoustic waves are very effective for the inspection of cracks and other defects in near-field region of the sample. Surface acoustic waves were generated by illumination of a sample surface with a Q-switched Nd:YAG laser pulse. A multiple slit and a cylindrical lens were used to generate the tone-burst like surface waves. Non contact detection of laser-generated surface acoustic waves was performed with the fiber optic Sagnac interferometer on a carbon steel specimen. Rayleigh wave velocity was obtained by the cross correlation of the signals recorded at different location, and was used to estimate the predominant frequency of the surface wave. Adjustment of the center frequency of the surface wave was performed by changing the distance between the sample and the lens, and the proper range for narrowband frequency was discussed.

  10. Surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Science.gov (United States)

    Gell, J. R.; Atkinson, P.; Bremner, S. P.; Sfigakis, F.; Kataoka, M.; Anderson, D.; Jones, G. A. C.; Barnes, C. H. W.; Ritchie, D. A.; Ward, M. B.; Norman, C. E.; Shields, A. J.

    2006-12-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular beam epitaxy regrowth of a modulation doped GaAs /AlGaAs quantum well on a patterned GaAs substrate. Surface-acoustic-wave-driven transport is demonstrated by peaks in the electrical current and light emission from the GaAs quantum well at the resonant frequency of the transducer. This type of junction offers high carrier mobility and scalability. The demonstration of surface-acoustic-wave luminescence is a significant step towards single-photon applications in quantum computation and quantum cryptography.

  11. Experiments on the acoustic solitary wave generated thermoacoustically in a looped tube

    Science.gov (United States)

    Shimizu, Dai; Sugimoto, Nobumasa

    2015-10-01

    Emergence of an acoustic solitary wave is demonstrated in a gas-filled, looped tube with an array of Helmholtz resonators connected. The solitary wave is generated thermoacoustically and spontaneously by a pair of stacks positioned diametrically on exactly the opposite side of the loop. The temperature gradient is imposed on both stacks in the same sense along the tube. The stacks made of ceramics and of many square pores are sandwiched by hot and cold heat exchangers. The pressure profile measured and the propagation speed show good agreements with the theoretical ones of the acoustic solitary wave obtained by Sugimoto (J. Acoust. Soc. Am., 99, 1971-1976 (1996)).

  12. Optical transition radiation in presence of acoustic waves for an oblique incidence

    CERN Document Server

    Mkrtchyan, A R; Saharian, A A

    2011-01-01

    Forward transition radiation is considered in an ultrasonic superlattice excited in a finite thickness plate under oblique incidence of relativistic electrons. We investigate the influence of acoustic waves on both the intensity and polarization of the radiation. In the quasi-classical approximation, formulas are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. It is shown that the acoustic waves generate new resonance peaks in the spectral and angular distributions. The heights and the location of the peaks can be controlled by choosing the parameters of the acoustic wave. The numerical examples are given for a plate of fused quartz.

  13. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  14. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons

    Science.gov (United States)

    Selim, M. M.; El-Depsy, A.; El-Shamy, E. F.

    2015-12-01

    Properties of nonlinear ion-acoustic travelling waves propagating in a three-dimensional multicomponent magnetoplasma system composed of positive ions, negative ions and superthermal electrons are considered. Using the reductive perturbation technique (RPT), the Zkharov-Kuznetsov (ZK) equation is derived. The bifurcation theory of planar dynamical systems is applied to investigate the existence of the solitary wave solutions and the periodic travelling wave solutions of the resulting ZK equation. It is found that both compressive and rarefactive nonlinear ion-acoustic travelling waves strongly depend on the external magnetic field, the unperturbed positive-to-negative ions density ratio, the direction cosine of the wave propagation vector with the Cartesian coordinates, as well as the superthermal electron parameter. The present model may be useful for describing the formation of nonlinear ion-acoustic travelling wave in certain astrophysical scenarios, such as the D and F-regions of the Earth's ionosphere.

  15. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the ex

  16. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  17. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  18. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  19. Large amplitude Langmuir and ion-acoustic waves in a relativistic two-fluid plasma

    International Nuclear Information System (INIS)

    Large amplitude Langmuir and ion-acoustic waves in a relativistic two-fluid plasma are analysed by the pseudo-potential method. The existence conditions for relativistic nonlinear Langmuir waves depend on the relativistic effect, the particular energy and the ion mass to electron mass ratio. The allowable range of the normalized potential depends on the relativistic effect. It is shown that the Mach number has the significant effect for the formation of relativistic nonlinear ion-acoustic waves rather than the ratio of the ion-acoustic velocity to the velocity of light. The allowable range of the normalized potential depends on the Mach number. The present investigation predicts new findings of relativistic nonlinear Langmuir and ion-acoustic waves in plasmas in which high-speed electrons and ions coexist. (author)

  20. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    Science.gov (United States)

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  1. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    Science.gov (United States)

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  2. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    OpenAIRE

    Ko, Seung Hwan; Lee, Daeho; Pan, Heng; Ryu, Sang-Gil; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2010-01-01

    Short pulsed laser-induced single acoustic wave generation, propagation, interaction within a water-filled internal channel are experimentally and numerically studied. A large-area, short-duration, single-plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid–solid interface and propagated at the speed of sound in water. Laser flash Schlieren photography was used to visualize the transient interaction of the plane acousti...

  3. A method of acoustic wave registration and determination their generation region

    International Nuclear Information System (INIS)

    Here is presented a method of acoustic wave registration with using of a synchronous LF broadcasting system. This method of detection and determination of underground nuclear explosion location is based on a registration of ionospheric disturbances induced by acoustic waves at the region of LF sign al reflection. The measuring complex created in the institute of the Ionosphere /1/ allows to register amplitude-frequency characteristics of composite signal from synchronous broadcasting net

  4. Prediction and near-field observation of skull-guided acoustic waves

    OpenAIRE

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoaco...

  5. Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HE Kai-Fen; M. Y. Yu

    2000-01-01

    A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.

  6. Acoustic wave propagation in fluids with coupled chemical reactions

    International Nuclear Information System (INIS)

    This investigation presents a hydroacoustic theory which accounts for sound absorption and dispersion in a multicomponent mixture of reacting fluids (assuming a set of first-order acoustic equations without diffusion) such that several coupled reactions can occur simultaneously. General results are obtained in the form of a biquadratic characteristic equation (called the Kirchhoff-Langevin equation) for the complex propagation variable chi = - (α + iω/c) in which α is the attenuation coefficient, c is the phase speed of the progressive wave and ω is the angular frequency. Computer simulations of sound absorption spectra have been made for three different chemical systems, each comprised of two-step chemical reactions using physico-chemical data available in the literature. The chemical systems studied include: (1) water-dioxane, (2) aqueous solutions of glycine and (3) cobalt polyphosphate mixtures. Explicit comparisons are made between the exact biquadratic characteristic solution and the approximate equation (sometimes referred to as a Debye equation) previously applied to interpret the experimental data for the chemical reaction contribution to the absorption versus frequency. The relative chemical reaction and classical viscothermal contributions to the sound absorption are also presented. Several discrepancies that can arise when estimating thermodynamic data (chemical reaction heats or volume changes) for multistep chemical reaction systems when making dilute solution or constant density assumptions are discussed

  7. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  8. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  9. On the wave equation with semilinear porous acoustic boundary conditions

    KAUST Repository

    Graber, Philip Jameson

    2012-05-01

    The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.

  10. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aynaou, H [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Boudouti, E H El [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Djafari-Rouhani, B [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Akjouj, A [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Velasco, V R [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2005-07-13

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  11. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-01

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis. PMID:22742654

  12. Micro mixer based on surface acoustic wave driving

    Science.gov (United States)

    Zhang, Guan; Li, Yigui; Zhang, Junfeng; Yang, Chunshen; Liu, Jingquan

    2010-08-01

    A resonance frequency of 8.9MHz copper Interdigital Transducer (IDT) is fabricated on a 127.8°YX type LiNbO3 substrate by lift-off process and the rapid droplet mixing is experimentally realized using the surface acoustic wave(SAW). The droplet mixing principle and the manufacturing process of the mixer are illustrated in detail. The droplet generates one swirl when only portion of the droplet is located on the saw propagating surface. The droplet generates two swirls when the whole of droplet is located on the saw propagating surface. The mixing between red particles with an average diameter of 1.5μm and a droplet with a volume of 3 μl is successfully implemented. No matter the droplet covers whole or just partly the saw propagating surface, the mixing process can be completed in one second when the applied driving power is 9W. The applications of SAW micro fluidics should be greatly enhanced using the rapid mixing process proposed in this paper.

  13. Following butter flavour deterioration with an acoustic wave sensor.

    Science.gov (United States)

    Gaspar, Cláudia R B S; Gomes, M Teresa S R

    2012-09-15

    Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived.

  14. Acoustic Wave Velocity as a Selection Trait in Eucalyptus nitens

    Directory of Open Access Journals (Sweden)

    David Blackburn

    2014-04-01

    Full Text Available Previous studies in Eucalyptus nitens have revealed favourable genetic correlations exist between acoustic wave velocity (AWV in standing trees and modulus of elasticity (MOE, which can determine the suitability of trees for structural timber and/or engineered wood products. This study investigates the strength and stability of genetic variation in standing tree AWV across a range of environments in Tasmania, where there are a number of large plantation estates and breeding trials. Trees under study were from open-pollinated progeny trials established in 1993. Across sites, for standing tree AWV the ranking of E. nitens races did not change and within-race additive genetic correlations were strong (0.61 to 0.99. Heritabilities (0.16 to 0.74 and coefficients of additive genetic variation (2.6 to 4.8 were moderate for this trait. Correlations between standing tree AWV and both basic density and diameter at breast height (DBH were favourable. Results indicate that there is potential to improve MOE in E. nitens through the exploitation of genetic variation in AWV among and within races, the expression of genetic variation in AWV is relatively stable across different growing environments, and past selection for basic density and growth in pulpwood breeding programs is unlikely to have adversely affected MOE.

  15. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. PMID:25937493

  16. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping.

  17. Einstein-de Broglie relations for wave packet: the acoustic world

    CERN Document Server

    Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan

    2015-01-01

    In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...

  18. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    Science.gov (United States)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  19. Droplets displacement and oscillations induced by ultrasonic surface acoustic waves: a quantitative study

    OpenAIRE

    Brunet, P.; Baudoin, M; Matar, O. Bou; Zoueshtiagh, F.

    2010-01-01

    We present an experimental study of a droplet interacting with an ultrasonic surface acoustic wave (SAW). Depending on the amplitude of the wave, the drop can either experience an internal flow with its contact-line pinned, or (at higher amplitude) move along the direction of the wave also with internal flow. Both situations appear together with oscillations of the drop free-surface. The physical origins of the internal mixing flow as well as the drop displacement and surface waves are still ...

  20. Ion-acoustic solitary waves and spectrally uniform scattering cross section enhancements

    OpenAIRE

    J. Ekeberg; Wannberg, G.; Eliasson, L; Stasiewicz, K.

    2010-01-01

    Spectra measured by incoherent scatter radars are formed predominantly by scattering of the incident signal off ion-acoustic and Langmuir waves in the ionosphere. Occasionally, the upshifted and/or downshifted lines produced by the ion-acoustic waves are enhanced well above thermal levels and referred to as naturally enhanced ion-acoustic lines. In this paper, we study another kind of enhancement, which is spectrally uniform over the whole ion-line, i.e. the up- and downshifted shoulder and t...

  1. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  2. Assessing the accuracy of auralizations computed using a hybrid geometrical-acoustics and wave-acoustics method

    Science.gov (United States)

    Summers, Jason E.; Takahashi, Kengo; Shimizu, Yasushi; Yamakawa, Takashi

    2001-05-01

    When based on geometrical acoustics, computational models used for auralization of auditorium sound fields are physically inaccurate at low frequencies. To increase accuracy while keeping computation tractable, hybrid methods using computational wave acoustics at low frequencies have been proposed and implemented in small enclosures such as simplified models of car cabins [Granier et al., J. Audio Eng. Soc. 44, 835-849 (1996)]. The present work extends such an approach to an actual 2400-m3 auditorium using the boundary-element method for frequencies below 100 Hz. The effect of including wave-acoustics at low frequencies is assessed by comparing the predictions of the hybrid model with those of the geometrical-acoustics model and comparing both with measurements. Conventional room-acoustical metrics are used together with new methods based on two-dimensional distance measures applied to time-frequency representations of impulse responses. Despite in situ measurements of boundary impedance, uncertainties in input parameters limit the accuracy of the computed results at low frequencies. However, aural perception ultimately defines the required accuracy of computational models. An algorithmic method for making such evaluations is proposed based on correlating listening-test results with distance measures between time-frequency representations derived from auditory models of the ear-brain system. Preliminary results are presented.

  3. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    Science.gov (United States)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  4. Characteristics and realization of the second generation surface acoustic wave's wavelet device

    Institute of Scientific and Technical Information of China (English)

    Wen Changbao; Zhu Changchun; Lu Wenke; Liu Qinghong; Liu Junhua

    2006-01-01

    To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW's) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW's wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW's wavelet device are remarkably improved compared with those of the FGSAW's wavelet device.

  5. Single-valued definition of the multivalued function for borehole acoustic waves in transversely isotropic formations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is useful to extract all components, including compressional, shear, and guided waves, from the full waveforms when we investigate the acoustic log data. The component waves can be simulated by calculating the contributions from poles and branch points of the borehole acoustic function according to Cauchy’s theorem. For such an algorithm to be implemented, the multivalued function for the borehole wave field in the frequency-axial-wavenumber domain has to be rendered single-valued first. Assuming that the borehole axis is parallel to the symmetry axis of transverse isotropy, this paper derives the branch points of the borehole acoustic function. We discover that the number and the locations of those branch points are determined by the relation among the formation parameters c33, c44, ε, and δ. Thus the single-valued definitions in the acoustic-wave computation are sorted into two different cases. After building the Riemann surface related to each radial wavenumber, we give the single-valued definition of the borehole acoustic function inside and on the integration contour based on the radiation condition. In a formation with δ > ε + c44/2c33, if we choose the integration contour and the single-valued definition of the acoustic function in the way used in isotropic cases, the simulation results of component waves will be wrong.

  6. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization.

    Science.gov (United States)

    Qi, Aisha; Friend, James R; Yeo, Leslie Y; Morton, David A V; McIntosh, Michelle P; Spiccia, Leone

    2009-08-01

    Pulmonary drug administration requires direct delivery of drug formulations into the lower pulmonary tract and alveoli of the lung in the form of inhaled particles or droplets, providing a distinct advantage over other methods for the treatment of respiratory diseases: the drug can be delivered directly to the site of inflammation, thus reducing the need for systemic exposure and the possibility of adverse effects. However, it is difficult to produce droplets of a drug solution within a narrow monodisperse size range (1-10 microm) needed for deposition in the lower pulmonary tract and alveoli. Here, we demonstrate the use of surface acoustic wave microfluidic atomization as an efficient means to generate appropriate aerosols containing a model drug, the short-acting beta2 agonist salbutamol, for the treatment of asthma. The mean aerosol diameter produced, 2.84+/-0.14 microm, lies well within the optimum size range, confirmed by a twin-stage impinger lung model, demonstrating that approximately 70 to 80% of the drug supplied to the atomizer is deposited within the lung. Our preliminary study explores how to control the aerosol diameter and lung delivery efficiency through the surface tension, viscosity, and input power, and also indicates which factors are irrelevant-like the fluid density. Even over a modest power range of 1-1.5 W, SAW atomization provides a viable and efficient generic nebulization platform for the delivery of drugs via the pulmonary route for the treatment of various diseases. The control offered over the aerosol size, low power requirements, high delivery efficiency, and the miniaturization of the system together suggest the proposed platform represents an attractive alternative to current nebulizers compatible with microfluidic technologies. PMID:19606295

  7. Comparison study on spherical wave superposition method and spherical wave source boundary point method for realizing nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI Chuanxing; CHEN Xinzhao; ZHOU Rong; CHEN Jian

    2005-01-01

    In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coefficients, prediction of acoustic field, error sensitivity analysis, regularization method and a searching method with dual measurement surfaces for determining the optimal number of expansion terms, is established. Subsequently, the spherical wave source boundary point method (SWSBPM) and its application in the NAH are introduced briefly. Considering the similarity of the SWSM and the SWSBPM for realizing the NAH, they are compared. The similarities and differences of the two methods are illuminated by a rigorous mathematical justification and two experiments on a single source and two coherent sources in the semi-free acoustic field. And, the superiority of the NAH based on the SWSBPM is demonstrated.

  8. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  9. Effect of Weakly Transverse Perturbations on Dust Acoustic Solitary Waves with Adiabatic Variation of Dust Charge

    Institute of Scientific and Technical Information of China (English)

    DUANWen-Shan

    2002-01-01

    By employing the reductive perturbation technique we derived a Kadomtsev-Petviashvili equation for unmagnetized dusty plasmas,It suggests that the nonlinear dust acoustic solitary waves with adiabatic variation of dust charge are stable even there are some higher order transverse perturbatoins,There are only rarefactive solitary waves for this system which has been verified analytically in this paper.

  10. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows d...

  11. Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves

    DEFF Research Database (Denmark)

    Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.;

    2009-01-01

    The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...

  12. Propagation of Ion-Acoustic Wave in an Inhomogeneous Dusty Plasma with. Dust Charge Fluctuation

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Ju; XIAO De-Long; LI Yang-Fang; MA Jin-Xiu

    2007-01-01

    @@ The propagation of dust ion-acoustic wave in an inhomogeneous dusty plasma is studied by taking the dust charge fluctuation and collisions into account. It is shown that the dust charge fluctuation brings a phase shift to the wave. Furthermore, because of the presence of dust charge fluctuation, a new damping term rises, which makes the damping more sharply.

  13. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  14. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    Science.gov (United States)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  15. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  16. Excitation of Light-Induced Acoustic Waves in Doped Lithium Niobate Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated by the low frequency acoustic waves. Its frequency increases with the rise of the intensity of incident light and its jump period of breakdown is the same as that of the photovoltaic current Ic, the change of light-induced refractive index Δn and the diffracted light intensity L. This effect was explained with the interaction of the three waves and resonant state theory. The experimental results and the theoretical analysis are in conformity.

  17. Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing

    Science.gov (United States)

    Snively, J. B.

    2013-09-01

    Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical "concentric ring" signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below.

  18. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  19. Propagation of acoustic wave in viscoelastic medium permeated with air bubbles

    Institute of Scientific and Technical Information of China (English)

    Liang Bin; Zhu Zhe-Min; Cheng Jian-Chun

    2006-01-01

    Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and (U)berall H, J. Acoust. Soc. Am., 1978; 63: 1699-1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.

  20. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  1. Subharmonics and noise excitation in transmission of acoustic wave through unconsolidated granular medium

    International Nuclear Information System (INIS)

    First laboratory-scale experimental observation of both subharmonics excitation and significant increase in noise level caused by propagation of the acoustic wave in unconsolidated granular material is reported. The bifurcation phenomenon, taking place above a critical level of acoustic excitation (and opening the subharmonics route to chaos) is attributed to the interaction of acoustic wave with distributed system of highly nonlinear inter-grain contacts. The estimates demonstrated that these are weak contacts (loaded at least two orders of magnitude weaker than in average) that might be responsible for the observed nonlinear effects. The additional intermittent contacts created by the acoustic wave (which are open in the absence of acoustic loading) can also contribute. In the clapping (tapping) regime, each of these contacts individually is similar to an impact oscillator, for which the scenario of period doubling cascade and the transition to chaotic behavior has been predicted theoretically and observed experimentally earlier. The experiments confirm that the nonlinear interactions of acoustic waves in granular assemblages are highly sensitive to the fraction of weakly loaded (and unloaded) contacts, information on which is difficult to access by any other experimental methods

  2. Wave Number Method for Three-Dimensional Steady-State Acoustic Problems

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; HE Zeng; WEI Jun-hong; PENG Wei-cai

    2007-01-01

    Based on the indirect Trefftz approach, a wave number method (WNM) is proposed to deal with three-dimensional steady-state acoustic problems. In the WNM, the dynamic pressure response variable is approximated by a set of wave functions, which exactly satisfy the Helmholtz equation. The set of wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions. The unknown coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions. Compared with the boundary element method (BEM), the WNM have a smaller system matrix, and is applicable to the radiation problems since the wave functions are independent of the domain size. A 3D acoustic cavity is exemplified to show the properties of the method. The results show that the wave number method is more efficient than the BEM, and it is fairly accurate.

  3. Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    XUE Ju-Kui

    2003-01-01

    The modulational instability of dust ion acoustic waves in a dust plasma with ion-dust collision effects is studied. Using the perturbation method, a modified nonlinear Schrodinger equation contains a damping term that comes from the effect of the ion-dust collision is derived. It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.

  4. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  5. Modulational Instability of Ion-Acoustic Waves in a Warm Plasma with a Relativistic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    XUE Ju-Kui; LANG He

    2003-01-01

    The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting ofwarm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schrodinger equationincluding one additional term that comes from the effect of relativistic electron beam is derived. It is found that theinclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could notadmit any stationary soliton waves.

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  8. Validation of an analytical compressed elastic tube model for acoustic wave propagation

    Science.gov (United States)

    Van Hirtum, A.; Blandin, R.; Pelorson, X.

    2015-12-01

    Acoustic wave propagation through a compressed elastic tube is a recurrent problem in engineering. Compression of the tube is achieved by pinching it between two parallel bars so that the pinching effort as well as the longitudinal position of pinching can be controlled. A stadium-based geometrical tube model is combined with a plane wave acoustic model in order to estimate acoustic wave propagation through the elastic tube as a function of pinching effort, pinching position, and outlet termination (flanged or unflanged). The model outcome is validated against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing an acoustic probe along the tube's centerline. Due to plane wave model assumptions and the decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz, 8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency band do not significantly vary with pinching effort, pinching position, or outlet termination. Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube geometry when modeling acoustic wave propagation through the pinched elastic tube with either flanged or unflanged termination.

  9. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    Science.gov (United States)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  10. Ultra-Broadband Acoustic Metasurface for Manipulating the Reflected Waves

    OpenAIRE

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2014-01-01

    We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simple physical model based on the phased array theory is developed for interpreting this extraordina...

  11. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    CERN Document Server

    Tadesse, Semere Ayalew

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...

  12. Low-dispersion finite difference methods for acoustic waves in a pipe

    Science.gov (United States)

    Davis, Sanford

    1991-01-01

    A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.

  13. Wavemaker theories for acoustic-gravity waves over a finite depth

    Science.gov (United States)

    Tian, Miao; Kadri, Usama

    2016-04-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor (Yamamoto, 1982; Stiassnie, 2010) and triad wave-wave interaction (Longuet-Higgins 1950; Kadri and Stiassnie 2013; Kadri and Akylas 2016), in the current study we are interested in their generation by wave-structure interaction with possible application to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory (Chwang, 1983), the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also derived for the potential amplitude of the gravity, evanescent, and acoustic-gravity waves, as well as the surface elevation, velocity distribution, and pressure for AGWs. Both theories reduce to previous results for incompressible flow when the compressibility is negligible. We also show numerical examples for AGW generated in a wave flume as well as in deep ocean. Our current study sets the theoretical background towards remote sensing by AGWs, for optimized deep ocean wave-power harnessing, among others. References Chwang, A.T. 1983 A porous-wavemaker theory. Journal of Fluid Mechanics, 132, 395- 406. Kadri, U., Stiassnie, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6. Kadri U., Akylas T.R. 2016 On resonant triad interactions of acoustic-gravity waves. J

  14. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  15. To theory of electromagnetic oscillation of acoustic waves in ferromagnetic media at high temperature

    International Nuclear Information System (INIS)

    The method for calculation of acoustic field parameters in ferromagnets, excited by electromagnetoacoustic transducers at high temperatures (in the region of Curie point) is discussed. Calculation is made by the Green function method with account of half-space depth distribution of elementary sources of elastic waves. Physical model of elementary source is presented by combination of three acoustic dipoles, the field of which is described by differential tensor of Green displacements. 17 refs., 4 figs

  16. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  17. 3D FEM-BEM coupled resolution for acoustic waves propagation in potential flow

    OpenAIRE

    BALIN, Nolwenn; SYLVAND, Guillaume; Casenave, Fabien

    2012-01-01

    International audience In order to reduce the environmental impact of aircrafts, it is necessary to accurately simulate the acoustics waves propagation in complex environment. A classical method used to compute the noise propagation on large distances is the Boundary Element Method. However this method restricts the flow to a uniform one. To improve the level of modeling, we present here a coupling between Finite Element (FEM) and Boundary Element Methods (BEM) to solve the acoustic propag...

  18. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms

    Science.gov (United States)

    Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin

    2016-06-01

    Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.

  19. Novel Acoustic Wave Microsystems for Biophysical Studies of Cells

    Science.gov (United States)

    Senveli, Sukru Ufuk

    Single cell analysis is an important topic for understanding of diseases. In this understanding, biomechanics approach serves as an important tool as it relates and connects the mechanical properties of biological cells with diseases such as cancer. In this context, analysis methods based on ultrasonics are promising owing to their non-invasive nature and ease of use. However, there is a lack of miniature systems that provide accurate ultrasonic measurements on single cancer cells for diagnostic purposes. The platform presented in this study exploits high frequency acoustic interaction and uses direct coupling of Rayleigh type SAWs with various samples placed inside microcavities to analyze their structural properties. The samples used are aqueous glycerin solutions and polystyrene microbeads for demonstrating proper system operation, and lead up to biological cells. The microcavity is instrumental in trapping a predetermined volume of sample inside and facilitating the interaction of the surface waves with the sample in question via a resonance condition. Ultimately, the resultant SAW reaching the output transducer incurs a phase delay due to its interaction with the sample in the microcavity. The system operates in a different manner compared to similar systems as a result of multiple wave reflections in the small volume and coupling back to the piezoelectric substrate. The proposed microsystem was first analyzed using finite element methods. Liquid and solid media were modeled by considering frequency dependent characteristics. Similarly, mechanical behavior of cells with respect to different conditions is considered, and biological cells are modeled accordingly. Prototype devices were fabricated on quartz and lithium niobate in a cleanroom environment. Process steps were optimized separately for devices with microcavities. Precise fabrication, alignment, and bonding of PDMS microchannels were carried out. Soft microprobes were fabricated out of SU-8, a

  20. Three-dimensional manipulation of single cells using surface acoustic waves

    OpenAIRE

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; James P Lata; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    We present 3D acoustic tweezers, which can trap and manipulate single cells and particles along three mutually orthogonal axes of motion by recourse to surface acoustic waves. We use 3D acoustic tweezers to pick up single cells, or entire cell assemblies, and deliver them to desired locations to create 2D and 3D cell patterns, or print the cells into complex shapes. This technology is thus shown to offer better performance over prior cell manipulation techniques in terms of both accurate and ...

  1. The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves

    International Nuclear Information System (INIS)

    Motivated by a recent paper [Phys. Plasmas 7, 2987 (2000)] highlighting the potential importance of the electron-acoustic wave in interpreting the solitary waves observed by high time resolution measurements of the electric field in the auroral region, the effect of a magnetic field on weakly nonlinear electron-acoustic waves is investigated. A Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived for a plasma comprised of cool and hot electrons and a species of fluid ions. Two models are employed for the ions: magnetized and unmagnetized. When the ions are magnetized the frequency constraints imposed upon the electron-acoustic wave packet prove to be too limiting to be of general use. The second model, which treats the ions as a stationary neutralizing background, overcomes the restrictions imposed by the former and is more fitting for the frequency domain of the electron-acoustic wave. Plane and ellipsoidal soliton solutions are admitted by the KdV-ZK equation, the latter perhaps able to explain some of the two dimensional features of the solitary waves observed in the Earth's high altitude auroral region. Both models for the ions predict only negative potential solitons. It is discussed how the plasma model might be adapted to produce positive potential solitons

  2. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  3. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Jian

    2001-01-01

    [1]Braginskii,S.I.,Transport processes in a plasma,in Reviews of Plasma Physics,Vol.1,New York:Consultants Bureau,1965,205-311.[2]Ono,M.,Kulsrud,R.M.,Frequency and damping of ion acoustic waves,Phys.Fluids,1975,18(10):1287-1293.[3]Randall,C.J.,Effect of ion collisionality on ion-acoustic waves,Phys.Fluids,1982,25(12):2231-2233.[4]Tracy,M.D.,Williams,E.A.,Estabrook,K.G.et al.,Eigenvalue solution for the ion-collisional effects on ion-acoustic and entropy waves,Phys.Fluids,1993,B5(5):1430.[5]Bell,A.R.,Electron energy transport in ion waves and its relevance to laser produced plasmas,Phys.Fluids,1983,26(1):279-284.[6]Epperlein,E.M.,Short,R.W.,Simon,A.,Damping of ion-acoustic waves in the presence of electron-ion collisions,Phys.Rev.Lett.,1992,69(12):1765-1768.[7]Epperlein,E.M.,Effect of electron collisions on ion-acoustic waves and heat flow,Phys.Plasmas,1994,1(1):109-115.[8]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Quasihydrodynamic description of ion acoustic waves in a collisional plasmas,Phys.Plasmas,1994,1(8):2419-2429.[9]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Ion acoustic waves in plasmas with collisional electrons,Phys.Rev.E,1994,50(6):5134-5137.[10]Bychenkov,V.Y.,Rozmus,W.,Tikhonchuk,V.T.et al.,Nonlocal electron transport in a plasma,Phys.Rev.Lett.,1995,75(24):4405-4408.[11]Zhang,Y.Q.et al.,Density fluctuation spectra of a collision-dominated plasma measured by light scattering,Phys.Rev.Lett.,1989,62(16):1848-1851.[12]Hinton,F.L.,Collisional transport in plasma,in Handbook of Plasma Physics,Vol.1,Amsterdam:North-Holland,1983,147-199.[13]Zheng Jian,Yu Changxuan,A numerical approach to the frequencies and damping rates of ion-acoustic waves in ion-collisional plasmas,Chin.Phys.Lett.,1999,16(12):905-907.[14]Hammett,G.W.,Perkins,F.,Fluid moment models for Landau damping with application to the ion-temperature-gradient instability,Phys.Rev.Lett.,1990,64(25):3019-3022.

  4. On Mode Conversion, Reflection and Transmission of Magneto-Acoustic Waves from Above in an Isothermal Stratified Atmosphere

    CERN Document Server

    Hansen, Shelley; Donea, Alina

    2015-01-01

    We use the exact solutions for magnetoacoustic waves in a two dimensional isothermal atmosphere with uniform inclined magnetic field to calculate the wave reflection, transmission, and conversion of slow and fast waves incident from above ($z=\\infty$). This is relevant to the question of whether waves excited by flares in the solar atmosphere can penetrate the Alfv\\'en/acoustic equipartition layer (which we identify as the canopy) to reach the photosphere with sufficient energy to create sunquakes. It is found that slow waves above the acoustic cutoff frequency efficiently penetrate (transmit) as acoustic (fast) waves if directed at a small attack angle to the magnetic field, with the rest converting to magnetic (slow) waves, in accord with Generalized Ray Theory. This may help explain the compact nature of seismic sources of sunquakes identified using seismic holography. The incident slow waves can also efficiently transmit at low frequency in inclined field due to the reduction in acoustic cutoff frequency ...

  5. Temporal isolation of surface-acoustic-wave-driven luminescence from a lateral p n junction using pulsed techniques

    Science.gov (United States)

    Gell, J. R.; Ward, M. B.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Norman, C. E.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Shields, A. J.; Ritchie, D. A.

    2008-04-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular-beam epitaxy regrowth of a modulation doped GaAs/AlGaAs quantum well on a patterned GaAs substrate. Pulsed techniques are used to isolate the surface-acoustic-wave-driven emission from any emission due to pick-up of the free-space electromagnetic wave. The luminescence provides a fast probe of the signals arriving at the p-n junction allowing the response of the junction to the surface-acoustic-wave to be studied in the time domain. Oscillations in the surface-acoustic-wave-driven component of the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  6. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  7. Acoustic wave detection of chemical species electrokinetically transported within a capillary tube.

    Science.gov (United States)

    Li, Paul C H; Prasad, Ronald

    2003-06-01

    For the first time, we report the acoustic wave detection of chemical species being transported in a capillary tube to a region where acoustic coupling occurs. The measured parameter was a change in phase, which was originally only attributed to a change in solution density as the analyte passed by the detection region. Accordingly, we report the detection of change in phase as various chemical species (e.g. Cy5 dye, Cy5-derivatized glycine and underivatized glycine) were introduced into and migrated along a capillary tube through electrokinetic processes. To improve detection sensitivity, we modified various experimental parameters, such as run buffer concentration, capillary wall thickness and transducer frequency. Although acoustic wave detection was feasible, the peak width and detection limit were inadequate as compared to conventional detection methods for HPLC or CE. Nevertheless, the effects of various physical and chemical relaxation processes on acoustic wave absorption were discussed, and this has shed some light on explaining some observations, which cannot be explained by density differences alone. Accordingly, the acoustic wave method is suggested to investigate these processes, as studied in ultrasonic relaxation spectroscopy, in a flow system. PMID:12866892

  8. Slow Magneto-acoustic Waves Observed above Quiet-Sun Region in a Dark Cavity

    CERN Document Server

    Liu, Jiajia; Wang, Yuming; Liu, Rui; Wang, Bin; Liao, Chijian; Shen, Chenglong; Zheng, Huinan; Miao, Bin; Su, Zhenpeng; Wang, S

    2012-01-01

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magneto-acoustic (MA) waves are one of the important magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above the active regions and coronal holes, but rarely found elsewhere. Here, we investigate a `tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40--110 Mm above the quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including the phase speed, compression ratio, kinetic energy density, etc., are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3--5 minutes).

  9. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    Science.gov (United States)

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  10. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  11. Manipulating the Magnetization of a Nanomagnet with Surface Acoustic Waves: Spin-Rotation Mechanism

    Science.gov (United States)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2016-03-01

    We show that the magnetic moment of a nanoparticle embedded in the surface of a solid can be switched by surface acoustic waves in the GHz frequency range via a universal mechanism that does not depend on the structure of the particle and the structure of the substrate. It is based upon the generation of the effective ac magnetic field in the coordinate frame of the nanoparticle by the shear deformation of the surface due to surface acoustic waves. The magnetization reversal occurs via a consecutive absorption of surface phonons of the controlled variable frequency. We derive analytical equations governing this process and solve them numerically for the practical range of parameters.

  12. X33 cut quartz for temperature compensated SAW (Surface Acoustic Wave) devices

    Science.gov (United States)

    Webster, Richard T.

    1986-07-01

    An X-cut, 33.44 degree quartz crystal for propagating surface acoustic waves with a temperature stability in the order of - 0.0209 ppm/sq.cm. is described. The crystal orientation requires only a single rotation (33.44 degrees) from the crystal axes. This orientation is substantially simpler than previously reported cuts with comparable temperature stability which typically require three rotations. The X-cut orientation has a surface acoustic wave (SAW) velocity of 3175 m/sec, an electromechanical coupling of 0.0004, and a power flow angle of 2.7 degrees.

  13. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  14. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  15. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  16. Ion-acoustic solitary waves and spectrally uniform scattering cross section enhancements

    Directory of Open Access Journals (Sweden)

    J. Ekeberg

    2010-06-01

    Full Text Available Spectra measured by incoherent scatter radars are formed predominantly by scattering of the incident signal off ion-acoustic and Langmuir waves in the ionosphere. Occasionally, the upshifted and/or downshifted lines produced by the ion-acoustic waves are enhanced well above thermal levels and referred to as naturally enhanced ion-acoustic lines. In this paper, we study another kind of enhancement, which is spectrally uniform over the whole ion-line, i.e. the up- and downshifted shoulder and the spectral valley in between. Based on observations made with the EISCAT Svalbard radar (ESR facility, we investigate the transient and spectrally uniform power enhancements, which can be explained by ion-acoustic solitary waves. We use a theory of nonlinear waves in a magnetized plasma to determine the properties of such waves and evaluate their effects on scattered signals measured by ESR. We suggest a new mechanism that can explain backscattered power enhancements by one order of magnitude above the thermal level and show that it is consistent with observations.

  17. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  18. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  19. Interaction of acoustic-gravity waves with an elastic shelf-break

    Science.gov (United States)

    Tian, Miao; Kadri, Usama

    2016-04-01

    In contrast to surface gravity waves that induce flow field which decays exponentially with depth, acoustic-gravity waves oscillate throughout the water column. Their oscillatory profile exerts stresses to the ground which provides a natural explanation for the earth's microseism (Longuet-Higgins, 1950). This work is an extension of the shelf-break problem by Kadri and Stiassnie (2012) who considered the sea floor and the shelf-break to be rigid, and the elastic problem by Eyov et al. (2013) who illustrated the importance of the sea-floor elasticity. In this study we formulate and solve the two-dimensional problem of an incident acoustic-gravity wave mode propagating over an elastic wall and interacting with a shelf-break in a weakly compressible fluid. As the modes approach the shelf-break, part of the energy is reflected whereas the other part is transmitted. A mathematical model is formulated by matching particular solutions for each subregion of constant depth along vertical boundaries; the resulting matrix equation is then solved numerically. The physical properties of these waves are studied, and compared with those for waves over a rigid bottom. The present work broadens our knowledge of acoustic-gravity-waves propagation in realistic environment and can potentially benefit the early detection of tsunami, generated from landslides or submarine earthquakes. References Eyov E., Klar A., Kadri U. , Stiassnie M. 2013 Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50, 929-939. Kadri, U., and M. Stiassnie, 2012 Acoustic-Gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035. Longuet-Higgins, M.S. 1950 A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. A 243, 1-35.

  20. Dynamic motions of ion acoustic waves in plasmas with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)

    2015-12-15

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)

  1. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    Science.gov (United States)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  2. Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2008-01-01

    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.

  3. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, 44000 Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); El-Tantawy, S. A.; Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt)

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  4. Experimental validation of acoustic radiation force induced shear wave interference patterns.

    Science.gov (United States)

    Hoyt, Kenneth; Hah, Zaegyoo; Hazard, Chris; Parker, Kevin J

    2012-01-01

    A novel elasticity imaging system founded on the use of acoustic radiation forces from a dual beam arrangement to generate shear wave interference patterns is described. Acquired pulse-echo data and correlation-based techniques were used to estimate the resultant deformation and to visualize tissue viscoelastic response. The use of normal versus axicon focal configurations was investigated for effects on shear wave generation. Theoretical models were introduced and shown in simulation to accurately predict shear wave propagation and interference pattern properties. In a tissue-mimicking phantom, experimental results are in congruence with theoretical predictions. Using dynamic acoustic radiation force excitation, results confirm that shear wave interference patterns can be produced remotely in a particular tissue region of interest (ROI). Overall, preliminary results are encouraging and the system described may prove feasible for interrogating the viscoelastic properties of normal and diseased tissue types.

  5. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Science.gov (United States)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  6. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...

  7. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    International Nuclear Information System (INIS)

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations

  8. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    Energy Technology Data Exchange (ETDEWEB)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.; Blanc-Benon, P. [Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, École Centrale de Lyon, Université de Lyon, 69134 Ecully Cedex (France); Marsden, O. [European Center For Medium Range Weather Forecasts, United Kingdom Shinfield (United Kingdom)

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  9. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    Science.gov (United States)

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  10. Tsunami and acoustic-gravity waves in water of constant depth

    Energy Technology Data Exchange (ETDEWEB)

    Hendin, Gali; Stiassnie, Michael [Faculty of Civil and Environmental Engineering, Technion – Israel institute of technology, Haifa 32000 (Israel)

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  11. Tsunami and acoustic-gravity waves in water of constant depth

    International Nuclear Information System (INIS)

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami

  12. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    Science.gov (United States)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  13. Tsunami and acoustic-gravity waves in water of constant depth

    Science.gov (United States)

    Hendin, Gali; Stiassnie, Michael

    2013-08-01

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  14. Use of multiple acoustic wave modes for assessment of long bones: Model study

    OpenAIRE

    Tatarinov, Alexey; Sarvazyan, Noune; Sarvazyan, Armen

    2005-01-01

    Multiple acoustic wave mode method has been proposed as a new modality in axial bone QUS. The new method is based on measurement of ultrasound velocity at different ratio of wavelength to the bone thickness, and taking into account both bulk and guided waves. It allows assessment of changes in both the material properties related to porosity and mineralization as well as the cortical thickness influenced by resorption from inner layers, which are equally important in diagnostics of osteoporos...

  15. Enhanced sensitivity of a surface acoustic wave gyroscope using a progressive wave

    International Nuclear Information System (INIS)

    A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was developed on two different piezoelectric substrates (128° YX LiNbO3 and ST-X quartz). A sensor was developed that contained two SAW oscillators. One oscillator was used as the sensing element and had metallic dots in the cavity between the input and output interdigital transducers (IDTs). The other oscillator was used as a reference element. Two oscillators were formed to extract the Coriolis effect by comparing the oscillation frequencies between these two delay lines, and metallic dots were used to induce a Coriolis force. Three different IDT structures were used to obtain a stable progressive SAW. Coupling of modes modeling was conducted prior to fabrication for determining the optimal device parameters. The device was fabricated and then measured on a rate table in accordance with the results of simulation. When the device was subjected to an angular rotation, the oscillation frequencies of the two oscillators were observed to differ. Depending on the angular velocity, the frequency difference was linearly modulated. The obtained sensitivity was approximately 62.57 Hz deg−1 s−1 at angular rates in the range 0–1000 deg s−1 in the case of the LiNbO3 substrate and single-phase unidirectional transducer and combed electrode structure. The dependence of the device performance on the piezoelectric substrate, IDT structure, and temperatures was also characterized. The developed device has good resistance to mechanical shock and stability to temperature

  16. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  17. Measurement of liquid surface acoustic wave amplitudes using HeNe laser homodyne techniques

    Science.gov (United States)

    Hickman, G. D.; Hsu, Y. L.; Lee, M. S.; Bourgeois, B. S.; Hsieh, S. T.

    1988-01-01

    Recent results in the measurement of small amplitude acoustic waves on the water surface are presented. The research was performed using laser homodyne techniques in a small laboratory water tank. The homodyne system consists of optical, acoustic, and data acquisition subsystems. The optical subsystem includes an HeNe laser and polarizing components. THe acoustic subsystem consists of standard low power transducers and a power amplifier. The data acquisition subsystem includes a spectrum analyzer and a personal computer. Measurements were made in the acoustic frequency range of 15 - 23 kHz and sound pressure levels of 120-180 dB re 1 micropascal. It is estimated that the homodyne technique can detect surface amplitude deformations on the order of 90 A.

  18. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente;

    2007-01-01

    It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... falls out of the levitating field or strikes a boundary of the device. These theoretical results are consistent with experiments. According to the theory, the instabilities due to oscillations are produced by a phase difference between the position of the levitated object and the variations of the sound...

  19. Resonant attenuation of surface acoustic waves by a disordered monolayer of microspheres

    Science.gov (United States)

    Eliason, J. K.; Vega-Flick, A.; Hiraiwa, M.; Khanolkar, A.; Gan, T.; Boechler, N.; Fang, N.; Nelson, K. A.; Maznev, A. A.

    2016-02-01

    Attenuation of surface acoustic waves (SAWs) by a disordered monolayer of polystyrene microspheres is investigated. Surface acoustic wave packets are generated by a pair of crossed laser pulses in a glass substrate coated with a thin aluminum film and detected via the diffraction of a probe laser beam. When a 170 μm-wide strip of micron-sized spheres is placed on the substrate between the excitation and detection spots, strong resonant attenuation of SAWs near 240 MHz is observed. The attenuation is caused by the interaction of SAWs with a contact resonance of the microspheres, as confirmed by acoustic dispersion measurements on the microsphere-coated area. Frequency-selective attenuation of SAWs by such a locally resonant metamaterial may lead to reconfigurable SAW devices and sensors, which can be easily manufactured via self-assembly techniques.

  20. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  1. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    International Nuclear Information System (INIS)

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependent on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.

  2. Rotational manipulation of single cells and organisms using acoustic waves

    Science.gov (United States)

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-01-01

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. PMID:27004764

  3. Diffraction of acoustic-gravity waves in the presence of a turning point.

    Science.gov (United States)

    Godin, Oleg A

    2016-07-01

    Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed. PMID:27475153

  4. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  5. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  6. The dynamics of surface acoustic wave-driven scaffold cell seeding.

    NARCIS (Netherlands)

    Bok, M.H.H.; Li, H.; Yeo, L.Y.; Friend, J.R.

    2009-01-01

    Flow visualization using fluorescent microparticles and cell viability investigations are carried out to examine the mechanisms by which cells are seeded into scaffolds driven by surface acoustic waves. The former consists of observing both the external flow prior to the entry of the suspension into

  7. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  8. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...

  9. A filtered convolution method for the computation of acoustic wave fields in very large spatiotemporal domains

    NARCIS (Netherlands)

    Verweij, M.D.; Huijssen, J.

    2009-01-01

    The full-wave computation of transient acoustic fields with sizes in the order of 100x100x100 wavelengths by 100 periods requires a numerical method that is extremely efficient in terms of storage and computation. Iterative integral equation methods offer a good performance on these points, provided

  10. Effect of Weakly Transverse Perturbations on Dust Acoustic Solitary Waves with Adiabatic Variation of Dust Charge

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan

    2002-01-01

    By employing the reductive perturbation technique we derived a Kadomtsev-Petviashvili equation forunmagnetized dusty plasmas. It suggests that the nonlinear dust acoustic solitary waves with adiabatic variation of dustcharge are stable even there are some higher order transverse perturbatoins. There are only rarefactive solitary wavesfor this system which has been verified analytically in this paper.

  11. Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents

    NARCIS (Netherlands)

    Nieuwenhuizen, M.S.; Harteveld, J.L.N.

    1997-01-01

    As a follow-up of previous work on a Surface Acoustic Wave (SAW) sensor for nerve agents, irreversible response effects have been studied in more detail. Surface analytical studies indicated that degradation products are responsible for the effects observed. In addition it was tried to explore these

  12. First-principle simulation of the acoustic radiation force on microparticles in ultrasonic standing waves

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Bruus, Henrik

    2013-01-01

    The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ...

  13. Acoustic microfluidics: Capillary waves and vortex currents in a spherical fluid drop

    Science.gov (United States)

    Lebedev-Stepanov, P. V.; Rudenko, O. V.

    2016-07-01

    We calculate the radiation forces in a spherical drop lying on a solid substrate. The forces form as a result of the action of a capillary wave on a fluid as it propagates along the free spherical surface. We study the structure of acoustic currents excited by the radiation forces.

  14. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  15. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    Science.gov (United States)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  16. Ellipsometric and surface acoustic wave sensing of carbon contamination on EUV optics

    NARCIS (Netherlands)

    Chen, Juequan; Louis, Eric; Bijkerk, Fred; Lee, Chris J.; Wormeester, Herbert; Kunze, Reinhard; Schmidt, Hagen; Schneider, Dieter; Moors, Roel; Schaik, van Willem; Lubomska, Monika; Schellenberg, Frank M.; Fontaine, La Bruno M.

    2009-01-01

    Carbon contamination layers, deposited on extreme ultraviolet (EUV) multilayer mirrors during illumination were characterized ex situ using spectroscopic ellipsometry (SE), laser generated surface acoustic waves (LG-SAW), and by their EUV reflectance loss. We show SE is more sensitive to the deposit

  17. Air bubbles in water: a strongly multiple scattering medium for acoustic waves.

    Science.gov (United States)

    Kafesaki, M; Penciu, R S; Economou, E N

    2000-06-26

    Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.

  18. Acoustic Measurement of Surface Wave Damping by a Meniscus.

    Science.gov (United States)

    Michel, Guillaume; Pétrélis, François; Fauve, Stéphan

    2016-04-29

    We investigate the reflection of gravity-capillary surface waves by a plane vertical barrier. The size of the meniscus is found to strongly affect reflection: the energy of the reflected wave with a pinned contact line is around twice the one corresponding to a fully developed meniscus. To perform these measurements, a new experimental setup similar to an acousto-optic modulator is developed and offers a simple way to measure the amplitude, frequency and direction of propagation of surface waves. PMID:27176523

  19. Spin-electron acoustic waves: Linear and nonlinear regimes, and applications

    Science.gov (United States)

    Andreev, Pavel

    2015-11-01

    Considering the spin-up and spin-down electrons as two different fluids we find corresponding hydrodynamic and kinetic equations from the Pauli equation. We find different pressure the spin-up and spin-down electrons due to different concentrations of electrons in the magnetized electron gas. This difference leads to existence of new branches of linear longitudinal waves propagating with small damping. These waves are called the spin-electron acoustic waves (SEAWs) due to linear dispersion dependence at small wave vectors. We obtain two waves at oblique propagation and one wave at propagation parallel or perpendicular to the external magnetic field. Dispersion dependences of these waves are calculated. Contribution of the Coulomb exchange interaction is included in the model and spectrums. Area of existence of nonlinear SEAWs appearing as a spin-electron acoustic soliton is found for the regime of wave propagation parallel to the external magnetic field. It is obtained that the SEAWs lead to formation of the Cooper pairs. This application of our results to the superconductivity phenomenon reveals in a model of the high-temperature superconductivity with the transition temperatures up to 300 K.

  20. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    Science.gov (United States)

    Hindmarsh, Mark; Huber, Stephan J.; Rummukainen, Kari; Weir, David J.

    2015-12-01

    We present details of numerical simulations of the gravitational radiation produced by a first order thermal phase transition in the early Universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with a power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow Lf) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to Lf and the square of the fluid kinetic energy density. We identify a dimensionless parameter Ω˜GW characterizing the efficiency of this "acoustic" gravitational wave production whose value is 8 π Ω˜GW≃0.8 ±0.1 across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically larger by the ratio of the Hubble time to the phase transition duration, which can be 2 orders of magnitude or more in a typical first order electroweak phase transition.

  1. Coronal Seismology and the Propagation of Acoustic Waves Along Coronal Loops

    CERN Document Server

    Klimchuk, J A; De Moortel, I

    2004-01-01

    We use a combination of analytical theory, numerical simulation, and data analysis to study the propagation of acoustic waves along coronal loops. We show that the intensity perturbation of a wave depends on a number of factors, including dissipation of the wave energy, pressure and temperature gradients in the loop atmosphere, work action between the wave and a flow, and the sensitivity properties of the observing instrument. In particular, the scale length of the intensity perturbation varies directly with the dissipation scale length (i.e., damping length) and the scale lengths of pressure, temperature, and velocity. We simulate wave propagation in three different equilibrium loop models and find that dissipation and pressure and temperature stratification are the most important effects in the low corona where the waves are most easily detected. Velocity effects are small, and cross-sectional area variations play no direct role for lines-of-sight that are normal to the loop axis. The intensity perturbation...

  2. Amplification of acoustic waves in laminated piezoelectric semiconductor plates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yang, X.M.; Turner, J.A. [University of Nebraska, Department of Engineering Mechanics, Lincoln, NE (United States)

    2004-12-01

    Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of laminated plates of piezoelectric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order terms in power series expansions in the plate thickness coordinate. The equations are used to analyze extensional waves in a composite plate of piezoelectric ceramics and semiconductors. Dispersion and dissipation due to semiconduction as well as wave amplification by a dc electric field are discussed. (orig.)

  3. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Graczykowski, B., E-mail: bartlomiej.graczykowski@icn.cat; Alzina, F.; Gomis-Bresco, J. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Sotomayor Torres, C. M. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); ICREA—Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain)

    2016-01-14

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  4. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    International Nuclear Information System (INIS)

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe

  5. Generation of tone burst laser ultrasonic waves and its acoustic nonlinearity

    International Nuclear Information System (INIS)

    Optical system for generating tone burst ultrasonic wave is introduced and the actual waveform is demonstrated. 4 high power pulse lasers were used for excitation and the stabilized Michelson laser interferometer was used as detection. On the other hand, we tried to investigate the nonlinear acoustic effect of the generated tone burst laser ultrasonic wave. In thermo-elastic region, the nonlinearity did not appear because the absolute amplitude of ultrasonic wave was so small less than 0.5 nm. Whereas, in ablation region, fairly strong nonlinearity appeared because the absolute amplitude of receiving signal was quite large up to about 2 nm.

  6. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    Science.gov (United States)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  7. A normalized wave number variation parameter for acoustic black hole design.

    Science.gov (United States)

    Feurtado, Philip A; Conlon, Stephen C; Semperlotti, Fabio

    2014-08-01

    In recent years, the concept of the Acoustic Black Hole has been developed as an efficient passive, lightweight absorber of bending waves in plates and beams. Theory predicts greater absorption for a higher thickness taper power. However, a higher taper power also increases the violation of an underlying theory smoothness assumption. This paper explores the effects of high taper power on the reflection coefficient and spatial change in wave number and discusses the normalized wave number variation as a spatial design parameter for performance, assessment, and optimization. PMID:25096139

  8. Prediction and near-field observation of skull-guided acoustic waves

    CERN Document Server

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  9. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  10. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  11. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.

    Science.gov (United States)

    Forbes, Barbara J

    2005-07-01

    The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical impedance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous "acoustical potential" the potential energy per unit displacement of fluid, corresponds to the wave function Psi of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of Dirichlet, Von Neumann, and mixed (Robins) boundary conditions, and the latter give rise to resonance phenomena that are not elucidated by Webster's analysis. It is shown that the exact Heaviside analogy yields a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and dispersive-wave propagation both at the origin and throughout the duct.

  12. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    Science.gov (United States)

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  13. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  14. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    CERN Document Server

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David J

    2015-01-01

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope appr...

  15. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    CERN Document Server

    Sarabalis, Christopher J; Safavi-Naeini, Amir H

    2016-01-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50,000 1/(Wm) for backward and forward Brillouin scattering, respectively.

  16. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer

    Institute of Scientific and Technical Information of China (English)

    寿文德; 严加勇; 王鸿樟; 钱德初

    2002-01-01

    Based on the reciprocity theorem of the acoustic field, we derive the formula of the reciprocity coefficient of a convergent spherical acoustic wave and we calculate a series of diffraction corrective factor curves of the reciprocity coefficient of transducers. Using these formulae and corrective factors, we calibrate the free field transmitting current response and the free field voltage sensitivity of a focusing transducer using the self-reciprocity method.The experimental results of the reciprocity calibration of the focusing transducer in the frequency range of 2 MHz to 5.4 MHz are presented.

  17. Ion-implanted surface-acoustic-wave guides on lithium niobate

    International Nuclear Information System (INIS)

    Surface-acoustic-wave guides have been obtained by ion-implanting narrow channels on lithium niobate substrates. Guides of different widths have been tested at 150 MHz. Two doses of helium ions at 100 keV have been used. The acoustic power distribution profiles along a guide length close to 21 mm were determined by optical probing. Air-gap silicon convolvers have been implemented with this kind of guide. An external figure of merit equal to -49 dBm has been measured, whereas without guidance the external figure of merit is only close to -61 dBm for the same transducer pattern

  18. Suppress the Finger Reflection Error of Littlewood-pelay Wavelet Transformation Device of Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2013-01-01

    Full Text Available In this study, a Wavelet Transformation (WT device of Surface Acoustic Wave (SAW technology is developed on the basis of acoustics, electronics, wavelet theory, applied mathematics and semiconductor planar technology. The Finger Reflection (FR error is the primary reason for this kind of device. To solve the problem, a mathematic model of Littlewood-pelay wavelet was established first, which is matched with the model of SAW. Using the methods of split finger and fake finger to design IDT of Littlewood-pelay WT device of SAW with L-edit software, the FR error can be reduced and the equivalent construction of IDT is simulated.

  19. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  20. Direct measurement of the acoustic waves generated by femtosecond filaments in air

    CERN Document Server

    Wahlstrand, J K; Rosenthal, E W; Zahedpour, S; Milchberg, H M

    2014-01-01

    We present direct measurements of the gas acoustic dynamics following interaction of spatial single- and multi-mode 50 fs, 800 nm pulses in air at 10 Hz and 1 kHz repetition rates. Results are in excellent agreement with hydrodynamic simulations. Under no conditions for single filaments do we find on-axis enhancement of gas density; this occurs only with multi-filaments. We also investigate the propagation of probe beams in the gas density profile induced by a single extended filament. We find that light trapping in the expanding annular acoustic wave can create the impression of on-axis guiding in a limited temporal window.

  1. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Science.gov (United States)

    Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-10-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.

  2. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    Science.gov (United States)

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  3. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  4. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  5. ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers

    Directory of Open Access Journals (Sweden)

    Glen McHale

    2008-07-01

    Full Text Available We report the effect of removing a section of guiding layer from the propagation paths of ST-quartz Love wave sensors; this offers the ease of fabrication of a polymer guiding layer whilst retaining the native surface of the quartz which may then be used for the attachment of a sensitizing layer. Data is presented for the rigid and viscous loading, which indicates a small reduction in mass sensitivity compared to a Love wave device. Biosensing capabilities of these discontinuous ‘sectional’ guiding layer devices are demonstrated using protein adsorption from solution.

  6. Gravitational and acoustic waves in an elastic medium

    International Nuclear Information System (INIS)

    Relativistic equations governing perturbations of an elastic medium under the influence of gravitational waves are derived firstly in a gauge-independent way in terms of relative strains, and secondly in terms of gauge-dependent displacements. The derivations are based on the exact nonlinear theory of elasticity in conjunction with Einstein's theory of gravity, and hence are applicable to the solid crusts and cores of neutron stars. It is shown that in the approximately Minkowskian weak-field limit the equations reduce to those derived by previous workers for application in terrestrial contexts such as the detection of gravitational waves by a Weber bar

  7. Estimation of Shear Wave Velocity in Seafloor Sediment by Seismo-Acoustic Interface Waves:. a Case Study for Geotechnical Application

    Science.gov (United States)

    Dong, Hefeng; Hovem, Jens M.; Frivik, Svein Arne

    2006-10-01

    Estimates of shear wave velocity profiles in seafloor sediments can be obtained from inversion of measured dispersion relations of seismo-acoustic interface waves propagating along the seabed. The interface wave velocity is directly related to shear wave velocity with value of between 87-96% of the shear wave velocity, dependent on the Poission ratio of the sediments. In this paper we present two different techniques to determine the dispersion relation: a single-sensor method used to determine group velocity and a multi-sensor method used to determine the phase velocity of the interface wave. An inversion technique is used to determine shear wave velocity versus depth and it is based on singular value decomposition and regularization theory. The technique is applied to data acquired at Steinbåen outside Horten in the Oslofjorden (Norway) and compared with the result from independent core measurements taken at the same location. The results show good agreement between the two ways of determining shear wave velocity.

  8. Resonance Effects of Bilayered Piezoelectric Films Used for Bulk Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Shu-Yi; FAN Li

    2011-01-01

    The resonance vibrations of acoustic sensors with two layers of (1120) textured hexagonal piezoelectric films are studied.When the acoustic and electric fields satisfy a special match condition,i.e.the phase variation of thickness shear mode (TSM) at each film equals π,both piezoelectric layers with opposite polarization directions reduce the first TSM and generate the second TSM with higher frequency and a higher quality factor.The excited second TSM can increase the product of the operating frequency and the quality factor,which is useful for improving the mass sensitivity and resolution of acoustic sensors.Additionally,both of the piezoelectric films have larger thickness and decrease the risk of mechanical damage in device production processes.Thin film bulk acoustic sensors have attracted great attention due to their small sizes,low power consumption and high sensitivity,etc.[1] The thickness shear mode (TSM) is more suitable for liquid sensing applications since much less acoustic energy is transferred into the liquid medium than that of longitudinal acoustic waves,due to the fact that ideal liquids cannot support propagations of shear waves.By using a TSM with a high resonance frequency,sensorsbased on thin film bulk acoustic resonator structures can be fabricated by the fixing of a sensitive coating on the surface of the device.[2] The binding events at the sensitive coating can cause a shift of the resonance frequency.[3]%The resonance vibrations of acoustic sensors with two layers of (1120) textured hexagonal piezoelectric films are studied. When the acoustic and electric fields satisfy a special match condition, I.e. The phase variation of thickness shear mode (TSM) at each film equals it, both piezoelectric layers with opposite polarization directions reduce the first TSM and generate the second TSM with higher frequency and a higher quality factor. The excited second TSM can increase the product of the operating frequency and the quality factor, which

  9. Phase-locked stimulated Brillouin scattering seeded by a transient acoustic wave excited through an optical interference field

    International Nuclear Information System (INIS)

    A mathematical description of an experimentally-verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS) is presented. It is shown that this phase-locking of the SBS process may have its origin in a transient acoustic standing wave initiated by an arising optical interference field, eventually leading to a stationary density modulation of the medium. An appropriate solution was obtained by solving the acoustic wave-equation with electrostriction as a driving force. As a consequence of the damping term being included in this equation, the acoustic standing wave becomes gradually attenuated and, contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon.

  10. Simulation study of acoustic wave propagation in ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohite-Patil, T.B.; Saran, A.K.; Sawant, S.R.; Chile, R.H.; Mohite-Patil, T.T.

    Many reports are available on the sound attenuation and speed in the deep ocean, as a function of different ingredients of sea. The absorption and speed of sound waves are related to the change in sound speed, depth, salinity, temperature, PH...

  11. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  12. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    of a piezoelectric, inhomogeneous material and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by the time-harmonic wave equation for the magnetic field. The two models are coupled using the stress-optical relation and the change...

  13. Simulation and fabrication of thin film bulk acoustic wave resonator

    Science.gov (United States)

    Xixi, Han; Yi, Ou; Zhigang, Li; Wen, Ou; Dapeng, Chen; Tianchun, Ye

    2016-07-01

    In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s (Q at series resonance), Q p (Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports. Project supported by the National Natural Science Foundation of China (Nos. 61274119, 61306141, 61335008) and the Natural Science Foundation of Jiangsu Province (No. BK20131099).

  14. Effects of dissipation on propagation of surface electromagnetic and acoustic waves

    Science.gov (United States)

    Nagaraj, Nagaraj

    With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives

  15. Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves

    CERN Document Server

    Lekner, John

    2016-01-01

    This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods,  reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...

  16. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-shun; SUI Qing-mei; JIA Lei; PENG Peng; CAO Yu-qiang

    2012-01-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed,which employ fiber Bragg gratings (FBGs) as US wave sensors.In the theoretical analysis,the FBG sensor response to longitudinal US wave is investigated.The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength.The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal.Further research using two FBGs for realizing linear location is also achieved.The maximumlinear location error is obtained as less than 5 mm.FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  17. Wavemaker theories for acoustic-gravity waves over a finite depth

    CERN Document Server

    Tian, Miao

    2016-01-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor and triad wave-wave interaction, in the current study we are interested in their generation by wave-structure interaction with possible implication to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory, the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also de...

  18. Randomly driven acoustic-gravity waves in the solar atmosphere: cutoff period and its observational verification

    Science.gov (United States)

    Murawski, K.; Musielak, Z. E.

    2016-09-01

    We study the propagation of acoustic-gravity waves in the solar atmosphere. The waves are excited by a space- and time-dependent random driver, whose action mimics turbulence in the upper part of the solar convection zone. Our main goal is to find vertical variations of wave periods of these waves and compare the obtained results to the recent observations of Wiśniewska et al. (2016). We solve numerically the hydrodynamic equations in the solar atmosphere whose temperature is given by the semi-empirical model of Avrett & Loeser (2008). The obtained numerical results show that wave periods vary along vertical direction in agreement with the recent observational data. We discuss physical consequences of our theoretical results.

  19. Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation

    CERN Document Server

    Baydoun, Ibrahim; Pierrat, Romain; Derode, Arnaud

    2016-01-01

    Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed $c$ depending on position $\\mathbf{r}$. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path $\\ell^*$, scattering phase functi...

  20. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  1. On waves in gases. Part I: Acoustics of jets, turbulence, and ducts

    Science.gov (United States)

    Campos, L. M. B. C.

    1986-01-01

    This review on some aspects of waves in gases concentrates first (Part I) on modern research in the acoustics of fluids at rest or in steady or turbulent motion, in free space, in the presence of obstacles, or in ducts. The study of sound, for which the sole restoring force is pressure, will be extended in a later paper (Part II) to include the other three restoring forces, namely, gravity, electromagnetic, and Coriolis forces, leading to current research on internal, magnetic, and inertial waves and their couplings. The Introduction at the beginning of Part I, and the discussion at the end of Part II, concern all four types of waves in gases, and their relevance in physics and engineering. In Part I, the following areas of acoustics are addressed: the generation of noise by turbulence, inhomogeneities or bubbles, in natural and engineering flows, e.g., wind or jets; the scattering of sound by interfaces and diffraction by turbulence, and their effects on spectral and directional redistribution of energy; propagation in ducts, without or with mean flow, e.g., the horns of musical instruments and loudspeakers, and inlets and exhausts of engines; the effects of dissipation and nonlinearity on waves, e.g., in laboratory and engineering shock tubes, and in geophysical and astrophysical conditions. Underlying these topics is the interaction of acoustics with manking, ranging from the processes of human hearing and speech to the reproduction of desirable sounds (music) and reduction of undesirable sounds (noise).

  2. Capacitive Sensors for the Long-wave Acoustic Radiation by Directed Waves

    Directory of Open Access Journals (Sweden)

    L.V. Zaitseva

    2016-06-01

    Full Text Available Consider from the common position present-day state, prospects and the possibility of non-destructive testing capacitive method using. Developed mathematical model of the process of acoustic wave’s excitation (longitudinal and surface with a capacitor allow carrying out the output signal calculation for the subsequent choice of methods and devices for receiving the acoustic oscillations data. A device layout has been developed for realization of capacitive method. The possibility of excitation and reception of acoustic vibrations by capacitive transducers it has been established.

  3. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis

    Science.gov (United States)

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.

    2016-08-01

    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  4. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration...

  5. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Berger; E.J. Valeo

    2004-08-18

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  6. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    Science.gov (United States)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  7. Non-Bragg Resonance of Standing Acoustic Wave in a Cylindrical Waveguide with Sinusoidally Perturbed Walls

    Institute of Scientific and Technical Information of China (English)

    TAO Zhi-Yong; XIAO Yu-Meng; WANG Xin-Long

    2005-01-01

    @@ A novel type of acoustic resonance different from the well-known Bragg resonance is predicted theoretically in an acoustic cylindrical waveguide with sinusoidally perturbed hard walls. The resonance is caused by the interaction between the standing acoustic waves, i.e. transverse modes in the waveguide. It results in the frequency spectrum splitting and the appearance of forbidden bands. For small-perturbed wall corrugation, it is found that the shifts of resonant frequencies and the width of the forbidden gap can be as small as the wall amplitude. The appearance of the non-Bragg resonance depends highly on the wall period. When the period is greater than 2.319 times the average cylinder radius, all the non-Bragg resonances cut off. The smaller the wall period, the greater the transverse mode involvement.

  8. Experimental verification of the Kramers-Kronig relationship for acoustic waves.

    Science.gov (United States)

    Lee, C C; Lahham, M; Martin, B G

    1990-01-01

    A spectral technique for effectively and accurately measuring acoustic attenuation over a wide frequency range is reported. The spectral technique for phase measurement developed by W. Sachse and Y.H. Pao (1978) was used to determine the acoustic dispersion. For acoustic waves, a very simple and useful Kramers-Kronig relationship was previously derived by M. O'Donnell, E.T. Jaynes, and J.G. Miller (1981). The attenuation was calculated, using this relationship, from the measured dispersion and then compared with the attenuation that was measured independently. Dispersion was deduced from the measured attenuation and compared with the measured dispersion. The results of two highly attenuative specimens are presented. The agreement between the calculated attenuation and measured attenuation is excellent. The deduced dispersion also agrees well with the measured one. This agreement verifies the simple Kramers-Kronig relationship used. It further shows the accuracy of the spectral techniques for attenuation and dispersion measurements over a wide frequency range.

  9. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers

    CERN Document Server

    Zhong, Wenjia Elser née; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd

    2015-01-01

    By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.

  10. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    Science.gov (United States)

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119

  11. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates

    Science.gov (United States)

    Ma, Qingzeng; Jiao, Jingpin; Hu, Ping; Zhong, Xi; Wu, Bin; He, Cunfu

    2014-03-01

    The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SH0-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern of PPM EMATs, and can be used for their parameter optimization.

  12. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, C.

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  13. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.

    Science.gov (United States)

    Dagrau, Franck; Rénier, Mathieu; Marchiano, Régis; Coulouvrat, François

    2011-07-01

    Numerical simulation of nonlinear acoustics and shock waves in a weakly heterogeneous and lossless medium is considered. The wave equation is formulated so as to separate homogeneous diffraction, heterogeneous effects, and nonlinearities. A numerical method called heterogeneous one-way approximation for resolution of diffraction (HOWARD) is developed, that solves the homogeneous part of the equation in the spectral domain (both in time and space) through a one-way approximation neglecting backscattering. A second-order parabolic approximation is performed but only on the small, heterogeneous part. So the resulting equation is more precise than the usual standard or wide-angle parabolic approximation. It has the same dispersion equation as the exact wave equation for all forward propagating waves, including evanescent waves. Finally, nonlinear terms are treated through an analytical, shock-fitting method. Several validation tests are performed through comparisons with analytical solutions in the linear case and outputs of the standard or wide-angle parabolic approximation in the nonlinear case. Numerical convergence tests and physical analysis are finally performed in the fully heterogeneous and nonlinear case of shock wave focusing through an acoustical lens.

  14. An Acoustic Wave Equation for Tilted Transversely Isotropic Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-15

    A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.

  15. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    Science.gov (United States)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  16. Laser-generated thermoelastic acoustic sources and acoustic waves in anisotropic plate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi- ber-reinforced composite plate has been investigated. A quantitative numerical model for the la- ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther- mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the effect on ultrasound waveform of the size of the laser volume source produces strong bipolar longitu- dinal waves and improves the amplitude and directivity of the longitudinal waves. A fiber-reinforced composite material exhibits isotropic or homogenous behavior for ultrasonic wave propagation per- pendicular to the fiber direction. For ultrasonic propagation along the fiber direction, ultrasonic dis- persion resulting from the inhomogeneous nature of the material affects the laser ultrasonic waveforms. As the dimensions of the laser pulse are increased in space and time, the displacement waveform be- comes broader and its magnitude decreases.

  17. Laser-generated thermoelastic acoustic sources and acoustic waves in anisotropic plate

    Institute of Scientific and Technical Information of China (English)

    XU BaiQiang; WANG Feng; FENG Jun; WANG JiJun; SUN HongXiang; LUO Ying

    2009-01-01

    The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi-ber-reinforced composite plate has been investigated. A quantitative numerical model for the la-ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method.All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther-mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the effect on ultrasound waveform of the size of the laser volume source produces strong bipolar Iongitu-dinal waves and improves the amplitude and directivity of the longitudinal waves. A fiber-reinforced composite material exhibits isotropic or homogenous behavior for ultrasonic wave propagation per-pendicular to the fiber direction. For ultrasonic propagation along the fiber direction, ultrasonic dis-persion resulting from the inhomogeneous nature of the material affects the laser ultrasonic waveforms. As the dimensions of the laser pulse are increased in space and time, the displacement waveform be-comes broader and its magnitude decreases.

  18. Structure design on SH wave electromagnetic acoustic transducer (EMAT)

    International Nuclear Information System (INIS)

    EMAT is being used for the volume inspection under high temperature environment in the neighborhood ISI (In Service Inspection) of MONJU reactor vessel. In order to improve the operability and durability of ISI instruments, the weight halving of the inspection robot is required. In this connection, it becomes necessary and important to lighten some related assemblies of EMAT. In the present research, along with the light weightization of SH wave EMAT, the feasibility to reduce the weight of general magnet structure in accordance with the characterization of magnetic flux density distributions is analyzed. In addition, it is found that the Halbach magnet arrangement can be used as a magnet structure of SH wave EMAT. Numerical simulation of a static magnetic field analysis is employed for characterizing the magnetic properties of the general magnet structure of SH wave EMAT, and the Halbach magnet arrangement. The magnetic flux density distributions in both structures are compared with each other to search for a more powerful magnet structure. It is noticed that the magnetic properties of magnet structure are analyzed only at room temperature in this report. The main analysis result are summarized as follows: 1. Halbach magnet arrangement can be used as a magnet structure of SH wave EMAT. 2. Halbach magnet arrangement has a more powerful magnetic flux density distribution than that for the general magnet structure. In the case of a magnet arrangement with 2.5 mm half-period, the maximum value of magnetic flux density along the normal direction in the Halbach magnet arrangement (magnet thickness a=b=1.25 mm) can be as large as 1.6 times of that in the general magnet structure. In other words, by using Halbach magnet arrangement, a powerful SH wave EMAT can be composed comparing with the general magnet structure, even if nearly the same amount of magnet is used. 3. The dependence of the magnetic flux density along the normal direction on the magnet height dimension L

  19. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  20. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    Science.gov (United States)

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  1. Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Yeo, Leslie Y.; Friend, James R.

    2010-12-01

    We present an experimental approach for controlled switching between uniform flow for pumping and vortical flow for mixing in a microchannel fabricated onto a piezoelectric substrate. For particle laden fluids, this arrangement permits a choice between transport and alignment of microparticles. Using surface acoustic waves with amplitudes beyond 1 nm, the transition from uniform to mixing flows occurs when the acoustic wavelength in the fluid is reduced to a dimension smaller than the channel width, i.e., λf≥Wch for uniform flow and λfmixing flow. On the other hand, using relatively weak surface acoustic waves with amplitudes below 1 nm, particles in an initially homogeneous suspension agglomerate into equally spaced lines with a separation of λf/2. Switching the transducer between its fundamental resonant frequency f0 and its first harmonic frequency f1+˜2f0 causes a switch between uniform and mixing flow, while switching between large and small amplitude excitation allows one to choose whether to collect the particles in the flow along nodal lines parallel to the channel. These results are uniquely achieved without requiring the microfabrication of complex microchannel architectures and control schemes; the switching is simply achieved by adjusting two parameters: the acoustic excitation frequency and amplitude.

  2. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Science.gov (United States)

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  3. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  4. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    Science.gov (United States)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  5. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  6. Aspects of Electron Acoustic Wave Physics in Laser Backscatter from Plasmas

    CERN Document Server

    Sircombe, N J; Dendy, R O

    2006-01-01

    Recent experimental results from the Trident laser confirm the importance of kinetic effects in determining laser reflectivities at high intensities. Examples observed include scattering from low frequency electron acoustic waves (EAWs), and the first few stages of a cascade towards turbulence through the Langmuir decay instability. Interpretive and predictive computational capability in this area is assisted by the development of Vlasov codes, which offer high velocity space resolution in high energy regions of particle phase space, and do not require analytical pre-processing of the fundamental equations. A direct Vlasov solver, capable of resolving these kinetic processes, is used here to address fundamental aspects of the existence and stability of the electron acoustic wave, together with its collective scattering properties. These simulations are extended to realistic laser and plasma parameters characteristic of single hot-spot experiments. Results are in qualitative agreement with experiments displayi...

  7. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    Science.gov (United States)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  8. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2016-01-01

    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  9. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    Energy Technology Data Exchange (ETDEWEB)

    El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2010-03-01

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  10. Spatial confinement of acoustic and optical waves in stubbed slab structure as optomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong

    2015-02-20

    We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    International Nuclear Information System (INIS)

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz

  12. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    Science.gov (United States)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  13. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    Science.gov (United States)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  14. Effect of ion viscosity on dust ion-acoustic shock waves in a nonextensive magnetoplasma

    Science.gov (United States)

    El-Tantawy, S. A.

    2016-08-01

    The nonlinear features of dust ion-acoustic shock waves (DIASWs) in a magnetoplasma containing cold positive ions, nonextensive electrons, and immobile negatively charged dust grains taking into account the cold ion kinematic viscosity are investigated. The reductive perturbation technique is used to derive a Zakharov-Kuznetsov-Burgers (ZK-Burgers). It is found that the fundamental properties of the DIASWs are significantly modified by the different system parameters such as the nonextensive parameter, the ion gyrofrequency, the dust concentration, the viscosity parameter, and the direction cosines. Also, the polarities (positive and negative shocks) of the potential are found to exist in the plasma under consideration. The implications of our results may be used in understanding the acoustic shock waves propagation in laboratory and space plasmas.

  15. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    Science.gov (United States)

    Andreev, Pavel A.

    2016-06-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves (SEAWs). This kinetic theory allows us to obtain the spectrum of the SEAWs including the effects of occupation of quantum states more accurately than the quantum hydrodynamic theory. We derive and apply the quantum kinetic theory to calculate the Landau damping of the SEAWs. We consider the contribution of ions dynamics into the SEAW spectrum. We obtain the contribution of ions in the Landau damping in the temperature regime of classic ions. Kinetic analysis for the ion-acoustic, zero sound, and Langmuir waves at the separated spin-up and spin-down electron dynamics is presented as well.

  16. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  17. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    International Nuclear Information System (INIS)

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/GexSi1-x, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  18. Field theory for zero sound and ion acoustic wave in astrophysical matter

    Science.gov (United States)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  19. Field Theory for Zero Sound and Ion Acoustic Wave in Astrophysical Matter

    CERN Document Server

    Gabadadze, Gregory

    2015-01-01

    We set up a field theory model to describe the longitudinal low energy modes in high density matter present in white dwarf stars. At the relevant scales, ions -- the nuclei of oxygen, carbon and helium -- are treated as heavy point-like spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  20. Evidence for short-period acoustic waves in the solar atmosphere

    Science.gov (United States)

    Wunnenberg, M.; Kneer, F.; Hirzberger, J.

    2002-11-01

    Short-period acoustic waves are thought to supply the energy for the radiative losses of the non-magnetic chromosphere of the Sun and, in general, of late-type stars. Here, we present evidence for the existence of waves in the solar atmosphere with periods in the range of 50 s Tower Telescope at the Observatorio del Teide/Tenerife. They are subjected to speckle reconstruction and to a wavelet analysis. The atmospheric ranges forming the velocity signals are narrowed by linear combinations of Doppler maps from wavelengths near line center. The power in the short-period range is concentrated above intergranular spaces. We estimate an acoustic flux into the chromosphere of approximately 3*E6 erg cm-2 s-1, as needed for the chromospheric radiative losses.

  1. Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices

    CERN Document Server

    Lai, Tenghsien; Tsou, Chingfu

    2008-01-01

    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devices

  2. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  3. TOPICAL REVIEW: Sensors and actuators based on surface acoustic waves propagating along solid liquid interfaces

    Science.gov (United States)

    Lindner, Gerhard

    2008-06-01

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported.

  4. Sensors and actuators based on surface acoustic waves propagating along solid-liquid interfaces

    International Nuclear Information System (INIS)

    The propagation of surface acoustic waves (SAWs) along solid-liquid interfaces depends sensitively on the properties of the liquid covering the solid surface and may result in a momentum transfer into the liquid and thus a propulsion effect via acoustic streaming. This review gives an overview of the design of different SAW devices used for the sensing of liquids and the basic mechanisms of the interaction of SAWs with overlaying liquids. In addition, applications of devices based on these phenomena with respect to touch sensing and the measurement of liquid properties such as density, viscosity or the composition of mixed liquids are described, including microfabricated as well as macroscopic devices made from non-piezoelectric materials. With respect to the rapidly growing field of acoustic streaming applications, recent developments in the movement of nanolitre droplets on a single piezoelectric chip, the rather macroscopic approaches to the acoustic pumping of liquids in channels and recent attempts at numerical simulations of acoustic streaming are reported. (topical review)

  5. Acoustic wave propagation in austenitic stainless steel AISI 304L: Application examples

    Energy Technology Data Exchange (ETDEWEB)

    Dahmene, F., E-mail: fethidahmen@yahoo.fr [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France)] [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Laksimi, A. [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France); Hariri, S. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Herve, C.; Jaubert, L.; Cherfaoui, M. [Pole EPI, Equipements sous Pression et Ingenierie d' Instrumentation, CETIM, 52, Avenue Felix-Lauat, BP80067, 60304 Senlis (France); Mouftiez, A. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France)

    2012-04-15

    Prior to the detection and monitoring by acoustic emission of defects in steel, this paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. The study of the waveguide effect on elastic wave transmission shows that waveguide deforms the waveform but it does not affect its frequency. Waveguide length does not affect signal magnitude. An experimental example of compact tensile specimen monitoring by acoustic emission is given. The monitoring of the damage at low and high temperature '450 Degree-Sign C' by acoustic emission enables us to identify crack propagation stages and their acoustic signature. - Highlights: Black-Right-Pointing-Pointer This paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. Black-Right-Pointing-Pointer The objective is the development of nondestructive testing by acoustic emission (AE) of pressure equipment (PE) operating at high temperature. Black-Right-Pointing-Pointer The use of AE in this work has underlined high temperature mechanical behavior in terms of damage and crack propagation.

  6. Experimental Study of Dust Acoustic Waves in the Strongly Correlated Regime

    CERN Document Server

    Bandyopadhyay, P; Sen, A

    2016-01-01

    Low frequency dust acoustic waves (DAW) were excited in a laboratory argon dusty plasma by modulating the discharge voltage with a low frequency AC signal. Metallic graphite particles were used as dust grains and a digital FFT technique was used to obtain dispersion characteristics. The experimental dispersion relation shows the reduction of phase velocity and a regime where $\\partial \\omega/\\partial k < 0$. A comparison is made with existing theoretical model.

  7. Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-Jie; ZHAO Hu; YU Yue

    2005-01-01

    When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.

  8. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  9. Hot Dust Acoustic Solitary Waves in Dust Plasma with Variable Dust Charge

    Institute of Scientific and Technical Information of China (English)

    段文山; 吕克朴; 赵金保

    2001-01-01

    Considering the variation of dust charges, we have analytically studied the governing equation for the system with the same model as that for cold dust acoustic waves in a demagnetized plasma but with the contribution of hot dust. The result indicates that the governing equation is also a Kortweg-de Vries equation, although its amplitude and width will be smaller compared with the cold dust case.

  10. Linear and nonlinear ion-acoustic waves in non-relativistic quantum plasmas with arbitrary degeneracy

    OpenAIRE

    Haas, Fernando; Mahmood, Shahzad

    2016-01-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for non-relativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and apply equally well both to fully degenerate or classical, non-degenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid fo...

  11. LiNbO3/p+n diode surface acoustic wave memory correlator

    Institute of Scientific and Technical Information of China (English)

    张朝; 水永安; 印建华

    1997-01-01

    A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is analyzed and calculated, including the amplitudes of reference, read and write signal, duration of write signal and doping density of the diode array. The conclusions can be employed for the design of improved strip-coupled SAW memorycorrelators.

  12. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The linearized electron Fokker-Planck and cold-ion fluid equations are solved as an eigenvalue problem in the quasineutral limit for ionization state,Z=1,8,and 64 for ion-acoustic and entropy waves.The perturbed electron distribution function is written as a moment expansion of eigenvectors,and is used to compute collisionality-dependence macroscopic quantities in the plasma such as the generalized specific heat ratio,and the electron thermal conductivity.

  13. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated in...... standard semiconductor materials. The performance of the device is analyzed in detail, and by using multi-branch interferometers, the sensitivity of the device to fabrication tolerances can be drastically reduced....

  14. Modeling of the interaction of an acoustic wave with immersed targets for telemetry of complex structures

    OpenAIRE

    Lu, Bo; Darmon, Michel; Potel, Catherine; FRADKIN, Larissa; CHATILLON, Sylvain

    2012-01-01

    This study is part of the development of simulation tools for ultrasonic telemetry. Telemetry is a technique chosen for monitoring sodium-cooled fast reactors, which consists in locating various reactor structures using an ultrasonic inspection performed by immersion. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been firstly evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and th...

  15. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    OpenAIRE

    Ioana Voiculescu; Anis Nurashikin Nordin; Fang Li; Fei Liu

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate...

  16. Development of a GaAs Monolithic Surface Acoustic Wave Integrated Circuit

    Energy Technology Data Exchange (ETDEWEB)

    Baca, A.G.; Casalnuovo, S.C.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M.; Klem, J.F.

    1999-03-08

    An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.

  17. Eigenfrequencies of Ion-Acoustic Waves in the Presence of Electron-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    ZHEHG Jian; YU Chang-Xuan

    2000-01-01

    Frequencies and damping rate of ion-acoustic waves in the presence of electron-ion collisions are computed by reducing the linearized electron Fokker-Planck equation and cold-ion fluid equations to an eigenvalue equation via moment expansion of the perturbation of electron distribution function. As electrons becomes less collisional, a great number of Sonine modes are needed for convergence to a desired accuracy in the calculation, which may be ascribed to the neglected electron-electron collisions.

  18. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Radeva, Ekaterina I.; Esmeryan, Karekin D.; Ivan D. Avramov

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  19. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  20. Asymmetric acoustic propagation of wave packets via the self-demodulation effect

    CERN Document Server

    Devaux, Thibaut; Richoux, Olivier; Pagneux, Vincent

    2015-01-01

    This article presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to $10^6$, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  1. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  2. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  3. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  4. Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures

    CERN Document Server

    Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.

  5. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    Energy Technology Data Exchange (ETDEWEB)

    Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  6. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    International Nuclear Information System (INIS)

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  7. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  8. Very low frequency subionospheric remote sensing of thunderstorm-driven acoustic waves in the lower ionosphere

    Science.gov (United States)

    Marshall, R. A.; Snively, J. B.

    2014-05-01

    We present observations of narrowband subionospheric VLF transmitter signals on 20 March 2001, exhibiting coherent fluctuations of over 1 dB peak to peak. Spectral analysis shows that the fluctuations have periods of 1-4min and are largely coherent. The subionospheric propagation path of the signal from Puerto Rico to Colorado passes over two regions of convective and lightning activity, as observed by GOES satellite imagery and National Lightning Detection Network lightning data. We suggest that these fluctuations are evidence of acoustic waves launched by the convective activity below, observed in the 80-90 km altitude range to which nighttime VLF subionospheric remote sensing is sensitive. These observations show that VLF subionospheric remote sensing may provide a unique, 24h remote sensing technique for acoustic and gravity wave activity. We reproduce this event in simulations using a fluid model of gravity and acoustic wave propagation to calculate the ionospheric disturbance, followed by an electromagnetic propagation model to calculate the perturbation amplitude at the location of the VLF receiver. Simulation results show that a very large and coherent convective source is required to produce these amplitude perturbations.

  9. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer

    Science.gov (United States)

    Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun

    2015-10-01

    Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.

  10. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  11. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    Science.gov (United States)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  12. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space

    Science.gov (United States)

    Koo, Sukmo; Cho, Choonlae; Jeong, Jun-ho; Park, Namkyoo

    2016-01-01

    The common behaviour of a wave is determined by wave parameters of its medium, which are generally associated with the characteristic oscillations of its corresponding elementary particles. In the context of metamaterials, the decoupled excitation of these fundamental oscillations would provide an ideal platform for top–down and reconfigurable access to the entire constitutive parameter space; however, this has remained as a conceivable problem that must be accomplished, after being pointed out by Pendry. Here by focusing on acoustic metamaterials, we achieve the decoupling of density ρ, modulus B−1 and bianisotropy ξ, by separating the paths of particle momentum to conform to the characteristic oscillations of each macroscopic wave parameter. Independent access to all octants of wave parameter space (ρ, B−1, ξ)=(+/−,+/−,+/−) is thus realized using a single platform that we call an omni meta-atom; as a building block that achieves top–down access to the target properties of metamaterials. PMID:27687689

  13. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  14. Observations of Dissipation of Slow Magneto-acoustic Waves in Polar Coronal Hole

    CERN Document Server

    Gupta, G R

    2014-01-01

    We focus on polar coronal hole region to find any evidence of dissipation of propagating slow magneto-acoustic waves. We obtained time-distance and frequency-distance maps along plume structure in polar coronal hole. We also obtained Fourier power maps of polar coronal hole in different frequency ranges in 171 \\AA\\ and 193 \\AA\\ passbands. We performed intensity distribution statistics in time domain at several locations in polar coronal hole. We find presence of propagating slow magneto-acoustic waves having temperature dependent propagation speeds. The wavelet analysis and Fourier power maps of polar coronal hole show that low-frequency waves are travelling longer distances (longer detection length) as compared to high-frequency waves. We found two distinct dissipation length scales of wave amplitude decay at two different height ranges (between 0-10 Mm and 10-70 Mm) along the observed plume structure. Dissipation length obtained at higher height range show some frequency dependence. Individual Fourier power...

  15. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaladze, T. [Department of Physics, Government College University (GCU), Lahore 54000 (Pakistan); I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia (United States); Mahmood, S., E-mail: shahzadm100@gmail.com [Theoretical Physics Division (TPD), PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  16. Modelling the effect of acoustic waves on nucleation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2016-07-14

    A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory. PMID:27421413

  17. Acoustic wave propagation in Ni3 ( = Mo, Nb, Ta) compounds

    Indian Academy of Sciences (India)

    Pramod Kumar Yadawa

    2011-04-01

    The ultrasonic properties of the hexagonal closed packed structured Ni3Mo, Ni3Nb and Ni3Ta compounds were studied at room temperature for their characterization. For the investigations of ultrasonic properties, the second-order elastic constants using Lennard–Jones potential were computed. The velocities 1 and 2 have minima and maxima respectively at 45° with the unique axis of the crystal, while 3 increases with respect to angle with the unique axis of the crystal. The inconsistent behaviour of angle-dependent velocities is associated with the action of second-order elastic constants. Debye average sound velocities of these compounds increase with the angle and has maximum at 55° with the unique axis at room temperature. Hence, when a sound wave travels at 55° with the unique axis of these materials, the average sound velocity is found to be maximum. The results achieved are discussed and compared with the available experimental and theoretical results.

  18. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    Science.gov (United States)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  19. MODELLING OF ACOUSTIC EMISSION SOURCE AND WAVE RESPONSE IN LAYERED MATERIALS

    Directory of Open Access Journals (Sweden)

    Alamin A.

    2014-03-01

    Full Text Available This study proposes a model of wave propagation in layered media for the use in acoustic emission (AE studies. This model aims to find an AE response at a free surface to the propagating waves originating at a dislocation source either in one layer medium or a layer-to-layer interface. Each of the layered media is assumed to be homogenous, linear elastic and isotropic. An integral transformation method has been applied to determine the wave response in frequency-wave number domain, which is then converted to time-space domain. In the numerical examples, we first select truncated values with the finite integral transformation, so that no wave interference happens in the responses from wave reflection at truncated boundaries. Next, we simulate wave propagation in an elastic half space, and compare results obtained with that from other kind bottom boundary. Next, we introduce a dis- location source in interface and compare a simulated AE wave response obtained with that computed in the layered medium to demonstrate the performance of the model. In each simulation, the results show good agreement with the reference solutions.

  20. Model of horizontal stress in the Aigion10 well (Corinth) calculated from acoustic body waves

    CERN Document Server

    Rousseau, A

    2006-01-01

    In this paper we try to deduce the in situ stresses from the monopole acoustic waves of the well AIG10 between 689 and 1004 meters in depth (Corinth Golf). This borehole crosses competent sedimentary formations (mainly limestone), and the active Aigion fault between 769 and 780 meters in depth. This study is the application of two methods previously described by the author who shows the relationships between in situ horizontal stresses, and (i) the presence or absence of double body waves, (ii) the amplitude ratios between S and P waves (Rousseau, 2005a,b). The full waveforms of this well exhibit two distinct domains separated by the Aigion fault. Within the upper area the three typical waves (P, S and Stoneley) may appear, but the S waves are not numerous, and there is no double body wave, whereas within the lower area there are sometimes double P waves, but no S waves. From those observations, we conclude that the stress domain is isotropic above the Aigion fault, and anisotropic below, which is consistent ...

  1. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    International Nuclear Information System (INIS)

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was within 9% of predicted angle magnitudes over all examined frequencies

  2. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.; Orris, Gregory J. [U.S. Naval Research Laboratory, Code 7165, Washington, DC 20375 (United States); Guild, Matthew D. [National Research Associateship Program, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-09-28

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was within 9% of predicted angle magnitudes over all examined frequencies.

  3. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. PMID:26726146

  4. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pinton, Gianmarco [Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University, 348 Taylor Hall, Chapel Hill, NC 27599, USA gfp@unc.edu (United States)

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  5. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation

    Science.gov (United States)

    Chernogor, L. F.; Frolov, V. L.

    2013-09-01

    We present the results of the bandpass filtering of temporal variations of the Doppler frequency shift of radio signals from a vertical-sounding Doppler radar located near the city of Kharkov when the ionosphere was heated by high-power periodic (with 10 and 15-min periods) radiation from the Sura facility. The filtering was done in the ranges of periods that are close to the acoustic cutoff period and the Brunt—Väisälä period (4-6, 8-12, and 13-17 min). Oscillations with periods of 4-6 min and amplitudes of 50-100 mHz were not recorded in fact. Oscillations with periods of 8-12 and 13-17 min and amplitudes of 60-100 mHz were detected in almost all the sessions. In the former and the latter oscillations, the time of delay with respect to the heater switch-on was close to 100 min and about 40-50 min, respectively. These values correspond to group propagation velocities of about 160 and 320-400 m/s. The Doppler shift oscillations were caused by the acoustic-gravity waves which led to periodic variations in the electron number density with a relative amplitude of about 0.1-1.0%. It was demonstrated that the acoustic-gravity waves were not recorded when the effective power of the Sura facility was equal to 50 MW and they were confidently observed when the effective power was increased up to 130 MW. It is shown that the period of the wave processes was determined by the period of the heating-pause cycles, and the duration of the wave trains did not depend on the duration of the series of heating-pause cycles. The data suggest that the generation mechanism of recorded wave disturbances is different from the mechanism proposed in 1970-1990.

  6. Effect of dust charge variation on dust—acoustic solitary waves in a magnetized two—ion—temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    XueJu-Kui; LangHe

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  7. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  8. Acoustic P-wave velocity measurements of cataclastic effects in rock salt

    International Nuclear Information System (INIS)

    Model tests are carried out, in order to investigate the cataclastic thermo-mechanical behaviour of rock salt around a simulated repository borehole. The measurements are performed during a transient period of heating and subsequent cooling. Acoustic crosshole measurements are carried out under conditions of compression, scale 1: 41/2. The relationship between cataclastic effects and the acoustic velocity differences is described. Macrofracturing only occurred under circumstances of cooling, when a heater was switched off. One of the model tests was used in the CEC benchmark exercise ''COSA''. Acoustic measuring tubes have been developed for the in situ research on structural changes in rock salt. The tests involved the performance of so-called hole measurements in two parallel boreholes, containing the measuring tubes. The most important observations of a test in an old room in the Asse Mine are the following. A bifurcating open fissure, about 6 to 8 mm wide, prevented the propagation of the acoustic wave; this demonstrates that such cracks and fissures are easily detectable by the applied method. The microcataclasis, particularly that near the roomside wall, causes a reduction of the acoustic velocities, the more so as the angle between the measuring direction and the roomside wall increases. During the injection of a gallery wall with epoxy resins (by GSF) acoustic crosshole measurements were carried out as well. A detailed picture was obtained of the process of the closing of the fractures. By core drilling after this test confirmation was obtained that the fractures were closed. The information that has been gathered, will be used for the interpretation of the crosshole measurements in the near future; these measurements will be carried out around a heater borehole in the HAW field, a large underground test (GSF-ECN)

  9. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons

    Science.gov (United States)

    Lotekar, Ajay; Kakad, Amar; Kakad, Bharati

    2016-10-01

    One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.

  10. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtal, R.G.; Medved, A.V., E-mail: avm@ms.ire.rssi.ru

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined.

  11. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  12. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    Science.gov (United States)

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands.

  13. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    Science.gov (United States)

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands. PMID:27409861

  14. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    Science.gov (United States)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  15. Multi-path propagation of acoustical wave and time reversal field in a solid plate

    Institute of Scientific and Technical Information of China (English)

    WU Hao; ZHANG Bixing; WANG Chenghao

    2005-01-01

    The multi-path effect of the acoustical wave in a solid plate is studied. The multireflection and wave conversion of the cylindrical compressional and shear waves, which are excited by an infinite strip on a free surface of the solid plate, are analyzed thoroughly by the far-field approximation method. The concise analytical representations of the cylindrical waves are obtained. The time reversal processing is then applied to the propagation of the cylindrical waves and analyzed theoretically and experimentally. It is shown that the waves coming from different array elements and different paths all arrive at the original place after the time reversal operation. It indicates that the time reversal can compensate automatically the wave aberration caused by the multi-path effect. The self-adaptive focusing of the time reversal field is also analyzed quantificationally by the focusing gain and the ratio of the principal to the second lobe. The effects of the focus position and the aperture of the transducer array on the focused field are also investigated. It shows that theoretical and experimental results are consistent to each other very well.

  16. Novel methods for acoustic and elastic wave-based subsurface imaging

    Science.gov (United States)

    Heidari, Amir Homayoun

    Novel, accurate and computationally efficient methods for wave-based subsurface imaging in acoustic and elastic media are developed. The methods are based on Arbitrarily Wide-Angle Wave Equations (AWWE), which are highly-accurate space domain one-way wave equations, formulated in terms of displacement components. Main contributions of this research are as follows: (I) Acoustic-AWWE Imaging, a new time-domain migration technique that is highly accurate for imaging steep dips in heterogeneous media. Similar in form to conventional 15° equation, the acoustic AWWE is implemented using an efficient double-marching explicit finite-difference scheme. Its accuracy and efficiency is studied both analytically and through numerical experiments. The method is able to achieve highly accurate images with only a few times the computational cost of the conventional low-order methods. (II) A new class of highly-accurate Absorbing Boundary Conditions (ABCs) for modeling and imaging with high-order one-way wave equations and parabolic equations. These ABCs, are developed using special imaginary-length finite elements. They effectively absorb the incident wave front and generate artifact-free images with as few as three absorbing layers. They are essential tools in imaging in truncated domains and underwater acoustics. (III) Elastic-AWWE imaging: The first high-order space-domain displacement-based elastic imaging method is developed in this research. The method, which is applicable to complex elastic media, is implemented using a unique downward continuation technique. At each depth step, a half-space is attached to the physical layer to simulate one-way propagation. The half-space is effectively approximated using special imaginary-length finite elements. The method is eventually implemented in frequency-space domain using a finite difference method. Numerical instabilities due to improper mapping of complex wave modes are suppressed by rotating the AWWE parameters in complex

  17. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    Science.gov (United States)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2016-08-01

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron and acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.

  18. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    Science.gov (United States)

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-10-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of `water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour.

  19. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    CERN Document Server

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  20. The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions.

    Science.gov (United States)

    Forbes, Barbara J; Pike, E Roy; Sharp, David B

    2003-09-01

    The transformed form of the Webster equation is investigated. Usually described as analogous to the Schrödinger equation of quantum mechanics, it is noted that the second-order time dependency defines a Klein-Gordon problem. This "acoustical Klein-Gordon equation" is analyzed with particular reference to the acoustical properties of wave-mechanical potential functions, U(x), that give rise to geometry-dependent dispersions at rapid variations in tract cross section. Such dispersions are not elucidated by other one-dimensional--cylindrical or conical--duct models. Since Sturm-Liouville analysis is not appropriate for inhomogeneous boundary conditions, the exact solution of the Klein-Gordon equation is achieved through a Green's-function methodology referring to the transfer matrix of an arbitrary string of square potential functions, including a square barrier equivalent to a radiation impedance. The general conclusion of the paper is that, in the absence of precise knowledge of initial conditions on the area function, any given potential function will map to a multiplicity of area functions of identical relative resonance characteristics. Since the potential function maps uniquely to the acoustical output, it is suggested that the one-dimensional wave physics is both most accurately and most compactly described within the Klein-Gordon framework.

  1. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    Institute of Scientific and Technical Information of China (English)

    Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen

    2013-01-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.

  2. Effects of acoustic waves on pupas of Ceratitis capitata. (Wied., 1824) (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    The aim of this research has been to investigate the hypothesis that acoustic waves would provoke a measurable effect on a population of fruit flies, a treatment denominated sonication. Ionizing radiation, the causative agent for the treatment designated by irradiation has been used as a reference, as long as its effects on living beings and particularly on insects are widely known. This research also enquiries into the possible effects of acoustic waves and gamma rays. The experiments of sonication were carried out in the Laboratory of Entomology of the Instituto Biologico de Sao Paulo. The experiments of radiation were carried out in the Centro de Tecnologia das Radiacoes - IPEN, located within the campus of the University of Sao Paulo. It has been employed a Gamma cell source model 220 with average activity of 757.069 ± 293.484 curies (Ci) and an average doses rate of 3.106 ± 0.245 kilo grays per hour (kGy/h). Levels applied to the sonication treatment, in hertz and kilo Hertz were: 0 Hz (control) ; 5.0 Hz; 10.0 Hz; 20.0 Hz; 40.0 Hz; 60.0 Hz; 80.0 Hz; 1.0 k Hz; 2.0 k Hz; 10.0 k Hz; 15.0 k Hz e 20.0 k Hz. Irradiation doses applied in Grays were: 5.0 Gy; 7.5 Gy; 10.0 Gy; 12.5 Gy; 15 Gy; 50 Gy; 100 Gy; 150 Gy and 200 Gy. It has been used an acoustic tube made of glass - 40.6 cm in length and 9.1 cm in diameter - and sinusoidal waves originated from three acoustic sources, with response in decibels, which sound intensity varied from 93.60 ± 1.51 dB to 123.96 ± 0.23 dB. Final results have pointed to evidences that would justify the rejection of null hypothesis H0, to which the average of the treatments due to acoustic waves do not differ significantly from each other.(author)

  3. ZnO film based surface acoustic wave micro-pump

    International Nuclear Information System (INIS)

    In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness

  4. Time domain numerical modeling of wave propagation in 2D acoustic / porous media

    CERN Document Server

    Chiavassa, Guillaume

    2011-01-01

    Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...

  5. Nonlinear features of ion acoustic shock waves in dissipative magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan 731204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India)

    2014-10-15

    The nonlinear propagation of small as well as arbitrary amplitude shocks is investigated in a magnetized dusty plasma consisting of inertia-less Boltzmann distributed electrons, inertial viscous cold ions, and stationary dust grains without dust-charge fluctuations. The effects of dissipation due to viscosity of ions and external magnetic field, on the properties of ion acoustic shock structure, are investigated. It is found that for small amplitude waves, the Korteweg-de Vries-Burgers (KdVB) equation, derived using Reductive Perturbation Method, gives a qualitative behaviour of the transition from oscillatory wave to shock structure. The exact numerical solution for arbitrary amplitude wave differs somehow in the details from the results obtained from KdVB equation. However, the qualitative nature of the two solutions is similar in the sense that a gradual transition from KdV oscillation to shock structure is observed with the increase of the dissipative parameter.

  6. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    International Nuclear Information System (INIS)

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed

  7. Acoustic propagation from a spiral wave front source in an ocean environment.

    Science.gov (United States)

    Hefner, Brian T; Dzikowicz, Benjamin R

    2012-03-01

    A spiral wave front source generates a pressure field that has a phase that depends linearly on the azimuthal angle at which it is measured. This differs from a point source that has a phase that is constant with direction. The spiral wave front source has been developed for use in navigation; however, very little work has been done to model this source in an ocean environment. To this end, the spiral wave front analogue of the acoustic point source is developed and is shown to be related to the point source through a simple transformation. This makes it possible to transform the point source solution in a particular ocean environment into the solution for a spiral source in the same environment. Applications of this transformation are presented for a spiral source near the ocean surface and seafloor as well as for the more general case of propagation in a horizontally stratified waveguide.

  8. Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas

    CERN Document Server

    Sultana, S; Hellberg, M A

    2012-01-01

    The linear and nonlinear properties of large amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modelled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential type analysis reveals the existence of large amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely, the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliquen...

  9. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    Science.gov (United States)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  10. Symmetry and transformation of waves in optics and acoustics of crystals

    CERN Document Server

    Khatkevich, Anatol G

    2016-01-01

    It is show that in group representation by non-traditionally determining by the Maxwell equations, instead of wave, linear differential operator of momentous type from the common point of view the transformation of electromagnetic and ultrasonic radiation as well as the formation of caustics generation of solitons in crystals is represented. It is established that forming operator structural constants determine bias current with the connected charge and group velocity and also optical and acoustic axes of a crystal, which characterize its wave properties, moreover crystals are classified on common electromagnetic base. It is discovered that at change of crystal symmetry and representation of different wave process the problems also take place, which are similar to others spheres of physics and are constructed on the same aximatical base.

  11. Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-01-15

    Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than by a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.

  12. Rayleigh and acoustic gravity waves detection on magnetograms during the Japanese Tsunami, 2011

    CERN Document Server

    Klausner, Virginia; Muella, Marcio T A H; Mendes, Odim; Domingues, Margarete O; Papa, Andres R R

    2015-01-01

    The continuous geomagnetic field survey holds an important potential in future prevention of tsunami damages, and also, it could be used in tsunami forecast. In this work, we were able to detected for the first time Rayleigh and ionospheric acoustic gravity wave propagation in the Z-component of the geomagnetic field due to the Japanese tsunami, 2011 prior to the tsunami arrival. The geomagnetic measurements were obtained in the epicentral near and far-field. Also, these waves were detected within minutes to few hours of the tsunami arrival. For these reasons, these results are very encouraging, and confirmed that the geomagnetic field monitoring could play an important role in the tsunami warning systems, and also, it could provide additional information in the induced ionospheric wave propagation models due to tsunamis.

  13. Studies of Elastic Waves in Ethylene Propylene Rubber Using Acoustic Emission Sensor

    Science.gov (United States)

    Takaoka, Masanori; Sakoda, Tatsuya; Otsubo, Masahisa; Akaiwa, Shigeru; Iki, Masatoshi; Nakano, Shigeharu

    The aim of our study is to investigate the relationship between lowering of the insulation performance of cross-linked polyethylene (CV) cable and partial discharges (PDs) followed by the dielectric breakdown and to establish a diagnostic technique using an acoustic emission (AE) sensor. In this study, we focused on characterization of AE signals detected from ethylene propylene rubbers (EPRs) used as insulating materials of CV cables. Elastic waves with various frequencies were added to the surface of the EPR, and then characteristics of the detected AE signals due to the elastic waves propagated in the EPR were evaluated. We showed characteristics of Lamb waves whose low frequency components around 100 kHz were large and their small attenuation characteristics.

  14. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K.; Behery, E. E. [Department of Physics, Faculty of Science, Damietta University, P.O. Box 34517 New Damietta (Egypt); El-Shamy, E. F. [Department of Physics, Faculty of Science, Damietta University, P.O. Box 34517 New Damietta (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004 Abha (Saudi Arabia)

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  15. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Sassa, K. [Kyoto University, Kyoto (Japan); Uesaka, S. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  16. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  17. Space and Astrophysical Plasmas : Dromion solutions for an electron acoustic wave and its application to space observations

    Indian Academy of Sciences (India)

    S S Ghosh; A Sen; G S Lakhina

    2000-11-01

    The nonlinear evolution of an electron acoustic wave is shown to obey the Davey–Stewartson I equation which admits so called dromion solutions. The importance of these two dimensional localized solutions for recent satellite observations of wave structures in the day side polar cap regions is discussed and the parameter regimes for their existence is delineated.

  18. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: Modulational instability and rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 (China); Sun, Anbang [Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands)

    2013-05-15

    The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.

  19. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    Science.gov (United States)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  20. Oblique ion acoustic wave instabilities in a multi-ion plasma and 3He-rich events

    International Nuclear Information System (INIS)

    Oblique ion acoustic waves in a current-carrying, magnetized plasma are investigated. For a multi-ion plasma whose dominant components are hydrogen and helium, it is found that for some plasma parameters oblique ion acoustic waves can have positive growth rates at frequencies ω ≅ Ω3He (3He cyclotron frequency) and, at the same time, negative growth rates at ω ≅ Ω4He, It is then suggested that these waves can play an essential role in the 3He-rich solar flares. (author)