WorldWideScience

Sample records for bi-dimensional genome scan

  1. A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL

    Directory of Open Access Journals (Sweden)

    Bidanel Jean P

    2009-12-01

    Full Text Available Abstract Background Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA and total number of piglets born (TNB in a three generation Iberian by Meishan F2 intercross. Results The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P SSC17 (P P P P P Conclusions The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17, dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the genetic background where they segregate.

  2. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    Science.gov (United States)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  3. A scanning bi-static SODAR

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, P; Bradley, S [Physics Department, Auckland University, 38 Princes Street, Auckland (New Zealand); Hunerbein, S von [Acoustics Department, Newton Building, University of Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-05-01

    Field results are given from a bi-static SODAR which uses a single central vertical transmission and three distributed microphone array receivers. Fourier transform delay methods are applied to data sampled from each microphone to retrospectively scan in angle and follow the transmitted pulse. Advantages of sampling a narrow atmospheric column, rather than distributed volumes are discussed.

  4. A scanning bi-static SODAR

    International Nuclear Information System (INIS)

    Behrens, P; Bradley, S; Hunerbein, S von

    2008-01-01

    Field results are given from a bi-static SODAR which uses a single central vertical transmission and three distributed microphone array receivers. Fourier transform delay methods are applied to data sampled from each microphone to retrospectively scan in angle and follow the transmitted pulse. Advantages of sampling a narrow atmospheric column, rather than distributed volumes are discussed

  5. Live visualization of genomic loci with BiFC-TALE.

    Science.gov (United States)

    Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao

    2017-01-11

    Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.

  6. One-dimensional BiFeO{sub 3} nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lei [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Sui, Wenbo; Dong, Chunhui; Zhang, Chao [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Jiang, Changjun, E-mail: 779322052@qq.com [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2016-10-30

    Highlights: • We present a fabrication method of one-dimensional BFO nanotubes prepared using a sol–gel-based electrospinning process followed by thermal treatment. • By compared with BiFeO{sub 3} bulks, enhanced room temperature ferromagnetism has been successfully realized in BFO nanotubes. • The impacts of processing temperature on the final microscopic structure and component are characterized in detail. • The existence of plentiful oxygen vacancies will play a key role in terms of enhanced ferromagnetism. - Abstract: With the progress of science and technology, the growing demands for practical applications make low-dimensional multiferroics more appealing in areas such as chemical and bio-sensors, nanoelectronic, high-density data storage devices. One-dimensional BiFeO{sub 3} nanotubes were successfully synthesized by sol–gel-based electrospinning process. The images of scanning electron microscopy and transmission electron microscopy collectively demonstrate that BiFeO{sub 3} nanotubes with long slender structure and virtually uniform diameter of approximately 100 nm were observed at 500 °C annealing temperature. By compared with BiFeO{sub 3} bulks observed at 800 °C annealing temperature, enhanced room temperature ferromagnetism was successfully realized in BiFeO{sub 3} nanotubes at room temperature. The results of electron spin resonance measurement further confirm that ferromagnetic resonances were detected in BiFeO{sub 3} nanotubes at different temperature. X-ray photoelectron spectroscopy study proves the existence of plentiful oxygen vacancies in BiFeO{sub 3} nanotubes, which will play a key role in terms of enhanced ferromagnetism. The results will contribute to expand the applications of BiFeO{sub 3} into the new field of spintronic devices and high-density data storage media.

  7. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  8. Stabilizing and Organizing Bi3 Cu4 and Bi7 Cu12 Nanoclusters in Two-Dimensional Metal-Organic Networks.

    Science.gov (United States)

    Yan, Linghao; Xia, Bowen; Zhang, Qiushi; Kuang, Guowen; Xu, Hu; Liu, Jun; Liu, Pei Nian; Lin, Nian

    2018-04-16

    Multinuclear heterometallic nanoclusters with controllable stoichiometry and structure are anticipated to possess promising catalytic, magnetic, and optical properties. Heterometallic nanoclusters with precise stoichiometry of Bi 3 Cu 4 and Bi 7 Cu 12 can be stabilized in the scaffold of two-dimensional metal-organic networks on a Cu(111) surface through on-surface metallosupramolecular self-assembly processes. The atomic structures of the nanoclusters were resolved using scanning tunneling microscopy and density functional theory calculations. The nanoclusters feature highly symmetric planar hexagonal shapes and core-shell charge modulation. The clusters are arranged as triangular lattices with a periodicity that can be tuned by choosing molecules of different size. This work shows that on-surface metallosupramolecular self-assembly creates unique possibilities for the design and synthesis of multinuclear heterometallic nanoclusters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  10. Controlled synthesis of three-dimensional hierarchical Bi2WO6 microspheres with optimum photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Hong; Song, Jimei; Zhang, Hui; Gao, Fei; Zhao, Shaojuan; Hu, Haiqin

    2012-01-01

    Highlights: ► The synthesized method is very simple. It can be widely used in the production. ► The morphology is novel and the property is fine. ► The formation of 3D hierarchical microsphere can be induced by changing the concentration of KNO 3 . -- Abstract: Three-dimensional (3D) hierarchical Bi 2 WO 6 microsphere and octahedral Bi 2 WO 6 have been synthesized by a facile hydrothermal method using KNO 3 solution and distilled water as solvent, respectively. The obtained products were characterized by X-ray diffraction, scanning electron microscopy, N 2 adsorption/desorption, and UV–vis diffuse reflectance spectroscopy in detail. The concentration of KNO 3 played a key role in the formation of 3D hierarchical Bi 2 WO 6 microspheres. A possible formation mechanism of Bi 2 WO 6 microsphere was proposed. The photocatalytic activity of the as-synthesized products was evaluated by monitoring the degradation of MB solution under sunlight irradiation. It was found that the photocatalytic activity of the 3D hierarchical Bi 2 WO 6 microsphere was superior to the octahedral Bi 2 WO 6 , which was attributed to the larger surface area and special hierarchical structure of Bi 2 WO 6 microsphere.

  11. The Origin of the Superstructure in Bi2Sr2CaCu2O8+dgr as Revealed by Scanning Tunneling Microscopy.

    Science.gov (United States)

    Kirk, M D; Nogami, J; Baski, A A; Mitzi, D B; Kapitulnik, A; Geballe, T H; Quate, C F

    1988-12-23

    Real-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revealing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both (110) directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  12. The origin of the superstructure in Bi2Sr2CaCu2O(8+delta) as revealed by scanning tunneling microscopy

    Science.gov (United States)

    Kirk, M. D.; Nogami, J.; Baski, A. A.; Mitzi, D. B.; Kapitulnik, A.

    1988-12-01

    Real-space images with atomic resolution of the BiO plane of Bi2Sr2CaCu2O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revelaing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both 110-line directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  13. Genomic and antigenic relationships between two 'HoBi'-like strains and other members of the Pestivirus genus.

    Science.gov (United States)

    Mósena, Ana Cristina S; Cibulski, Samuel P; Weber, Matheus N; Silveira, Simone; Silva, Mariana S; Mayer, Fabiana Q; Roehe, Paulo M; Canal, Cláudio W

    2017-10-01

    'HoBi'-like viruses comprise a putative new species within the genus Pestivirus of the family Flaviviridae. 'HoBi'-like viruses have been detected worldwide in batches of fetal calf serum, in surveillance programs for bovine pestiviruses and from animals presenting clinical signs resembling bovine viral diarrhea virus (BVDV)-associated diseases. To date, few complete genome sequences of 'HoBi'-like viruses are available in public databases. Moreover, detailed analyses of such genomes are still scarce. In an attempt to expand data on the genetic diversity and biology of pestiviruses, two genomes of 'HoBi'-like viruses recovered from Brazilian cattle were described and characterized in this study. Analysis of the whole genome and antigenic properties of these two new 'HoBi'-like isolates suggest that these viruses are genetically close to recognized pestiviruses. The present data provide evidence that 'HoBi'-like viruses are members of the genus Pestivirus and should be formally recognized as a novel species.

  14. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  15. Exploring intra- and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals

    International Nuclear Information System (INIS)

    Zhao, Binsheng; Tan, Yongqiang; Bell, Daniel J.; Marley, Sarah E.; Guo, Pingzhen; Mann, Helen; Scott, Marietta L.J.; Schwartz, Lawrence H.; Ghiorghiu, Dana C.

    2013-01-01

    Objective: Understanding magnitudes of variability when measuring tumor size may be valuable in improving detection of tumor change and thus evaluating tumor response to therapy in clinical trials and care. Our study explored intra- and inter-reader variability of tumor uni-dimensional (1D), bi-dimensional (2D), and volumetric (VOL) measurements using manual and computer-aided methods (CAM) on CT scans reconstructed at different slice intervals. Materials and methods: Raw CT data from 30 patients enrolled in oncology clinical trials was reconstructed at 5, 2.5, and 1.25 mm slice intervals. 118 lesions in the lungs, liver, and lymph nodes were analyzed. For each lesion, two independent radiologists manually and, separately, using computer software, measured the maximum diameter (1D), maximum perpendicular diameter, and volume (CAM only). One of them blindly repeated the measurements. Intra- and inter-reader variability for the manual method and CAM were analyzed using linear mixed-effects models and Bland–Altman method. Results: For the three slice intervals, the maximum coefficients of variation for manual intra-/inter-reader variability were 6.9%/9.0% (1D) and 12.3%/18.0% (2D), and for CAM were 5.4%/9.3% (1D), 11.3%/18.8% (2D) and 9.3%/18.0% (VOL). Maximal 95% reference ranges for the percentage difference in intra-reader measurements for manual 1D and 2D, and CAM VOL were (−15.5%, 25.8%), (−27.1%, 51.6%), and (−22.3%, 33.6%), respectively. Conclusions: Variability in measuring the diameter and volume of solid tumors, manually and by CAM, is affected by CT slice interval. The 2.5 mm slice interval provides the least measurement variability. Among the three techniques, 2D has the greatest measurement variability compared to 1D and 3D

  16. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  17. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  18. Uninformative polymorphisms bias genome scans for signatures of selection

    Directory of Open Access Journals (Sweden)

    Roesti Marius

    2012-06-01

    Full Text Available Abstract Background With the establishment of high-throughput sequencing technologies and new methods for rapid and extensive single nucleotide (SNP discovery, marker-based genome scans in search of signatures of divergent selection between populations occupying ecologically distinct environments are becoming increasingly popular. Methods and Results On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’ polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding technical artifacts in the data (PCR and sequencing errors, as a high proportion of SNPs with a low minor allele frequency is a general biological feature of natural populations. Conclusions We suggest that uninformative markers should be excluded from genome scans based on empirical criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together, this should increase the quality and comparability of genome scans, and hence promote our understanding of the processes driving genomic differentiation.

  19. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  20. A Genome-Wide Breast Cancer Scan in African Americans

    Science.gov (United States)

    2010-06-01

    SNPs from the African American breast cancer scan to COGs , a European collaborative study which is has designed a SNP array with that will be genotyped...Award Number: W81XWH-08-1-0383 TITLE: A Genome-wide Breast Cancer Scan in African Americans PRINCIPAL INVESTIGATOR: Christopher A...SUBTITLE A Genome-wide Breast Cancer Scan in African Americans 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0383 5c. PROGRAM

  1. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.

  2. Scanning tunneling microscopy study of the possible topological surface states in BiTeCl

    International Nuclear Information System (INIS)

    Yan, Y J; Ren, M Q; Liu, X; Huang, Z C; Jiang, J; Fan, Q; Miao, J; Xie, B P; Zhang, T; Feng, D L; Xiang, F; Wang, X

    2015-01-01

    Recently, the non-centrosymmetric bismuth tellurohalides such as BiTeCl are being studied as possible candidates for topological insulators. While some photoemission studies showed that BiTeCl is an inversion asymmetric topological insulator, others showed that it is a normal semiconductor with Rashba splitting. Meanwhile, first-principle calculations have failed to confirm the existence of topological surface states in BiTeCl so far. Therefore, the topological nature of BiTeCl requires further investigation. Here we report a low-temperature scanning tunneling microscopy study on the surface states of BiTeCl single crystals. On the tellurium (Te) -terminated surfaces with relatively low defect density, evidence for topological surface states is observed in the quasi-particle interference patterns, both in the anisotropy of the scattering vectors and the fast decay of the interference near the step edges. Meanwhile, on the samples with much higher defect densities, we observed surface states that behave differently. Our results may help to resolve the current controversy on the topological nature of BiTeCl. (paper)

  3. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  4. On Bi-Dimensional Second µ-Variation

    Directory of Open Access Journals (Sweden)

    Ereú Jurancy

    2014-12-01

    Full Text Available In this paper, we present a generalization of the notion of bounded slope variation for functions defined on a rectangle Iba in ℝ2. Given a strictly increasing function µ-defined in a closed real interval, we introduce the class BVµ,2 (Iba , of functions of bounded second µ-variation on Iba ; and show that this class can be equipped with a norm with respect to which it is a Banach space. We also deal with the important case of factorizable functions in BVµ,2 (Iba and finally we exhibit a relation between this class and the one of double Riemann-Stieltjes integrals of functions of bi-dimensional bounded variation.

  5. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    Science.gov (United States)

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  6. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  7. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation

    Directory of Open Access Journals (Sweden)

    Jing-jing Xu

    2017-10-01

    Full Text Available A series of Bi2S3-BiOCl composites with two-dimensional (2D square-like structures were prepared via a two-step anion exchange route. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and diffuse reflectance spectra (DRS were used to investigate the properties of the as-prepared Bi2S3-BiOCl heterostructures. The coupling of BiOCl and Bi2S3 induced enhanced photoabsorption efficiency and bandgap narrowing. A reactive brilliant red X-3B dye was used as a contaminant to test the photocatalytic activity of the obtained Bi2S3-BiOCl samples under visible light irradiation. The sample Bi2S3-BiOCl with a mass ratio of 8:4 exhibited the highest photodegradation efficiency, which was six times higher than that of pure BiOCl. In addition, a mechanism for the enhancement of photocatalytic activity is proposed.

  8. Can BI-RADS features on mammography be used as a surrogate for expensive genomic testing in breast cancer patients?

    Science.gov (United States)

    Harowicz, Michael R.; Marks, Jeffrey R.; Marcom, P. Kelly; Mazurowski, Maciej A.

    2017-03-01

    Medical oncologists increasingly rely on expensive genomic analysis to stratify patients for different treatment. The genomic markers are able to divide patients into groups that behave differently in terms of tumor presentation, likelihood of metastatic spread, and response to chemotherapy and radiation therapy. In recent years there has been a rapid increase in the number of genomic tests available, like the Oncotype DX test, which provides the risk of cancer recurrence for a subset of patients. Radiogenomics, a new field that investigates the relationship between imaging phenotypes and genomic characteristics, may offer a less expensive and less invasive imaging surrogate for molecular subtype and Oncotype DX recurrence score (ODRS). This retrospective study analyzes the relationship between Breast Imaging-Reporting and Data System (BI-RADS) features as assessed by radiologists on mammograms with molecular subtype and ODRS. We used data from patients with BI-RADS features (shape or margin) and a genomic feature (subtype or ODRS) for the following cohort: shape vs. subtype (n=69), margin vs. subtype (n=78), shape vs. ODRS (n=20), and margin vs. ODRS (n=18). The association between features was assessed using a Fisher's exact test. Our results show that shape assessed by radiologists according to the BI-RADS lexicon is associated with molecular subtype (p=0.0171), while BI-RADS features of shape and margin were not significantly associated with ODRS (p=0.7839, p=0.6047 respectively).

  9. Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2): New one-dimensional Bi-coordination materials-Reversible hydration and topotactic decomposition to {alpha}-Bi{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye Rim [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-03-15

    Two one-dimensional bismuth-coordination materials, Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi{sub 2}O{sub 3}, 2,6-NC{sub 5}H{sub 3}(CO{sub 2}H){sub 2}, HF, and water at 180 Degree-Sign C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi{sup 3+} cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C led to {alpha}-Bi{sub 2}O{sub 3} that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C results in the {alpha}-Bi{sub 2}O{sub 3} rods that maintain the original morphology of the crystals. Highlights: Black-Right-Pointing-Pointer Synthesis of one-dimensional chain Bi-organic frameworks. Black-Right-Pointing-Pointer Reversible hydration reactions of Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F. Black-Right-Pointing-Pointer Topotactic decomposition maintaining the same morphology of the original crystals.

  10. Three-Dimensional Bi-Continuous Nanoporous Gold/Nickel Foam Supported MnO2 for High Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Jie; Zou, Xilai; Sun, Peng; Cui, Guofeng

    2017-12-19

    A three-dimensional bi-continuous nanoporous gold (NPG)/nickel foam is developed though the electrodeposition of a gold-tin alloy on Ni foam and subsequent chemical dealloying of tin. The newly-designed 3D metal structure is used to anchor MnO 2 nanosheets for high-performance supercapacitors. The formed ternary composite electrodes exhibit significantly-enhanced capacitance performance, rate capability, and excellent cycling stability. A specific capacitance of 442 Fg -1 is achieved at a scan rate of 5 mV s -1 and a relatively high mass loading of 865 μg cm -2 . After 2500 cycles, only a 1% decay is found at a scan rate of 50 mV s -1 . A high power density of 3513 W kg -1 and an energy density of 25.73 Wh kg -1 are realized for potential energy storage devices. The results demonstrate that the NPG/nickel foam hybrid structure significantly improves the dispersibility of MnO 2 and makes it promising for practical energy storage applications.

  11. Synthesis of three-dimensional flower-like BiOCl:RE{sup 3+} (RE{sup 3+} = Eu{sup 3+}, Sm{sup 3+}) globular microarchitectures and their luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yang-Yang; Zhang, Zhi-Jun [Department of Physics, Dongguk University, Seoul, 100715 (Korea, Republic of); Zhu, Gang-Qiang [Department of Physics, Shanxi Normal University, Xi’an, 710062 (China); Yang, Woochul, E-mail: wyang@dongguk.edu [Department of Physics, Dongguk University, Seoul, 100715 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • Three-dimensional flower-like Eu{sup 3+} and Sm{sup 3+}-activated BiOCl globular microarchitectures have been synthesized. • Ostwald ripening and recrystallization are responsible for the growth mechanism of BiOCl microarchitectures. • Efficient red-emission from Eu{sup 3+}:BiOCl is observed due to the well-crystallized structures of the microarchitectures. - Abstract: Three-dimensional flower-like Eu{sup 3+} and Sm{sup 3+}-activated BiOCl globular microarchitectures were synthesized by the solvothermal method employing urea as a dispersing agent for the first time. The crystal structure, morphologies and luminescence properties of Eu{sup 3+} and Sm{sup 3+} doped BiOCl have been systematically investigated by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) and spectroscopy, respectively. The unit cell volumes show a nearly linear decrease by about 0.18 and 0.15% with increasing Eu{sup 3+} and Sm{sup 3+} concentration up to 9 mol%, respectively. All of the prepared samples show flower-like globular microarchitectures with an average diameter about 3–5 μm with different Eu{sup 3+} and Sm{sup 3+} concentrations. Possible formation mechanism for the flower-like microarchitectures is proposed on the basis of time-dependent experiment. Both BiOCl:Eu{sup 3+} and BiOCl:Sm{sup 3+} samples show a strong red emission corresponding to the {sup 5}D{sub 0} → {sup 7}F{sub 4} transition (700 nm) of Eu{sup 3+} and {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition (600 nm) of Sm{sup 3+}, respectively. This work sheds some light on the design and preparation of red-emitting phosphors with novel microstructures.

  12. Cooperative phenomena within organised bi-dimensional structures

    International Nuclear Information System (INIS)

    Armand, Franck

    2001-01-01

    In this report produced for an Accreditation to Supervise Research, the author defines a cooperative phenomenon as a phenomenon occurring each time a cooperation between elementary entities results in a collective property which exceeds the simple addition of disorganised individual properties. He reports works and researches which show that such phenomena can be generated by molecular architectures developed in laboratory, but also requires an appropriate organisation of active elementary entities. This can be obtained by self-organisation in solution. However, many applications assume the use of solid phases, and notably thin layers. In this respect, the Langmuir-Blodgett technique and self-assembly are very interesting techniques to produce mono-molecular thin layers, without however controlling molecule in-plane orientation and organisation. The author propose an overview of his works which aimed at obtaining this control, and reports three examples of cooperative phenomena: the generation of a second harmonic, spin transition with hysteresis, and electron conduction (one-dimensional and bi-dimensional electron transfer). The report also contains articles published in various scientific publications, and contributions to congresses [fr

  13. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [College of Engineering, China Agricultural University, Beijing 100083 (China); Sinomatech Wind Power Blade Co., Ltd, Beijing 100092 (China); Wu, Di [College of Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wenshuai [College of Science, China Agricultural University, Beijing 100083 (China); Yang, Lianzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Ricoeur, Andreas; Wang, Zhibin [Institute of Mechanics, University of Kassel, 34125 Kassel (Germany); Gao, Yang, E-mail: gaoyangg@gmail.com [College of Science, China Agricultural University, Beijing 100083 (China)

    2016-09-16

    Based on the Stroh formalism of one-dimensional quasicrystals with piezoelectric effect, the problems of an infinite plane composed of two different quasicrystal half-planes are taken into account. The solutions of the internal and interfacial Green's functions of quasicrystal bi-material are obtained. Moreover, numerical examples are analyzed for a quasicrystal bi-material subjected to line forces or line dislocations, showing the contour maps of the coupled fields. The impacts of changing material constants on the coupled field components are investigated. - Highlights: • Green's functions of 1D piezoelectric quasicrystal bi-material are studied. • The coupled fields subjected to line forces or line dislocations are obtained. • Mechanical behavior under the effect of different material constants is researched.

  14. A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi_2WO_6 microspheres

    International Nuclear Information System (INIS)

    Liu, Hui; Guo, Kai; Duan, Congyue; Chen, Xianjin; Zhu, Zhenfeng

    2016-01-01

    Three-dimensional flower-like Bi_2WO_6 microspheres (3D-Bi_2WO_6 MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi_2WO_6 MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi_2WO_6 MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H_2O_2. Spectroscopic and electrochemical results reveal that 3D-Bi_2WO_6 MSs constitute an excellent immobilization matrix with biocompatibility for enzymes. Meanwhile, due to unique morphology of the flower-like microspheres, the direct electron transfer of HRP is facilitated and the prepared biosensors display good performances for the detection of H_2O_2 with a wide linear range, including two linear sections: 0.5–100 μM (R"2 = 0.9983) and 100–250 μM (R"2 = 0.9981), as well as an extremely low method detection limit of 0.18 μM. - Highlights: • 3D-Bi_2WO_6 microspheres are used to fabricate a mediator-free biosensor firstly. • The biosensor displays a wide linear range of 0.5–250 μM for H_2O_2. • The biosensor exhibits a low detection limit of 0.18 μM for H_2O_2.

  15. New bi-dimensional SPAD arrays for time resolved single photon imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, R. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S., E-mail: tudisco@lns.infn.it [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Viale A. Doria 6, 95125 Catania (Italy); Piemonte, C. [FBK-Fondazione Bruno Kessler, Via S. Croce 77, 38122 Trento (Italy); Lo Presti, D. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Anzalone, A. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Musumeci, F.; Scordino, A. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Serra, N.; Zorzi, N. [FBK-Fondazione Bruno Kessler, Via S. Croce 77, 38122 Trento (Italy)

    2013-08-01

    Some of the first results concerning the electrical and optical performances of new bi-dimensional single photon avalanche diodes arrays for imaging applications are briefly presented. The planned arrays were realized at the Fondazione Bruno Kessler—Trento and tested at LNS–INFN. The proposed new solution, utilizing a new architecture with integrated quenching resistors, allows to simplify the electronic readout.

  16. New bi-dimensional SPAD arrays for time resolved single photon imaging

    International Nuclear Information System (INIS)

    Grasso, R.; Tudisco, S.; Piemonte, C.; Lo Presti, D.; Anzalone, A.; Musumeci, F.; Scordino, A.; Serra, N.; Zorzi, N.

    2013-01-01

    Some of the first results concerning the electrical and optical performances of new bi-dimensional single photon avalanche diodes arrays for imaging applications are briefly presented. The planned arrays were realized at the Fondazione Bruno Kessler—Trento and tested at LNS–INFN. The proposed new solution, utilizing a new architecture with integrated quenching resistors, allows to simplify the electronic readout

  17. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  18. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    Science.gov (United States)

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  19. Two-dimensional peridynamic simulation of the effect of defects on the mechanical behavior of Bi2Sr2CaCu2Ox round wires

    International Nuclear Information System (INIS)

    Le, Q V; Chan, W K; Schwartz, J

    2014-01-01

    Ag/AgX sheathed Bi 2 Sr 2 CaCu 2 O x (Bi2212) is the only superconducting round wire (RW) with high critical current density (J c ) at high magnetic (>25 T) and is thus a strong candidate for high field magnets for nuclear magnetic resonance and high energy physics. A significant remaining challenge, however, is the relatively poor electromechanical behavior of Bi2212 RW, yet there is little understanding of the relationships between the internal Bi2212 microstructure and the mechanical behavior. This is in part due to the complex microstructures within the Bi2212 filaments and the uncertain role of interfilamentary bridges. Here, two-dimensional peridynamic simulations are used to study the stress distribution of the Bi2212 RWs under an axial tensile load. The simulations use scanning electron micrographs obtained from high J c wires as a starting point to study the impact of various defects on the distribution of stress concentration within the Bi2212 microstructure and Ag. The flexibility of the peridynamic approach allows various defects, including those captured from SEM micrographs and artificially created defects, to be inserted into the microstructure for systematic study. Furthermore, this approach allows the mechanical properties of the defects to be varied, so the effects of porosity and both soft and hard secondary phases are evaluated. The results show significant stress concentration around defects, interfilamentary bridges and the rough Bi2212/Ag interface. In general, the stress concentration resulting from porosity is greater than that of solid-phase inclusions. A clear role of the defect geometry is observed. Results indicate that crack growth is likely to initiate at the Ag/Bi2212 interface or at voids, but that voids may also arrest crack growth in certain circumstances. These results are consistent with experimental studies of Bi2212 electromechanical behavior and magneto-optical imaging of crack growth. (paper)

  20. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  1. Synthesis of carbon-doped nanosheets m-BiVO{sub 4} with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Deqiang; Zong, Wenjuan [Chongqing University, Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment Ministry of Education and National Centre for International Research of Low-carbon and Green Buildings (China); Fan, Zihong [School of Environmental and Biological Engineering Chongqing Technology and Business University (China); Fang, Yue-Wen [East China Normal University, Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering (China); Xiong, Shimin; Du, Mao; Wu, Tianhui; Ji, Fangying, E-mail: jfy@cqu.edu.cn; Xu, Xuan, E-mail: xuxuan@cqu.edu.cn [Chongqing University, Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment Ministry of Education and National Centre for International Research of Low-carbon and Green Buildings (China)

    2017-04-15

    To achieve an efficient visible-light absorption and degradation of bismuth vanadate (BiVO{sub 4}), in this paper, a carbon-doped (C-doped) nanosheets monoclinic BiVO{sub 4} (m-BiVO{sub 4}), with thicknesses within 19.86 ± 8.48 nm, was synthesized using polyvinylpyrrolidone K-30 (PVP) as a template and l-carbonic as the carbon source by one-step hydrothermal synthesis method. This C-doped BiVO{sub 4} in three-dimensional (3D) hierarchical structure enjoys high visible-light photocatalytic property. The samples were characterized using x-ray diffraction, scanning electron microscope, Raman spectra, energy dispersive spectrometer, transmission electron microscope, x-ray photoelectron spectroscopy, UV–Vis diffused reflectance spectroscopy, specific surface area, electron spin resonance, and transient photocurrent response, photoluminescence spectra, and incident-photon-to-current conversion efficiency, respectively. What is more, we studied the C-doping effect on the band-gap energy of BiVO{sub 4} based on First-principles. X-ray diffraction analysis showed that all photocatalysts were in the same single monoclinic scheelite structure. According to the other characterization results, the element C was successfully doped in BiVO{sub 4}, resulting in the 3D hierarchical structure of C-doped BiVO{sub 4} (P-L-BiVO{sub 4}). We speculated that it could be the directional coalescence mechanism by which the l-cysteine promoted the two-dimensional growth and C-doping process of BiVO{sub 4}, thus leading to the formation of nanosheets which were then promoted into 3D self-assembly by PVP and the shortening of the band gap. Among all samples, P-L-BiVO{sub 4} can make the highest removal ratio of rhodamine B under visible-light irradiation. The stability of P-L-BiVO{sub 4} was verified by recycle experiments. It showed that P-L-BiVO{sub 4} had strong visible-light absorption behavior and high electron–hole separation efficiency and stability, making a significant

  2. Locus of Control revisited: development of a new bi-dimensional measure

    Directory of Open Access Journals (Sweden)

    Javier Suárez-Álvarez

    Full Text Available Locus of control (LOC has a long tradition in Psychology, and various instruments have been designed for its measurement. However, the dimensionality of the construct is unclear, and still gives rise to considerable controversy. The aim of the present work is to present new evidence of validity in relation to the dimensionality of LOC. To this end, we developed a new measurement instrument with 23 items. The sample was made up of 697 Spanish participants, of whom 57.5% were women (M=22.43; SD= 9.19. The results support the bi-dimensionality of LOC: internal (α=.87 and external (α=.85. Furthermore, both subscales have shown adequate validity evidence in relation to self-efficacy, achievement motivation and optimism (r xy> .21. Statistically significant differences were found by sex (p < .05: men scored higher in external LOC and women in internal LOC. The validity evidence supports a two-dimensional structure for the LOC, and the measurement instrument developed showed adequate psychometric properties.

  3. (2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model

    Science.gov (United States)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2018-06-01

    We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.

  4. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  5. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    Science.gov (United States)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean Squares (RMS) in terms of their

  6. Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Pedersen, Dorthe

    2005-01-01

    in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection......, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability....

  7. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-01-01

    Graphical abstract: Faraday hysteresis loops for Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 film on glass-ceramic substrate (a), Bi 2.8 Y 0.2 Fe 5 O 12 film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO 2 /Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi 2.8 Y 0.2 Fe 5 O 12 , Bi 2.5 Gd 0.5 Fe 3.8 Al 1.2 O 12 , Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 and Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 Al 0.8 O 12 garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO 2 films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO 2 films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  8. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  9. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  10. A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi{sub 2}WO{sub 6} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui, E-mail: liuhui@sust.edu.cn; Guo, Kai; Duan, Congyue; Chen, Xianjin; Zhu, Zhenfeng

    2016-07-01

    Three-dimensional flower-like Bi{sub 2}WO{sub 6} microspheres (3D-Bi{sub 2}WO{sub 6} MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi{sub 2}WO{sub 6} MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi{sub 2}WO{sub 6} MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H{sub 2}O{sub 2}. Spectroscopic and electrochemical results reveal that 3D-Bi{sub 2}WO{sub 6} MSs constitute an excellent immobilization matrix with biocompatibility for enzymes. Meanwhile, due to unique morphology of the flower-like microspheres, the direct electron transfer of HRP is facilitated and the prepared biosensors display good performances for the detection of H{sub 2}O{sub 2} with a wide linear range, including two linear sections: 0.5–100 μM (R{sup 2} = 0.9983) and 100–250 μM (R{sup 2} = 0.9981), as well as an extremely low method detection limit of 0.18 μM. - Highlights: • 3D-Bi{sub 2}WO{sub 6} microspheres are used to fabricate a mediator-free biosensor firstly. • The biosensor displays a wide linear range of 0.5–250 μM for H{sub 2}O{sub 2}. • The biosensor exhibits a low detection limit of 0.18 μM for H{sub 2}O{sub 2}.

  11. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    International Nuclear Information System (INIS)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang; Liu, Bitao; Wang, Zhaofeng

    2015-01-01

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed

  12. Approaching the Sequential and Three-Dimensional Organization of Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2006-01-01

    textabstractGenomes are one of the major foundations of life due to their role in information storage, process regulation and evolution. To achieve a deeper unterstanding of the human genome the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic

  13. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    International Nuclear Information System (INIS)

    Xiao, Xin; Hao, Rong; Liang, Min; Zuo, Xiaoxi; Nan, Junmin; Li, Laisheng; Zhang, Weide

    2012-01-01

    Highlights: ► Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. ► Photocatalyst is BiOI/BiOCl composites. ► BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. ► A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI 3 and BiCl 3 as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L −1 in the BPA solution (C 0 = 20 mg L −1 , pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron–hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC–MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst exhibited a high mineralization ratio, high stability and easy separation for recycling use, suggesting that it is a

  14. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi

    Directory of Open Access Journals (Sweden)

    Satya K. Kushwaha

    2015-04-01

    Full Text Available High quality hexagon plate-like Na3Bi crystals with large (001 plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D Dirac semimetal (TDS behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  15. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N. [Taurida National V.I. Vernadsky University, Vernadsky Av., 4, 95007 Simferopol (Ukraine); Salyuk, O.Y., E-mail: olga-saliuk@yandex.ru [Institute of Magnetizm NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  16. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  17. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Hao, Rong; Liang, Min; Zuo, Xiaoxi [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nan, Junmin, E-mail: jmnan@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Li, Laisheng [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Zhang, Weide [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. Black-Right-Pointing-Pointer Photocatalyst is BiOI/BiOCl composites. Black-Right-Pointing-Pointer BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. Black-Right-Pointing-Pointer A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI{sub 3} and BiCl{sub 3} as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L{sup -1} in the BPA solution (C{sub 0} = 20 mg L{sup -1}, pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron-hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC-MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst

  18. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  19. Preparation of BiVO4-Graphene Nanocomposites and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B.

  20. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  1. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  2. Dynamics of pre-strained bi-material elastic systems linearized three-dimensional approach

    CERN Document Server

    Akbarov, Surkay D

    2015-01-01

    This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.

  3. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    Science.gov (United States)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  4. New possibilities of three-dimensional reconstruction of computed tomography scans

    International Nuclear Information System (INIS)

    Herman, M.; Tarjan, Z.; Pozzi-Mucelli, R.S.

    1996-01-01

    Three-dimensional (3D) computed tomography (CT) scan reconstructions provide impressive and illustrative images of various parts of the human body. Such images are reconstructed from a series of basic CT scans by dedicated software. The state of the art in 3D computed tomography is demonstrated with emphasis on the imaging of soft tissues. Examples are presented of imaging the craniofacial and maxillofacial complex, central nervous system, cardiovascular system, musculoskeletal system, gastrointestinal and urogenital systems, and respiratory system, and their potential in clinical practice is discussed. Although contributing no new essential diagnostic information against conventional CT scans, 3D scans can help in spatial orientation. 11 figs., 25 refs

  5. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope

    Science.gov (United States)

    Shin, Sanghoon; Yu, Younghun

    2018-04-01

    For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.

  6. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  7. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  8. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  9. Microstructure Of MnBi/Bi Eutectic Alloy

    Science.gov (United States)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  10. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  11. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  12. The application of 3-dimensional CAT scan reconstruction for maxillofacial deformities

    International Nuclear Information System (INIS)

    Shimbashi, Takeshi; Tomonari, Hiroshi; Ishii, Masahiro; Sakurai, Nobuaki; Kodachi, Ken; Kubo, Eiichi; Tsuchida, Yoshitaka; Takagi, Hiroshi.

    1987-01-01

    It has been found very useful to recognize craniofacial deformities 3-dimensionally, and to observe 3-D Cat scan reconstructions that have been performed by others. Thus, starting in 1985, we have developed a 3-D CT system that combines conventional X-ray CAT scan hardware to a 3-Dimensional display software. In this paper we report on our 3-CT system, its basic algorithm, and its basic processes, i.e., the threshold process, the perspective process, the shading process and the display. The mixture shading which we have developed makes 3-D displays clearer and more natural. Also, we have applied our 3-D display to 39 cases of maxillofacial diformities. (author)

  13. Integrating high dimensional bi-directional parsing models for gene mention tagging.

    Science.gov (United States)

    Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang

    2008-07-01

    Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene

  14. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Kahl, G.; Ramser, J.; Terauchi, R.; Lopez-Peralta, C.; Asemota, H.N.; Weising, K.

    1998-01-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author)

  15. On the use of video projectors for three-dimensional scanning

    Science.gov (United States)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo

    2017-08-01

    Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.

  16. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    Science.gov (United States)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  17. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  18. Evaluation of diagnostic quality in musculoskeletal three-dimensional CT scans

    International Nuclear Information System (INIS)

    Vannier, M.W.; Hildebolt, C.F.; Gilula, L.A.; Sutherland, C.J.; Offutt, C.J.; Drebin, R.; Mantle, M.; Giordono, T.A.

    1988-01-01

    A major application of three-dimensional computed tomography (CT) is in the imaging of the skeleton. Three-dimensional CT has an important role in determining the presence and extent of congenital and acquired orthopedic abnormalities. The objective of this study was to compare the diagnostic sensitivity and specificity of three-dimensional CT, planar CT, and plain radiography in the detection and characterization of orthopedic abnormalities. Three-dimensional CT scan reconstructions were obtained by two methods, surface reconstruction and volumetric techniques. Seventy patients were imaged with CT, three-dimensional CT, and plain radiography. The consensus opinion of experts with access to all images plus clinical history, surgical findings, and follow-up findings were taken as truth. Expert radiologists read these cases in a blinded fashion. The results were compared using receiver operating characteristic (ROC) analysis. The diagnostic value of each three-dimensional reconstruction method and the parameters used to perform the reconstructions were evaluated

  19. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  20. Structure and crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)]. E-mail: zjbcy@126.com; Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-05-15

    The experimental IR (infrared spectra) and differential scanning calorimetry (DSC) curves of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses, containing 30-60 mol% Bi{sub 2}O{sub 3}, have been investigated in the article. The composition dependence of IR absorption suggests that addition of Bi{sub 2}O{sub 3} results in a change in the short-range order structure of the borate matrix. The increase of Bi{sub 2}O{sub 3} content causes a progressive conversion of [BO{sub 3}] to [BO{sub 4}] units. Bi{sub 2}O{sub 3}, in the form of [BiO{sub 6}] octahedral units, plays the role of glass former. The crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses were described by thermal stability indexes (k {sub gl}, {delta}T), activation energy (E) for crystallization and numerical factors(n, m) depending on the nucleation process and growth morphology, which were calculated by Satava method and the modified Ozawa-Chen method. When Bi{sub 2}O{sub 3} {<=} 45 mol%, the increase of Bi{sub 2}O{sub 3} tends to improve the thermal stabilities of the glasses. In this case, k {sub gl} may be more suitable for estimating the glass thermal stability in above composition range than {delta}T. A further increase of Bi{sub 2}O{sub 3} content will increase the crystallization trends of investigated glasses. Two possible kinds of growth mechanisms were involved in Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses: one-dimensional growth and two-dimensional growth. Moreover, structures of crystallized glasses were observed by X-ray diffraction (XRD). BiBO{sub 3} crystal with special non-linear optical properties can be obtained when Bi{sub 2}O{sub 3} {>=} 50 mol%.

  1. Combined amplification and hybridization techniques for genome scanning in vegetatively propagated crops

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, G; Ramser, J; Terauchi, R [Biocentre, University of Frankfurt, Frankfurt am Main (Germany); Lopez-Peralta, C [IRGP, Colegio de Postgraduados, Montecillo, Edo. de Mexico, Texcoco (Mexico); Asemota, H N [Biotechnology Centre, University of the West Indies, Mona, Kingston (Jamaica); Weising, K [School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    1998-10-01

    A combination of PCR- and hybridization-based genome scanning techniques and sequence comparisons between non-coding chloroplast DNA flanking tRNA genes has been employed to screen Dioscorea species for intra- and interspecific genetic diversity. This methodology detected extensive polymorphisms within Dioscorea bulbifera L., and revealed taxonomic and phylogenetic relationships among cultivated Guinea yams varieties and their potential wild progenitors. Finally, screening of yam germplasm grown in Jamaica permitted reliable discrimination between all major cultivars. Genome scanning by micro satellite-primed PCR (MP-PCR) and random amplified polymorphic DNA (RAPD) analysis in combination with the novel random amplified micro satellite polymorphisms (RAMPO) hybridization technique has shown high potential for the genetic analysis of yams, and holds promise for other vegetatively propagated orphan crops. (author) 46 refs, 3 figs, 3 tabs

  2. Aspects of scanning force microscope probes and their effects on dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yacoot, Andrew [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Koenders, Ludger [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)], E-mail: andrew.yacoot@npl.co.uk

    2008-05-21

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  3. Aspects of scanning force microscope probes and their effects on dimensional measurement

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Koenders, Ludger

    2008-01-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  4. Spectroscopic evidence of two-dimensional character of the 90 K Bi2(Sr,La,Ca)3Cu2O8 superconductors

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Borg, A.; Lindau, I.; Spicer, W.E.; Mitzi, D.B.; Kapitulnik, A.

    1989-01-01

    Polarization-dependent angle-resolved photoemission experiments in the constant final state mode (absorption measurements) were performed on single crystals of the Bi-based 2212 material using synchrotron radiation in the photon energy range 10--40 eV. Evidence of polarization-dependent transitions due to Bi 5d→6p, Sr 4p→4d, and Ca 3p→3d excitations is observed. The data show that the electronic charge is highly localized to the layers of the crystal structure, thus providing a direct spectroscopic confirmation of the two-dimensional nature of these types of materials. Polarization-sensitive absorption signals at 14--15 eV attributed to Bi 6s→6p transitions show that the density of states (DOS) of the Bi 6p z holes peaks at about 0.7 eV higher energy than the DOS of the Bi 6p x,y holes

  5. An empirical Bayes method for updating inferences in analysis of quantitative trait loci using information from related genome scans.

    Science.gov (United States)

    Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B

    2006-08-01

    Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.

  6. The use of the bi-factor model to test the uni-dimensionality of a battery of reasoning tests.

    Science.gov (United States)

    Primi, Ricardo; Rocha da Silva, Marjorie Cristina; Rodrigues, Priscila; Muniz, Monalisa; Almeida, Leandro S

    2013-02-01

    The Battery of Reasoning Tests 5 (BPR-5) aims to assess the reasoning ability of individuals, using sub-tests with different formats and contents that require basic processes of inductive and deductive reasoning for their resolution. The BPR has three sequential forms: BPR-5i (for children from first to fifth grade), BPR-5 - Form A (for children from sixth to eighth grade) and BPR-5 - form B (for high school and undergraduate students). The present study analysed 412 questionnaires concerning BPR-5i, 603 questionnaires concerning BPR-5 - Form A and 1748 questionnaires concerning BPR-5 - Form B. The main goal was to test the uni-dimensionality of the battery and its tests in relation to items using the bi-factor model. Results suggest that the g factor loadings (extracted by the uni-dimensional model) do not change when the data is adjusted for a more flexible multi-factor model (bi-factor model). A general reasoning factor underlying different contents items is supported.

  7. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    Science.gov (United States)

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients

  8. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.

    Science.gov (United States)

    Mao, Hongliang; Wang, Hao

    2017-03-01

    Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. wangh8@fudan.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Xiao, Kechao; Vlassak, Joost J.

    2015-01-01

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials

  10. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    Science.gov (United States)

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  11. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  12. Data compression and genomes: a two-dimensional life domain map.

    Science.gov (United States)

    Menconi, Giulia; Benci, Vieri; Buiatti, Marcello

    2008-07-21

    We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.

  13. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.; Ekholm, J.; Forabosco, P.; Franke, F.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenkel, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schäfer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.; Steinhausen, H.C.; van der Meulen, E.; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  14. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.P.; Ekholm, J.; Forabosco, P.; Franke, B.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenke, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schafer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Meulen, E. van der; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  15. Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach.

    Science.gov (United States)

    Fariello, María Inés; Boitard, Simon; Mercier, Sabine; Robelin, David; Faraut, Thomas; Arnould, Cécile; Recoquillay, Julien; Bouchez, Olivier; Salin, Gérald; Dehais, Patrice; Gourichon, David; Leroux, Sophie; Pitel, Frédérique; Leterrier, Christine; SanCristobal, Magali

    2017-07-01

    Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single-marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behaviour in quail and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genomewide analyses such as GWAS. © 2017 John Wiley & Sons Ltd.

  16. Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems

    International Nuclear Information System (INIS)

    Sergyeyev, Artur; Szablikowski, Blazej M.

    2008-01-01

    We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, (nlin.SI/0202008); A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, (nlin.SI/0310036); L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, (nlin.SI/0312043); A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614]. Then we construct a (2+1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy

  17. Three-dimensional imaging and scanning: Current and future applications for pathology

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2017-01-01

    Full Text Available Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology.

  18. Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe{sub 3}O{sub 4} hybrid nanocomposites under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shengwang [Department of Chemistry, College of Science, North University of China, Taiyuan 030051 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Hou, Song; Wan, Li [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Qiang [Heilongjiang Research Academy of Environmental Sciences, Harbin 150056 (China); Lv, Jiapei; Zhang, Yuan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Gao, Jianfeng [Department of Chemistry, College of Science, North University of China, Taiyuan 030051 (China); Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xu, Jian, E-mail: xujian@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2017-06-05

    Highlights: • A novel BiOBr/BiOI/Fe{sub 3}O{sub 4} hybrid nanocomposites was prepared for the first time. • BiOBr-BiOI-Fe{sub 3}O{sub 4} (2:2:0.5) displays superior photocatalytic activity for TBBPA. • Good magnetic property makes it easy for the material’s recovery from solution. • The photocatalytic reaction mechanism of BiOBr/BiOI/Fe{sub 3}O{sub 4} was proposed. • Superoxide radical is the dominant ROS in TBBPA degradation. - Abstract: A novel flower-like three-dimensional BiOBr/BiOI/Fe{sub 3}O{sub 4} heterojunction photocatalyst was synthesized using a simple in situ co-precipitation method at room temperature. The hybrid composites were characterized by a couple of techniques including X-ray powder diffraction, scanning electron microscope, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, Brunauer-Emmett-Teller, X-ray photo-electron spectroscopy, photoluminescence technique, and vibrating sample magnetometer. Fe{sub 3}O{sub 4} nanoparticles were perfectly loaded on the surface of BiOBr/BiOI microspheres. The recyclable magnetic BiOBr/BiOI/Fe{sub 3}O{sub 4} was employed to degrade TBBPA under visible light irradiation. The optimal removal efficiency of the ternary BiOBr/BiOI/Fe{sub 3}O{sub 4} (2:2:0.5) nanocomposite reached up to 98.5% for TBBPA in aqueous solution. The superior photocatalytic activity of BiOBr/BiOI/Fe{sub 3}O{sub 4} was mainly ascribed to large surface area and appropriate energy gaps, resulting in the effective adsorption and separation of electrons-hole pairs. The photogenerated reactive species determined by free radicals trapping experiments revealed that the excellent catalytic activity was primarily driven by ·O{sub 2}{sup −} radical. The photocatalytic degradation kinetics and a detailed mechanism were also proposed. Result demonstrated that the BiOBr/BiOI/Fe{sub 3}O{sub 4} can be magnetically recycled, and maintain high photocatalytic activity after reuse over five cycles. It

  19. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    Science.gov (United States)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  20. Structural variations and dielectric properties of (Bi1-xL ax ) 2Si O5 (0 ≤x ≤0.1 ): Polycrystallines synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses

    Science.gov (United States)

    Taniguchi, Hiroki; Tatewaki, Shingo; Yasui, Shintaro; Fujii, Yasuhiro; Yamaura, Jun-ichi; Terasaki, Ichiro

    2018-04-01

    This paper focuses on effects of isovalent La substitution on the crystal structure and dielectric properties of ferroelectric B i2Si O5 . Polycrystalline samples of (Bi1-xL ax ) 2Si O5 are synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses with a composition range of 0 ≤x ≤0.1 . The crystal structure changes from monoclinic to tetragonal with increasing La-substitution rate x at room temperature. This structural variation stems from the change in orientation of Si O4 tetrahedra that form one-dimensional chains when they are in the ordered configuration, thus suggesting that lone-pair electrons play an important role in sustaining one-dimensional chains of Si O4 tetrahedra. Synchronizing with the disordering of Si O4 chains, ferroelectric phase transition temperature of (Bi1-xL ax ) 2Si O5 sharply decreases as x increases, and ferroelectricity finally vanishes at around x =0.03 . The present results demonstrate that lone-pair electrons of Bi play an important role in the ferroelectricity of B i2Si O5 through propping the ordered structure of one-dimensional Si O4 chains with stereochemical activity. Furthermore, an additional phase transition has been first discovered in the low-temperature region of (Bi1-xL ax ) 2Si O5 with x ≤0.01 , where the ordered one-dimensional Si O4 chains remain.

  1. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish.

    Science.gov (United States)

    Mattersdorfer, Karin; Koblmüller, Stephan; Sefc, Kristina M

    2012-07-01

    Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations. © 2012 Blackwell Publishing Ltd.

  2. Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping.

    Science.gov (United States)

    Schouteden, Koen; Govaerts, Kirsten; Debehets, Jolien; Thupakula, Umamahesh; Chen, Taishi; Li, Zhe; Netsou, Asteriona; Song, Fengqi; Lamoen, Dirk; Van Haesendonck, Chris; Partoens, Bart; Park, Kyungwha

    2016-09-27

    Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

  3. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance

    Science.gov (United States)

    Huang, Hao; Ren, Xiaohui; Li, Zhongjun; Wang, Huide; Huang, Zongyu; Qiao, Hui; Tang, Pinghua; Zhao, Jinlai; Liang, Weiyuan; Ge, Yanqi; Liu, Jie; Li, Jianqing; Qi, Xiang; Zhang, Han

    2018-06-01

    Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV–vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na2SO4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm‑2, while an enhanced responsivity (1.8 μA W‑1) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.

  4. Substutited molybdates of bismuth on a basis of Bi13Mo5O34±δ: production and properties

    Directory of Open Access Journals (Sweden)

    Z. A. Mikhailovskaya

    2014-11-01

    Full Text Available The present work is devoted to the investigation of the methods of a synthesis and properties of the one of the most interesting one-dimensional oxygen –ion conductors, the Bi13Mo5O34±δ –based complex oxides. The general compositions of these bismuth molybdates are Bi13Mo5-хMeхO34-δ, and Bi13-yMeyMo5O34-δ, with Me = Mg, Ca, Sr, Ba (IIA group and Co, Fe, Ni (Fe triade. The samples have been synthesized using conventional ceramic technology. The powders and pellets of the bismuth molybdates were studied by X-Ray diffraction, scanning electron microscopy, laser dispersion, dilatometry, atom absorption and inductively-coupled plasma atomic emission spectrometry. Electrical conductivity has been studied using impedance spectroscopy method.

  5. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations.

    Science.gov (United States)

    Zhang, Ao; Wang, Hongwu; Beyene, Yoseph; Semagn, Kassa; Liu, Yubo; Cao, Shiliang; Cui, Zhenhai; Ruan, Yanye; Burgueño, Juan; San Vicente, Felix; Olsen, Michael; Prasanna, Boddupalli M; Crossa, José; Yu, Haiqiu; Zhang, Xuecai

    2017-01-01

    Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy ( r MG ) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability ( h 2 ), TPS and MD on r MG estimation. Our results showed that: (1) moderate r MG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) r MG increased with an increase in h 2 , TPS and MD, both correlation and variance analyses showed that h 2 is the most important factor and MD is the least important factor on r MG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the r MG values for all the six trait-environment combinations were centered around zero, 49% predictions had r MG values above zero; (4) the trend observed in r MG differed with the trend observed in r MG / h , and h is the square root of heritability of the predicted trait, it indicated that both r MG and r MG / h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  6. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2017-11-01

    Full Text Available Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG of the six trait-environment combinations under various levels of training population size (TPS and marker density (MD, and assess the effect of trait heritability (h2, TPS and MD on rMG estimation. Our results showed that: (1 moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2 rMG increased with an increase in h2, TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3 predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4 the trend observed in rMG differed with the trend observed in rMG/h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG/h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  7. A Lax integrable hierarchy, bi-Hamiltonian structure and finite-dimensional Liouville integrable involutive systems

    International Nuclear Information System (INIS)

    Xia Tiecheng; Chen Xiaohong; Chen Dengyuan

    2004-01-01

    An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations

  8. ChromBiSim: Interactive chromatin biclustering using a simple approach.

    Science.gov (United States)

    Noureen, Nighat; Zohaib, Hafiz Muhammad; Qadir, Muhammad Abdul; Fazal, Sahar

    2017-10-01

    Combinatorial patterns of histone modifications sketch the epigenomic locale. Specific positions of these modifications in the genome are marked by the presence of such signals. Various methods highlight such patterns on global scale hence missing the local patterns which are the actual hidden combinatorics. We present ChromBiSim, an interactive tool for mining subsets of modifications from epigenomic profiles. ChromBiSim efficiently extracts biclusters with their genomic locations. It is the very first user interface based and multiple cell type handling tool for decoding the interplay of subsets of histone modifications combinations along their genomic locations. It displays the results in the forms of charts and heat maps in accordance with saving them in files which could be used for post analysis. ChromBiSim tested on multiple cell types produced in total 803 combinatorial patterns. It could be used to highlight variations among diseased versus normal cell types of any species. ChromBiSim is available at (http://sourceforge.net/projects/chrombisim) in C-sharp and python languages. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structural and morphological study of Fe-doped Bi-based superconductor

    Science.gov (United States)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  10. Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Timo Melkas

    2012-10-01

    Full Text Available Changes to stems caused by natural forces and timber harvesting constitute an essential input for many forestry-related applications and ecological studies, especially forestry inventories based on the use of permanent sample plots. Conventional field measurement is widely acknowledged as being time-consuming and labor-intensive. More automated and efficient alternatives or supportive methods are needed. Terrestrial laser scanning (TLS has been demonstrated to be a promising method in forestry field inventories. Nevertheless, the applicability of TLS in recording changes in the structure of forest plots has not been studied in detail. This paper presents a fully automated method for detecting changes in forest structure over time using bi-temporal TLS data. The developed method was tested on five densely populated forest plots including 137 trees and 50 harvested trees in point clouds. The present study demonstrated that 90 percent of tree stem changes could be automatically located from single-scan TLS data. These changes accounted for 92 percent of the changed basal area. The results indicate that the processing of TLS data collected at different times to detect tree stem changes can be fully automated.

  11. Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct

    Science.gov (United States)

    Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer

    2015-01-01

    Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other

  12. Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Bariani, Paolo; De Chiffre, Leonardo; Hansen, Hans Nørgaard

    2005-01-01

    An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables...... with the scanning electron microscope (SEM) using reconstruction of surface topography through stereo-photogrammetry. A theoretical description of the effects that the main instrumental variables and measurement parameters have on the reconstruction accuracy of any point on the surface of the object being imaged......-dimensional topography of the type C roughness standards showed good agreement with the nominal profile wavelength values. An investigation was carried out concerning the traceability of dimensional measurements performed with the scanning electron microscope (SEM) using reconstruction of surface topography through...

  13. Observation of quantized vortices by cryocooler-based scanning Hall probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Konishi, Y.; Tokunaga, M.; Tamegai, T

    2004-10-01

    We have developed a scanning Hall probe microscope (SHPM) system utilizing closed-cycle cryocooler. The Hall probe used in this system is fabricated from a GaAs/GaAlAs two-dimensional electron gas. A stepping-motor-driven XYZ translator is used with a resolution better than 0.1 {mu}m and maximum scan range of 20 x 20 mm{sup 2}. The spatial resolution of the system is about 5 {mu}m and magnetic resolution is about 100 mG. By using this system, we have successfully resolved the quantized vortices on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal.

  14. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  15. TOPICAL REVIEW: Aspects of scanning force microscope probes and their effects on dimensional measurement

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger

    2008-05-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.

  16. Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2013-06-01

    Full Text Available methods towards a more accurate and automated techniques to quantify aggregate shape properties. This paper validates a new flakiness index equation using three-dimensional (3-D) laser scanning data of aggregate and ballast materials obtained from...

  17. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    Science.gov (United States)

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J.; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-11-01

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the

  18. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Science.gov (United States)

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  19. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  20. Chemical Gating of a Weak Topological Insulator: Bi14Rh3I9.

    Science.gov (United States)

    Ghimire, Madhav Prasad; Richter, Manuel

    2017-10-11

    The compound Bi 14 Rh 3 I 9 has recently been suggested as a weak three-dimensional topological insulator on the basis of angle-resolved photoemission and scanning-tunneling experiments in combination with density functional (DF) electronic structure calculations. These methods unanimously support the topological character of the headline compound, but a compelling confirmation could only be obtained by dedicated transport experiments. The latter, however, are biased by an intrinsic n-doping of the material's surface due to its polarity. Electronic reconstruction of the polar surface shifts the topological gap below the Fermi energy, which would also prevent any future device application. Here, we report the results of DF slab calculations for chemically gated and counter-doped surfaces of Bi 14 Rh 3 I 9 . We demonstrate that both methods can be used to compensate the surface polarity without closing the electronic gap.

  1. Electrospinning synthesis of InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts and their enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhendong; Lu, Qifang, E-mail: luqf0110@126.com; Guo, Enyan; Liu, Suwen [Qilu University of Technology, Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and Engineering (China)

    2016-08-15

    In the present work, one-dimensional InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts with the width of about 800 nm have been successfully prepared by a simple electrospinning technique followed by the subsequent calcination process. The prepared products were characterized by thermogravimetry, fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis absorbance spectroscopy, high-performance liquid chromatography, and photoluminescence spectroscopy. The obtained InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts presented an admirable morphology and excellent photocatalytic properties for the degradation of methylene blue solution under visible-light irradiation.Graphical AbstractThe electrospun precursor samples (a and b) displayed a well-defined one-dimensional (1D) belt structure. After calcined at 550 °C for 2 h (c and d), the samples can retain well the 1D morphology. And an obvious porous structure can be found from the TEM images of the calcined samples (e and f).

  2. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection

    Science.gov (United States)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen

    2013-08-01

    This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.

  3. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Silva, Leonardo Santiago Melgaço

    2011-01-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of 241 Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  4. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.

    Science.gov (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong

    2017-05-04

    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  5. Evaluation of oral scanning in comparison to impression using three-dimensional registration

    Science.gov (United States)

    Brogle-Kim, Yur-Chung; Deyhle, Hans; Müller, Bert; Schulz, Georg; Bormann, Therese; Beckmann, Felix; Jäger, Kurt

    2012-10-01

    Crown and bridge restorations are one of the main treatment methods in fixed prosthodontics. The fabrication requires data on the patient's denture shape. This information is generally obtained as a hard copy from an impression mold. Alternatively, one can acquire the data electronically using oral optical three-dimensional (3D) imaging techniques, which determine the surface of the denture. The aim of the study was to quantitatively compare the accuracy of three dimensional scanning with that of conventional impressions and give a statement how far the scanner provides a clinical alternative with equal or better precision. Data from 10 teeth were acquired in the dental office with a polyether impression material and an oral scanner. Data from the impressions were digitalized by means of micro computed tomography. The data were then 3D registered to identify the potential differences between impression and optical scan. We could demonstrate that the oral scanner's data and the conventional impressions are comparable.

  6. A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery

    Science.gov (United States)

    Song, Ren-Sheng; Wang, Bo; Ruan, Ting-Ting; Wang, Lei; Luo, Hao; Wang, Fei; Gao, Tian-Tian; Wang, Dian-Long

    2018-01-01

    Soluble polysulfide shuttling is still the main cause of restricting the development of lithium-sulfur (Li-S) battery. Here, we propose a novel three-dimensional reduced graphene oxide@sulfur/nitrogen-doped porous carbon polyhedron/carbon nanotubes (rGO@S/NCP/CNTs) composite with bi-confinement effect of polysulfide as an effective cathode material. In rGO@S/NCP/CNTs, NCP provides physical confinement for sulfur and soluble polysulfide by its abundant micropores and mesopores, while oxygen functional groups of rGO provide strong chemical confinement to soluble polysulfide. Additionally, CNTs with one-dimensional conductivity enable facile transport of electrons. Therefore, the resulting rGO@S/NCP/CNTs composite shows an obvious enhancement in cycling performance for Li-S battery, and reversible capacities up to 738 mAh g-1 and 660 mAh g-1 over 100 and 200 cycles are remained at 0.2 C rate.

  7. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_TRMM-PFM_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  8. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    Science.gov (United States)

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05).

  9. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites

    International Nuclear Information System (INIS)

    Wu, Siyuan; Zheng, Hong; Lian, Youwei; Wu, Yiying

    2013-01-01

    Graphical abstract: - Highlights: • BiPO 4 /BiVO 4 composites were successfully prepared by the hydrothermal method. • BiPO 4 /BiVO 4 composites exhibited broad absorption in the visible region. • Visible-light photocatalytic activities of BiPO 4 /BiVO 4 composites were enhanced. • P/V molar ratio and pH value of the reaction affect photocatalytic activity. • The mechanism of enhanced visible-light photocatalytic activities was discussed. - Abstract: BiPO 4 /BiVO 4 composites with different P/V molar ratios were prepared by the hydrothermal method and the effect of pH values of hydrothermal reaction on photocatalytic activity of BiPO 4 /BiVO 4 composite was investigated. The photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic property of BiPO 4 /BiVO 4 was evaluated by photocatalytic degradation of Methylene blue under visible light irradiation. The results showed that the photocatalytic activity of the composites was much higher than that of pure BiPO 4 and BiVO 4 . The rate constant of Methylene blue degradation over BiPO 4 /BiVO 4 (P/V molar ratio of 5:1 and hydrothermal reaction pH value of 1.5) is 1.7 times that of pure BiVO 4 . The photocatalytic activity enhancement of BiPO 4 /BiVO 4 composite is closely related to the BiVO 4 functioning as a sensitizer to adsorb visible light and the heterojunction of BiPO 4 /BiVO 4 acting as an active center for hindering the rapid recombination of electron–hole pairs during the photocatalytic reaction

  10. Electronic structure in Bi2Sr2CaCu2O8 studied by two dimensional angular correlation of positron annihilation radiations

    International Nuclear Information System (INIS)

    Kondo, H.; Kubota, T.; Nakashima, N.; Tanigawa, S.; Minami, F.; Takekawa, S.

    1992-01-01

    Electronic structure in one of high-Tc-sperconducting materials, Bi 2 Sr 2 CaCu 2 O 8 , was studied by two dimensional angular correlation of positron annihilation radiations (2D-ACAR). The measurements were performed for Bi 2 Sr 2 CaCu 2 O 8 at room temperature and 24K; in the normal and superconducting states. The three dimensional electron momentum density ρ(p) has been reconstructed by using the image reconstruction technique based on a direct Fourier transportation. The reconstructed electron momentum density ρ(p) has been reduced into the reduced electron momentum density n(k) by using the LCW folding procedure. They are compared with that for Cu and Si. The difference in the density distributions between both states was observed. This may be attributed to the smearing by the reduced thermal momenta of positrons. But there is a possibility that the difference is due to the phase transition

  11. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    Science.gov (United States)

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  12. Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination

    OpenAIRE

    Ahn, Jae Sung; Park, Anjin; Kim, Ju Wan; Lee, Byeong Ha; Eom, Joo Beom

    2017-01-01

    We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed ...

  13. Five-dimensional visualization of phase transition in BiNiO3 under high pressure

    International Nuclear Information System (INIS)

    Liu, Yijin; Wang, Junyue; Yang, Wenge; Azuma, Masaki; Mao, Wendy L.

    2014-01-01

    Colossal negative thermal expansion was recently discovered in BiNiO 3 associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase

  14. Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frongia, F.; Pilloni, M.; Scano, A.; Ardu, A.; Cannas, C.; Musinu, A. [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy); Borzone, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, Genoa University and Genoa Research Unit of the National Consortium of Materials Science and Technology (INSTM), Via Dodecaneso 31, I-16146 Genoa (Italy); Novakovic, R. [National Research Council (CNR), Institute for Energetics and Interphases (IENI), Via De Marini 6, 16149 Genoa (Italy); Ennas, G., E-mail: ennas@unica.it [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy)

    2015-02-25

    Highlights: • Aqueous solution route is used to produce Bi, Sn and Bi–Sn nanoparticles. • HRTEM revealed core–shell and Janus type structures of Bi–Sn nanoparticles. • Melting temperature depression of Bi and Bi–Sn nanoparticles were measured by DSC. • DSC data on Bi melting temperature depression agrees with theoretical values. - Abstract: Lead-free solders based on Bi–Sn bimetallic nanoclusters with eutectic composition (Bi{sub 43}Sn{sub 57}) were synthesized at low temperature by simultaneous reduction reaction from aqueous solution containing bismuth and tin chlorides, using potassium borohydride as a reducing agent. By the same processing route, pure bismuth and tin nanoparticles have also been prepared. Microstructure, morphology and composition of the samples were characterized by X-ray powder diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). TEM images of Bi–Sn nanoparticles show average size ranging from 30 to 100 nm. Thermal behaviour of Bi–Sn nanopowders was studied by DSC (differential scanning calorimetry) and a melting temperature (135 °C) lower than that of the corresponding microcrystalline sample (139 °C) was observed. SEM micrographs of the thermally treated sample up to 400 °C show fine spherical grains in the micrometer range with finer powder particles on the surface. XRD powder diffraction analysis indicates the formation of bismuth and tin nanophases with an average particle size of 85 and 126 nm, respectively. The oxidation behaviour of the samples was also investigated. The results obtained have been analyzed in view of theoretical models describing the melting temperature depression of nanoparticles.

  15. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    Science.gov (United States)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  16. A 7666-bp genomic deletion is frequent in Chinese Han deaf patients with non-syndromic enlarged vestibular aqueduct but without bi-allelic SLC26A4 mutations.

    Science.gov (United States)

    Pang, Xiuhong; Chai, Yongchuan; He, Longxia; Chen, Penghui; Wang, Xiaowen; Li, Lei; Jia, Huan; Wu, Hao; Yang, Tao

    2015-12-01

    To investigate the genetic cause of the patients with non-syndromic enlarged vestibular aqueduct (EVA) but without bi-allelic SLC26A4 mutations. Presence of a homozygous genomic deletion was detected in a Chinese Han deaf patient (D1467-1) who failed to amplify the first three exons of SLC26A4. The breakpoints of the deletion were fine-mapped and revealed by PCR amplification and sequencing. This deletion was subsequently screened in 22 Chinese Han EVA probands with mono-allelic SLC26A4 mutations. The possible founder effect of the newly identified genomic deletion was evaluated by haplotype analysis. A homozygous c.-2071_307+3801del7666 deletion of SLC26A4 was identified in patient D1467-1. This novel genomic deletion was subsequently identified in 18% (4/22) of the Chinese Han EVA probands with mono-allelic SLC26A4 mutations. Haplotype analysis showed that this genomic deletion is likely a founder mutation in Chinese Hans. Our results suggested that the cryptic c.-2071_307+3801del7666 deletion of SLC26A4 is relatively frequent in Chinese Han non-syndromic EVA patients without bi-allelic SLC26A4 mutations. Screening of this genomic deletion should be incorporated into the routine DNA testing of SLC26A4 in Chinese Hans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  18. Creation of three-dimensional craniofacial standards from CBCT images

    Science.gov (United States)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  19. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    Science.gov (United States)

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05). PMID:26816576

  20. Bi-temporal 3D Active Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2005-01-01

    in fourdimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection, and a texture...

  1. Denoising and dimensionality reduction of genomic data

    Science.gov (United States)

    Capobianco, Enrico

    2005-05-01

    Genomics represents a challenging research field for many quantitative scientists, and recently a vast variety of statistical techniques and machine learning algorithms have been proposed and inspired by cross-disciplinary work with computational and systems biologists. In genomic applications, the researcher deals with noisy and complex high-dimensional feature spaces; a wealth of genes whose expression levels are experimentally measured, can often be observed for just a few time points, thus limiting the available samples. This unbalanced combination suggests that it might be hard for standard statistical inference techniques to come up with good general solutions, likewise for machine learning algorithms to avoid heavy computational work. Thus, one naturally turns to two major aspects of the problem: sparsity and intrinsic dimensionality. These two aspects are studied in this paper, where for both denoising and dimensionality reduction, a very efficient technique, i.e., Independent Component Analysis, is used. The numerical results are very promising, and lead to a very good quality of gene feature selection, due to the signal separation power enabled by the decomposition technique. We investigate how the use of replicates can improve these results, and deal with noise through a stabilization strategy which combines the estimated components and extracts the most informative biological information from them. Exploiting the inherent level of sparsity is a key issue in genetic regulatory networks, where the connectivity matrix needs to account for the real links among genes and discard many redundancies. Most experimental evidence suggests that real gene-gene connections represent indeed a subset of what is usually mapped onto either a huge gene vector or a typically dense and highly structured network. Inferring gene network connectivity from the expression levels represents a challenging inverse problem that is at present stimulating key research in biomedical

  2. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    Science.gov (United States)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  3. Observation of a three-dimensional vortex-line liquid in a highly c-axis-oriented (Bi,Pb)2Sr2Ca2Cu3Ox silver-sheathed tape

    International Nuclear Information System (INIS)

    Sun, Y.; Xu, G.; Du, J.; Zhou, Y.; Zeng, R.; Fu, X.; Hua, P.; Zhang, Y.

    1996-01-01

    We have measured the temperature dependence of resistance of a highly c-axis-oriented (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O x silver-sheathed tape in the mixed state using the dc flux transformer geometry. In the vortex fluid regime, we have observed the onset of a nonlocal conductivity which corresponds to the peak (T peak ) in R bot (T) curves. This can be explained qualitatively in terms of the vortex decoupling which arises from an increased thermal fluctuation. At T peak , the vortices are three dimensional (3D) in character. This behavior is quite different from the results obtained recently by Safar et al. [Phys. Rev. Lett. 69, 824 (1992)] and Busch et al. [Phys. Rev. Lett. 69, 522 (1992)] in Bi 2 Sr 2 CaCu 2 O y single crystals using the same measuring method. Their results show that the vortices are two dimensional in character. The difference of the vortex dimensionality between (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O x and Bi 2 Sr 2 CaCu 2 O y superconductors in the vortex liquid regime may be attributed to different anisotropies due to their different crystal structures and pinning disorders. In a 3D vortex line liquid, the results reveal that dissipation seems to originate from the thermally activated plastic motion of a pinned vortex line liquid. The field and temperature dependence of the activation energy is as follows: U(H,T)=U 0 (1-T/T c )H -0.45 . copyright 1996 The American Physical Society

  4. Alternative structures and bi-Hamiltonian systems on a Hilbert space

    International Nuclear Information System (INIS)

    Marmo, G; Scolarici, G; Simoni, A; Ventriglia, F

    2005-01-01

    We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide a few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and the non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems

  5. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  6. Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI)

    International Nuclear Information System (INIS)

    Hu, Enlai; Gao, Xuehui; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2014-01-01

    Highlights: • 1D Bi 2 S 3 nanostructures were prepared by a facile ethanol-assisted one-pot reaction. • The size and morphology of the products can be conveniently varied. • The sulfur source plays a crucial role in determining the morphologies of products. • 1D Bi 2 S 3 nanostructures exhibit enhanced photocatalytic reduction of Cr(VI). • Bi 2 S 3 nanowires exhibit the highest photoreduction activity among three samples. - Abstract: One-dimensional (1D) Bi 2 S 3 nanostructures with various morphologies, including nanowires, nanorods, and nanotubes, have been successfully synthesized through a facile ethanol-assisted one-pot reaction. It is found that the size, morphology and structure of the products can be conveniently varied or controlled by simply adjusting the volume ratio of ethanol and water in the reaction system. Further experimental results indicate that sulfur source also plays the other crucial role in determining the product morphology. The synthetic strategy developed in this work is highly efficient in producing 1D Bi 2 S 3 nanostructures with high quality and large quantity. Photocatalysis experiments show the as-prepared 1D Bi 2 S 3 nanostructures possess significantly enhanced photocatalytic reduction of Cr(VI) when exposed to visible light irradiation. Especially, Bi 2 S 3 nanowires exhibit the highest photocatalytic activity and can be used repeatedly after washed with dilute HCl

  7. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Terra-FM1_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  8. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  9. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  10. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Terra-FM2_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  11. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-04-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  12. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  13. BiVO4 nanoparticles: Preparation, characterization and photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Venkataraman Sivakumar

    2015-12-01

    Full Text Available Bismuth vanadate (BiVO4 nanoparticles were synthesized by a simple thermal decomposition method. The synthesized bismuth vanadate nanoparticles were characterized by X-ray diffraction analysis, it is found that the synthesized sample belongs to monoclinic BiVO4. Fourier transform infrared spectroscopy confirms the formation of Bi-O bond in the sample. Ultraviolet–Visible (DRS-UV–Visible spectroscopy and photoluminescence spectroscopy reveal the optical property of the BiVO4 nanoparticles. The morphology was identified by both scanning electron microscopy and high-resolution transmission electron microscopy. Further, the photocatalytic activity of BiVO4 nanoparticles was investigated by photodegradation of methylene blue as a model organic pollutant.

  14. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

    Science.gov (United States)

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng

    2009-06-01

    Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1-x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials.

  15. Growth of niobium on the three-dimensional topological insulator Bi{sub 2}Te{sub 1.95}Se{sub 1.05}

    Energy Technology Data Exchange (ETDEWEB)

    Meixner, Philipp [Novel Materials Group, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lim, Seong Joon [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Joonbum; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Fischer, Saskia F. [Novel Materials Group, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Seo, Jungpil [NANOSPM Lab, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Kuk, Young [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-15

    Graphical abstract: - Highlights: • We grew niobium on topological insulator at different substrate temperatures. • Local density of states is modified by deposited Nb islands. • We found a downward shift of the Dirac point, since niobium acts as a donor. • Nb grew in layer-by-layer growth mode up to an annealing temperature of 450 °C. • We applied a new cleaving method allowing for sample heating of flux-grown TI. - Abstract: While applying a new cleaving method, we investigated the growth of Nb on the three-dimensional (3D) topological insulator (TI) Bi{sub 2}Te{sub 1.95}Se{sub 1.05} by scanning tunneling microscopy and spectroscopy. After the deposition of nearly a full monolayer of Nb by high-energy electron-beam evaporation, we observed a downshift of the bands and the Dirac point on the TI surface, which is the result of an n-type doping of the TI by transition metal adatoms. Extra peaks in the spectroscopy results upon Nb deposition might indicate a Rashba-split of the bulk bands. Nb grew in small 10 nm wide islands upon sub-monolayer growth and in a layer-by-layer growth mode up to an annealing temperature of 450 °C.

  16. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A.

    2013-01-01

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Veldhorst, M.; Snelder, M.; Hoek, M.; Molenaar, C.G.; Leusink, D.P.; Golubov, A.A.; Hilgenkamp, H.; Brinkman, A. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-02-15

    The surface of a three-dimensional (3D) topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2014-07-01

    Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.

  19. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  20. Combined genome scans for body stature in 6,602 European twins

    DEFF Research Database (Denmark)

    Perola, Markus; Sammalisto, Sampo; Hiekkalinna, Tero

    2007-01-01

    combined and related to the sequence positions using software developed by us, which is publicly available (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). Variance component linkage analysis was performed with age, sex, and country of origin as covariates. The covariate adjusted heritability....... Several cohorts contributed to the identified loci, suggesting an evolutionarily old genetic variant having effects on stature in European-based populations. To facilitate the genetic studies of stature we have also set up a website that lists all stature genome scans published and their most significant...

  1. A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data

    Directory of Open Access Journals (Sweden)

    Scherer Stephen W

    2011-05-01

    Full Text Available Abstract Background Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. Results We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. Conclusions The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.

  2. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  3. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2016-03-01

    Full Text Available Identification of potential genes/alleles governing complex seed-protein content (SPC trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study, high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium decay] was utilized. This led to identification of seven most effective genomic loci (genes associated [10 to 20% with 41% combined PVE (phenotypic variation explained] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line mapping population (ICC 12299 x ICC 4958 by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22% was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait

  4. A genome scan for positive selection in thoroughbred horses.

    Science.gov (United States)

    Gu, Jingjing; Orr, Nick; Park, Stephen D; Katz, Lisa M; Sulimova, Galina; MacHugh, David E; Hill, Emmeline W

    2009-06-02

    Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (F(ST)). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; PThoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease.

  5. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Directory of Open Access Journals (Sweden)

    Nikki van Bel

    Full Text Available The viral integrase (IN is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs. Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  6. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    Science.gov (United States)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  7. Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-vis-NIR broad spectrum for photodegradation of organic pollutants.

    Science.gov (United States)

    Chen, Yannan; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Zhu, Runliang; Wang, Chenghui; Wei, Xiumei; Liu, Peng

    2018-02-15

    Ag 2 O nanoparticles-loaded Bi 5 O 7 I microspheres forming a three dimensional Ag 2 O/Bi 5 O 7 I p-n heterojunction photocatalyst with wide-spectrum response were synthesized in this study. The results of transmission electron microscopy observations revealed that the Ag 2 O nanoparticles with the diameter of ca. 10-20nm were distributed on the surfaces of Bi 5 O 7 I nanosheets. The as-synthesized Ag 2 O/Bi 5 O 7 I exhibited an excellent wide-spectrum response to wavelengths ranging from ultraviolet (UV) to near-infrared (NIR), indicating its potential for effective utilization of solar energy. Compared with pure Bi 5 O 7 I, the Ag 2 O/Bi 5 O 7 I composite also demonstrated excellent photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution under visible LED light irradiation. Among samples, the 20% Ag 2 O/Bi 5 O 7 I composite photocatalyst showed the highest photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution. In addition, the 20% Ag 2 O/Bi 5 O 7 I composite also exhibited a photocatalytic activity for the degradation of Bisphenol A under NIR light irradiation. The improved photocatalytic activity is attributed to the formation of a p-n heterojunction between Ag 2 O and Bi 5 O 7 I, allowing the efficient utilization of solar energy (from UV to NIR) and high separation efficiency of photogenerated electron-hole pairs. The present work is desirable to explore a possible avenue for the full utilization of solar energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genome-wide association scan for variants associated with early-onset prostate cancer.

    Directory of Open Access Journals (Sweden)

    Ethan M Lange

    Full Text Available Prostate cancer is the most common non-skin cancer and the second leading cause of cancer related mortality for men in the United States. There is strong empirical and epidemiological evidence supporting a stronger role of genetics in early-onset prostate cancer. We performed a genome-wide association scan for early-onset prostate cancer. Novel aspects of this study include the focus on early-onset disease (defined as men with prostate cancer diagnosed before age 56 years and use of publically available control genotype data from previous genome-wide association studies. We found genome-wide significant (p<5×10(-8 evidence for variants at 8q24 and 11p15 and strong supportive evidence for a number of previously reported loci. We found little evidence for individual or systematic inflated association findings resulting from using public controls, demonstrating the utility of using public control data in large-scale genetic association studies of common variants. Taken together, these results demonstrate the importance of established common genetic variants for early-onset prostate cancer and the power of including early-onset prostate cancer cases in genetic association studies.

  9. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Terra-FM1_Edition1-CV)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-11-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  10. Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction

    Directory of Open Access Journals (Sweden)

    Yifei Meng

    2016-09-01

    Full Text Available A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.

  11. Bi-dimensional arrays of SPAD for time-resolved single photon imaging

    International Nuclear Information System (INIS)

    Tudisco, S.; Lanzano, L.; Musumeci, F.; Neri, L.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2009-01-01

    Many scientific areas like astronomy, biophysics, biomedicine, nuclear and plasma science, etc. are interested in the development of a new time-resolved single photon imaging device. Such a device represents today one of the most challenging goals in the field of photonics. In collaboration with Catania R and D staff of ST-Microelectronics (STM) we created, during the last few years, a new avalanche photosensor-Single Photon Avalanche Diode (SPAD) able to detect and count, with excellent performance, single photons. Further we will discuss the possible realization of a single photon imaging device through the many elements integration (bi-dimensional arrays) of SPADs. In order to achieve the goal, it is also important to develop an appropriate readout strategy able to address the time information of each individual sensor and in order to read a great number of elements easily. First prototypes were designed and manufactured by STM and the results are reported here. In the paper we will discuss in particular: (i) sensor performance (gain, photodetection efficiency, timing, after-pulsing, etc.); (ii) array performance (layout, cross-talk, etc.); (iii) readout strategy (quenching, electronics), and (iv) first imaging results (general performance).

  12. AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae along a latitudinal transect

    Directory of Open Access Journals (Sweden)

    Aihong eYang

    2016-05-01

    Full Text Available Understanding adaptive genetic variation and its relation to environmental factors are important for understanding how plants adapt to climate change and for managing genetic resources. Genome scans for the loci exhibiting either notably high or low levels of population differentiation (outlier loci provide one means of identifying genomic regions possibly associated with convergent or divergent selection. In this study, we combined AFLP genome scan and environmental association analysis to test for signals of natural selection in natural populations of Liriodendron chinense (Chinese Tulip Tree; Magnoliaceae along a latitudinal transect. We genotyped 276 individuals from 11 populations of L. chinense using 987 AFLP markers. Two complementary methods (Dfdist and BayeScan and association analysis between AFLP loci and climate factors were applied to detect outlier loci. Our analyses recovered both neutral and potentially adaptive genetic differentiation among populations of L. chinense. We found moderate genetic diversity within populations and high genetic differentiation among populations with reduced genetic diversity towards the periphery of the species ranges. Nine AFLP marker loci showed evidence of being outliers for population differentiation for both detection methods. Of these, six were strongly associated with at least one climate factor. Temperature, precipitation and radiation were found to be three important factors influencing local adaptation of L. chinense. The outlier AFLP loci are likely not the target of natural selection, but the neighboring genes of these loci might be involved in local adaptation. Hence, these candidates should be validated by further studies.

  13. Analysis tools for the interplay between genome layout and regulation.

    Science.gov (United States)

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  14. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  15. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Liang Aiji; Chen Chaoyu; Wang Zhijun; Shi Youguo; Feng Ya; Yi Hemian; Xie Zhuojin; He Shaolong; He Junfeng; Peng Yingying; Liu Yan; Liu Defa; Hu Cheng; Zhao Lin; Liu Guodong; Dong Xiaoli; Zhang Jun; Nakatake, M; Iwasawa, H; Shimada, K

    2016-01-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3 Bi ( A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na 3 Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x – k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ∼150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na 3 Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. (rapid communication)

  16. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  17. BiOCl nanowire with hierarchical structure and its Raman features

    International Nuclear Information System (INIS)

    Tian Ye; Guo Chuanfei; Guo Yanjun; Wang Qi; Liu Qian

    2012-01-01

    BiOCl is a promising V-VI-VII-compound semiconductor with excellent optical and electrical properties, and has great potential applications in photo-catalysis, photoelectric, etc. We successfully synthesize BiOCl nanowire with a hierarchical structure by combining wet etch (top-down) with liquid phase crystal growth (bottom-up) process, opening a novel method to construct ordered bismuth-based nanostructures. The morphology and lattice structures of Bi nanowires, β-Bi 2 O 3 nanowires and BiOCl nanowires with the hierarchical structure are investigated by scanning electron microscope (SEM) and transition electron microscope (TEM). The formation mechanism of such ordered BiOCl hierarchical structure is considered to mainly originate from the highly preferred growth, which is governed by the lattice match between (1 1 0) facet of BiOCl and (2 2 0) or (0 0 2) facet of β-Bi 2 O 3 . A schematic model is also illustrated to depict the formation process of the ordered BiOCl hierarchical structure. In addition, Raman properties of the BiOCl nanowire with the hierarchical structure are investigated deeply.

  18. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  19. Resistive and magnetoresistive properties of BiSrCaCuO granulated films

    International Nuclear Information System (INIS)

    Mal'tsev, V.A.; Kulikovskij, A.V.; Kustikov, E.V.; Morozov, D.Yu.; Sokolov, Yu.S.

    1995-01-01

    Transport properties of superconducting bridges produced by laser etching of granulated films BiSrCaCuO have been studied. Analysis of nonlinear voltammetric characteristics of the bridges permits making the conclusion on the change in the character of conductivity (two-dimensional-three dimensional system), when approaching the critical point. Measurements of magnetoresistance of the samples suggest a possibility of application of high-temperature superconducting bridges in Bi-system as sensors of weak magnetic fields. 11 refs.; 4 figs

  20. Quantitative linkage genome scan for atopy in a large collection of Caucasian families

    DEFF Research Database (Denmark)

    Webb, BT; van den Oord, E; Akkari, A

    2007-01-01

    adulthood, asthma is frequently associated also with quantitative measures of atopy. Genome wide quantitative multipoint linkage analysis was conducted for serum IgE levels and percentage of positive skin prick test (SPT(per)) using three large groups of families originally ascertained for asthma....... In this report, 438 and 429 asthma families were informative for linkage using IgE and SPT(per) which represents 690 independent families. Suggestive linkage (LOD >/= 2) was found on chromosomes 1, 3, and 8q with maximum LODs of 2.34 (IgE), 2.03 (SPT(per)), and 2.25 (IgE) near markers D1S1653, D3S2322-D3S1764...... represents one of the biggest genome scans so far reported for asthma related phenotypes. This study also demonstrates the utility of increased sample sizes and quantitative phenotypes in linkage analysis of complex disorders....

  1. Trains of Red Blood Cells in a bi-dimensional microflows

    Science.gov (United States)

    Viallat, Annie; Iss, Cecile; Held, Delphine; Badens, Catherine; Charrier, Anne; Helfer, Emmanuèle; CINaM Team; Dpt de Génétique Médicale Team

    2017-11-01

    In the vascular microcirculation RBC distribution is uneven in the direction normal to the blood flow, as first evidenced by the existence of a cell-free layer near the vessel wall. In addition, the most rigid cells such as white blood cells and platelets are known to segregate to the walls while flowing in wide channels. We use microfluidic bi-dimensional channels (60 µm wide, 8 µm high, 5 mm long) to explore the flow structure in RBC suspensions at several hematocrits, flow rates and RBC rigidities. We observe the dynamical formation of RBC clusters and their motion along the flow direction. We study healthy RBCs, RBCs stiffened with glutaraldehyde, mixture of healthy and stiffened RBCs and RBC from sickle cell patients. Initially dispersed healthy RBCs organize, while flowing along the channel, into series of parallel trains. The train length depends on RBC hematocrit and flow rate. Stiffened RBCs do not cluster and mainly display tumbling motion like rigid disks. They destabilize existing trains and are preferentially observed close to the walls. We compared our results to that observed in microcapillaries, where trains of RBCs entirely fill in width the microchannel. This work has been carried out thanks to the support of the A*MIDEX project (n° ANR-11-IDEX-0001-02) funding by the ''Investissements d'Avenir'' French Government program, ma,ged by ANR.

  2. Automation of BESSY scanning tables

    International Nuclear Information System (INIS)

    Hanton, J.; Kesteman, J.

    1981-01-01

    A micro processor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the micro processor are: 1. control of spooling of the four asynchronous film winding devices and switching on and off the 4 projections lamps, 2. pre-processing of the data coming from a bi-polar coordinates measuring device, 3. bi-directional interchange of informations between the operator, the BESSY table and the DEC PDP 11/34 mini computer controling the scanning operations, 4. control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with point 4, study is being made for the use of BESSY tables for accurate measurements (+/-5 microns), by encoding the displacements of the projections lenses. (orig.)

  3. Bi:Ge substitution - its effect on the structural and electrical properties of the Bi2212 superconductor

    International Nuclear Information System (INIS)

    Saligan, P.P.

    1997-03-01

    The critical temperature determined from dc resistance and ac magnetic susceptibility measurements, and the coherence length obtained from the of fluctuation conductivity of polycrystalline Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ were studied. The effect of sample quality was also studied by making two kinds of pellet samples: (1) by conventional sintering process and (2) by conventional sintering process followed annealing at high temperature. The rough phase diagram of Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ was constructed and it was found that from x=0 to x=0.3 a predominantly Bi2212 phase can be obtained. The critical temperature of the unsubstituted Bi 2 Sr 2 CaCu 2 O 8 +δ is sensitive to the cold press and anneal method. The resistive transition T c based on the maximum dR(T)dT of the as-sintered Bi 2 Sr 2 CaCu 2 O 8 +δ is about 74 K. The resistive T c of the cold-pressed-annealed samples either (1) remain near 74 K or (2) increase to approximately 85 K or (3) show two values at about 74 K and 85 K. A structural relaxation is observed in the Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ the c-axis decreases with increasing x and the a-axis increases at x=0.1 then settles back to its unsubstituted value at higher x. The as-sintered samples show an increasing resistive T c with x, 74 K for x=0 and 79 K for x>0. The resistive T c 's of the cold-pressed-annealed samples are almost independent of x, 85 K for x=0 and 87 K for x>0. The increase in the magnetic critical temperature induced by the cold press and anneal method is considerably larger compared to the increase in the resistive critical temperature, independent of the Bi:Ge substitution. An analysis of fluctuation conductivity just above T c using the Aslamasov-Larkin model for two-dimensional superconductors and the Lawrence-Doniach model for layered superconductors was done. The Aslamasov-Larkin model gives the thickness of the two dimensional superconductor to be ∼34 A also independent of the Bi:Ge substitution. The Lawrence

  4. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  5. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2017-01-01

    Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modifi ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signifi cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artifi cial cellular systems

  6. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  7. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  8. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi{sub 2}MoO{sub 6} with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China); Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Dai, Ke [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China)

    2017-01-01

    Highlights: • A visible light heterojunction photocatalyst of BiOBr-Bi{sub 2}MoO{sub 6} was simply synthesized. • Carriers transferred efficiently in sandwiched layers causing an enhance activity. • A possible direct Z-scheme charge transfer mechanism of BiOBr-Bi2MoO6 is proposed. - Abstract: In this study, a direct Z-scheme heterojunction BiOBr-Bi{sub 2}MoO{sub 6} with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi{sub 2}MoO{sub 6} through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi{sub 2}MoO{sub 6} occurred mainly on the (001) facets of BiOBr and (001) facets of Bi{sub 2}MoO{sub 6}. The photocatalytic activity of the BiOBr-Bi{sub 2}MoO{sub 6} was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi{sub 2}MoO{sub 6} could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  9. Constructing anisotropic single-Dirac-cones in Bi(1-x)Sb(x) thin films.

    Science.gov (United States)

    Tang, Shuang; Dresselhaus, Mildred S

    2012-04-11

    The electronic band structures of Bi(1-x)Sb(x) thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness, and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi(1-x)Sb(x) thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band gap, which can be used in a general two-dimensional system that has a nonparabolic dispersion relation as in the Bi(1-x)Sb(x) thin film system. © 2012 American Chemical Society

  10. A genome scan for positive selection in thoroughbred horses.

    Directory of Open Access Journals (Sweden)

    Jingjing Gu

    2009-06-01

    Full Text Available Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1 deviations from expected heterozygosity (Ewens-Watterson test in Thoroughbred (n = 112 and (2 global differentiation among four geographically diverse horse populations (F(ST. We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01, insulin receptor signalling (5.0-fold enrichment; P<0.01 and lipid transport (2.2-fold enrichment; P<0.05 genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05 and focal adhesion pathway (1.9-fold enrichment; P<0.01 genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1, ACTA1 (actin, alpha 1, skeletal muscle, ACTN2 (actinin, alpha 2, ADHFE1 (alcohol dehydrogenase, iron containing, 1, MTFR1 (mitochondrial fission regulator 1, PDK4 (pyruvate dehydrogenase kinase, isozyme 4 and TNC (tenascin C. Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes

  11. Thermal analysis and phase diagrams of the LiF BiF3 e NaF BiF3 systems

    International Nuclear Information System (INIS)

    Nakamura, Gerson Hiroshi de Godoy

    2013-01-01

    Investigations of the binary systems LiF-BiF 3 and NaF-BiF 3 were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF 3 ) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF 3 to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF 3 were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF 4 , decomposes into LiF and a liquid phase. The NaF-BiF 3 system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF 3 ) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF 4 was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF 4 , NaBiF 4 and a solid solution of NaF and BiF 3 called I. The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  12. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  13. Dimensional accuracy of digital dental models from cone-beam computed tomography scans of alginate impressions according to time elapsed after the impressions.

    Science.gov (United States)

    Lee, Sang-Mi; Hou, Yanan; Cho, Jin-Hyoung; Hwang, Hyeon-Shik

    2016-02-01

    Our objective was to investigate the dimensional accuracy of digital dental models obtained from the cone-beam computed tomography (CBCT) scans of alginate impressions according to the time elapsed after the impressions were taken. Alginate impressions were obtained of 20 adults using 2 alginate materials: Alginoplast (Heraeus Kulzer, Hanau, Germany) and Cavex (Cavex Holland, Haarlem, The Netherlands). These impressions were stored in wet conditions and scanned by CBCT immediately after impression-taking and after storage times of 12, 24, 36, 48, 60, and 72 hours. After reconstruction of the 3-dimensional digital dental models, the models were measured, and the data were analyzed to determine the dimensional changes according to the time elapsed. The changes within the measurement error were regarded as clinically acceptable in this study. The measurement errors ranged from 0.27 to 0.29 mm in the digital dental models obtained from CBCT scans of the alginate impressions. All measurements showed decreasing accuracy with greater elapsed time after the impressions were taken. Changes above the measurement error occurred at 24 and 36 hours for Cavex and Alginoplast, respectively. Digital dental models can be obtained from CBCT scans of alginate impressions without sending them to a remote laboratory. However, the impressions need to be scanned within 24 hours; otherwise, dimensional changes lead to errors that exceed the error of measurement. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    Directory of Open Access Journals (Sweden)

    Yunhui Si

    2017-10-01

    Full Text Available In this study, MOF/BiFeO3 composite (MOF, metal-organic framework has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts.

  15. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  16. Genome U-Plot: a whole genome visualization.

    Science.gov (United States)

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  17. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    Highlights: • This is the first report on a series of BiO x Cl y /BiO m I n heterojunctions. • The BiO x Cl y /BiO m I n composition was controlled by adjusting the growth parameters. • The BiO x Cl y /BiO m I n were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO 2 . • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO x Cl y /BiO m I n composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO x Cl y /BiO m I n composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O 2 · − played a major role, and OH· or h + played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  18. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  19. Interaction of submonolayer Bi films with the Si(100) surface

    International Nuclear Information System (INIS)

    Goryachko, A.M.; Melnik, P.V.; Nakhodkin, M.G.

    1999-01-01

    Scanning tunneling microscopy and Auger electron spectroscopy were used to investigate interaction of submonolayer Bi films with the Si(100)-2x1 surface. Ultra small Bi amounts (≤ 0.15ML) do not form ordered structures, if deposited at room temperature. Annealing at 400 degree C causes Bi to coalesce into small islands of the densely packed 2x1 phase. Simultaneously, vacancy clusters are produced in the substrate, which remain after desorption of Bi at 600 degree C. In contrast, room temperature deposition and thermal desorption of larger Bi amounts (≥ 0.25 ML) produces vacancies grouped into lines. Further annealing of such a substrate in the temperature range of 600 degree C ≤ T ≤ 750 degree C causes the phase transition between the Si(100)-2xn and Si(100)-c(4x4)

  20. Strain tuning of optical properties in Bi2Se3

    DEFF Research Database (Denmark)

    Jensen, Mathias Rosdahl; Mørk, Jesper; Willatzen, Morten

    2017-01-01

    Based on symmetry principles we determine the most general Hamiltonian for the low energy physics of Bi2Se3, including contributions due to a static electric field and strain. The full three-dimensional model is projected into the surface states at k= 0, giving an effective two-dimensional Hamilt...

  1. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO{sub 4}/BiOBr p-n heterojunction composites

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xuejun [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Dong, Yuying, E-mail: dongy@dlnu.edu.cn [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Cui, Yubo; Ou, Xiaoxia [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Qi, Xiaohui [College of Life Science, Dalian Nationalities University, Dalian, 116600 (China)

    2017-01-01

    Highlights: • Like-flowers BiPO{sub 4}/BiOBr was fabricated by mixing in solvent method. • o-Dichlorobenzene removal efficiency was 53.6% using BiPO{sub 4}/BiOBr. • The p–n junction improved o-dichlorobenzene degradation activity. - Abstract: In this paper, in order to enhance photo-induced electron-hole pairs separation of BiOBr, flowers-like BiPO{sub 4}/BiOBr p-n heterojunction composites was fabricated by a mixing in solvent method. The as-prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV–vis absorption spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and N{sub 2} adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of gaseous o-dichlorobenzene under visible light irradiation. Due to its strong adsorption capacity and the formation of p-n heterojunction, compared with BiPO{sub 4} and BiOBr, the BiPO{sub 4}/BiOBr composites showed higher photocatalytic activity in the degradation of gaseous o-DCB under visible light. Among them, 2% BiPO{sub 4}/BiOBr showed the maximum value of the activity, whose degradation rate was about 2.6 times as great as the pure BiOBr. Furthermore, the OH· was confirmed the main active species during the photocatalytic process by the trapping experiments. The outstanding performance indicated that the photocatalysts could be applied to air purification for chlorinated volatile organic compound.

  2. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan

    NARCIS (Netherlands)

    Sonuga-Barke, E.; Lasky-Su, J.; Neale, B.; Oades, R.D.; Chen, W.; Franke, B.; Buitelaar, J.K.; Banaschewski, T.; Ebstein, R.; Gill, M.; Anney, R.J.; Miranda, A.; Mulas, F.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Steinhausen, H.C.; Thompson, M.; Asherson, P.; Faraone, S.V.

    2008-01-01

    Studies of gene x environment (G x E) interaction in ADHD have previously focused on known risk genes for ADHD and environmentally mediated biological risk. Here we use G x E analysis in the context of a genome-wide association scan to identify novel genes whose effects on ADHD symptoms and comorbid

  3. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan.

    NARCIS (Netherlands)

    Sonuga-Barke, E.J.S.; Lasky-Su, J.; Neale, B.; Oades, R.D.; Chen, W.; Franke, B.; Buitelaar, J.K.; Banaschewski, T.; Ebstein, R.P.; Gill, M.; Anney, R.; Miranda, A.; Mulas, F.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Steinhausen, H.C.; Thompson, M.; Asherson, P.; Faraone, S.V.

    2008-01-01

    Studies of gene x environment (G x E) interaction in ADHD have previously focused on known risk genes for ADHD and environmentally mediated biological risk. Here we use G x E analysis in the context of a genome-wide association scan to identify novel genes whose effects on ADHD symptoms and comorbid

  4. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  5. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  6. Thermo-elastic Green's functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals

    International Nuclear Information System (INIS)

    Li, P.D.; Li, X.Y.; Zheng, R.F.

    2013-01-01

    This Letter is concerned with thermo-elastic fundamental solutions of an infinite space, which is composed of two half-infinite bodies of different one-dimensional hexagonal quasi-crystals. A point thermal source is embedded in a half-space. The interface can be either perfectly bonded or smoothly contacted. On the basis of the newly developed general solution, the temperature-induced elastic field in full space is explicitly presented in terms of elementary functions. The interactions among the temperature, phonon and phason fields are revealed. The present work can play an important role in constructing farther analytical solutions for crack, inclusion and dislocation problems. -- Highlights: ► Green's functions are constructed in terms of 10 quasi-harmonic functions. ► Thermo-elastic field of a 1D hexagonal QC bi-material body is expressed explicitly. ► Both perfectly bonded and smoothly contacted interfaces are considered

  7. Three-dimensional scanning force/tunneling spectroscopy at room temperature

    International Nuclear Information System (INIS)

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-01-01

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated. (paper)

  8. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  9. Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiping [National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100 (China); Liu, Jingyi; Hu, Tingxia [Environment Research Institute, Shandong University, Jinan 250100 (China); Du, Na; Song, Shue [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2016-05-15

    Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1) facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.

  10. Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Liu, Z.Q.; Mitsuishi, K.; Furuya, K.

    2005-01-01

    Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed. (orig.)

  11. Near real-time bi-planar fluoroscopic tracking system for the video tumor fighter

    International Nuclear Information System (INIS)

    Lawson, M.A.; Wika, K.G.; Gillies, G.T.; Ritter, R.C.

    1991-01-01

    The authors have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the Video Tumor Fighter (VTF). The software was written for s Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally- oriented, visible-light cameras and simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented

  12. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xue [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China); Shi, Junjie, E-mail: junjieshiding@gmail.com [Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University Bremen, Leobener Str. UFT, 28359 Bremen (Germany); Feng, Lijuan; Li, Chunhu [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China); Wang, Liang, E-mail: wangliangouc@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qing dao 266100 (China)

    2017-02-28

    Highlights: • A BiOBr/RGO aerogel photocatalyst was synthesized using dopamine as reducing agent. • BiOBr/RGO aerogel can be easily controlled morphology by a simple two-step method. • BiOBr/RGO aerogel photocatalyst exhibited superior performance in MO decoloration. - Abstract: A series of BiOBr/reduced graphene oxide (RGO) aerogel was fabricated using a two steps hydrothermal method. Various methods such as SEM, TEM, DRS and Raman spectroscopy were employed to fully characterize the as-obtained BiOBr/RGO. Their photocatalytic degradation of methyl orange (MO) were studied under visible light irradiation. The combination of BiOBr and RGO result in an improved activity. The sample with 10 wt% RGO abbreviated as BiOBr-G10 shows the highest activity. Moreover, this sample exhibits a selective visible-light photocatalytic behavior as the degradation rate over MO (80%) is much higher than that over Rhodamin B (50%) and phenol (35%) in 60 min. The XRD and photoluminescence emission spectroscopy characterization of the BiOBr-G10 samples indicates an increased crystallization of BiOBr and efficient quenching of photo-excited electrons and holes contributes to the improved photocatalytic activities.

  13. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light

    International Nuclear Information System (INIS)

    Yu, Xue; Shi, Junjie; Feng, Lijuan; Li, Chunhu; Wang, Liang

    2017-01-01

    Highlights: • A BiOBr/RGO aerogel photocatalyst was synthesized using dopamine as reducing agent. • BiOBr/RGO aerogel can be easily controlled morphology by a simple two-step method. • BiOBr/RGO aerogel photocatalyst exhibited superior performance in MO decoloration. - Abstract: A series of BiOBr/reduced graphene oxide (RGO) aerogel was fabricated using a two steps hydrothermal method. Various methods such as SEM, TEM, DRS and Raman spectroscopy were employed to fully characterize the as-obtained BiOBr/RGO. Their photocatalytic degradation of methyl orange (MO) were studied under visible light irradiation. The combination of BiOBr and RGO result in an improved activity. The sample with 10 wt% RGO abbreviated as BiOBr-G10 shows the highest activity. Moreover, this sample exhibits a selective visible-light photocatalytic behavior as the degradation rate over MO (80%) is much higher than that over Rhodamin B (50%) and phenol (35%) in 60 min. The XRD and photoluminescence emission spectroscopy characterization of the BiOBr-G10 samples indicates an increased crystallization of BiOBr and efficient quenching of photo-excited electrons and holes contributes to the improved photocatalytic activities.

  14. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Yu, Shixin; Zhang, Yihe; Li, Min; Du, Xin; Huang, Hongwei

    2017-01-01

    Bi metal deposited on Bi2WO6 composite photocatalysts have been successfully synthesized via a simple in-situ reduction method at room temperature with using Bi2WO6 as self-sacrificing template and NaBH4 as reducing agent. The reduction extent can be easily modulated by controlling the concentration of NaBH4 solution. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectra, N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), diffuse reflection spectroscopy (DRS) and photoelectrochemical measurements were carried out to analyze the phase, morphology, optical property and photoelectrochemical property of the as-prepared samples. The photocatalytic activity is surveyed by degradation of phenol under visible light (λ > 420 nm), which showed that the BWO-0.2 photocatalyst exhibited the highest efficiency, which was over 3 times as high as pure Bi2WO6. The enhanced photocatalytic activity should be attributed to strengthened photoabsorption and charge separation efficiency derived from the surface plasmon resonance (SPR) of Bi metal.

  15. Fabrication of laminated Bi-2212/Ag multifilamentary tape

    Science.gov (United States)

    Yuan, D.-W.; Majer, W. J.; Francavilla, T. L.

    2000-03-01

    The powder-in-tube (PIT) process has been successfully used to make long lengths of Ag-sheathed oxide superconductors. A modified PIT approach is proposed to fabricate conductors with laminated Bi-2212 configurations. Ag/Bi-2212 tapes consisting of seven laminae were produced with various thicknesses ranging from 0.38 to 0.25 mm. The use of a turkshead was found to be beneficial, yielding tapes with good dimensional integrity and consistency. Critical current density (Jc ) values greater than 105 A cm-2 (0.01 T and Bicons/Journals/Common/perp" ALT="perp" ALIGN="TOP"/> tape surface) have been attained for tapes of different thicknesses. Nonetheless, Jc was found to be related to the average thickness of individual Bi-2212 lamina. It is believed that excessive cold working accounts for the decrease in Jc with decreasing size below a threshold value. The enhancement of Jc is attributed to the high Bi-2212 grain alignment along the Ag-oxide interfaces and uniform dimensions within the laminate conductors.

  16. PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix.

    Science.gov (United States)

    Ambrosini, Giovanna; Groux, Romain; Bucher, Philipp

    2018-03-05

    Transcription factors (TFs) regulate gene expression by binding to specific short DNA sequences of 5 to 20-bp to regulate the rate of transcription of genetic information from DNA to messenger RNA. We present PWMScan, a fast web-based tool to scan server-resident genomes for matches to a user-supplied PWM or TF binding site model from a public database. The web server and source code are available at http://ccg.vital-it.ch/pwmscan and https://sourceforge.net/projects/pwmscan, respectively. giovanna.ambrosini@epfl.ch. SUPPLEMENTARY DATA ARE AVAILABLE AT BIOINFORMATICS ONLINE.

  17. Feasibility of transient elastography versus real-time two-dimensional shear wave elastography in difficult-to-scan patients

    DEFF Research Database (Denmark)

    Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda

    2016-01-01

    BACKGROUND AND AIMS: Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness...

  18. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  19. Bone scan and joint scan of hands and feet in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Carpentier, N.; Verbeke, S.; Perdrisot, R.; Grilo, R.M.; Quenesson, E.; Bonnet, C.; Vergne, P.; Treves, R.; Bertin, P.; Boutros-Toni, F.

    2000-01-01

    The aim of this study was to determine the ability of joint scan and bone scan of hands and feet, in patients with rheumatoid arthritis, to localize the altered joints. The sensitivity, the specificity, the positive predictive value (PPV) and the negative predictive value (NPV) of joint scan were determined in comparison with clinical joint assessment. Fifteen patients (780 joints) were clinically examined (pain and synovitis); during the same day, a bone scan and a joint scan were realized by oxidronate 99m Tc intravenous injection. Patients were scanned 5 minutes (tissual time, T t ) and 3 hours 1/4 (bone time, T 0 ) after the administration. The uptake of the bi-phosphonate was evaluated with a qualitative method using a grey scale. The uptake of 99m Tc oxidronate was quantitated using an extra-articular region of interest. The sensitivity, specificity, PPV and NPV of the scan at Tt were 46%, 96%, 85% et 78%. The same parameters were 75%, 66%, 53% and 84% for the scan realized at T 0 . The joint scan has showed 22% of false positive. These false positives could be a consequence of an earlier detection of joint alterations by scan. The joint scan should forecast the evolution of joints in patients with rheumatoid arthritis. (author)

  20. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Melnikov, Vasily; Khan, Jafar Iqbal; Mohammed, Omar F.

    2015-01-01

    , we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions

  1. Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning

    International Nuclear Information System (INIS)

    Klein, S A; Moran, J L; Posner, J D; Frakes, D H

    2012-01-01

    We present a diagnostic platform for measuring three-dimensional three-component (3D3C) velocity fields in microscopic volumes. The imaging system uses high-speed Nipkow spinning disk confocal microscopy. Confocal microscopy provides optical sectioning using pinhole spatial filtering which rejects light originating from out-of-focus objects. The system accomplishes volumetric scanning by rapid translation of the high numerical aperture objective using a piezo objective positioner. The motion of fluorescent microspheres is quantified using 3D3C super resolution particle-imaging velocimetry with instantaneous spatial resolutions of the order of 5 µm or less in all three dimensions. We examine 3D3C flow in a PDMS microchannel with an expanding section at 3D acquisition rates of 30 Hz, and find strong agreement with a computational model. Equations from the PIV and PTV literature adapted for a scanning objective provide estimates of maximum measurable velocity. The technique allows for isosurface visualization of 3D particle motion and robust high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. (paper)

  2. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  4. Bi surfactant mediated growth for fabrication of Si/Ge nanostructures and investigation of Si/Ge intermixing by STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, N.

    2007-10-26

    In the thesis work presented here, we show that Bi is more promising surfactant material than Sb. We demonstrate that by using Bi as a terminating layer on Ge/Si surface, it is possible to distinguish between Si and Ge in Scanning tunnelling microscope (STM). Any attempt to utilize surfactant mediated growth must be preceded by a thorough study of its effect on the the system being investigated. Thus, the third chapter of this thesis deals with an extensive study of the Bi surfactant mediated growth of Ge on Si(111) surface as a function of Ge coverage. The growth is investigated from the single bilayer Ge coverage till the Ge coverage of about 15 BL when the further Ge deposition leads to two-dimensional growth. In the fourth chapter, the unique property of Bi terminating layer on Ge/Si surface to result in an STM height contrast between Si and Ge is explained with possible explanations given for the reason of this apparent height contrast. The controlled fabrication of Ge/Si nanostructures such as nanowires and nanorings is demonstrated. A study on Ge-Si diffusion in the surface layers by a direct method such as STM was impossible previously because of the similar electronic structure of Ge and Si. Since with the Bi terminating surface layer, one is able to distinguish between Ge and Si, the study of intermixing between them is also possible using STM. This method to distinguish between Si and Ge allows one to study intermixing on the nanoscale and to identify the fundamental diffusion processes giving rise to the intermixing. In Chapter 5 we discuss how this could prove useful especially as one could get a local probe over a very narrow Ge-Si interface. A new model is proposed to estimate change in the Ge concentration in the surface layer with time. The values of the activation energies of Ge/Si exchange and Si/Ge exchange are estimated by fitting the experimental data with the model. The Ge/Si intermixing has been studied on a surface having 1 ML Bi ({radical

  5. Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2017-03-01

    Full Text Available In our paper, the theory of bi-integrable and tri-integrable couplings is generalized to the discrete case. First, based on the six-dimensional real special orthogonal Lie algebra SO(4, we construct bi-integrable and tri-integrable couplings associated with SO(4 for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by the variational identities.

  6. Semiautomatic estimation of breast density with DM-Scan software.

    Science.gov (United States)

    Martínez Gómez, I; Casals El Busto, M; Antón Guirao, J; Ruiz Perales, F; Llobet Azpitarte, R

    2014-01-01

    To evaluate the reproducibility of the calculation of breast density with DM-Scan software, which is based on the semiautomatic segmentation of fibroglandular tissue, and to compare it with the reproducibility of estimation by visual inspection. The study included 655 direct digital mammograms acquired using craniocaudal projections. Three experienced radiologists analyzed the density of the mammograms using DM-Scan, and the inter- and intra-observer agreement between pairs of radiologists for the Boyd and BI-RADS® scales were calculated using the intraclass correlation coefficient. The Kappa index was used to compare the inter- and intra-observer agreements with those obtained previously for visual inspection in the same set of images. For visual inspection, the mean interobserver agreement was 0,876 (95% CI: 0,873-0,879) on the Boyd scale and 0,823 (95% CI: 0,818-0,829) on the BI-RADS® scale. The mean intraobserver agreement was 0,813 (95% CI: 0,796-0,829) on the Boyd scale and 0,770 (95% CI: 0,742-0,797) on the BI-RADS® scale. For DM-Scan, the mean inter- and intra-observer agreement was 0,92, considerably higher than the agreement for visual inspection. The semiautomatic calculation of breast density using DM-Scan software is more reliable and reproducible than visual estimation and reduces the subjectivity and variability in determining breast density. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  7. Measurement of thermal conductivity of Bi2Te3 nanowire using high-vacuum scanning thermal wave microscopy

    Science.gov (United States)

    Park, Kyungbae; Hwang, Gwangseok; Kim, Hayeong; Kim, Jungwon; Kim, Woochul; Kim, Sungjin; Kwon, Ohmyoung

    2016-02-01

    With the increasing application of nanomaterials in the development of high-efficiency thermoelectric energy conversion materials and electronic devices, the measurement of the intrinsic thermal conductivity of nanomaterials in the form of nanowires and nanofilms has become very important. However, the current widely used methods for measuring thermal conductivity have difficulties in eliminating the influence of interfacial thermal resistance (ITR) during the measurement. In this study, by using high-vacuum scanning thermal wave microscopy (HV-STWM), we propose a quantitative method for measuring the thermal conductivity of nanomaterials. By measuring the local phase lag of high-frequency (>10 kHz) thermal waves passing through a nanomaterial in a high-vacuum environment, HV-STWM eliminates the measurement errors due to ITR and the distortion due to heat transfer through air. By using HV-STWM, we measure the thermal conductivity of a Bi2Te3 nanowire. Because HV-STWM is quantitatively accurate and its specimen preparation is easier than in the thermal bridge method, we believe that HV-STWM will be widely used for measuring the thermal properties of various types of nanomaterials.

  8. SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor

    Science.gov (United States)

    Raut, Shrikant S.; Dhobale, Jyotsna A.; Sankapal, Babasaheb R.

    2017-03-01

    Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg-1 at 5 mVs-1 scan rate in 1 M Na2SO4 electrolyte.

  9. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    Science.gov (United States)

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  10. The lottery-panel task for bi-dimensional parameter-free elicitation of risk attitudes

    Directory of Open Access Journals (Sweden)

    García-Gallego, Aurora

    2012-03-01

    Full Text Available In this paper, we propose a simple task for eliciting attitudes toward risky choice, the Sabater-Grande and Georgantzís (SGG lottery-panel task, which consists in a series of lotteries constructed to compensate riskier options with higher risk-return trade-offs. Using Principal Component Analysis technique, we show that the SGG lotterypanel task is capable of capturing two dimensions of individual risky decision making: subjects’ average willingness to choose risky projects and their sensitivity towards variations in the return to risk. We report results from a large dataset obtained from the implementation of the SGG lottery-panel task and discuss regularities and the desirability of its bi-dimensionality both for describing behaviour under uncertainty and explaining behaviour in other contexts.

    En este trabajo proponemos una tarea sencilla que permite obtener la actitud frente a la toma de riesgo monetario, y que llamaremos tarea Sabater-Grande y Georgantzís (SGG de riesgo. Esta tarea consiste en una serie de loterías construidas para compensar las opciones de mayor riesgo con un mayor retorno. Utilizando la técnica de componentes principales, encontramos que la tarea SGG es capaz de capturar dos dimensiones de la toma de decisiones individuales: por un lado, la voluntad promedio de los sujetos de elegir proyectos arriesgados y, por otro, su sensibilidad hacia las variaciones en el retorno por riesgo. Presentamos los resultados de una gran muestra de datos obtenidos a partir de la implementación de la tarea SGG, y discutimos las regularidades y la conveniencia de su bidimensionalidad tanto para describir el comportamiento en condiciones de incertidumbre como para explicar el comportamiento humano en otros contextos.

  11. Annealing Effect on the Photoelectrochemical Properties of BiVO_4 Thin Film Electrodes

    International Nuclear Information System (INIS)

    Siti Nur Farhana Mohd Nasir; Mohd Asri Mat Teridi; Mehdi Ebadi; Sagu, J.S.

    2015-01-01

    Monoclinic bismuth vanadate (BiVO_4) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectrophotometry (UV-Vis) and current voltage measurement. All BiVO_4 thin films showed an anodic photocurrent. The sample of BiVO_4 annealed at 400 degree Celsius exhibited the highest photocurrent density of 0.44 mAcm"-"2 vs. Ag/ AgCl at 1.23 V. (author)

  12. The Effects of Dimensional Salience, Pretraining Task, and Developmental Level Upon Bidimensional Processing in a Matching Task.

    Science.gov (United States)

    Katsuyama, Ronald M.; Reid, Amy

    Purposes of this study are to determine the effects of (1) preassessed dimensional salience upon performance in a bi-dimensional matching task, and (2) pretraining conditions expected to facilitate bi-dimensional processing. An additional aim was to elucidate a model of development involving changing salience hierarchies by comparing the effects…

  13. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  14. Approaching the sequential and three-dimensional organization of Archaea, Bacteria and Eukarya genomes. Dynamic Organization of Nuclear Function

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Göker (Markus); R. Lohner (Rudolf); J. Langowski (Jörg)

    2002-01-01

    textabstractThe largely unresolved sequential organization, i.e. the relations within DNA sequences, and its connection to the three-dimensional organization of genomes was investigated by correlation analyses of completely sequenced chromosomes from Viroids, Archaea, Bacteria, Arabidopsis

  15. Electronic structure of Bi lines on clean and H-passivated Si(100)

    International Nuclear Information System (INIS)

    Javorsky, Jakub; SetvIn, Martin; Miki, Kazushi; Owen, James Hugh Gervase

    2010-01-01

    By means of scanning tunnelling microscopy and spectroscopy, we have investigated the electronic structure of Bi nanolines on clean and H-passivated Si(100) surfaces. Maps of the local density of states (LDOS) images of the Bi nanolines are presented for the first time. The spectra obtained for nanolines on a clean Si surface and the LDOS images agree with ab initio predicted spectra for the Haiku structure. For nanolines on a H-passivated surface, the spectra obtained suggest that the Bi nanoline may locally pin the surface Fermi level, and the LDOS images taken at low bias show a distribution of states different to what was expected at the Bi nanolines. The results are discussed with respect to use of the nanolines as atomic wire interconnections.

  16. Reference nano-dimensional metrology by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Dai, Gaoliang; Fluegge, Jens; Bosse, Harald; Heidelmann, Markus; Kübel, Christian; Prang, Robby

    2013-01-01

    Traceable and accurate reference dimensional metrology of nano-structures by scanning transmission electron microscopy (STEM) is introduced in the paper. Two methods, one based on the crystal lattice constant and the other based on the pitch of a feature pair, were applied to calibrate the TEM magnification. The threshold value, which was defined as the half-intensity of boundary materials, is suggested to extract the boundary position of features from the TEM image. Experimental investigations have demonstrated the high potential of the proposed methods. For instance, the standard deviation from ten repeated measurements of a line structure with a nominal 100 nm critical dimension (CD) reaches 1σ = 0.023 nm, about 0.02%. By intentionally introduced defocus and larger sample alignment errors, the investigation shows that these influences may reach 0.20 and 1.3 nm, respectively, indicating the importance of high-quality TEM measurements. Finally, a strategy for disseminating the destructive TEM results is introduced. Using this strategy, the CD of a reference material has been accurately determined. Its agreement over five independent TEM measurements is below 1.2 nm. (paper)

  17. Synthesis, Characterization and Antibacterial Activity of BiVO4 Microstructure

    Science.gov (United States)

    Ekthammathat, Nuengruethai; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2018-05-01

    Hyperbranched BiVO4 microstructure were successfully synthesized by a hydrothermal method. Upon characterization the products by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, selected area electron diffraction (SAED) and photoluminescence (PL) spectroscopy, pure monoclinic hyperbranched BiVO4 with dominant vibration peak at 810 cm-1 and strong photoemission peak at 360 nm was synthesized in the solution with pH 1. In the solution with pH 2, tetragonal BiVO4 phase was also detected. In this research, antibacterial activity against S. aureus and E. coli was investigated by counting the colony forming unit (CFU). At 37°C within 24 h, the monoclinic BiVO4 phase can play the role in inhibiting S. aureus growth (350 CFU/mL remaining bacteria) better than that against E. coli (a large number of remaining bacteria).

  18. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties

    International Nuclear Information System (INIS)

    Liu Ying; Wang Weimin; Fu Zhengyi; Wang Hao; Wang Yucheng; Zhang Jinyong

    2011-01-01

    Highlights: → Bi 2 WO 6 with 3D nest-like structures was obtained without the presence of templates but after Sr-doping, which represents a marked improvement over previous reports. → The products showed enhanced photocatalytic properties over pure Bi 2 WO 6 . → Samples subsequently thermal treated at 500 deg. C show better photocatalytic activities. - Abstract: A series of Sr-doped Bi 2 WO 6 with three-dimensional (3D) nest-like structures were synthesized through simple hydrothermal route and characterized by XRD, FESEM, TEM, XPS, UV-vis DRS, etc. Morphology observation revealed that the as-synthesized Bi 2 WO 6 were self-assembled three-dimensional (3D) nest-like structures, which were constructed from nanoplates. UV-vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light areas. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under UV and visible light irradiation (λ > 420 nm). The photocatalytic properties were enhanced after Sr doping. Samples subsequently thermal treated at 500 deg. C showed higher photocatalytic activities. The reasons for the differences in the photocatalytic activities of these nest-like Bi 2 WO 6 microstructures were further investigated.

  19. Microwave-assisted hydrothermal synthesis of Bi2S3 nanorods in flower-shaped bundles

    International Nuclear Information System (INIS)

    Thongtem, Titipun; Pilapong, Chalermchai; Kavinchan, Jutarat; Phuruangrat, Anukorn; Thongtem, Somchai

    2010-01-01

    Bi 2 S 3 nanorods in flower-shaped bundles were successfully synthesized from the decomposition of Bi-thiourea complexes under the microwave-assisted hydrothermal process. X-ray powder diffraction (XRD) patterns and field emission scanning electron microscopy (FE-SEM) show that Bi 2 S 3 has the orthorhombic phase and appears as nanorods in flower-shaped bundles. A transmission electron microscopic (TEM) study reveals the independent single Bi 2 S 3 nanorods with their growth along the [0 0 1] direction. A possible formation mechanism of Bi 2 S 3 nanorods in flower-shaped bundles is also proposed and discussed. Their UV-vis spectrum shows the absorbance at 596 nm, with its direct energy band gap of 1.82 eV.

  20. Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics

    Directory of Open Access Journals (Sweden)

    Guo H.W.

    2011-01-01

    Full Text Available The Bi2O3-SiO2 (BS glass-ceramics were prepared by melt-quench technique, and the crystallization kinetics and phase transformation behavior were investigated in accordance with Kissinger and Johson-Mehl-Avrami equation, DSC, XRD and SEM. The results show that in the heat treatment process (or termed as re-crystallizing process Bi2SiO5 and Bi4Si3O12 crystals were found consequently. Respectively, the crystallization activation energies of the two crystals are Ep1=14.8kJ/mol and Ep2=34.1kJ/mol. And the average crystallization index of n1=1.73 and n2=1.38 suggested volume nucleation, one-dimensional growth and surface nucleation, one-dimensional growth from surface to the inside respectively. The meta-stable needle-like Bi2SiO5 crystals are easily to be transformed into stable prismatic Bi4Si3O12 crystals. By quenching the melt and hold in 850°C for 1h, the homogenous single Bi4Si3O12 crystals were found in the polycrystalline phase of the BS glassceramics system.

  1. Genome scans on experimentally evolved populations reveal candidate regions for adaptation to plant resistance in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Eoche-Bosy, D; Gautier, M; Esquibet, M; Legeai, F; Bretaudeau, A; Bouchez, O; Fournet, S; Grenier, E; Montarry, J

    2017-09-01

    Improving resistance durability involves to be able to predict the adaptation speed of pathogen populations. Identifying the genetic bases of pathogen adaptation to plant resistances is a useful step to better understand and anticipate this phenomenon. Globodera pallida is a major pest of potato crop for which a resistance QTL, GpaV vrn , has been identified in Solanum vernei. However, its durability is threatened as G. pallida populations are able to adapt to the resistance in few generations. The aim of this study was to investigate the genomic regions involved in the resistance breakdown by coupling experimental evolution and high-density genome scan. We performed a whole-genome resequencing of pools of individuals (Pool-Seq) belonging to G. pallida lineages derived from two independent populations having experimentally evolved on susceptible and resistant potato cultivars. About 1.6 million SNPs were used to perform the genome scan using a recent model testing for adaptive differentiation and association to population-specific covariables. We identified 275 outliers and 31 of them, which also showed a significant reduction in diversity in adapted lineages, were investigated for their genic environment. Some candidate genomic regions contained genes putatively encoding effectors and were enriched in SPRYSECs, known in cyst nematodes to be involved in pathogenicity and in (a)virulence. Validated candidate SNPs will provide a useful molecular tool to follow frequencies of virulence alleles in natural G. pallida populations and define efficient strategies of use of potato resistances maximizing their durability. © 2017 John Wiley & Sons Ltd.

  2. Bulk Fermi surface and electronic properties of Cu0.07Bi2Se3

    Science.gov (United States)

    Martin, C.; Craciun, V.; Miller, K. H.; Uzakbaiuly, B.; Buvaev, S.; Berger, H.; Hebard, A. F.; Tanner, D. B.

    2013-05-01

    The electronic properties of Cu0.07Bi2Se3 have been investigated using Shubnikov-de Haas and optical reflectance measurements. Quantum oscillations reveal a bulk, three-dimensional Fermi surface with anisotropy kFc/kFab≈ 2 and a modest increase in free-carrier concentration and in scattering rate with respect to the undoped Bi2Se3, also confirmed by reflectivity data. The effective mass is almost identical to that of Bi2Se3. Optical conductivity reveals a strong enhancement of the bound impurity bands with Cu addition, suggesting that a significant number of Cu atoms enter the interstitial sites between Bi and Se layers or may even substitute for Bi. This conclusion is also supported by x-ray diffraction measurements, where a significant increase of microstrain was found in Cu0.07Bi2Se3, compared to Bi2Se3.

  3. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  4. (C6H13N)2BiI5: A One-Dimensional Lead-Free Perovskite-Derivative Photoconductive Light Absorber.

    Science.gov (United States)

    Zhang, Weichuan; Tao, Kewen; Ji, Chengmin; Sun, Zhihua; Han, Shiguo; Zhang, Jing; Wu, Zhenyue; Luo, Junhua

    2018-04-16

    Lead-free organic-inorganic hybrid perovskites have recently attracted intense interest as environmentally friendly, low-cost, chemically stable light absorbers. Here, we reported a new one-dimensional (1D) zigzag chainlike light-absorbing hybrid material of (C 6 H 13 N) 2 BiI 5 , in which the corner-sharing octahedral bismuth halide chains are surrounded by organic cations of tetramethylpiperidinium. This unique zigzag 1D hybrid perovskite-derivative material shows a narrow direct band gap of 2.02 eV and long-lived photoluminescence, which is encouraging for optoelectronic applications. Importantly, it behaves as a typical semiconducting material and displays obvious photoresponse in the visible-light range. This work opens a potential pathway for the further application of 1D lead-free hybrids.

  5. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  6. A spatio-temporal index for aerial full waveform laser scanning data

    Science.gov (United States)

    Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela

    2018-04-01

    Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct

  7. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  8. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases

    International Nuclear Information System (INIS)

    Zhang Xi; Ai Zhihui; Jia Falong; Zhang Lizhi; Fan Xiaoxing; Zou Zhigang

    2007-01-01

    Tetragonal and monoclinic bismuth vanadate (BiVO 4 ) powders were selectively synthesized by aqueous processes. The characterizations of the as-prepared BiVO 4 powders were carried out by X-ray diffraction, nitrogen adsorption, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities of different BiVO 4 samples were determined by degradation of methylene blue solution under visible-light irradiation (λ > 420 nm) and compared with that of TiO 2 (Degussa P25). The band gaps of the as-prepared BiVO 4 were determined from UV-vis diffuse reflectance spectra. It was found that monoclinic BiVO 4 with a band gap of 2.34 eV showed higher photocatalytic activity than that of tetragonal BiVO 4 with a band gap of 3.11 eV

  9. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    Science.gov (United States)

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  10. The accuracy of three-dimensional fused deposition modeling (FDM) compared with three-dimensional CT-Scans on the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle

    Science.gov (United States)

    Savitri, I. T.; Badri, C.; Sulistyani, L. D.

    2017-08-01

    Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.

  11. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets

    Science.gov (United States)

    Nan, Feng; Cai, Tianyi; Ju, Sheng; Fang, Liang

    2018-04-01

    Bismuth vanadate (BiVO4) has been considered as one of the promising Photoelectrochemical (PEC) photoanode materials. However, the performances remain poorly rated due to inefficient carrier separation, short carrier diffusion length, and sluggish water oxidation kinetics. Herein, a photoanode consisting of MoS2 nanosheet coating on the three-dimensional ordered BiVO4 inverse opal is fabricated by a facile combination of nanosphere lithography and hydrothermal methods. By taking advantage of the photonic crystal and two-dimensional material, the optimized MoS2/BiVO4 inverse opal photoanode exhibits a 560% improvement of the photocurrent density and threefold enhancement of the incident photon-to-current efficiency than that of the pristine BiVO4 film photoanode. Systematic studies reveal that the excellent PEC activity should be attributed to enhanced light harvesting and charge separation efficiency.

  12. Bi-dimensional null model analysis of presence-absence binary matrices.

    Science.gov (United States)

    Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J

    2018-01-01

    Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological

  13. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    Bi-alphabetic radar; Hamming scan; back-tracking; merit factor; ... of 14.08, 12.10, 9.85, 8.85, 8.83, 8.86, 8.58 and 8.50 respectively. Beyond n ˆ 59 but below n ˆ 117, the highest merit factor available is 9.56. Known high merit ... subjected to dual ternary±binary interpretation to facilitate a coincidence detection scheme.

  14. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  15. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  16. Synthesis and photocatalytic properties of MgBi2O6 with Ag additions

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhu, Binqing; Zhong, Yan; Zhou, Huaiying

    2018-02-01

    Ag-doped MgBi2O6 photocatalysts were synthesized by the low temperature hydrothermal method in combination with heat treatment reaction using NaBiO3·2H2O, MgCl2·6H2O, and AgNO3 as raw materials. The products were characterized by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray detector (EDS), and UV-Vis diffusion reflectance spectra. The photocatalytic activity of MgBi2O6 with Ag additions was evaluated by degrading MB (10 mg/L) under visible light irradiation (λ > 420 nm). The results showed that in comparison with pure MgBi2O6, the photocatalytic activity of MgBi2O6 with about 5% Ag concentration is increased by about 24% after 120 min reaction. The enhancement of catalytic activity of Ag-doped MgBi2O6 photocatalysts should be related to the band structure, morphology and larger specific surface area.

  17. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Huang, Hongwei; Liu, Liyuan; Zhang, Yihe; Tian, Na

    2015-01-01

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO 4 /Bi 2 MoO 6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO 4 /Bi 2 MoO 6 composites were synthesized by a one-step hydrothermal method. • The BiIO 4 /Bi 2 MoO 6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h + ) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO 4 /Bi 2 MoO 6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO 4 and Bi 2 MoO 6 , the BiIO 4 /Bi 2 MoO 6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO 4 /Bi 2 MoO 6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h + ) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  18. Preparation of thin layers of BiSrCaCuO by method MOCVD

    International Nuclear Information System (INIS)

    Beran, P.; Stejskal, J.; Strejc, A.; Nevriva, M.; Sedmibudsky, D.; Leitner, J.

    1999-01-01

    Preparation of superconducting material on the basis mixed oxides of BiSrCaCuO by chemical vapour deposition (CVD) method is described. Surface morphology and concentration profiles of elements were analyzed by scanning electron microscope and microprobe. Phase of layers was analysed by X-ray diffraction (radiation of Cu kα ). Samples of thin layers were characterized by magnetic susceptibility in temperature interval 10 to 150 K. Obtained results confirm formation of superconducting phases Bi 2 Sr 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Xa 2 Cu 3 O x

  19. Documentation and analysis of traumatic injuries in clinical forensic medicine involving structured light three-dimensional surface scanning versus photography.

    Science.gov (United States)

    Shamata, Awatif; Thompson, Tim

    2018-05-10

    Non-contact three-dimensional (3D) surface scanning has been applied in forensic medicine and has been shown to mitigate shortcoming of traditional documentation methods. The aim of this paper is to assess the efficiency of structured light 3D surface scanning in recording traumatic injuries of live cases in clinical forensic medicine. The work was conducted in Medico-Legal Centre in Benghazi, Libya. A structured light 3D surface scanner and ordinary digital camera with close-up lens were used to record the injuries and to have 3D and two-dimensional (2D) documents of the same traumas. Two different types of comparison were performed. Firstly, the 3D wound documents were compared to 2D documents based on subjective visual assessment. Additionally, 3D wound measurements were compared to conventional measurements and this was done to determine whether there was a statistical significant difference between them. For this, Friedman test was used. The study established that the 3D wound documents had extra features over the 2D documents. Moreover; the 3D scanning method was able to overcome the main deficiencies of the digital photography. No statistically significant difference was found between the 3D and conventional wound measurements. The Spearman's correlation established strong, positive correlation between the 3D and conventional measurement methods. Although, the 3D surface scanning of the injuries of the live subjects faced some difficulties, the 3D results were appreciated, the validity of 3D measurements based on the structured light 3D scanning was established. Further work will be achieved in forensic pathology to scan open injuries with depth information. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  20. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    Science.gov (United States)

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered. PMID:23112655

  1. Three-dimensional analysis of rodent paranasal sinus cavities from X-ray computed tomography (CT) scans

    Science.gov (United States)

    Phillips, Jonathan E.; Ji, Lunan; Rivelli, Maria A.; Chapman, Richard W.; Corboz, Michel R.

    2009-01-01

    Continuous isometric microfocal X-ray computed tomography (CT) scans were acquired from an AKR/J mouse, Brown-Norway rat, and Hartley guinea pig. The anatomy and volume of the paranasal sinus cavities were defined from 2-dimensional (2-D) and 3-dimensional (3-D) CT images. Realistic 3-D images were reconstructed and used to determine the anterior maxillary, posterior maxillary, and ethmoid sinus cavity airspace volumes (mouse: 0.6, 0.7, and 0.7 mm3, rat: 8.6, 7.7, and 7.0 mm3, guinea pig: 63.5, 46.6 mm3, and no ethmoid cavity, respectively). The mouse paranasal sinus cavities are similar to the corresponding rat cavities, with a reduction in size, while the corresponding maxillary sinus cavities in the guinea pig are different in size, location, and architecture. Also, the ethmoid sinus cavity is connected by a common drainage pathway to the posterior maxillary sinus in mouse and rat while a similar ethmoid sinus was not present in the guinea pig. We conclude that paranasal sinus cavity airspace opacity (2-D) or volume (3-D) determined by micro-CT scanning may be used to conduct longitudinal studies on the patency of the maxillary sinus cavities of rodents. This represents a potentially useful endpoint for developing and testing drugs in a small animal model of sinusitis. PMID:19794893

  2. Large linear magnetoresistance from neutral defects in Bi$_2$Se$_3$

    OpenAIRE

    Kumar, Devendra; Lakhani, Archana

    2016-01-01

    The chalcogenide Bi$_2$Se$_3$ can attain the three dimensional (3D) Dirac semimetal state under the influence of strain and microstrain. Here we report the presnece of large linear magnetoresistance in such a Bi$_2$Se$_3$ crystal. The magnetoresistance has quadratic form at low fields which crossovers to linear above 4 T. The temperature dependence of magnetoresistance scales with carrier mobility and the crossover field scales with inverse of mobility. Our analysis suggest that the linear ma...

  3. Newly defined landmarks for a three-dimensionally based cephalometric analysis: a retrospective cone-beam computed tomography scan review.

    Science.gov (United States)

    Lee, Moonyoung; Kanavakis, Georgios; Miner, R Matthew

    2015-01-01

    To identify two novel three-dimensional (3D) cephalometric landmarks and create a novel three-dimensionally based anteroposterior skeletal measurement that can be compared with traditional two-dimensional (2D) cephalometric measurements in patients with Class I and Class II skeletal patterns. Full head cone-beam computed tomography (CBCT) scans of 100 patients with all first molars in occlusion were obtained from a private practice. InvivoDental 3D (version 5.1.6, Anatomage, San Jose, Calif) was used to analyze the CBCT scans in the sagittal and axial planes to create new landmarks and a linear 3D analysis (M measurement) based on maxillary and mandibular centroids. Independent samples t-test was used to compare the mean M measurement to traditional 2D cephalometric measurements, ANB and APDI. Interexaminer and intraexaminer reliability were evaluated using 2D and 3D scatterplots. The M measurement, ANB, and APDI could statistically differentiate between patients with Class I and Class II skeletal patterns (P < .001). The M measurement exhibited a correlation coefficient (r) of -0.79 and 0.88 with APDI and ANB, respectively. The overall centroid landmarks and the M measurement combine 2D and 3D methods of imaging; the measurement itself can distinguish between patients with Class I and Class II skeletal patterns and can serve as a potential substitute for ANB and APDI. The new three-dimensionally based landmarks and measurements are reliable, and there is great potential for future use of 3D analyses for diagnosis and research.

  4. Effects of co-sintering in self-standing CGO/YSZ and CGO/ ScYSZ dense bi-layers

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Brodersen, Karen

    2014-01-01

    -layers are critical due to the mismatch of thermo-mechanical and sintering properties among the materials. Despite the better sinteractivity of ScYSZ, the self-standing CGO/ScYSZ bilayer presents more challenges in terms of densification compared with the CGO/YSZ bi-layer. In particular, above 1200 C, ScYSZ and CGO......-standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi...

  5. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  6. Hydrothermal synthesis, structure and photocatalytic properties of La/Bi co-doped NaTaO3

    International Nuclear Information System (INIS)

    Lan, Nguyen Thi; Huan, Bui Doan; Anh, Trinh Xuan; Chinh, Huynh Dang; Phan, Le Gia; Hoang, Luc Huy; Hong, Le Van

    2016-01-01

    La/Bi co-doped NaTaO 3 nanomaterials for photocatalytic applications have been successfully synthesized by hydrothermal method at low temperature. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and UV-Vis molecular absorption spectroscopy. The results showed that the particle sizes of La/Bi co-doped NaTaO 3 were smaller than that of the pure NaTaO 3 . La/Bi co-doping has extended optical absorption in the visible light region and then successfully increased photocatalytic activity of the La/Bi-codoped NaTaO 3 that were evaluated by degradation of methylene blue (MB). (author)

  7. High-spin configuration of Mn in Bi{sub 2}Se{sub 3} three-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolos, Agnieszka, E-mail: agnieszka.wolos@fuw.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Drabinska, Aneta [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Borysiuk, Jolanta [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Sobczak, Kamil [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaminska, Maria [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Hruban, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Strzelecka, Stanislawa G.; Materna, Andrzej; Piersa, Miroslaw; Romaniec, Magdalena; Diduszko, Ryszard [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2016-12-01

    Electron paramagnetic resonance was used to investigate Mn impurity in Bi{sub 2}Se{sub 3} topological insulator grown by the vertical Bridgman method. Mn in high-spin S=5/2, Mn{sup 2+}, configuration was detected regardless of the conductivity type of the host material. This means that Mn{sup 2+}(d{sup 5}) energy level is located within the valence band, and Mn{sup 1+}(d{sup 6}) energy level is outside the energy gap of Bi{sub 2}Se{sub 3}. The electron paramagnetic resonance spectrum of Mn{sup 2+} in Bi{sub 2}Se{sub 3} is characterized by the isotropic g-factor |g|=1.91 and large axial parameter D=−4.20 GHz h. This corresponds to the zero-field splitting of the Kramers doublets equal to 8.4 GHz h and 16.8 GHz h, respectively, which is comparable to the Zeeman splitting for the X-band. Mn in Bi{sub 2}Se{sub 3} acts as an acceptor, effectively reducing native-high electron concentration, compensating selenium vacancies, and resulting in p-type conductivity. However, Mn-doping simultaneously favors formation of native donor defects, most probably selenium vacancies. For high Mn-doping it may lead to the resultant n-type conductivity related with strong non-stoichiometry and degradation of the crystal structure - switching from Bi{sub 2}Se{sub 3} to BiSe phase. - Highlights: • We studied electron paramagnetic resonance in Bi{sub 2}Se{sub 3}:Mn. • We found Mn in high-spin Mn{sup 2+} configuration in both n-type and p-type samples. • The g-factor for Mn{sup 2+} equals to 1.91 and axial parameter D=−4.20 GHz h. • Mn acts as an acceptor. • Mn substitution affects formation of native donors.

  8. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  9. Large linear magnetoresistance in a new Dirac material BaMnBi2

    International Nuclear Information System (INIS)

    Wang Yi-Yan; Yu Qiao-He; Xia Tian-Long

    2016-01-01

    Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi 2 and investigate the transport properties of the samples. BaMnBi 2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi 2 and SrMnBi 2 , which suggests the possible different magnetic structure of BaMnBi 2 . The Hall data reveals electron-type carriers and a mobility μ (5 K) = 1500 cm 2 /V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi 2 . A crossover from semiclassical MR ∼ H 2 dependence in low field to MR ∼ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi 2 . (rapid communication)

  10. Experimental formation of a fractional vortex in a superconducting bi-layer

    Science.gov (United States)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  11. Analysis of the first temperate broad host range brucellaphage (BiPBO1 isolated from B. inopinata

    Directory of Open Access Journals (Sweden)

    Jens Andre Hammerl

    2016-01-01

    Full Text Available Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analysed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from B. inopinata. BiPBO1 is a siphovirus that infects several Brucella species including B. abortus and B. melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1. The bacterial (attB and phage (attP attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.

  12. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films.

    Science.gov (United States)

    Yoshimi, R; Tsukazaki, A; Kozuka, Y; Falson, J; Takahashi, K S; Checkelsky, J G; Nagaosa, N; Kawasaki, M; Tokura, Y

    2015-04-14

    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics.

  13. Understanding the behavior of buried Bi nanostructures from first principles

    Science.gov (United States)

    Sims, Hunter; Pantelides, Sokrates; Song, Jiaming; Hudak, Bethany; Lupini, Andrew; Snijders, Paul

    Bismuth dopants in silicon provide several advantages over other n-type options such as phosphorus for usage as quantum bits (qubits). Self-assembled Bi nanolines on Si (100) surfaces may provide a means of introducing these dopants with greater control over placement and with less damage to the host system than is possible using ion implantation. However, these structures have thus far only been observed in vacuum, limiting their usefulness for application. We examine Bi nanolines overgrown with amorphous Si using density functional theory, comparing our findings with observations from scanning tunneling microscopy (STM) and atomic-resolution scanning transmission electron microscopy (STEM) in order to better understand the way in which the Si surface is influenced by both the Bi ad-dimers and the capping layer. We compare the thermodynamic stability of the generally accepted haiku defect core to the modified core that we observe and offer insight from total energy calculations into how the overgrowth process affects the nanolines. Supported by Department of Energy Grant DE-FG02- 09ER46554 (VU) and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy (ORNL).

  14. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi

    KAUST Repository

    Xu, Guizhou; Wang, Wenhong; Zhang, Xiaoming; Du, Yin; Liu, Enke; Wang, Shouguo; Wu, Guangheng; Liu, Zhongyuan; Zhang, Xixiang

    2014-01-01

    A large number of half-Heusler compounds have been recently proposed as three-dimensional (3D) topological insulators (TIs) with tunable physical properties. However, no transport measurements associated with the topological surface states have been observed in these half-Heusler candidates due to the dominating contribution from bulk electrical conductance. Here we show that, by reducing the mobility of bulk carriers, a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hallmarks of topological surface states, was experimentally revealed from the tilted magnetic field dependence of magnetoconductance in a topologically nontrivial semimetal LuPdBi. Besides the observation of a 2D WAL effect, a superconducting transition was revealed at T c ∼ 1.7â.K in the same bulk LuPdBi. Quantitative analysis within the framework of a generalized BCS theory leads to the conclusion that the noncentrosymmetric superconductivity of LuPdBi is fully gapped with a possibly unconventional pairing character. The co-existence of superconductivity and the transport signature of topological surface states in the same bulk alloy suggests that LuPdBi represents a very promising candidate as a topological superconductor.

  15. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi

    KAUST Repository

    Xu, Guizhou

    2014-07-21

    A large number of half-Heusler compounds have been recently proposed as three-dimensional (3D) topological insulators (TIs) with tunable physical properties. However, no transport measurements associated with the topological surface states have been observed in these half-Heusler candidates due to the dominating contribution from bulk electrical conductance. Here we show that, by reducing the mobility of bulk carriers, a two-dimensional (2D) weak antilocalization (WAL) effect, one of the hallmarks of topological surface states, was experimentally revealed from the tilted magnetic field dependence of magnetoconductance in a topologically nontrivial semimetal LuPdBi. Besides the observation of a 2D WAL effect, a superconducting transition was revealed at T c ∼ 1.7â.K in the same bulk LuPdBi. Quantitative analysis within the framework of a generalized BCS theory leads to the conclusion that the noncentrosymmetric superconductivity of LuPdBi is fully gapped with a possibly unconventional pairing character. The co-existence of superconductivity and the transport signature of topological surface states in the same bulk alloy suggests that LuPdBi represents a very promising candidate as a topological superconductor.

  16. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  17. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    International Nuclear Information System (INIS)

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-01

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w Bi ) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ F  = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L ϕ ) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w Bi and t smaller than λ F showed low dimensional electronic behavior at low temperatures where L ϕ (T) exceed w Bi or t

  18. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  19. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2010-07-01

    Full Text Available A two-dimensional (2D scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20º × 20º, the measurement resolution is about 10.2 cm in range, 0.15º in the horizontal direction and 0.22º in the vertical direction for orientation.

  20. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  1. Three-dimensional ultrasound strain imaging of skeletal muscles

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Sprengers, Andre M.; Nillesen, Maartje; Hansen, Hendrik H.G.; Verdonschot, Nico; De Korte, Chris L.

    2015-01-01

    Muscle contraction is characterized by large deformation and translation, which requires a multi-dimensional imaging modality to reveal its behavior. Previous work on ultrasound strain imaging of the muscle contraction was limited to 2D and bi-plane techniques. In this study, a three-dimensional

  2. Supercapacitors studies on BiPO4 nanoparticles synthesized via a simple microwave approach

    Directory of Open Access Journals (Sweden)

    S. Vadivel

    2017-07-01

    Full Text Available BiPO4 nanomaterial was synthesized using EDTA (ethylene diamine tetra acetic acid as the surfactant via a simple microwave method. The structure and morphology of BiPO4 were systematically characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, and scanning electron microscopy (FE-SEM studies. The obtained BiPO4 nanoparticles were, on average, 150–300 nm. The electrochemical results showed that the specific capacitance of BiPO4 obtained using the microwave route was up to 104 Fg−1 at a current density of 1 Ag−1 with a large potential window of 1.7 V. The material showed excellent cycling stability (92% capacitance retention after 500 cycles at a current density of 1 Ag−1.

  3. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  4. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  5. Characterization of BaBi2Ta2O9 prepared through amorphous precursor

    International Nuclear Information System (INIS)

    Maczka, M.; Kepinski, L.; Hermanowicz, K.; Dacko, S.; Czapla, Z.; Hanuza, J.

    2011-01-01

    Research highlights: → Formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. → Mechanochemical activation lowers the synthesis temperature by 150-200 deg. C. → The lateral size of the synthesized plate-like crystallites is about 100-200 nm. → Properties of the synthesized crystallites are different from the bulk material. - Abstract: Formation of ferroelectric BaBi 2 Ta 2 O 9 by annealing of an amorphous precursor prepared by high energy milling in ball mill has been studied by X-ray, scanning electron microscopy (SEM), Raman, infrared spectroscopy (IR), diffuse reflectivity and dielectric measurements. Our results show that formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. Mechanochemical activation allows obtaining BaBi 2 Ta 2 O 9 at short time and much lower temperatures than those required in a conventional solid state reaction. The lateral size of the plate-like crystallites is about 100-200 nm and properties of the synthesized particles are different compared to the bulk material.

  6. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan

    OpenAIRE

    Sonuga-Barke, E.; Lasky-Su, J.; Neale, B.; Oades, R.D.; Chen, W.; Franke, B.; Buitelaar, J.K.; Banaschewski, T.; Ebstein, R.; Gill, M.; Anney, R.J.; Miranda, A.; Mulas, F.; Roeyers, H.; Rothenberger, A.

    2008-01-01

    Studies of gene x environment (G x E) interaction in ADHD have previously focused on known risk genes for ADHD and environmentally mediated biological risk. Here we use G x E analysis in the context of a genome-wide association scan to identify novel genes whose effects on ADHD symptoms and comorbid conduct disorder are moderated by high maternal expressed emotion (EE). SNPs (600,000) were genotyped in 958 ADHD proband-parent trios. After applying data cleaning procedures we examined 429,981 ...

  7. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    Science.gov (United States)

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  8. Optimal design and fabrication of three-dimensional calibration specimens for scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoning; Luo Tingting; Chen Yuhang; Huang Wenhao [Department of Precision Machinery and Instrumentation, University of Science and Technology of China, 230026 Hefei (China); Piaszenski, Guido [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-05-15

    Micro-/nano-scale roughness specimens are highly demanded to synthetically calibrate the scanning probe microscopy (SPM) instrument. In this study, three-dimensional (3D) specimens with controllable main surface evaluation parameters were designed. In order to improve the design accuracy, the genetic algorithm was introduced into the conventional digital filter method. A primary 3D calibration specimen with the dimension of 10 {mu}m x 10 {mu}m was fabricated by electron beam lithography. Atomic force microscopy characterizations demonstrated that the statistical and spectral parameters of the fabricated specimen match well with the designed values. Such a kind of 3D specimens has the potential to calibrate the SPM for applications in quantitative surface evaluations.

  9. Ordered vortex lattice and intrinsic vortex core states in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x studied by scanning tunneling microscopy and spectroscopy

    CERN Document Server

    Matsuba, K; Kosugi, N; Nishimori, H; Nishida, N

    2003-01-01

    The ordered vortex lattice in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x (overdoped, T sub c = 83 K) has been observed for the first time at 4.2 K in 8 T by scanning tunneling spectroscopy (STS). The vortex lattice is short-range ordered in the length scale of 100 nm. The vortices form an almost square lattice with the sides parallel to the diagonal direction of the CuO sub 2 square lattice, that is, the nodal direction of the d sub x sub sup 2 sub - sub y sub sup 2 superconductor. In all of the vortex cores of the ordered lattice, the localized states are observed at +- 9 meV symmetrically in the superconducting gap and are clearly determined to be intrinsic to the vortex in Bi sub 2 Sr sub 2 CaCu sub 2 O sub x. The intensity is found to be electron-hole asymmetric.

  10. Genome-wide scan for visceral leishmaniasis in mixed-breed dogs identifies candidate genes involved in T helper cells and macrophage signaling

    Science.gov (United States)

    We conducted a genome-wide scan for visceral leishmaniasis in mixed-breed dogs from a highly endemic area in Brazil using 149,648 single nucleotide polymorphism (SNP) markers genotyped in 20 cases and 28 controls. Using a mixed model approach, we found two candidate loci on canine autosomes 1 and 2....

  11. Three-dimensional apoptotic nuclear behavior analyzed by means of Field Emission in Lens Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2015-09-01

    Full Text Available Apoptosis is an essential biological function required during embryogenesis, tissue homeostasis, organ development and immune system regulation. It is an active cell death pathway involved in a variety of pathological conditions. During this process cytoskeletal proteins appear damaged and undergo an enzymatic disassembling, leading to formation of apoptotic features. This study was designed to examine the three-dimensional chromatin behavior and cytoskeleton involvement, in particular actin re-modeling. HL-60 cells, exposed to hyperthermia, a known apoptotic trigger, were examined by means of a Field Emission in Lens Scanning Electron Microscope (FEISEM. Ultrastructural observations revealed in treated cells the presence of apoptotic patterns after hyperthermia trigger. In particular, three-dimensional apoptotic chromatin rearrangements appeared involving the translocation of filamentous actin from cytoplasm to the nucleus. FEISEM immunogold techniques showed actin labeling and its precise three-dimensional localization in the diffuse chromatin, well separated from the condensed one. The actin presence in dispersed chromatin inside the apoptotic nucleus can be considered an important feature, indispensable to permit the apoptotic machinery evolution.

  12. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y., E-mail: youngok@chem.s.u-tokyo.ac.jp [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Hirose, Y.; Fukumura, T.; Hasegawa, T. [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Nakao, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Xu, J. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  13. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    Science.gov (United States)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  14. Scanning thermal microscopy of Bi{sub 2}Te{sub 3} and Yb{sub 0.19}Co{sub 4}Sb{sub 12} thermoelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Zeipl, Radek; Remsa, Jan; Kocourek, Tomas [Institute of Physics ASCR v.v.i., Prague (Czech Republic); Jelinek, Miroslav [Institute of Physics ASCR v.v.i., Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Vanis, Jan [Institute of Physics ASCR v.v.i., Prague (Czech Republic); Institute of Photonics and Electronics ASCR v.v.i., Prague (Czech Republic); Navratil, Jiri [Institute of Macromolecular Chemistry ASCR v.v.i., Prague (Czech Republic)

    2016-04-15

    Thermal conductivity of thermoelectric Bi{sub 2}Te{sub 3} and Yb{sub 0.19}Co{sub 4}Sb{sub 12} thin nanolayers of different thicknesses prepared by pulsed laser deposition on Si (100) substrates was studied by a scanning thermal microscope working in AC current pulse mode. A sensitivity of the approach is demonstrated on the steep Si substrate-layer boundary made by a Ga+ focused ion beam technique. Transport and thermoelectric properties such as in-plane electrical resistivity and the Seebeck coefficient were studied in temperature range from room temperature up to 200 C. The room temperature thermal conductivity of the layers was estimated from thermoelectric figure of merit that was measured by the Harman technique, in which parameters related to electrical conductivity, Seebeck coefficient and thermal conductivity are measured at the same place and at the same time with electrical current flowing through the layer. For Yb{sub 0.19}Co{sub 4}Sb{sub 12} and Bi{sub 2}Te{sub 3} layers, we observed room temperature electrical resistivity of about 7 and 1 mΩcm, the Seebeck coefficient of -112 and -61μVK{sup -1}, thermoelectric figure of merit about 0.04 and 0.13 and we estimated thermal conductivity of about 1.3 and 0.9 WK{sup -1}m{sup -1}, respectively. (orig.)

  15. Corrosion behavior of as-cast binary Mg-Bi alloys in Hank's solution

    Directory of Open Access Journals (Sweden)

    Wei-li Cheng

    2015-11-01

    Full Text Available Biodegradable Mg-xBi (x = 3, 6 and 9wt.% alloys were fabricated by ingot casting, and the change of corrosion behavior of the alloys in the Hank's solution was analyzed with respect to the microstructure using optical micrograph (OM, X-ray diffraction (XRD, scanning electron microscope (SEM equipped with an energy dispersive X-ray spectrometer (EDS, electrochemical and immersion tests. The results show that the microstructures of the as-cast Mg-Bi alloys mainly consisted of dendritic ?Mg grains and Mg3Bi2 phase in common, with the secondary dendrite arm spacing (SDAS decreasing significantly from 41.2 靘 to 25.4 靘 and the fraction of Mg3Bi2 increasing from 3.1% to 10.7%. Furthermore, the corrosion rate increasing from 1.32 mm昦-1 to 8.07 mm昦-1 as the Bi content was increased from 3wt.% to 9wt.%. The reduced corrosion resistance was mainly ascribed to the increasing fraction of the second phase particles, which bring positive effects on the development of pitting.

  16. High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz Rojo

    2015-08-01

    Full Text Available The out of plane electrical conductivity of highly anisotropic Bi2Te3 films grown via electro-deposition process was determined using four probe current-voltage measurements performed on 4.6 - 7.2 μm thickness Bi2Te3 mesa structures with 80 - 120 μm diameters sandwiched between metallic film electrodes. A three-dimensional finite element model was used to predict the electric field distribution in the measured structures and take into account the non-uniform distribution of the current in the electrodes in the vicinity of the probes. The finite-element modeling shows that significant errors could arise in the measured film electrical conductivity if simpler one-dimensional models are employed. A high electrical conductivity of (3.2 ± 0.4 ⋅ 105 S/m is reported along the out of plane direction for Bi2Te3 films highly oriented in the [1 1 0] direction.

  17. Titania nanotube stabilized BiOCl nanoparticles in visible-light photocatalysis

    KAUST Repository

    Buchholcz, B.

    2017-03-14

    Photocatalysis is a green approach in environmental organic pollutant decomposition. Lately, considerable improvement in the activity of photocatalysts has been achieved with the realization of p–n heterostructures due to the lifetime extension of the photogenerated charge carriers. Herein, we report a facile synthesis approach for decorating n-type titanate nanotubes with p-type V–VI–VII compound semiconductor BiOCl nanoparticles. It is well-known that BiOX (X = Cl, Br, I) materials form nanometer-thick platelets, which can eventually assemble into micrometer size flower-like 3D structures. Here, we demonstrate that the tubular titanate support can stabilize BiOCl on its surface in the form of nanoparticles measuring a few nanometers in diameter, instead of forming the well-known bismuth-oxyhalide nanoflowers. Subsequent calcination at 400 °C transforms the pristine titanate structures into one-dimensional anatase nanotubes, along with the formation of a heterojunction at the interface of the emerging Bi2Ti2O7 and anatase phases. The resulting nanocomposite shows activity in visible-light photocatalytic test reactions.

  18. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  19. Raman Spectroscopy of Two-Dimensional Bi2TexSe3 − x Platelets Produced by Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-08-01

    Full Text Available In this paper, we report a facile solvothermal method to produce both binary and ternary compounds of bismuth chalcogenides in the form of Bi2TexSe3 − x. The crystal morphology in terms of geometry and thickness as well as the stoichiometric ratio can be well controlled, which offers the opportunities to systematically investigate the relationship between microstructure and phonon scattering by Raman spectroscopy. Raman spectra of four compounds, i.e., Bi2Se3, Bi2Se2Te, Bi2SeTe2 and Bi2Te3, were collected at four different excitation photon energies (2.54, 2.41, 1.96, and 1.58 eV. It is found that the vibrational modes are shifted to higher frequency with more Se incorporation towards the replacement of Te. The dependence of Raman vibrational modes on excitation photon energy was investigated. As the excitation photon energy increases, three Raman vibrational modes (A1g1, Eg2 and A1g2 of the as-produced compounds move to low frequency. Three Infrared-active (IR-active modes were observed in thin topological insulators (TIs crystals.

  20. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  1. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  2. On the existence of PbBi3PO8

    International Nuclear Information System (INIS)

    Steinfink, H.; Dass, R.I.; Lynch, V.; Harlow, R.L.; Lee, P.L.

    2005-01-01

    The title compound crystallizes in the tetragonal system, a = 11.733(2) A, c = 15.587(3) A, I4 mm, Z = 10. Data were collected at the Argonne National Laboratory synchrotron source at λ = 0.15359 A. Least squares refinement on F 2 converged to R1 = 0.039. The oxygen coordination polyhedra around Bi and Pb display the distortions typical of 6s 2 lone-pair atoms. One Bi is disordered. Bi-O bonds vary from 2.08(2) to 2.96(1) A. One Pb is in cubic coordination to oxygen and the second Pb is bonded to six oxygen atoms that form a rectangular pyramid and a seventh oxygen is off one of the rectangular faces of the pyramid. Pb-O bonds vary from 2.303(6) to 2.804(17) A. Of the two crystallographically independent P one is in a single tetrahedral coordination while the second is at the center of two disordered tetrahedra. Units of OM 4 tetrahedra, M = Bi/Pb, articulate into a three-dimensional framework by corner and edge sharing that is strengthened by corner sharing with PO 4 moieties

  3. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3

    Science.gov (United States)

    Fuhrer, Michael

    2013-03-01

    The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.

  4. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  5. LA phonons scattering of surface electrons in Bi2Se3

    International Nuclear Information System (INIS)

    Huang, Lang-Tao; Zhu, Bang-Fen

    2013-01-01

    Within the Boltzmann equation formalism we evaluate the transport relaxation time of Dirac surface states (SSs) in the typical topological insulator(TI) Bi 2 Se 3 due to the phonon scattering. We find that although the back-scattering of the SSs in TIs is strictly forbidden, the in-plane scattering between SSs in 3-dimensional TIs is allowed, maximum around the right-angle scattering. Thus the topological property of the SSs only reduces the scattering rate to its one half approximately. Besides, the larger LA deformation potential and lower sound velocity of Bi 2 Se 3 enhance the scattering rate significantly. Compared with the Dirac electrons in graphene, we find the scattering rate of SSs in Bi 2 Se 3 are two orders of magnitudes larger, which agree with the recent transport experiments

  6. Synthesis and crystal structure of Bi6.4Pb0.6P2O15.2

    International Nuclear Information System (INIS)

    Arumugam, N.; Lynch, V.; Steinfink, H.

    2007-01-01

    Bi 6.4 Pb 0.6 P 2 O 15.2 is a polymorph of structures with the general stoichiometry Bi 6+x M 1-x P 2 O 15+y . However, unlike previously published structures that consist of layers formed by edge sharing OBi 4 tetrahedra bridged by PO 4 and TO 6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) A, b=11.3692(3) A, c=16.3809(5) A, β=101.167(1) o , Z=10. Single-crystal X-ray diffraction data were refined by least squares on F 2 converging to R 1 =0.0387, wR 2 =0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb) 4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) A. Pairs of such cubes share an edge to form a Pb 3 O 20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb) 4 units, and some oxygen ions of the polyhedra are also part of PO 4 tetrahedra. One, two, three and or four PO 4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ≤3.1 A vary from 2.090(12) to 3.07(3) A. The articulations of Pb cubes, Bi polyhedra and PO 4 tetrahedra link into the three-dimensional structure. - Graphical abstract: View of the structure of Bi 6.4 Pb 0.6 P 2 O 15.2 parallel to the b-axis

  7. Evidence for the quasi-two dimensional behavior of the vortex structure in Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Pastoriza, H.; Arribere, A.; Goffman, M.F.; Cruz, F. de la; Mitzi, D.B.; Kapitulnik, A.

    1994-01-01

    AC susceptibility and dc magnetization measurements on Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned. (orig.)

  8. Direct observation of interlayer Josephson vortices in heavily Pb-doped Bi2Sr2CaCu2Oy by scanning superconducting quantum interference device microscopy

    International Nuclear Information System (INIS)

    Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji

    2006-01-01

    Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)

  9. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  10. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  11. A genome-wide scan in families with maturity-onset diabetes of the young

    DEFF Research Database (Denmark)

    Frayling, Timothy M; Lindgren, Cecilia M; Chevre, Jean Claude

    2003-01-01

    Maturity-onset diabetes of the young (MODY) is a heterogeneous single gene disorder characterized by non-insulin-dependent diabetes, an early onset and autosomal dominant inheritance. Mutations in six genes have been shown to cause MODY. Approximately 15-20% of families fitting MODY criteria do...... not have mutations in any of the known genes. These families provide a rich resource for the identification of new MODY genes. This will potentially enable further dissection of clinical heterogeneity and bring new insights into mechanisms of beta-cell dysfunction. To facilitate the identification of novel...... MODY loci, we combined the results from three genome-wide scans on a total of 23 families fitting MODY criteria. We used both a strict parametric model of inheritance with heterogeneity and a model-free analysis. We did not identify any single novel locus but provided putative evidence for linkage...

  12. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard

    2014-01-01

    of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...... comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression...

  13. Processing of magnetically anisotropic MnBi particles by surfactant assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Kanari, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Sarafidis, C., E-mail: hsara@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gjoka, M.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Kalogirou, O. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-03-15

    MnBi particles are obtained from bulk MnBi using mechanochemical processing. The structure and magnetic properties of the MnBi particles are investigated by means of X-ray diffraction analysis, scanning electron microscopy and magnetometry. Surfactant assisted high energy ball milling results to the samples’ degradation even after one hour of milling. In the case of surfactant assisted low energy ball milling the increase of ball milling duration decreases the average particle size while the particles seem to be more separated. The saturation magnetization (M{sub s}) was found to decrease for large milling times beginning from 61 Am{sup 2}/kg, while the coercivity (μ{sub 0}H{sub c}) increases with the increase of ball milling duration up to 35 min where it reaches 1.62 T and thereafter it decreases. - Highlights: • Effect of surfactants in processing of MnBi. • Magnetization degradation due to air storage and due to processing. • Coercivity of 1.6 T in epoxy resin oriented material.

  14. Controlled hydrothermal synthesis of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites exhibiting visible-light photocatalytic degradation of crystal violet

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu-Rou; Lin, Ho-Pan [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Chung, Wen-Hsin [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Dai, Yong-Ming [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Lin, Wan-Yu [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Chen, Chiing-Chang, E-mail: ccchen@ms3.ntcu.edu.tw [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China)

    2015-02-11

    Highlights: • This is the first report on a series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} heterojunctions. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composition was controlled by adjusting the growth parameters. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO{sub 2}. • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O{sub 2}·{sup −} played a major role, and OH· or h{sup +} played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism.

  15. Genome scan for linkage to Gilles de la Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Barr, C.L.; Livingston, J.; Williamson, R. [and others

    1994-09-01

    Gilles de la Tourette Syndrome (TS) is a familial, neuropsychiatric disorder characterized by chronic, intermittent motor and vocal tics. In addition to tics, affected individuals frequently display symptoms such as attention-deficit hyperactivity disorder and/or obsessive compulsive disorder. Genetic analyses of family data have suggested that susceptibility to the disorder is most likely due to a single genetic locus with a dominant mode of transmission and reduced penetrance. In the search for genetic linkage for TS, we have collected well-characterized pedigrees with multiple affected individuals on whom extensive diagnostic evaluations have been done. The first stage of our study is to scan the genome systematically using a panel of uniformly spaced (10 to 20 cM), highly polymorphic, microsatellite markers on 5 families segregating TS. To date, 290 markers have been typed and 3,660 non-overlapping cM of the genome have been excluded for possible linkage under the assumption of genetic homogeneity. Because of the possibility of locus heterogeneity overall summed exclusion is not considered tantamount to absolute exclusion of a disease locus in that region. The results from each family are carefully evaluated and a positive lod score in a single family is followed up by typing closely linked markers. Linkage to TS was examined by two-point analysis using the following genetic model: single autosomal dominant gene with gene frequency .003 and maximum penetrance of .99. An age-of-onset correction is included using a linear function increasing from age 2 years to 21 years. A small rate of phenocopies is also incorporated into the model. Only individuals with TS or CMT according to DSM III-R criteria were regarded as affected for the purposes of this summary. Additional markers are being tested to provide coverage at 5 cM intervals. Moreover, we are currently analyzing the data non-parametrically using the Affected-Pedigree-Member Method of linkage analysis.

  16. Magnetothermoelectric properties of Bi2Se3

    Science.gov (United States)

    Fauqué, Benoît; Butch, Nicholas P.; Syers, Paul; Paglione, Johnpierre; Wiedmann, Steffen; Collaudin, Aurélie; Grena, Benjamin; Zeitler, Uli; Behnia, Kamran

    2013-01-01

    We present a study of entropy transport in Bi2Se3 at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the three-dimensional Fermi surface at the Γ point as the carrier concentration changes by two orders of magnitude (1017 to 1019 cm-3). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semimetals. A comprehensive analysis of the Landau level spectrum firmly establishes a large g factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi2Se3 and related materials.

  17. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    Science.gov (United States)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  18. Fabrication of heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalyst and efficient photodegradation of organic contaminants under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Meng; Li, Shuangli; Yan, Tao; Ji, Pengge; Zhao, Xia; Yuan, Kun; Wei, Dong [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2017-07-05

    Highlights: • The product shows efficient activity in photodegradation of RhB, BPA, and phenol. • The BBOC-10 heterojunction exhibits the best activity under visible light. • Suppressed recombination of photo-generated carriers lead to the activity enhancement. - Abstract: Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts were fabricated by a facile one-pot hydrothermal method, in which melem served as the sacrificial reagent to supply carbonate anions. The as-synthesized Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction catalysts were characterized by X-ray diffraction, UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. The XRD patterns of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} catalysts showed the distinctive peaks of Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}. The SEM and TEM results showed that the pure Bi{sub 2}O{sub 2}CO{sub 3} possessed large plate morphology, while Bi{sub 2}O{sub 4} were composed of various nanorods and particles. As for Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction, it was obviously observed that Bi{sub 2}O{sub 4} nanorods and particles were grown on the surfaces of Bi{sub 2}O{sub 2}CO{sub 3} plates. The visible light driven photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction photocatalyst was evaluated by decomposing dyes, phenol, and bisphenol A in water. Compared with Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}, the Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts have exhibited remarkable enhanced activity under visible light. The excellent activity can be mainly attributed to the enhanced separation efficiency of photo-generated carriers. Controlled experiments using different radical scavengers proved that ·O{sub 2}{sup −} and h{sup +} played the main role in decomposing organic pollutants. The results of this work would

  19. Dosimetric comparison of standard bi-dimensional radiotherapy, mono-isocentric three-dimensional and arc-therapy for a bilateral breast cancer case with ganglionary attack; Comparaison dosimetrique pour un cas de cancer du sein bilateral avec atteinte ganglionnaire de la radiotherapie bidimensionnelle standard, la radiotherapie tridimensionnelle mono-isocentrique et l'arctherapie

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, A. [Centre Leon-Berard, Lyon (France); Bodez, V.; Alric, K.; Chastel, D.; Mege, A. [Institut Sainte-Catherine, Avignon (France)

    2011-10-15

    The authors report a study which aimed at determining the optimal radiotherapy technique for a patient operated from a bilateral breast cancer with ganglionary attack and peculiar thoracic conformation. A dosimetric study has been performed. Target volumes and lung and heart coverages have been compared for three techniques: bi-dimensional and three-dimensional radiotherapy, and arc-therapy. It appears that arc-therapy would allow a dosimetric and therapeutic duration gain without improving the target volume coverage while increasing doses delivered to organs at risk. Short communication

  20. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis

    Directory of Open Access Journals (Sweden)

    Ueki Masao

    2012-05-01

    Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.

  1. Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis

    International Nuclear Information System (INIS)

    Kolakofsky, Daniel; Le Mercier, Philippe; Iseni, Frederic; Garcin, Dominique

    2004-01-01

    mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in that the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template

  2. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  3. Large linear magnetoresistance in a new Dirac material BaMnBi2

    Science.gov (United States)

    Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long

    2016-10-01

    Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).

  4. Visual Scanning Patterns during the Dimensional Change Card Sorting Task in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Li Yi

    2012-01-01

    Full Text Available Impaired cognitive flexibility in children with autism spectrum disorder (ASD has been reported in previous literature. The present study explored ASD children’s visual scanning patterns during the Dimensional Change Card Sorting (DCCS task using eye-tracking technique. ASD and typical developing (TD children completed the standardized DCCS procedure on the computer while their eye movements were tracked. Behavioral results confirmed previous findings on ASD children’s deficits in executive function. ASD children’s visual scanning patterns also showed some specific underlying processes in the DCCS task compared to TD children. For example, ASD children looked shorter at the correct card in the postswitch phase and spent longer time at blank areas than TD children did. ASD children did not show a bias to the color dimension as TD children did. The correlations between the behavioral performance and eye moments were also discussed.

  5. Photocatalytic perfermance of sandwich-like BiVO_4 sheets by microwave assisted synthesis

    International Nuclear Information System (INIS)

    Liu, Suqin; Tang, Huiling; Zhou, Huan; Dai, Gaopeng; Wang, Wanqiang

    2017-01-01

    Graphical abstract: Sandwich-like BiVO_4 sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO_4 sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO_4. • The sandwich-like BiVO_4 sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO_4 sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO_4 sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO_4 sheets can be attributed to its large surface area over the irregular BiVO_4 particles.

  6. Dye-Sensitized Solar Cells Based on Bi4Ti3O12

    Directory of Open Access Journals (Sweden)

    Zeng Chen

    2011-01-01

    Full Text Available Bismuth titanate (Bi4Ti3O12 particles were synthesized by hydrothermal treatment and nanoporous thin films were prepared on conducting glass substrates. The structures and morphologies of the samples were examined with X-ray diffraction and scanning electron microscope (SEM. Significant absorbance spectra emerged in visible region which indicated the efficient sensitization of Bi4Ti3O12 with N3 dye. Surface photovoltaic properties of the samples were investigated by surface photovoltage. The results further indicate that N3 can extend the photovoltaic response range of Bi4Ti3O12 nanoparticles to the visible region, which shows potential application in dye-sensitized solar cell. As a working electrode in dye-sensitized solar cells (DSSCs, the overall efficiency reached 0.48% after TiO2 modification.

  7. Phase chemistry and microstructure evolution in silver-clad (Bi2-xPbx)Sr2Ca2Cu3Oy filaments

    International Nuclear Information System (INIS)

    Luo, J.S.; Merchant, N.; Maroni, V.A.; Escorcia-Aparicio, E.; Gruen, D.M.; Tani, B.S.; Riley, G.N. Jr.; Carter, W.L.

    1992-08-01

    The reaction kinetics and mechanism that control the conversion of (Bi,Pb) 2 Sr 2 CaCu 2 O z (Bi-2212) + alkaline earth cuporates to (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) in silver-clad wires were investigated as a function of equilibration temperature and time at a fixed oxygen partial pressure (7.5% O 2 ). Measured values for the fractional conversion of Bi-2223 versus time have been evaluated based on the Avrami equation. SEM and TEM studies of partially and fully converted wires have revealed that (1) the growth of Bi-2223 is two-dimensional and controlled by a diffusion process, (2) liquid phases are present during part of the Bi-2212 -> Bi-2212 conversion, and (3) segregation of the second phases occurs in early time domains of the reaction

  8. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus.

    Science.gov (United States)

    Lourenco, D A L; Tsuruta, S; Fragomeni, B O; Masuda, Y; Aguilar, I; Legarra, A; Bertrand, J K; Amen, T S; Wang, L; Moser, D W; Misztal, I

    2015-06-01

    Predictive ability of genomic EBV when using single-step genomic BLUP (ssGBLUP) in Angus cattle was investigated. Over 6 million records were available on birth weight (BiW) and weaning weight (WW), almost 3.4 million on postweaning gain (PWG), and over 1.3 million on calving ease (CE). Genomic information was available on, at most, 51,883 animals, which included high and low EBV accuracy animals. Traditional EBV was computed by BLUP and genomic EBV by ssGBLUP and indirect prediction based on SNP effects was derived from ssGBLUP; SNP effects were calculated based on the following reference populations: ref_2k (contains top bulls and top cows that had an EBV accuracy for BiW ≥0.85), ref_8k (contains all parents that were genotyped), and ref_33k (contains all genotyped animals born up to 2012). Indirect prediction was obtained as direct genomic value (DGV) or as an index of DGV and parent average (PA). Additionally, runs with ssGBLUP used the inverse of the genomic relationship matrix calculated by an algorithm for proven and young animals (APY) that uses recursions on a small subset of reference animals. An extra reference subset included 3,872 genotyped parents of genotyped animals (ref_4k). Cross-validation was used to assess predictive ability on a validation population of 18,721 animals born in 2013. Computations for growth traits used multiple-trait linear model and, for CE, a bivariate CE-BiW threshold-linear model. With BLUP, predictivities were 0.29, 0.34, 0.23, and 0.12 for BiW, WW, PWG, and CE, respectively. With ssGBLUP and ref_2k, predictivities were 0.34, 0.35, 0.27, and 0.13 for BiW, WW, PWG, and CE, respectively, and with ssGBLUP and ref_33k, predictivities were 0.39, 0.38, 0.29, and 0.13 for BiW, WW, PWG, and CE, respectively. Low predictivity for CE was due to low incidence rate of difficult calving. Indirect predictions with ref_33k were as accurate as with full ssGBLUP. Using the APY and recursions on ref_4k gave 88% gains of full ssGBLUP and

  9. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  10. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3)

    Science.gov (United States)

    Meng, Chang-Yu; Wei, Ming-Fang; Geng, Lei; Hu, Pei-Qing; Yu, Meng-Xia; Cheng, Wen-Dan

    2016-07-01

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV-vis-NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P21/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi3O2)(SeO3)2](NO3) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi3O2)(SeO3)2](NO3) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi3O2)(SeO3)2] 3∞ with NO3- anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO3)](NO3) features 2D bismuth(III) tellurite [Bi(TeO3)2]2∞ layers separated by NO3- anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors.

  12. Morphological effect of BiVO4 catalysts on degradation of aqueous paracetamol under visible light irradiation.

    Science.gov (United States)

    Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui

    2016-09-01

    Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.

  13. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Manasijevic, Dragan [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Mitovski, Aleksandra, E-mail: amitovski@tf.bor.ac.rs [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Minic, Dusko [University of Pristina, Faculty of Technical Sciences, 38220 Kosovska Mitrovica (Serbia); Zivkovic, Dragana; Marjanovic, Sasa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia); Todorovic, Radisa [Institute of Mining and Metallurgy, Zeleni Bulevar 35, 19210 Bor (Serbia); Balanovic, Ljubisa [University of Belgrade, Technical Faculty, VJ 12, 19210 Bor (Serbia)

    2010-05-20

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  14. Prediction of phase equilibria and thermal analysis in the Bi-Cu-Pb ternary system

    International Nuclear Information System (INIS)

    Manasijevic, Dragan; Mitovski, Aleksandra; Minic, Dusko; Zivkovic, Dragana; Marjanovic, Sasa; Todorovic, Radisa; Balanovic, Ljubisa

    2010-01-01

    The knowledge about phase diagram of the Bi-Cu-Pb ternary system is of importance in development of copper-lead based bearing materials, soldering and in refining of copper and lead. In this work, the phase diagram of the Bi-Cu-Pb ternary system was calculated by the CALPHAD method using binary thermodynamic parameters included in the COST 531 database. The results include liquidus projection, invariant equilibria and three vertical sections with molar ratio Cu:Pb = 1, Cu:Pb = 1:3 and Bi:Cu = 1. Alloys, with compositions along three predicted vertical sections, were measured using differential scanning calorimetry (DSC). The experimentally determined phase transition temperatures were compared with calculated results and good mutual agreement was noticed.

  15. Evolution of orbital angular momentum entangled bi-photon, propagating through a turbulent atmosphere

    CSIR Research Space (South Africa)

    Roux, FS

    2011-01-01

    Full Text Available Orbital angular momentum (OAM) entangled bi-photons are a resource for the higher dimensional implementation of quantum cryptography, which allows secure communication over various channels. In the case where free-space is used as communication...

  16. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  17. Noninvasive computerized scanning method for the correlation between the facial soft and hard tissues for an integrated three-dimensional anthropometry and cephalometry.

    Science.gov (United States)

    Galantucci, Luigi Maria; Percoco, Gianluca; Lavecchia, Fulvio; Di Gioia, Eliana

    2013-05-01

    The article describes a new methodology to scan and integrate facial soft tissue surface with dental hard tissue models in a three-dimensional (3D) virtual environment, for a novel diagnostic approach.The facial and the dental scans can be acquired using any optical scanning systems: the models are then aligned and integrated to obtain a full virtual navigable representation of the head of the patient. In this article, we report in detail and further implemented a method for integrating 3D digital cast models into a 3D facial image, to visualize the anatomic position of the dentition. This system uses several 3D technologies to scan and digitize, integrating them with traditional dentistry records. The acquisitions were mainly performed using photogrammetric scanners, suitable for clinics or hospitals, able to obtain high mesh resolution and optimal surface texture for the photorealistic rendering of the face. To increase the quality and the resolution of the photogrammetric scanning of the dental elements, the authors propose a new technique to enhance the texture of the dental surface. Three examples of the application of the proposed procedure are reported in this article, using first laser scanning and photogrammetry and then only photogrammetry. Using cheek retractors, it is possible to scan directly a great number of dental elements. The final results are good navigable 3D models that integrate facial soft tissue and dental hard tissues. The method is characterized by the complete absence of ionizing radiation, portability and simplicity, fast acquisition, easy alignment of the 3D models, and wide angle of view of the scanner. This method is completely noninvasive and can be repeated any time the physician needs new clinical records. The 3D virtual model is a precise representation both of the soft and the hard tissue scanned, and it is possible to make any dimensional measure directly in the virtual space, for a full integrated 3D anthropometry and

  18. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  19. First assessment of Li2O–Bi2O3 ceramic oxides for high temperature carbon dioxide capture简

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá?ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O–Bi2O3 system. The compounds(Li7BiO6, Li5BiO5, Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 °C under the CO2 atmosphere to evaluate the carbonate formation, which is indicative of the capacity of CO2 capture. Moreover, Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g, which is considerably higher than those of other previously reported ceramics. Li7BiO6 is able to react with CO2 from 240 °C to approximately 660 °C showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  20. Influence of microscopic inhomogeneity on macroscopic transport current of Ag/Bi2223 tapes

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Osamura, Kozo

    2004-01-01

    In Ag/Bi2223 tapes, inhomogeneities such as spatially distributed weak links or non-superconducting oxides are inevitably introduced because of the complicated manufacturing process and thermodynamic instability. In order to clarify the effect of the difference in such microscopic inhomogeneites on the macroscopic current transport properties, we carried out a numerical analysis. By changing volume fraction (V f ) of the Bi2223 phase and the shape of local distribution of critical current at each weak link, it is revealed that I-V characteristics are largely affected by the breadth of local distributions with different dependence on V f of Bi2223 and calculated results can be analyzed by Weibull distribution function with some parameters including the information of two-dimensional distribution

  1. Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.

    Science.gov (United States)

    Haack, Rebekka; Schulz, Stephan; Jansen, Georg

    2018-03-13

    Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Science.gov (United States)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-10-01

    A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron-hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  3. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.; Williams, James R.; Kong, Desheng; Meister, Stefan; Peng, Hailin; Bestwick, Andrew J.; Gallagher, Patrick; Goldhaber-Gordon, David; Cui, Yi

    2010-01-01

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  4. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  5. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response.

    Science.gov (United States)

    Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth

    2015-07-21

    Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

  6. Scanning an individual monitoring database for multiple occurrences using bi-gram analysis

    International Nuclear Information System (INIS)

    Van Dijk, J. W. E.

    2007-01-01

    Maintaining the integrity of the databases is one of the important aspects of quality assurance at individual monitoring services and national dose registers. This paper presents a method for finding and preventing the occurrence of duplicate entries in the databases that can occur, e.g. because of a variable spelling or misspelling of the name. The method is based on bi-gram text analysis techniques. The methods can also be used for retrieving dose data in historical databases in the framework of dose reconstruction efforts of persons of whom the spelling of the name as originally entered, possibly decades ago, is uncertain. (authors)

  7. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets

    International Nuclear Information System (INIS)

    Liu, Haipeng; Xu, Guangqing; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    Highlights: • BiOCl were deposited on TiO2 NTAs by sequential chemical bath deposition. • BiOCl can decrease background photocurrent and increase current response. • High sensitivity BiOCl/TiO2 is due to the direct oxidation of organics on BiOCl. - Abstract: BiOCl nanosheets were deposited on anodized TiO 2 nanotube arrays (NTAs) by sequential chemical bath deposition method to get BiOCl/TiO 2 NTAs for photoelectrochemical detection of organic compounds (represented by glucose). The structures, elemental components and morphologies of TiO 2 and BiOCl/TiO 2 NTAs were characterized by using X-ray diffraction diffractometer, scanning electron microscope and transmission electron microscope. The photoelectrochemical behaviors of TiO 2 and BiOCl/TiO 2 NTAs in the buffer and glucose solutions were measured by cyclic votammetry and amperometry with different optical powers. The modification of BiOCl nanosheets on TiO 2 NTAs decreases the photocurrents of TiO 2 NTAs in the buffer solution and increases the current response to glucose. Both of the background photocurrent decrease and current response increase are benefit for photoelectrochemical detection of organic compounds. When glucose was used as the target organic compound, the optimized BiOCl/TiO 2 NTAs sensor achieved a sensitivity of 0.327 μA/μM (0.417 μA·cm −2 ·μM −1 ), linear range from 0 to 1300 μM and calculated detection limit of 5.7 μM. Mechanisms of BiOCl modification were studied by measuring the optical absorption and hydroxyl radical HO· productivity. The transfer of holes from TiO 2 to BiOCl and the direct oxidation of organic compounds on BiOCl nanosheets led to the decrease of background photocurrent (lower reaction rate of water splitting on BiOCl nanosheets) and the increase of current response to organic compounds (higher reaction rate of direct oxidation of organic compounds)

  8. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    Science.gov (United States)

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  9. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi(®) bionanocomposite.

    Science.gov (United States)

    Nainggolan, Hamonangan; Gea, Saharman; Bilotti, Emiliano; Peijs, Ton; Hutagalung, Sabar D

    2013-01-01

    The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi(®) have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min(-1). Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young's modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (T c) and melting temperature (T m) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  10. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Directory of Open Access Journals (Sweden)

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  11. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  12. A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Shijie Li

    2017-01-01

    Full Text Available Developing efficient visible-light-driven (VLD photocatalysts for environmental decontamination has drawn significant attention in recent years. Herein, we have reported a novel heterostructure of multiwalled carbon nanotubes (MWCNTs coated with BiOI nanosheets as an efficient VLD photocatalyst, which was prepared via a simple solvothermal method. The morphology and structure were characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, UV-Vis diffuse reflectance spectroscopy (DRS, and specific surface area measurements. The results showed that BiOI nanosheets were well deposited on MWCNTs. The MWCNTs/BiOI composites exhibited remarkably enhanced photocatalytic activity for the degradation of rhodamine B (RhB, methyl orange (MO, and para-chlorophenol (4-CP under visible-light, compared with pure BiOI. When the MWCNTs content is 3 wt %, the MWCNTs/BiOI composite (3%M-Bi achieves the highest activity, which is even higher than that of a mechanical mixture (3 wt % MWCNTs + 97 wt % BiOI. The superior photocatalytic activity is predominantly due to the strong coupling interface between MWCNTs and BiOI, which significantly promotes the efficient electron-hole separation. The photo-induced holes (h+ and superoxide radicals (O2− mainly contribute to the photocatalytic degradation of RhB over 3%M-Bi. Therefore, the MWCNTs/BiOI composite is expected to be an efficient VLD photocatalyst for environmental purification.

  13. Sol-gel synthesis of Bi3.25La0.75Ti3O12 nanotubes

    International Nuclear Information System (INIS)

    Wang Wen; Ke Hua; Rao Jiancun; Feng Jinbiao; Feng Ming; Jia Dechang; Zhou Yu

    2011-01-01

    Research highlights: → One-dimensional (1D) ferroelectrics have been successfully synthesized. The sol-gel template synthesis is a versatile and inexpensive technique for producing nanostructures, and particularly facilitates the fabrication of complex oxide nanotubes or nanowires. Compared with the synthesis of the general nanotubes such as carbon nanotubes with simple crystal structure, the synthesis of ferroelectric compound is difficult due to the multielement and the complex crystal structures of these ferroelectrics. Herein, we report the synthesis of one-dimensional BLT nanotubes on anodic alumina (AAO) templates by immersing a template membrane in sol without polymeric additive. - Abstract: Ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.

  14. The Application of Restriction Landmark Genome Scanning Method for Surveillance of Non-Mendelian Inheritance in F1 Hybrids

    Directory of Open Access Journals (Sweden)

    Tomoko Takamiya

    2009-01-01

    Full Text Available We analyzed inheritance of DNA methylation in reciprocal F1 hybrids (subsp. japonica cv. Nipponbare × subsp. indica cv. Kasalath of rice (Oryza sativa L. using restriction landmark genome scanning (RLGS, and detected differing RLGS spots between the parents and reciprocal F1 hybrids. MspI/HpaII restriction sites in the DNA from these different spots were suspected to be heterozygously methylated in the Nipponbare parent. These spots segregated in F1 plants, but did not segregate in selfed progeny of Nipponbare, showing non-Mendelian inheritance of the methylation status. As a result of RT-PCR and sequencing, a specific allele of the gene nearest to the methylated sites was expressed in reciprocal F1 plants, showing evidence of biased allelic expression. These results show the applicability of RLGS for scanning of non-Mendelian inheritance of DNA methylation and biased allelic expression.

  15. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The modulation and reconstruction of a BiO layer of cuprate Bi2212

    International Nuclear Information System (INIS)

    Fan Wei; Zeng, Z

    2011-01-01

    Studies based on ab initio density functional theory show that the modulated structures of BiO surfaces of cuprate Bi2212 superconductors are spontaneously formed and closely related to the reconstructions of BiO surfaces. The reconstructions of BiO layers occur both on the surface and in the bulk, accompanied with the formations of BiO-zigzag chains and Bi 2 O 2 quadrilaterals. The structural modulations of the BiO surface are along the b axis, perpendicular to the BiO-zigzag chains along the a axis. Our calculations provide a unified understanding of the formation of modulating structures in Bi2212. Another interesting result is that electronic structures of BiO surfaces are significantly influenced by the CuO 2 layer beneath because of the structural modulations and reconstructions.

  17. Photocatalytic activity of Bi_2WO_6/Bi_2S_3 heterojunctions: the facilitation of exposed facets of Bi_2WO_6 substrate

    International Nuclear Information System (INIS)

    Yan, Long; Wang, Yufei; Shen, Huidong; Zhang, Yu; Li, Jian; Wang, Danjun

    2017-01-01

    Highlights: • Bi_2S_3/Bi_2WO_6 hybrids with exposed (020) Bi_2WO_6 facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi_2S_3 was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi_2S_3/Bi_2WO_6 hybrid architectures with exposed (020) Bi_2WO_6 facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi_2S_3 was formed on the surface of Bi_2WO_6 during the anion exchange process, thus leading to the transformation from the Bi_2WO_6 to Bi_2S_3/Bi_2WO_6. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi_2S_3/Bi_2WO_6 catalysts. Under visible light irradiation, the Bi_2S_3/Bi_2WO_6-TAA displayed the excellent visible light photoactivities compared with pure Bi_2S_3, Bi_2WO_6 and other composite photocatalysts. The efficient photocatalytic activity of the Bi_2S_3/Bi_2WO_6-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi_2WO_6 facets. Active species trapping experiments revealed that h"+ and O_2·"− are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  18. Experimental and density functional study of Mn doped Bi2Te3 topological insulator

    Directory of Open Access Journals (Sweden)

    A. Ghasemi

    2016-12-01

    Full Text Available We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure shows that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanning transmission electron microscopy and EELS shows that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled.

  19. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Wen Ting; Zheng, Yi Fan; Yin, Hao Yong; Song, Xu Chun

    2015-01-01

    BiOI/Bi 2 MoO 6 heterostructures with different amounts of BiOI were successfully prepared via a facile deposition method. The obtained BiOI/Bi 2 MoO 6 photocatalysts exhibited much higher visible light (λ > 420 nm) induced photocatalytic activity compared with single Bi 2 MoO 6 and BiOI photocatalysts. 20 % BiOI/Bi 2 MoO 6 nanocomposite exhibited the highest photocatalytic activity with almost all RhB decomposed within 70 min. However, excess BiOI covering on the surface of Bi 2 MoO 6 can inversely reduce the photocatalytic activity. The enhanced photocatalytic activities could be resulted from the function of the novel p–n heterojunction interface between Bi 2 MoO 6 and BiOI, which could separate photoinduced carriers efficiently. Possible mechanisms on the basis of the relative band positions were also discussed

  20. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  1. Dependency of the properties of Sr xBi yTa2O9 thin films on the Sr and Bi stoichiometry

    International Nuclear Information System (INIS)

    Viapiana, Matteo; Schwitters, Michael; Wouters, Dirk J.; Maes, Herman E.; Van der Biest, Omer

    2005-01-01

    In this study the properties of ferroelectric SBT thin films crystallized at 700 deg. C have been investigated as function of the Sr and Bi stoichiometry. A matrix of 130 nm Sr x Bi y Ta 2 O 9 films with 0.7 ≤ x ≤ 1.0 and 2.0 ≤ y ≤ 2.4 has been realized by metal-organic spin-on deposition technique on Pt/IrO 2 /Ir/TiAlN/SiO 2 /Si substrates. Within this composition range, we found that the ferroelectric properties peak into a narrow window of 0.8 ≤ x ≤ 0.9 and y ∼ 2.25 with Pr and Ec of 6.5 μC/cm 2 and 50 kV/cm, respectively (at 2.5 V). Outside this composition window, the Pr decreases while the hysteresis loop becomes slanted. For some Sr/Bi-ratios even no ferroelectricity was achieved. 2Ec-tendencies were seen as function of the x/y-ratios, too. Examination of the microstructure of the films by scanning electron microscopy showed that film grain size increased with decreasing Sr-deficiency and that nucleation increased with increasing Bi-excess. At high Sr-deficiency and low Bi-excess, no complete crystallization of the SBT film occurs. From the film morphology, also different phases can be discriminated. X-ray diffraction analysis showed a strong correlation of the film orientation with the film composition. While our results show a clear correlation of Pr, film grain size and orientation with composition, further investigations are required to clarify the relation of the hysteresis parameters with film orientation

  2. Population genomic scans suggest novel genes underlie convergent flowering time evolution in the introduced range of Arabidopsis thaliana.

    Science.gov (United States)

    Gould, Billie A; Stinchcombe, John R

    2017-01-01

    A long-standing question in evolutionary biology is whether the evolution of convergent phenotypes results from selection on the same heritable genetic components. Using whole-genome sequencing and genome scans, we tested whether the evolution of parallel longitudinal flowering time clines in the native and introduced ranges of Arabidopsis thaliana has a similar genetic basis. We found that common variants of large effect on flowering time in the native range do not appear to have been under recent strong selection in the introduced range. We identified a set of 38 new candidate genes that are putatively linked to the evolution of flowering time. A high degree of conditional neutrality of flowering time variants between the native and introduced range may preclude parallel evolution at the level of genes. Overall, neither gene pleiotropy nor available standing genetic variation appears to have restricted the evolution of flowering time to high-frequency variants from the native range or to known flowering time pathway genes. © 2016 John Wiley & Sons Ltd.

  3. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    Science.gov (United States)

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  4. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  5. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A.K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.

  6. Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation

    International Nuclear Information System (INIS)

    Chen, G.S.

    1997-01-01

    We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)

  7. Effect of lead content on phase evolution and microstructural development in Ag-clad Bi-2223 composite conductors

    International Nuclear Information System (INIS)

    Merchant, N.N.; Maroni, V.A.; Fischer, A.K.; Dorris, S.E.; Zhong, W.; Ashcom, N.

    1997-02-01

    A two powder process was used to prepare silver-sheathed monofilamentary Bi 1.8 Pb x Sr 1.98 Ca 1.97 Cu 3.08 O y (Bi-2223) tapes with varying lead contents, x, from 0.2 to 0.5. The resulting tapes were subjected to thermomechanical processing and then characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX). Layered phase texture was accessed using image analysis software on scanned SEM micrographs. Transport currents were measured at 77 K and zero field by the four-probe method. It was found that tapes with low lead content (X = 0.2 and 0.25) showed incomplete conversion to Bi-2223, had small grain size and poor c-axis texture. Tapes having higher lead content (x = 0.4 and 0.5) also showed incomplete conversion and the presence of lead-rich secondary phases. Tapes with lead content x = 0.3 and 0.35 showed complete conversion to Bi-2223, and had the least amount of secondary phases, the best c-axis texture, and the highest transport current (j c ). The carbon content of the precursor powder also had a strong influence on secondary-phase chemistry

  8. Photo catalytic BiFeO3 Nano fibrous Mats for Effective Water Treatment

    International Nuclear Information System (INIS)

    Shaibani, P.M.; Prashanthi, K.; Sohrabi, A.; Thundat, Th.

    2013-01-01

    One-dimensional BiFeO 3 (BFO) nano fibers fabricated by electro spinning of a solution of Nylon 6 /BFO followed by calcination were used for photo catalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nano fibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nano fibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nano fibers. Photo catalytic activity of the nano fibers and their application in water purification were investigated against 4-chloro phenol (4CP) as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photo catalytic activity of the BFO nano fibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.

  9. Bottom-up-then-up-down Route for Multi-level Construction of Hierarchical Bi2S3 Superstructures with Magnetism Alteration

    Science.gov (United States)

    Wei, Chengzhen; Wang, Lanfang; Dang, Liyun; Chen, Qun; Lu, Qingyi; Gao, Feng

    2015-01-01

    A bottom-up-then-up-down route was proposed to construct multi-level Bi2S3 hierarchical architectures assembled by two-dimensional (2D) Bi2S3 sheet-like networks. BiOCOOH hollow spheres and flower-like structures, which are both assembled by 2D BiOCOOH nanosheets, were prepared first by a “bottom-up” route through a “quasi-emulsion” mechanism. Then the BiOCOOH hierarchical structures were transferred to hierarchical Bi2S3 architectures through an “up-down” route by an ion exchange method. The obtained Bi2S3 nanostructures remain hollow-spherical and flower-like structures of the precursors but the constructing blocks are changed to 2D sheet-like networks interweaving by Bi2S3 nanowires. The close matching of crystal lattices between Bi2S3 and BiOCOOH was believed to be the key reason for the topotactic transformation from BiOCOOH nanosheets to 2D Bi2S3 sheet-like nanowire networks. Magnetism studies reveal that unlike diamagnetism of comparative Bi2S3 nanostructures, the obtained multi-level Bi2S3 structures display S-type hysteresis and ferromagnetism at low field which might result from ordered structure of 2D networks. PMID:26028331

  10. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix

    International Nuclear Information System (INIS)

    Chen Xiao-Ming; Huo Kai-Tuo; Liu Peng

    2014-01-01

    Bi nanoparticles embedded in a SiO 2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from ‘bulk’ melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye—Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles

  11. Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control

    Science.gov (United States)

    Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.

    2013-04-01

    A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.

  12. Overlayer growth and electronic properties of the Bi/GaSb(110) interface

    Science.gov (United States)

    Gavioli, Luca; Betti, Maria Grazia; Casarini, Paolo; Mariani, Carlo

    1995-06-01

    The overlayer growth and electronic properties of the Bi/GaSb(110) interface and of the two-dimensional ordered (1×1)- and (1×2)-Bi layers have been investigated by complementary spectroscopic techniques (high-resolution electron-energy-loss, photoemission, and Auger spectroscopy). Bismuth forms an epitaxial monolayer, followed by island formation (Stranski-Krastanov growth mode) covering an average surface area of 40% at a nominal coverage of 4 ML. The (1×2)-symmetry stable structural phase, obtained after annealing at ~220 °C, corresponds to an average nominal Bi coverage of about 0.7 ML, suggesting an atomic geometry different from the epitaxial-continued layer structure. The disposal of Bi atoms in the (1×2) structure should build up an ``open'' layer, as the Ga-related surface exciton quenched in the (1×1) epitaxial monolayer is present in the (1×2) stable phase. The two symmetry phases are characterized by strong absorption features at 1 eV [(1×1)-Bi] and 0.54 eV [(1×2)-Bi], related to interband electronic transitions between Bi-induced electronic states. The major Bi-related occupied electronic levels, present in the valence band of the (1×1)- and (1×2)-Bi layer, have been detected by angle-integrated ultraviolet photoemission spectroscopy. Both the (1×1) and (1×2) phases show a metallic nature, with a low density of electronic states at the Fermi level. Schottky barrier heights of 0.20 and 0.14 eV are estimated for the epitaxial (1×1)- and (1×2)-symmetry stage, respectively, by analyzing the space-charge layer conditions through the study of the dopant-induced free-carrier plasmon in the GaSb substrate.

  13. Synthesis of Bi4Si3O12 powders by a sol–gel method

    International Nuclear Information System (INIS)

    Xie Huidong; Jia Caixia; Jiang Yuanru; Wang Xiaochang

    2012-01-01

    Highlights: ► Bi 4 Si 3 O 12 were synthesized by a sol–gel method, using stoichiometric materials. ► The calcining process of the as-dried gel was studied by different analyses. ► Phase separation in the sol–gel process was found during the calcination. - Abstract: Micro-crystals of bismuth orthosilicate (Bi 4 Si 3 O 12 ) were synthesized by a sol–gel method, using stoichiometric Si(OC 2 H 5 ) 4 , Bi(NO 3 ) 3 ·5H 2 O as the precursors and acetic acid as the solvent. The calcining process of the as-dried gel was studied by total gravity/differential scanning calory (TG/DSC), X-ray diffraction (XRD) and infrared (IR) spectra. Experiments showed that single phase of Bi 4 Si 3 O 12 could be obtained by sol–gel method at a calcining temperature of 900 °C. Phase separation in the sol–gel process was found during the calcination.

  14. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    Science.gov (United States)

    Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong

    2018-05-14

    Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.

  15. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Mollemans, W.; Clercq, C. De; Abeloos, J.V.S.; Lamoral, P.; Lippens, F.R.C.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    The aim of this study was to present a new approach to acquire a three-dimensional virtual skull model appropriate for orthognathic surgery planning without the use of plaster dental models and without deformation of the facial soft-tissue mask. A "triple" cone-beam computed tomography (CBCT) scan

  16. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    Science.gov (United States)

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  17. In-situ synthesis of nanofibers with various ratios of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} for effective trichloroethylene photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifan [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Mira [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Ding, Bin [College of Textiles, Donghua University, Shanghai 201620 (China); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of)

    2016-10-30

    Highlights: • BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers were synthesized by in-situ method. • Photodegradation behavior of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers was measured under solar light irradiation. • BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4}/PAN fibers exhibited the highest photocatalytic activity. • Photocatalytic mechanism was discussed in detail. - Abstract: In this work, BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} (x + y + z = 1) composite nanofibers were prepared through electrospinning and the sol-gel methods. Photocatalytic degradation of trichloroethylene (TCE) by BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN nanofibers was systematically investigated via gas chromatography (GC). Optimum photocatalytic activity was achieved with BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} fibers under solar light irradiation. X-ray photoelectron spectroscopy (XPS) peaks due to C−O and C=O were observed at 286.0 and 288.3 eV, respectively, it indicated that the BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} mixture had been successfully doped on the polyacrylonitrile (PAN) fibers. Furthermore, X-ray diffraction (XRD) results also confirmed that we had synthesized the as-prepared composite nanofibers successfully. Photocatalytic activities of BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} were up to 3 times higher than the pure BiOCl, BiOBr and BiOI samples, respectively.

  18. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets

    International Nuclear Information System (INIS)

    Chen, Lin; Hua, Hao; Yang, Qi; Hu, Chenguo

    2015-01-01

    Graphical abstract: - Highlights: • Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets are synthesized. • Ag 2 O/Bi 2 WO 6 heterostuctures exhibites an enhanced photocatalytic activity compared with the Bi 2 WO 6 nanostructures. • Photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the nanosheets. • Bi 2 WO 6 hierarchical structure is an excellent architecture for loading of Ag 2 O nanoparticles. - Abstract: Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets were synthesized by hydrothermal reaction in different conditions. Ag 2 O nanoparticles were deposited on the surface of Bi 2 WO 6 microspheres and nanosheets by the chemical precipitation method. The photocatalytic performance of pure Bi 2 WO 6 nanostructures and Ag 2 O/Bi 2 WO 6 heterostructures were evaluated by the photocatalytic decolorization of RhB solution under visible-light irradiation. Compared with the pure Bi 2 WO 6 nanostructures, the Ag 2 O/Bi 2 WO 6 heterostructures exhibited an obviously enhanced photocatalytic activity. And photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the Ag 2 O/Bi 2 WO 6 nanosheets. This work demonstrates that the Bi 2 WO 6 hierarchical three-dimensional structure is an excellent architecture for the loading of Ag 2 O nanoparticles to build a highly efficient photocatalyst

  19. Photocatalytic perfermance of sandwich-like BiVO{sub 4} sheets by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suqin, E-mail: liusuqin888@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Tang, Huiling; Zhou, Huan [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Wang, Wanqiang [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China)

    2017-01-01

    Graphical abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO{sub 4} sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO{sub 4}. • The sandwich-like BiVO{sub 4} sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N{sub 2} adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO{sub 4} sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO{sub 4} sheets can be attributed to its large surface area over the irregular BiVO{sub 4} particles.

  20. Pairagon+N-SCAN_EST: a model-based gene annotation pipeline

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Wei, Chaochun; Brown, Randall H

    2006-01-01

    This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses only native alignments. For each expressed sequence it chooses the best genomic alignment. Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are aligned to the genomic loci...... with de novo gene prediction by using N-SCAN_EST. N-SCAN_EST is based on a generalized HMM probability model augmented with a phylogenetic conservation model and EST alignments. It can predict complete transcripts by extending or merging EST alignments, but it can also predict genes in regions without EST...

  1. Implementing Sentinels in the TARGIT BI Suite

    DEFF Research Database (Denmark)

    Middelfart, Morten; Pedersen, Torben Bach

    2011-01-01

    This paper describes the implementation of socalled sentinels in the TARGIT BI Suite. Sentinels are a novel type of rules that can warn a user if one or more measure changes in a multi-dimensional data cube are expected to cause a change to another measure critical to the user. Sentinels notify u...... pattern mining or correlation techniques. We demonstrate, through extensive experiments, that mining and usage of sentinels is feasible with good performance for the typical users on a real, operational data warehouse....

  2. Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Kexin Wang

    2016-01-01

    Full Text Available p-BiOI nanosheets/n-TiO2 nanofibers (p-BiOI/n-TiO2 NFs have been facilely prepared via the electrospinning technique combining successive ionic layer adsorption and reaction (SILAR. Dense BiOI nanosheets with good crystalline and width about 500 nm were uniformly assembled on TiO2 nanofibers at room temperature. The amount of the heterojunctions and the specific surface area were well controlled by adjusting the SILAR cycles. Due to the synergistic effect of p-n heterojunctions and high specific surface area, the obtained p-BiOI/n-TiO2 NFs exhibited enhanced visible-light photocatalytic activity. Moreover, the p-BiOI/n-TiO2 NFs heterojunctions could be easily recycled without decreasing the photocatalytic activity owing to their one-dimensional nanofibrous structure. Based on the above, the heterojunctions of p-BiOI/n-TiO2 NFs may be promising visible-light-driven photocatalysts for converting solar energy to chemical energy in environment remediation.

  3. MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    LIXIN LIU

    2014-01-01

    Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.

  4. Syntheses, crystal Structures and electronic Structures of new metal chalcoiodides Bi2CuSe3I and Bi6Cu3S10I

    International Nuclear Information System (INIS)

    Liang, I-Chu; Bilc, Daniel I.; Manoli, Maria; Chang, Wei-Yun; Lin, Wen-Fu; Kyratsi, Theodora; Hsu, Kuei-Fang

    2016-01-01

    Two new metal chalcoiodides were synthesized by solid-state reactions at 400 °C. Crystal Data: Bi 2 CuSe 3 I, 1, monoclinic, C2/m, a=14.243(2) Å, b=4.1937(7) Å, c=14.647(2) Å, β=116.095(2)°, V=785.7(2) Å 3 , and Z=4; Bi 6 Cu 3 S 10 I, 2, orthorhombic, Pnma, a=17.476(2) Å, b=4.0078(4) Å, c=27.391(2) Å, V=1918.5(3) Å 3 , and Z=4. Compound 1 adopts a three-dimensional structure formed by two alternative layers, which consist of BiSe 5 square pyramids, BiSe 4 I 2 octahedra, CuSe 4 tetrahedra, and CuSe 2 I 2 tetrahedra. Compound 2 possesses a new open framework built up of BiS 5 square pyramides, BiS 6 octahedra, BiS 8 polyhedra, and CuS 4 tetrahedra where I − anions are uniquely trapped within the tunnels. Both electronic structures reveal that bismuth and chalcogenide orbitals dominate the bandgaps. The Cu d and I p states contribute to the top of valence bands, in which the distribution of I orbitals may correspond to the relative bonding interactions in 1 and 2. The optical bandgaps determined by the diffuse reflectance spectra are 0.68 eV and 0.72 eV for 1 and 2, respectively. 1 is a p-type semiconductor with high Seebeck coefficients of 460–575 μV/K in the temperature range of 300–425 K. The electrical conductivity is 0.02 S/cm at 425 K for the undoped sample. The thermal conductivity is 0.22 W/mK at 425 K. - Graphical abstract: The hybridization of chalcogenides and iodides produces two new solids Bi2CuSe3I and Bi6Cu3S10I. The I − anions participate in distinct bonding interactions within the two structures and that is consistent with the analyses of density of states. 1 is a p-type semiconductor with an optical bandgap of 0.68 eV, which possesses high Seebeck coefficient and low lattice thermal conductivity in 300–425 K.

  5. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis

    Science.gov (United States)

    Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu

    2015-09-01

    Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+-[WO4]2--[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface.

  6. Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire

    International Nuclear Information System (INIS)

    Kim, Jeongmin; Lee, Seunghyun; Kim, MinGin; Lee, Wooyoung; Brovman, Yuri M.; Kim, Philip

    2014-01-01

    We present the low temperature transport properties of an individual single-crystalline Bi nanowire grown by the on-film formation of nanowire method. The temperature dependent resistance and magnetoresistance of Bi nanowires were investigated. The phase coherence length was obtained from the fluctuation pattern of the magnetoresistance below 40 K using universal conductance fluctuation theory. The obtained temperature dependence of phase coherence length and the fluctuation amplitude indicates that the transport of electrons shows 2-dimensional characteristics originating from the surface states. The temperature dependence of the coherence length derived from the weak antilocalization effect using the Hikami–Larkin–Nagaoka model is consistent with that from the universal conductance fluctuations theory

  7. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder : Suggestive evidence for linkage on chromosomes 7p and 15q

    NARCIS (Netherlands)

    Bakker, SC; van der Meulen, EM; Buitelaar, JK; Sandkuijl, LA; Pauls, DL; Monsuur, AJ; van't Slot, R; Minderaa, RB; Gunning, WB; Pearson, PL; Sinke, RJ

    A genome scan was performed on 164 Dutch affected sib pairs (ASPs) with attention-deficit/hyperactivity disorder (ADHD). All subjects were white and of Dutch descent and were phenotyped according to criteria set out in the Diagnostic and Statistical Manual Of Mental Disorders, 4th edition.

  8. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  9. Template synthesis and photoelectrochemical properties of Bi{sub 2}S{sub 3} microflowers

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Feng; Wang, Jianmin; Tu, Wanhong; Lv, Xin; Li, Song; Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn

    2015-08-15

    Highlights: • Bi{sub 2}S{sub 3} microflowers were fabricated by using a sacrificial-template method. • The effect of the specific experimental parameters was examined. • Photoelectrochemical measurements were characterized. - Abstract: Uniform hierarchical Bi{sub 2}S{sub 3} nanostructures were fabricated by using Bi{sub 2}O{sub 2}CO{sub 3} nanoflowers as a sacrificial template through a hydrothermal reaction with an aqueous L-cysteine solution. Multiple techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Mott–Schottky (M–S) plot and electrochemical impedance spectroscopy (EIS) were applied to investigate the structure, morphology and photoelectrochemical properties of the as-prepared samples. This work demonstrated a simple and cost-effective strategy for the design and fabrication of well-defined complex hierarchical nanomaterials, which can be potentially used in energy storage and conversion devices.

  10. Influence of photoinduced Bi-related self-doping on the photocatalytic activity of BiOBr nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Yue, Songtao; Wang, Wei [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); An, Tiacheng, E-mail: antc99@gig.ac.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Guiying [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ye, Liqun [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Yip, Ho Yin [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Wong, Po Keung, E-mail: pkwong@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China)

    2017-01-01

    Highlights: • Bi{sup 5+} self-doped BiOBr nanosheets are achieved under UV irradiation. • Bi{sup 5+} is formed due to the oxidation of surface Bi{sup 3+} by photoexcited h{sup +} of BiOBr. • Two photoinduced h{sup +} mediated oxidation processes happen simultaneously. • Self-doped BiOBr is superior in phenol degradation and bacterial inactivation. • Bi{sup 5+} electron trapping induced photocatalytic enhancement mechanism is proposed. - Abstract: Under UV irradiation, self-doped Bi{sup 5+} is evidenced to be generated on the surface of BiOBr nanosheets, but with well-preserved crystal structure and morphology compared with pure counterpart. Bi{sup 5+} self-doping BiOBr (BiOBr-4) exhibits distinct photocatalytic mode for dyes degradation, as compared with pure BiOBr nanosheets. These photodegradation distinctions are mainly due to the simultaneous occurrence of two photoinduced hole (h{sup +}) mediated oxidation processes on the BiOBr surfaces: (1) a portion of photoexcited h{sup +} participates in the photocatalytic oxidation of dyes, and (2) partial h{sup +} involves the oxidation of Bi{sup 3+} to Bi{sup 5+}. Notably, BiOBr-4 nanosheets comparatively show superior photocatalytic activity for the phenol decomposition as well as the bacterial inactivation. Besides Bi{sup 5+} induced narrowed bandgap and enhanced light adsorption capacity, significantly, the oxidative Bi{sup 5+} acts as electron traps to promote the photoexcited electron-hole separation and accelerate h{sup +} migration, resulting in the considerable photocatalytic enhancement of BiOBr-4 nanosheets. These novel findings will not only give new insights into the photocatalytic mechanism but also explore new route to enhance photocatalytic performance of Bi-based materials.

  11. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications

    International Nuclear Information System (INIS)

    Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.

    2013-01-01

    Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications

  12. Thermal Stability and X-ray Attenuation Studies on α-Bi₂O₃, β-Bi₂O₃ and Bi Based Nanocomposites for Radiopaque Fabrics.

    Science.gov (United States)

    Jayakumar, Sangeetha; Saravanan, T; Philip, John

    2018-06-01

    Nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles as nanofillers in vulcanized silicone resin as a matrix are prepared and their diagnostic X-ray attenuation property is studied. The nanocomposites are prepared using a simple solution casting technique, with nanofiller concentration varying from 2-50 wt%. Thermogravimetric analysis and differential scanning calorimetry are performed to study the thermal stability of the nanocomposites. The attenuation property is studied by exposing the nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles to X-rays of energy 30-60 keV. Nanocomposites containing β-Bi2O3 nanoparticles are found to exhibit the highest attenuation than nanocomposites of α-Bi2O3 and Bi nanoparticles of similar concentration. Nanocomposites containing 50 wt% of β-Bi2O3 nanoparticles exhibit an X-ray attenuation of 93, 86, 71, 45 and 10% at an X-ray photon energy of 40, 45, 50, 55 and 59 keV, respectively. Further increase in photon energy is found to saturate the flat panel detector owing to the lower thickness of the nanocomposites. Analysis of high resolution X-ray radiographs of the nanocomposites confirms the uniform distribution of nanofillers in the matrix. Thermal analysis confirms the structural integrity and thermal stability of the nanocomposites. Heat flow curves also confirm the interaction of nanofillers with the matrix, corroborated by a change in the peak position and its endothermic/exothermic nature, corresponding to the phase transition of the nanofillers. It is also interpreted from thermal analysis of nanocomposites that the nanofillers interact with the matrix either by intercalating in the bridging polymer chain of silicone resin network structure or by occupying the interchain space. Thermal analysis of X-ray exposed nanocomposites shows no significant change in heat flow rates, thus, confirming the stability of the nanocomposites. Our study shows that nanocomposites containing β-Bi2O3 nanofiller

  13. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  14. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  15. Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J.A.; Beitlerova, A.; Jary, V.

    2013-01-01

    Absorption, cathodoluminescence, excitation spectra of photoluminescence (PL) and PL decay kinetics were studied at 300 K for the double doped with Bi 3+ –Pr 3+ and separately doped with Bi 3+ and Pr 3+ Lu 3 Al 5 O 12 (LuAG) and Y 3 Al 5 O 12 (YAG) single crystalline film (SCF) phosphors grown by the liquid phase epitaxy method. The emission bands in the UV range arising from the intrinsic radiative transitions of Bi 3+ based centers, and emission bands in the visible range, related to the luminescence of excitons localized around Bi 3+ based centers, were identified both in Bi–Pr and Bi-doped LuAG and YAG SCFs. The energy transfer processes from the host lattice simultaneously to Bi 3+ and Pr 3+ ions and from Bi 3+ to Pr 3+ ions were investigated. Competition between Pr 3+ and Bi 3+ ions in the energy transfer processes from the LuAG and YAG hosts was evidenced. The strong decrease of the intensity of Pr 3+ luminescence both in LuAG:Pr and YAG:Pr SCFs phosphors, grown from Bi 2 O 3 flux, is observed due to the quenching influence of Bi 3+ flux related impurity. Due to overlap of the UV emission band of Bi 3+ centers with the f–d absorption bands of Pr 3+ ions in the UV range and the luminescence of excitons localized around Bi ions with the f–f absorption bands of Pr 3+ ions in the visible range, an effective energy transfer from Bi 3+ ions to Pr 3+ ions takes place in LuAG:Bi,Pr and YAG:Bi,Pr SCFs, resulting in the appearance of slower component in the decay kinetics of the Pr 3+ d–f luminescence. -- Highlights: • Bi and Pr doped film phosphor grown by liquid phase epitaxy method. • Energy transfer from Bi 3+ to Pr 3+ ions. • Strong quenching of the Pr 3+ luminescence by Bi 3+ co-dopant

  16. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    Science.gov (United States)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  17. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    Full Text Available Scanning Electron Microscope (SEM as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D. In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  18. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination

    Science.gov (United States)

    Pan, Jinbo; Liu, Jianjun; Zuo, Shengli; Khan, Usman Ali; Yu, Yingchun; Li, Baoshan

    2018-06-01

    Z-scheme CdS/CQDs/BiOCl heterojunction was synthesized by a facile region-selective deposition process. Owing to the electronegativity of the groups on the surface of Carbon Quantum Dots (CQDs), they can be sandwiched between CdS and BiOCl, based on the stepwise region-selective deposition process. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical measurements and photoluminescence (PL). The results indicate that CQDs with size of 2-5 nm and CdS nanoparticles with size of 5-10 nm dispersed uniformly on the surface of cuboid BiOCl nanosheets. The photocatalytic performance tests reveal that the CdS/CQDs/BiOCl heterojunction exhibits much higher photocatalytic activity than that of BiOCl, CdS/BiOCl and CQDs/BiOCl for Rhodamine B (RhB) and phenol photodegradation under visible and UV light illumination, respectively. The enhanced photocatalytic performance should be attributed to the Z-scheme structure of CdS/CQDs/BiOCl, which not only improves visible light absorption and the migration efficiency of the photogenerated electron-holes but also keeps high redox ability of CdS/CQDs/BiOCl composite.

  19. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    2018-04-01

    Full Text Available Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9 have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA, humanized Cas9 (hCas9 gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4. Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were

  20. LA phonons scattering of surface electrons in Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lang-Tao [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Zhu, Bang-Fen [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China and Institute of Advanced Study, Tsinghua University, Beijing 100084 (China)

    2013-12-04

    Within the Boltzmann equation formalism we evaluate the transport relaxation time of Dirac surface states (SSs) in the typical topological insulator(TI) Bi{sub 2}Se{sub 3} due to the phonon scattering. We find that although the back-scattering of the SSs in TIs is strictly forbidden, the in-plane scattering between SSs in 3-dimensional TIs is allowed, maximum around the right-angle scattering. Thus the topological property of the SSs only reduces the scattering rate to its one half approximately. Besides, the larger LA deformation potential and lower sound velocity of Bi{sub 2}Se{sub 3} enhance the scattering rate significantly. Compared with the Dirac electrons in graphene, we find the scattering rate of SSs in Bi{sub 2}Se{sub 3} are two orders of magnitudes larger, which agree with the recent transport experiments.

  1. Allergic rhinitis - a total genome-scan for susceptibility genes suggests a locus on chromosome 4q24-q27

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schøitz, P O

    2001-01-01

    Allergic rhinitis is a common disease of complex inheritance and is characterised by mucosal inflammation caused by allergen exposure. The genetics of closely related phenotypes such as asthma, atopy and to some extend atopic dermatitis has attracted attention in recent years. Genetic reports...... of allergic rhinitis on the contrary have as yet been most sparse. To identify candidate regions holding genes for allergic rhinitis we performed a total genome-scan on affected sib-pair families. From 100 Danish sib-pair families selected for allergy, families containing sib-pairs matching a phenotype...

  2. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI

    International Nuclear Information System (INIS)

    Kulbachinskii, Vladimir A.; Kytin, Vladimir G.; Kudryashov, Alexey A.; Kuznetsov, Alexei N.; Shevelkov, Andrei V.

    2012-01-01

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI 3 or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering

  3. Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi

    Science.gov (United States)

    Jiang, J.; Schröter, N. B. M.; Wu, S.-C.; Kumar, N.; Shekhar, C.; Peng, H.; Xu, X.; Chen, C.; Yang, H. F.; Hwang, C.-C.; Mo, S.-K.; Felser, C.; Yan, B. H.; Liu, Z. K.; Yang, L. X.; Chen, Y. L.

    2018-02-01

    The recent discovery of the extreme magnetoresistance (XMR) in the nonmagnetic rare-earth monopnictides La X (X = P, As, Sb, Bi,), a recently proposed new topological semimetal family, has inspired intensive research effort in the exploration of the correlation between the XMR and their electronic structures. In this work, using angle-resolved photoemission spectroscopy to investigate the three-dimensional band structure of LaBi, we unraveled its topologically nontrivial nature with the observation of multiple topological surface Dirac fermions, as supported by our ab initio calculations. Furthermore, we observed substantial imbalance between the volume of electron and hole pockets, which rules out the electron-hole compensation as the primary cause of the XMR in LaBi.

  4. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  5. Three-dimensional body scanning system for apparel mass-customization

    Science.gov (United States)

    Xu, Bugao; Huang, Yaxiong; Yu, Weiping; Chen, Tong

    2002-07-01

    Mass customization is a new manufacturing trend in which mass-market products (e.g., apparel) are quickly modified one at a time based on customers' needs. It is an effective competing strategy for maximizing customers' satisfaction and minimizing inventory costs. An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body scanning system, body size extraction methods, and body modeling algorithms. The scanning system utilizes the multiline triangulation technique to rapidly acquire surface data on a body, and provides accurate body measurements, many of which are not available with conventional methods. Cubic B-spline curves are used to connect and smooth body curves. From the scanned data, a body form can be constructed using linear Coons surfaces. The body form can be used as a digital model of the body for 3-D garment design and for virtual try-on of a designed garment. This scanning system and its application software enable apparel manufacturers to provide custom design services to consumers seeking personal-fit garments.

  6. Thermal Analysis of Cryocooler-Cooled Bi2223 Pulsed Coil

    International Nuclear Information System (INIS)

    Miyazaki, H; Chigusa, S; Tanaka, I; Iwakuma, M; Funaki, K; Hayashi, H; Tomioka, A

    2006-01-01

    We fabricated a cryocooler-cooled Bi2223 superconducting pulsed coil and experimentally studied thermal runaway in dc or ac operation. We carried out numerical simulation of thermal properties of the coil in order to explain thermal runaway of the coil. Firstly, we analyzed the total heat generation of flux-flow loss and ac loss inside the winding from the experimental results of the external field losses and the E-J characteristics for the Bi2223 strands. Secondly, we numerically simulated the thermal properties by using 2- dimensional heat conduction equation with axial symmetry. The numerical simulation shows the relation between the initiation of thermal runaway and the temperature distribution with highly concentrated heat source in the winding. We have a semi-quantitative agreement between the numerical results and the experimental ones for the condition of the thermal runaway

  7. Body CT (CAT Scan)

    Science.gov (United States)

    ... a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ...

  8. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    Science.gov (United States)

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  9. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  10. Dimensionality and Its Effect on Retention and Visual Scanning.

    Science.gov (United States)

    Abed, Farough

    1994-01-01

    Describes a study of eighth graders that compared the effects of two-dimensional and three-dimensional illustrated texts on eye movement strategies and on retention of information. Results are reported that support earlier research findings that realism in illustrations is not necessarily facilitating and may even be distracting. (Contains 19…

  11. Thickness dependent structural, optical and electrical properties of Se85In12Bi3 nanochalcogenide thin films

    Science.gov (United States)

    Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.

    2018-04-01

    Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.

  12. Evidence of β-antimonene at the Sb/Bi2Se3 interface

    Science.gov (United States)

    Flammini, R.; Colonna, S.; Hogan, C.; Mahatha, S. K.; Papagno, M.; Barla, A.; Sheverdyaeva, P. M.; Moras, P.; Aliev, Z. S.; Babanly, M. B.; Chulkov, E. V.; Carbone, C.; Ronci, F.

    2018-02-01

    We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene.

  13. Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies.

    Science.gov (United States)

    Schaid, Daniel J; Sinnwell, Jason P; Jenkins, Gregory D; McDonnell, Shannon K; Ingle, James N; Kubo, Michiaki; Goss, Paul E; Costantino, Joseph P; Wickerham, D Lawrence; Weinshilboum, Richard M

    2012-01-01

    Gene-set analyses have been widely used in gene expression studies, and some of the developed methods have been extended to genome wide association studies (GWAS). Yet, complications due to linkage disequilibrium (LD) among single nucleotide polymorphisms (SNPs), and variable numbers of SNPs per gene and genes per gene-set, have plagued current approaches, often leading to ad hoc "fixes." To overcome some of the current limitations, we developed a general approach to scan GWAS SNP data for both gene-level and gene-set analyses, building on score statistics for generalized linear models, and taking advantage of the directed acyclic graph structure of the gene ontology when creating gene-sets. However, other types of gene-set structures can be used, such as the popular Kyoto Encyclopedia of Genes and Genomes (KEGG). Our approach combines SNPs into genes, and genes into gene-sets, but assures that positive and negative effects of genes on a trait do not cancel. To control for multiple testing of many gene-sets, we use an efficient computational strategy that accounts for LD and provides accurate step-down adjusted P-values for each gene-set. Application of our methods to two different GWAS provide guidance on the potential strengths and weaknesses of our proposed gene-set analyses. © 2011 Wiley Periodicals, Inc.

  14. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  15. Luminescence and electron degradation properties of Bi doped CaO phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Kroon, R.E.; Coetsee, E.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2015-11-30

    Graphical abstract: - Highlights: • Blue emitting Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully prepared. • Strong blue near-UV emission was obtained. • Electron beam induced cathodoluminescence intensity degradation occurred. • XPS was successfully used to explain the degradation process. - Abstract: Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully synthesized by the sol-gel combustion method. The structure, morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and cathodoluminescence (CL) spectroscopy. The results showed that the Ca{sub 1−x}O:Bi{sub x=0.5%} consisted of single face-centred cubic crystals and that the phosphor particles were uniformly distributed. When the phosphor was excited by a xenon lamp at 355 nm, or a 325 nm He–Cd laser, or electron beam, it emitted strongly in the blue near-UV range with a wavelength of 395 nm ({sup 3}P{sub 1} → {sup 1}S{sub 0} transition of Bi{sup 3+}). The CL intensity was monitored as a function of the accelerating voltage and also as a function of the beam current. The powder was also subjected to a prolonged electron beam irradiation to study the electron beam induced CL intensity degradation. X-ray photoelectron spectroscopy was used to analyze the Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor sample surface before and after degradation.

  16. (Tl, Sb) and (Tl, Bi) binary surface reconstructions on Ge(111) substrate

    Science.gov (United States)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Yakovlev, A. A.; Mihalyuk, A. N.; Zotov, A. V.; Saranin, A. A.

    2018-03-01

    2D compounds made of Group-III and Group-V elements on the surface of silicon and germanium attract considerable attention due to prospects of creating III-V binary monolayers, which are predicted to hold advanced physical properties. In the present work, we have investigated two such systems, (Tl, Sb)/Ge(111) and (Tl, Bi)/Ge(111) using scanning tunneling microscopy, low energy electron diffraction observations and density-functional-theory calculations. In addition to the previously reported surface structures of 2D (Tl, Sb) and (Tl, Bi) compounds on Si(111), we found new ones, namely, √{ 7} × √{ 7} and 3 × 3. Formation processes and plausible models of their atomic arrangements are discussed.

  17. Preparation, microstructure and thermal properties of Mg−Bi alloys as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang, Dong; Sun, Zheng; Li, Yuanyuan; Cheng, Xiaomin

    2016-01-01

    Highlights: • The microstructure and thermal properties of Mg−Bi alloys are determined. • The relationship between melting enthalpies and phase composition are studied. • The activation energy of Mg−54%Bi alloy is calculated by multiple DSC technology. • Mg−54%Bi alloy is proposed as a phase change material at high (>420 °C) temperature. - Abstract: Comparing with Al-based phase change material, Mg-based phase change material is getting more and more attention due to its high corrosion resistance with encapsulation materials based on iron. This study focuses on the characterization of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi (wt. %) alloys as phase change materials for thermal energy storage at high temperature. The phase compositions, microstructure and phase change temperatures were investigated by X-ray diffusion (XRD), electron probe micro-analysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results indicates that the microstructure of Mg−36%Bi and Mg−54%Bi alloys are mainly composed of α-Mg matrix and α-Mg + Mg_3Bi_2 eutectic phases, Mg−60%Bi alloy are mainly composed of the Mg_3Bi_2 phase and α-MgMg_3Bi_2 eutectic phases. The melting enthalpies of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi alloys are 138.2, 180.5 and 48.7 J/g, with the phase change temperatures of 547.6, 546.3 and 548.1 °C, respectively. The Mg−54%Bi alloy has the highest melting enthalpy in three alloys. The main reason may be that it has more proportion of α-Mg + Mg_3Bi_2 eutectic phases. The thermal expansion of three alloys increases with increasing temperature. The values of the thermal conductivity decrease with increasing Bi content. Besides, the activation energy of Mg−54%Bi was calculated by multiple DSC technology.

  18. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Expósito, Roberto R

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.

  19. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  20. ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins.

    Science.gov (United States)

    Konc, Janez; Janezic, Dusanka

    2012-07-01

    The ProBiS web server is a web server for detection of structurally similar binding sites in the PDB and for local pairwise alignment of protein structures. In this article, we present a new version of the ProBiS web server that is 10 times faster than earlier versions, due to the efficient parallelization of the ProBiS algorithm, which now allows significantly faster comparison of a protein query against the PDB and reduces the calculation time for scanning the entire PDB from hours to minutes. It also features new web services, and an improved user interface. In addition, the new web server is united with the ProBiS-Database and thus provides instant access to pre-calculated protein similarity profiles for over 29 000 non-redundant protein structures. The ProBiS web server is particularly adept at detection of secondary binding sites in proteins. It is freely available at http://probis.cmm.ki.si/old-version, and the new ProBiS web server is at http://probis.cmm.ki.si.

  1. Nanometre-sized inhomogeneity in high-Jc Bi2Sr2CaCu2O8+δ superconductors

    International Nuclear Information System (INIS)

    Nishiyama, M; Kinoda, G; Zhao, Y; Hasegawa, T; Itoh, Y; Koshizuka, N; Murakami, M

    2004-01-01

    We have performed atomic-scale high-resolution scanning tunnelling microscopy and spectroscopy measurements on the cleaved surface of single crystal Bi 2 Sr 2 CaCuO 8+δ superconductors with high critical current density J c . The samples exhibited rugged structure about 15 nm in period, larger than the modulation of the BiO layer, which corresponded well to the energy gap distribution at 77 K. The presence of inhomogeneity from a nanometre to a micrometre scale, in the energy gap distribution, the structural modulation and the chemical composition fluctuation, may play an important role in improving J c values in the Bi 2 Sr 2 CaCuO 8+δ crystals

  2. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  3. Facile large scale synthesis of Bi{sub 2}S{sub 3} nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, S. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Naveen, A. Nirmalesh [Department of Physics, Anna University, Chennai, Tamil Nadu 600025 (India); Kamalakannan, V.P. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Cao, P. [Department of Chemistry and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India)

    2015-10-01

    Graphical abstract: - Highlights: • A Bi{sub 2}S{sub 3}/RGO composite was synthesized by one pot precipitation method. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibit rod like morphology. • As synthesized composite was applied for malachite green degradation. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibits a specific capacitance of 290 F g{sup −1} at a scan rate of 1 A g{sup −1}. • Photocatalytic and supercapacitor properties of Bi{sub 2}S{sub 3} were enhanced mainly due to effective graphene incorporation. - Abstract: Bi{sub 2}S{sub 3} nano rods–graphene (BG) composite material was synthesized by a simple one step precipitation method. The crystallanity, structural and morphological properties were studied by the X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The photocatalytic activity of BG was evaluated by the photocatalytic degradation of malachite green dye (MG) aqueous solution under the visible light irradiation. The effect of graphene content on the photoelectrochemical property of Bi{sub 2}S{sub 3} nano rods was also studied. The enhancement of photocurrent and photocatalytic properties of BG composite attributed to the synergistic effect between the Bi{sub 2}S{sub 3} nano rods and graphene sheets which improves the charge separation efficiency in Bi{sub 2}S{sub 3} nano rods. The supercapacitor behavior was studied using cyclic voltametry and galvanostatic charge discharge studies. The BG composite exhibits a maximum specific capacitance of 290 F g{sup −1} at a current density of 1 A g{sup −1}. The present study may provide as a new approach in improving the performance of BG composite in supercapacitor, solar cells and photocatalytic applications.

  4. State diagram of Pr-Bi system

    International Nuclear Information System (INIS)

    Abulkhaev, V.L.; Ganiev, I.N.

    1994-01-01

    By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.

  5. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  6. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    International Nuclear Information System (INIS)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat; Sriwilas, Patiyut; Midtboe, Marit

    2017-01-01

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm"2) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth

  7. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  8. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  9. Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.V.; Deus, R.C. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R.; Longo, E. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Bauru, Dept. de Eng. Mecânica, Av. Eng. Luiz Edmundo C. Coube 14-01, 17033-360 Bauru, SP (Brazil); Cilense, M. [Universidade Estadual Paulista, UNESP, Instituto de Química – Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, 14800-90 Araraquara, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-04-01

    Calcium (Ca)-doped bismuth ferrite (BiFeO{sub 3}) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO{sub 3} where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO{sub 3} film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO{sub 3}. - Highlights: • Ca doped BiFeO{sub 3} thin films were obtained by the polymeric precursor method. • Co-existence of distorted rhombohedral and tetragonal phases are evident. • Enhanced ferroelectric and piezoelectric properties are produced by the internal strain in the Ca doped BiFeO{sub 3} film.

  10. Evidence for the quasi-two dimensional behavior of the vortex structure in Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8] single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pastoriza, H [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Arribere, A [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Goffman, M F [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Cruz, F de la [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Mitzi, D B [Dept. of Applied Physics, Stanford Univ., CA (United States); Kapitulnik, A [Dept. of Applied Physics, Stanford Univ., CA (United States)

    1994-02-01

    AC susceptibility and dc magnetization measurements on Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8] (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned. (orig.)

  11. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  12. A genome scan conducted in a multigenerational pedigree with convergent strabismus supports a complex genetic determinism.

    Directory of Open Access Journals (Sweden)

    Anouk Georges

    Full Text Available A genome-wide linkage scan was conducted in a Northern-European multigenerational pedigree with nine of 40 related members affected with concomitant strabismus. Twenty-seven members of the pedigree including all affected individuals were genotyped using a SNP array interrogating > 300,000 common SNPs. We conducted parametric and non-parametric linkage analyses assuming segregation of an autosomal dominant mutation, yet allowing for incomplete penetrance and phenocopies. We detected two chromosome regions with near-suggestive evidence for linkage, respectively on chromosomes 8 and 18. The chromosome 8 linkage implied a penetrance of 0.80 and a rate of phenocopy of 0.11, while the chromosome 18 linkage implied a penetrance of 0.64 and a rate of phenocopy of 0. Our analysis excludes a simple genetic determinism of strabismus in this pedigree.

  13. A genome scan conducted in a multigenerational pedigree with convergent strabismus supports a complex genetic determinism.

    Science.gov (United States)

    Georges, Anouk; Cambisano, Nadine; Ahariz, Naïma; Karim, Latifa; Georges, Michel

    2013-01-01

    A genome-wide linkage scan was conducted in a Northern-European multigenerational pedigree with nine of 40 related members affected with concomitant strabismus. Twenty-seven members of the pedigree including all affected individuals were genotyped using a SNP array interrogating > 300,000 common SNPs. We conducted parametric and non-parametric linkage analyses assuming segregation of an autosomal dominant mutation, yet allowing for incomplete penetrance and phenocopies. We detected two chromosome regions with near-suggestive evidence for linkage, respectively on chromosomes 8 and 18. The chromosome 8 linkage implied a penetrance of 0.80 and a rate of phenocopy of 0.11, while the chromosome 18 linkage implied a penetrance of 0.64 and a rate of phenocopy of 0. Our analysis excludes a simple genetic determinism of strabismus in this pedigree.

  14. Magneto-transport studies on Bi2Te2+xSe1–x (x = 0.05 and 0.10 topological insulators

    Directory of Open Access Journals (Sweden)

    Bushra Irfan

    2016-09-01

    Full Text Available Bi2Te2Se is one of the most promising three dimensional topological insulators, for the study of surface states. In this work, we report the results of transport and magneto-transport behavior of Bi2Te2+xSe1–x (x=0.05 and 0.10 single crystals grown using modified Bridgeman technique. Resistance versus temperature measurements show semiconducting behavior for x = 0.05 and 0.10 crystals. Linear magnetoresistance is observed for Bi2Te2.05Se0.95 (i.e. x=0.05 whereas, Bi2Te2.10Se0.90 (x=0.10 single crystal shows a conductance fluctuations at low magnetic field.

  15. Enhanced photoelectrochemical performance of inorganic–organic hybrid consisting of BiVO{sub 4} and PEDOT:PSS

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, K. [Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Szkoda, M., E-mail: mariusz-szkoda@wp.pl [Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, K.; Sawczak, M. [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdańsk (Poland); Lisowska-Oleksiak, A., E-mail: alo@pg.gda.pl [Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland)

    2016-12-01

    Highlights: • Bismuth vanadate layers were prepared using pulsed laser deposition technique. • The modification method of BiVO{sub 4} by PEDOT:PSS was developed. • Modified layers exhibited higher photoactivity than bare BiVO{sub 4}. • Prepared material can act as semiconducting layer in photoelectrochemical cells. - Abstract: The PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) was electrodeposited on a thin layer of bismuth vanadate (BiVO{sub 4}) prepared using the pulsed laser deposition technique onto FTO. The inorganic–organic junction was characterized by Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Chronoamperometry curves, recorded under simulated solar light illumination, were performed to determine generated photocurrent during water and hydroquinone oxidation at the electrode surface. Experiments were performed for three types of electrode materials: (i) FTO/BiVO{sub 4}, (ii) FTO/PEDOT:PSS and (iii) FTO/BiVO{sub 4}/PEDOT:PSS in aqueous electrolyte. Almost 5 times higher photocurrent in electrolyte containing hole scavenger was generated after modification of BiVO{sub 4} photoanode with electrodeposited polymer. It is noteworthy that anodic photocurrent was stable even after 4 h of illumination. Cyclic voltammetry curves of FTO/BiVO{sub 4}/PEDOT:PSS recorded before and after experiments performed under electrode illumination indicated that the organic part in tested junction is photo-corrosion resistant.

  16. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  17. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  18. Effect of cooling rates on bare bulk and silver wrapped pellets of Bi-2223 superconductor

    International Nuclear Information System (INIS)

    Terzioglu, C.; Oztuerk, O.; Kilic, A.; Gencer, A.; Belenli, I.

    2006-01-01

    We have examined the effect of cooling rates on oxygen content of Bi-2223 phase samples with and without silver sheating. Two sets of samples with and without silver sheating were annealed under identical conditions and cooled with rates of 10 deg. C/h, 25 deg. C/h, 50 deg. C/h, 75 deg. C/h, and 100 deg. C/h. XRD examination of the samples showed that a high percentage of Bi-2223 was obtained. Microstructure examinations were performed by scanning electron microscopy. Resistive and magnetic transitions of the samples were studied. All the reported data were discussed and related

  19. The advantage of scanning in studying terrain contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Angelov, V [Civil Defence Administration, Sofia (Bulgaria); Semova, T; Bonchev, Ts [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Andreev, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Mavrodiev, V [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Jordanov, A

    1996-12-31

    A method of preventive or emergency characterisation of vast areas by terrain scanning in order to detect radioactive contamination is proposed. Implementation of the method by helicopter or by movable platform using automatic gamma-radiometers is considered. One-dimensional and three-dimensional presentation of the results are compared. It is concluded that investment in scanning systems will be justified in case of serious accidents when the decision making will depend heavily on reliable topological image of the radioactive contamination. 5 refs., 3 fig.

  20. The advantage of scanning in studying terrain contaminations

    International Nuclear Information System (INIS)

    Angelov, V.; Semova, T.; Bonchev, Ts.; Mavrodiev, V.; Jordanov, A.

    1995-01-01

    A method of preventive or emergency characterisation of vast areas by terrain scanning in order to detect radioactive contamination is proposed. Implementation of the method by helicopter or by movable platform using automatic gamma-radiometers is considered. One-dimensional and three-dimensional presentation of the results are compared. It is concluded that investment in scanning systems will be justified in case of serious accidents when the decision making will depend heavily on reliable topological image of the radioactive contamination. 5 refs., 3 fig

  1. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  2. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  3. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  4. Nature and organization of the CuO2-plane. As experimentally probed in the prototype high-temperature superconductor Bi2201

    International Nuclear Information System (INIS)

    Dudy, Lenart E.

    2008-01-01

    This thesis deals with the experimental exploration of the high-temperature superconducting Bi-cuprate system and mainly with single crystals of the one-layer Bi2201. To begin, the structural change resulting from Pb substitution was explored by using topological scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The resulting morphologies were explained in a pseudo-binary phase-diagram. Using energy dispersive x-ray analysis and AC-susceptibility, it was proven that, for two variations of Bi2201 and also for LSCO, the superconducting transition temperature (T C ) always drops at the same hole-doping values - an effect that might be explained by the so-called 'magic doping fractions'. By analyzing STM-data, it was reasonably argued that the so-called 'checkerboard order' is not preferentially due to an ordering of the carriers in the Copper-Oxygen-plane. In the interpretation presented here, it is caused by dopant-atoms or dopant-complexes. The role of the Oxygen might be of particular importance. Measurements concerning the pseudogap-phase were then shown. Using angular resolved photoemission (ARPES), it was found that the gap in the antinodal direction is dominantly caused by the pseudogap-phase. Interestingly, while resistivity measurements detect two crossover temperatures, ARPES detects only the lower pseudogap-temperature. It can also be stated that the pseudogap also exists in the overdoped region. The most important finding about the pseudogap-temperature and the pseudogap-magnitude was that they also react on the doping values of the depressions in T C . Due to this finding, it was proposed that superconductivity occurs when an otherwise perfect charge-ordered and spin-ordered two-dimensional electronic system has mobile defective holes. (orig.)

  5. Fermi surface investigation in the scanning tunneling microscopy of Bi2Sr2CaCu2O8

    International Nuclear Information System (INIS)

    Voo, K.K.; Wu, W.C.; Chen, H.Y.; Mou, C.Y.

    2004-01-01

    Within the ideal Fermi liquid picture, the impurity-induced spatial modulation of local density of states (LDOS) in the d-wave superconductor Bi 2 Sr 2 CaCu 2 O 8 is investigated at different superconducting (SC) gap sizes. These LDOS spectra are related to the finite-temperature dI/dV spectra in scanning tunneling microscopy (STM), when the Fermi distribution factor is deconvoluted away from dI/dV. We find stripe-like structures even in the zero gap case due to a local-nesting mechanism. This mechanism is different from the octet-scattering mechanism in the d-wave SC (dSC) state proposed by McElroy et al. [K. McElroy, R.W. Simmonds, J.E. Hoffman, D.H. Lee, J. Orenstein, H. Eisaki, S. Uchida, J.C. Davis, Nature 422 (2003) 592]. The zero gap LDOS is related to the normal state dI/dV. The zero gap spectra when Fourier-transformed into the reciprocal space, can reveal the information of the entire Fermi surface at a single measuring bias voltage, in contrast to the point-wise tracing out proposed by McElroy et al. This may serve as another way to check the reality of Landau quasiparticles in the normal state. We have also re-visited the octet-scattering mechanism in the dSC state and pointed out that, due to the Umklapp symmetry, there are additional peaks in the reciprocal space that experimentally yet to be found

  6. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    Science.gov (United States)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  7. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  8. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  9. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Scarangella, A. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Amiard, G.; Boninelli, S., E-mail: simona.boninelli@ct.infn.it; Miritello, M. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Reitano, R. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Priolo, F. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  10. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    Science.gov (United States)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  11. Growth, characterization, and physical properties of Bi-Sr-Ca-Cu-O superconducting whiskers

    International Nuclear Information System (INIS)

    Kraak, W.; Thiele, P.

    1996-01-01

    Single crystal whiskers of the Bi-based high-T c superconductors have been grown directly from the stoichiometric melt. Conditions for the preferable growth of the (2212) phase and annealing conditions for the conversion from the (2212) phase to the (2223) and (2234) Bi-based superconducting phases are achieved. The orientation and chemical composition of the crystals were characterized by X-ray diffractometry and energy dispersive X-ray analysis. Characteristic structural properties of the whiskers (incommensurable modulation in b-direction, peculiarities of dislocation networks) have been revealed by transmission electron microscopy and electron diffraction. Some special features of the broad superconducting transition in multiphase whiskers have been examined by spatially resolved measurements using low-temperature scanning electron microscopy. (orig.)

  12. Global EiBI-monopole

    Directory of Open Access Journals (Sweden)

    JIN Xinghua

    2014-04-01

    Full Text Available A global EiBI-monopole problem is studied under EiBI gravitational theory.The equations of global EiBI-monopole are derived in the curved spacetime and the relation between the spacetime metric and auxiliary metric is found.In the case of a very small parameter,an asymptotic form of equations is given.The series solutions of global EiBI-monopole at infinity are found.

  13. Genome-wide scan of 29,141 African Americans finds no evidence of directional selection since admixture.

    Science.gov (United States)

    Bhatia, Gaurav; Tandon, Arti; Patterson, Nick; Aldrich, Melinda C; Ambrosone, Christine B; Amos, Christopher; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bock, Cathryn H; Caporaso, Neil; Casey, Graham; Deming, Sandra L; Diver, W Ryan; Gapstur, Susan M; Gillanders, Elizabeth M; Harris, Curtis C; Henderson, Brian E; Ingles, Sue A; Isaacs, William; De Jager, Phillip L; John, Esther M; Kittles, Rick A; Larkin, Emma; McNeill, Lorna H; Millikan, Robert C; Murphy, Adam; Neslund-Dudas, Christine; Nyante, Sarah; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Benjamin A; Schwartz, Ann G; Signorello, Lisa B; Spitz, Margaret; Strom, Sara S; Tucker, Margaret A; Wiencke, John K; Witte, John S; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A; Zheng, Wei; Ziegler, Regina G; Chanock, Stephen J; Haiman, Christopher A; Reich, David; Price, Alkes L

    2014-10-02

    The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous study's conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Facile synthesis of flower-like BiOI hierarchical spheres at room temperature with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Li, Fa-tang; Li, Dong-yan; Liu, Rui-hong; Liu, Shuang-jun

    2015-01-01

    Graphical abstract: - Highlights: • Flower-like BiOI hierarchical sphere is obtained in the presence of ethylene glycol. • A template free hydrolysis route is employed at room temperature. • Ethylene glycol plays an important role in assembling BiOI nanoflakes to form spheres. • The BiOI sphere shows high visible-light photocatalytic activity and good stability. - Abstract: Flower-like BiOI hierarchical spheres are prepared at room temperature via a template free route simply by dropping water into ethylene glycol (EG) solution containing reactants based on the hydrolysis and oriented assembly roles of water and EG, respectively. The BiOI samples are characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, emission scanning electron microscopy (SEM), UV–Vis diffuse reflectance spectra (UV–Vis DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The photocatalytic reaction rate constant of the as-prepared BiOI hierarchical spheres is 15.8, 13.3, and 2.0 times that of BiOI nanoflakes obtained in the absence of EG in degradation of anionic dye (methyl orange), cationic dye (methylene blue), and colorless target pollutant (phenol), respectively, under the visible-light irradiation, which can be attributed to its unique flower-like structure for utilization of light, small crystal size, and large specific surface area

  15. Permanent Draft Genome of Strain ESFC-1: Ecological Genomics of a Newly Discovered Lineage of Filamentous Diazotrophic Cyanobacteria

    Science.gov (United States)

    Everroad, R. Craig; Stuart, Rhona K.; Bebout, Brad M.; Detweiler, Angela M.; Lee, Jackson Zan; Woebken, Dagmar; Bebout, Leslie E.; Pett-Ridge, Jennifer

    2016-01-01

    The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.

  16. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    Science.gov (United States)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  17. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe

    2015-01-01

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  18. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoying; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Guo, Yuxi; Zhang, Yihe, E-mail: zyh@cugb.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. • The diatomite-immobilized BiOI hybrid photocatalyst exhibits much better photocatalytic performance. • This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. • This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral. - Abstract: A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron–hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.

  19. DETECTING SELECTION IN NATURAL POPULATIONS: MAKING SENSE OF GENOME SCANS AND TOWARDS ALTERNATIVE SOLUTIONS

    Science.gov (United States)

    Haasl, Ryan J.; Payseur, Bret A.

    2016-01-01

    Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example FST, cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach. PMID:26224644

  20. Sol-gel synthesis of Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen, E-mail: wangwen@hit.edu.cn [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, No. 92 West Da-Zhi Street, Harbin 150001, Heilongjiang (China); Hua, Ke; Jiancun, Rao; Jinbiao, Feng; Ming, Feng; Dechang, Jia; Yu, Zhou [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, No. 92 West Da-Zhi Street, Harbin 150001, Heilongjiang (China)

    2011-04-07

    Research highlights: > One-dimensional (1D) ferroelectrics have been successfully synthesized. The sol-gel template synthesis is a versatile and inexpensive technique for producing nanostructures, and particularly facilitates the fabrication of complex oxide nanotubes or nanowires. Compared with the synthesis of the general nanotubes such as carbon nanotubes with simple crystal structure, the synthesis of ferroelectric compound is difficult due to the multielement and the complex crystal structures of these ferroelectrics. Herein, we report the synthesis of one-dimensional BLT nanotubes on anodic alumina (AAO) templates by immersing a template membrane in sol without polymeric additive. - Abstract: Ferroelectric Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.

  1. High photocatalytic performance of BiOI/Bi{sub 2}WO{sub 6} toward toluene and Reactive Brilliant Red

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiquan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Cui Yumin, E-mail: cuiyumin0908@163.com [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Hong Wenshan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China)

    2013-01-01

    Graphical abstract: When BiOI/Bi{sub 2}WO{sub 6} catalyst was exposed to UV or visible light, the electrons in the valence band of Bi{sub 2}WO{sub 6} would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi{sub 2}WO{sub 6} and transferred across the interface between BiOI and Bi{sub 2}WO{sub 6} to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi{sub 2}WO{sub 6}. In this way, the photoinduced electron-hole pairs were effectively separated. Highlights: Black-Right-Pointing-Pointer BiOI sensitized Bi{sub 2}WO{sub 6} catalysts were successfully prepared by a facile method. Black-Right-Pointing-Pointer The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits higher photoactivities than P25. Black-Right-Pointing-Pointer A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi{sub 2}WO{sub 6} photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV-vis diffuse reflection spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi{sub 2}WO{sub 6} was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi{sub 2}WO{sub 6} catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi{sub 2}WO{sub 6} phases. With increasing BiOI content, the absorption intensity of BiOI/Bi{sub 2}WO{sub 6} catalysts increases in the 380-600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi{sub 2}WO{sub 6}. The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits

  2. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  3. Ga-Bi-Te system

    International Nuclear Information System (INIS)

    Rustamov, P.G.; Seidova, N.A.; Shakhbazov, M.G.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neorganicheskoj i Fizicheskoj Khimii)

    1976-01-01

    To elucidate the nature of interaction in the system Ga-Bi-Te, a study has been made of sections GaTe-Bi 2 Te 3 , Ga 2 Te 3 -Bi, GaTe-Bi and Bi 2 Te 3 -Ga. The alloys have been prepared by direct melting of the components or their alloys with subsequent homogenizin.o annealing at 400 deg C. The study has been made by the methods of differential thermal, microstructural analysis and by microhardness measurements. On the basis of literature data and data obtained a projection of the liquidus surface of the phase diagram for the system Ga-Bi-Te has been constructed. In the ternary system there are 17 curves of monovariant equilibrium dividing the liquidus into 10 fields of primary crystallization of phases, 9 points of non-variant equilibrium of which 4 points are triple eutectics and 5 points are triple peritectics

  4. Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3.

    Science.gov (United States)

    Sánchez-Barriga, Jaime; Ogorodnikov, Ilya I; Kuznetsov, Mikhail V; Volykhov, Andrey A; Matsui, Fumihiko; Callaert, Carolien; Hadermann, Joke; Verbitskiy, Nikolay I; Koch, Roland J; Varykhalov, Andrei; Rader, Oliver; Yashina, Lada V

    2017-11-22

    To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi 2 Te 3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi 2 Te 3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi 2 Te 3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi 2 Te 3 leading to the formation of septuple layers of Bi 3 Te 4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

  5. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    International Nuclear Information System (INIS)

    Wang, Lingyun; Daoud, Walid A.

    2015-01-01

    Highlights: • BiOI/TiO 2 photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO 2 (PVP) showed a 13-fold increase in photocurrent density compared to TiO 2 . • Charge transport kinetics within the BiOI/TiO 2 heterojunctions are discussed. - Abstract: A series of BiOI/TiO 2 -nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO 2 nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO 2 (PVP) as photoanode can reach a short current density (J sc ) of 0.13 mA/cm 2 and open circuit voltage (V oc ) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO 2 , the IPCE of BiOI/TiO 2 (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed

  6. One-dimensional contrast modulations in [001] high-resolution reverse images of Bi2Sr2(Cu1-xNdx)Cu2O8+δ ceramics

    International Nuclear Information System (INIS)

    Onozuka, T.

    1993-01-01

    The one-dimensional contrast modulation along the b axis of [001] high-resolution reverse images of the compounds Bi 2 Sr 2 (Ca 1-x Nd x )Cu 2 O 8+δ (x=0.05+0.1n; n=1, 2, 6 and 7) is examined closely using the density distribution recorded from a wide area of the negative film by microphotometric densitometry. Three typical short units of the density distribution, of lengths 4.5b 0 , 5b 0 and 4b 0 , characterized by twin peaks or a single maximum peak with subpeaks in the middle of the unit, are discerned. The density distributions of the three units and the contrast modulations of their images are reproduced well by computer simulations, using three structure models modulated with longitudinal displacement waves along the b axis of the metal atoms. The one-dimensional contrast modulation is attributed to sinusoidal changes in the effective scattering amplitudes for the [001] electron beam of the metal-atom chains along the c axis. The results of the simulation are applied to investigation of the (2, 1) 5 and (3, 1) 4 modulation modes in the modulated structure. (orig.)

  7. The pinning property of Bi-2212 single crystals with columnar defects

    International Nuclear Information System (INIS)

    Okamura, Kazunori; Kiuchi, Masaru; Otabe, Edmund Soji; Yasuda, Takashi; Matsushita, Teruo; Okayasu, Satoru

    2004-01-01

    It is qualitatively understood that the condensation energy density in oxide superconductors, which is one of the essential parameters for determining their pinning strength, becomes large with increasing dimensionality of the superconductor. However, the condensation energy density has not yet been evaluated quantitatively. Its value can be estimated from the elementary pinning force of a known defect. Columnar defects created by heavy ion irradiation are candidates for being such defects. That is, the size and number density of columnar defects can be given. In addition, it is known that two-dimensional vortices like those in Bi-2212 are forced into three-dimensional states by these defects in a magnetic field parallel to the defects. Thus, the condensation energy density can be estimated from the pinning property of the columnar defects even for two-dimensional superconductors. A similar analysis was performed also for three-dimensional Y-123. A discussion is given of the relationship between the condensation energy density and the anisotropy parameter estimated from measurements of anisotropic resistivity and peak field

  8. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  9. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  10. Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Nannan [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Yuan, Dingsheng, E-mail: tydsh@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhou, Tianxiang; Chen, Jingxing; Mo, Shanshan; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-05-15

    Graphical abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance is up to 386 F g{sup -1}. Research highlights: {yields} An efficient and quick microwave method has been employed. {yields} A worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites have been successfully prepared. {yields} This composite exhibits excellent capacitance performance. {yields} This composite could be a potential electrode material for the supercapacitors. -- Abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. As-prepared products have been characterized by X-ray diffraction, N{sub 2} adsorption-desorption, scanning electron microscopy, transmission electron microscopy and inductive coupled plasma atomic emission spectroscopy. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance reaches 386 F g{sup -1}, three times more than the pure worm-like mesoporous carbon.

  11. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    Science.gov (United States)

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  13. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    International Nuclear Information System (INIS)

    Xiong Ka; Wang Weichao; Alshareef, Husam N; Gupta, Rahul P; Gnade, Bruce E; Cho, Kyeongjae; White, John B

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2 Te 3 , NiTe/Bi 2 Te 3 , Co/Bi 2 Te 3 and CoTe 2 /Bi 2 Te 3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi 2 Te 3 . The interface formation energy for Co/Bi 2 Te 3 interfaces is much lower than that of Ni/Bi 2 Te 3 interfaces. Furthermore, we found that NiTe on Bi 2 Te 3 is more stable than Ni, while the formation energies for Co and CoTe 2 on Bi 2 Te 3 are comparable.

  14. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    International Nuclear Information System (INIS)

    Edamatsu, Hideo; Uechi, Yoko; Honjyo, Shiro; Yamashita, Koichi; Tonami, Hisao.

    1997-01-01

    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ''common cavity''. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  15. Piezoelectric properties enhanced of Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with charge neutrality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Pinyang, E-mail: fpy_2000@163.com [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Xi, Zengzhe; Long, Wei; Li, Xiaojuan [Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Li, Jin [Northwest Institute For Non-ferrous Metal Research, Xi’an 710016 (China)

    2013-09-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T{sub c} ∼590 °C and d{sub 33} ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr{sub 0.6−x}(LiCe){sub x/2.5}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9}(SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr{sub 0.6}(BiNa){sub 0.2}Bi{sub 2}Nb{sub 2}O{sub 9} (SBNBN) ceramic and the maximum of piezoelectric coefficient d{sub 33} of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T{sub c} ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed.

  16. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  17. Three-Dimensional Organization of Chromosome Territories in the Human Interphase Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); J. Langowski (Jörg)

    1999-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown. The regulation of genes has been shown to be connected closely to the three-dimensional organization of the genome in the cell nucleus. The nucleus of the cell has for a long

  18. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka; Wang, Weichao; Alshareef, Husam N.; Gupta, Rahul P.; White, John B.; Gnade, Bruce E.; Cho, Kyeongjae

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  19. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka

    2010-03-04

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  20. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  2. Photocatalytic activity of Bi{sub 2}WO{sub 6}/Bi{sub 2}S{sub 3} heterojunctions: the facilitation of exposed facets of Bi{sub 2}WO{sub 6} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Long [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Wang, Yufei [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Shen, Huidong; Zhang, Yu [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Li, Jian [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Wang, Danjun, E-mail: yulyanlong@aliyun.com [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China)

    2017-01-30

    Highlights: • Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrids with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi{sub 2}S{sub 3} was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrid architectures with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi{sub 2}S{sub 3} was formed on the surface of Bi{sub 2}WO{sub 6} during the anion exchange process, thus leading to the transformation from the Bi{sub 2}WO{sub 6} to Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} catalysts. Under visible light irradiation, the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA displayed the excellent visible light photoactivities compared with pure Bi{sub 2}S{sub 3}, Bi{sub 2}WO{sub 6} and other composite photocatalysts. The efficient photocatalytic activity of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi{sub 2}WO{sub 6} facets. Active species trapping experiments revealed that h{sup +} and O{sub 2}·{sup −} are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  3. Facile fabrication of Bi_2S_3/SnS_2 heterojunction photocatalysts with efficient photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Gao, Xiaomin; Huang, Guanbo; Gao, Haihuan; Pan, Cheng; Wang, Huan; Yan, Jing; Liu, Yu; Qiu, Haixia; Ma, Ning; Gao, Jianping

    2016-01-01

    In this work, Bi_2S_3/SnS_2 heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi_2S_3 in Bi_2S_3/SnS_2 was 7.95 wt%, the as-prepared Bi_2S_3/SnS_2 nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi_2S_3/SnS_2 nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi_2S_3/SnS_2 heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  4. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  5. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  6. Optical properties and visible-light-driven photocatalytic activity of Bi8V2O17 nanoparticles

    International Nuclear Information System (INIS)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-01-01

    Bi 8 V 2 O 17 (4Bi 2 O 3 ·V 2 O 5 ) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi 8 V 2 O 17 nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi 8 V 2 O 17 could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic

  7. Tetra point wetting at the free surface of liquid Ga-Bi

    International Nuclear Information System (INIS)

    Huber, P.; Shpyrko, O.G.; Pershan, P.S.; Ocko, B.M.; Di Masi, E.; Deutsch, M.

    2002-01-01

    A continuous surface wetting transition, pinned to a solid-liquid-liquid-vapor tetra coexistence point, is studied by x-ray reflectivity in liquid Ga-Bi binary alloys. The short-range surface potential is determined from the measured temperature evolution of the wetting film. The thermal fluctuations are shown to be insufficient to induce a noticeable breakdown of mean-field behavior, expected in short-range-interacting systems due to their d u =3 upper critical dimensionality

  8. Evidence of β-antimonene at the Sb/Bi2Se3 interface.

    Science.gov (United States)

    Flammini, Roberto; Colonna, Stefano; Hogan, Conor; Mahatha, Sanjoy; Papagno, Marco; Barla, Alessandro; Sheverdyaeva, Polina; Moras, Paolo; Aliev, Ziya; Babanly, M B; Chulkov, Evgueni V; Carbone, Carlo; Ronci, Fabio

    2017-12-19

    We report a study of the interface between antimony and the prototypical topological insulator Sb/Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene. © 2017 IOP Publishing Ltd.

  9. Electrosprayed heterojunction WO{sub 3}/BiVO{sub 4} films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Mali, Mukund G.; Yoon, Hyun; Yoon, Sam S., E-mail: skyoon@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Min-woo [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Green School, Korea University, Seoul 136-713 (Korea, Republic of); Swihart, Mark T. [Department of Chemistry and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260 (United States); Al-Deyab, Salem S. [Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-13

    We demonstrate that the addition of a tungsten oxide (WO{sub 3}) layer beneath a bismuth vanadate (BiVO{sub 4}) photocatalyst layer with a nanotextured pillar morphology significantly increases the photocurrent density in photoelectrochemical water splitting. The WO{sub 3}-BiVO{sub 4} bilayer films produced a photocurrent of up to 3.3 mA/cm{sup 2} under illumination at 100 mW/cm{sup 2} (AM1.5 spectrum). The bilayer film was characterized by scanning electron microscopy, X-ray diffraction, and photoelectrochemical methods, which confirmed the superiority of the bilayer film in terms of its morphology and charge separation and transport ability. Both WO{sub 3} and BiVO{sub 4} were deposited by electrostatic spraying under open-air conditions, which resulted in nanotextured pillars of BiVO{sub 4} atop a smooth WO{sub 3} film. The optimal coating conditions are also reported.

  10. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry; Montagem de posicionador de varredura bidimensional automatizada acoplado a espectrometria de fluorescência de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Santiago Melgaço

    2011-07-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of {sup 241}Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  11. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    OpenAIRE

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-01-01

    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respe...

  12. Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3.

    Science.gov (United States)

    Song, Jung-Hwan; Jin, Hosub; Freeman, Arthur J

    2010-08-27

    When the three-dimensional topological insulators Bi2Se3 and Bi2Te3 have an interface with vacuum, i.e., a surface, they show remarkable features such as topologically protected and spin-momentum locked surface states. However, for practical applications, one often requires multiple interfaces or channels rather than a single surface. Here, for the first time, we show that an interfacial and ideal Dirac cone is realized by alternating band and topological insulators. The multichannel Dirac fermions from the superlattice structures open a new way for applications such as thermoelectric and spintronics devices. Indeed, utilizing the interfacial Dirac fermions, we also demonstrate the possible power factor improvement for thermoelectric applications.

  13. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    International Nuclear Information System (INIS)

    Gontard, Lionel C.; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E.

    2016-01-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi_2(PO_4)_3 particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  14. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, Lionel C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); Faico PCT Cartuja. Edif. TI Marie Curie, C/ Leonardo da Vinci 18, 4a Planta, 41092 Sevilla (Spain); Schierholz, Roland; Yu, Shicheng [Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Cintas, Jesús [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-10-15

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. - Highlights: • 3D shape and surface texture of a nanoscale LiTi{sub 2}(PO{sub 4}){sub 3} particle. • The technique can be applied non-invasively in any SEM using freeware software. • The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass. • The UV map can be processed using 2D image processing software.

  15. The Osteometry of Equine Third Phalanx by the Use of Three-Dimensional Scanning: New Measurement Possibilities

    Directory of Open Access Journals (Sweden)

    Sławomir Paśko

    2017-01-01

    Full Text Available This study consisted in analyzing the asymmetry between bilateral third phalanges (coffin bones in cold-blood horses based on the angle range of the plantar margin of the bone. The study employed a scanner projecting a hybrid set of images, consisting of sinusoidal stripes preceded by a Gray code sequence. As it turned out, three-dimensional scanning can be used to effectively determine the angle range for a selected portion of the studied bone. This provides broad possibilities for osteometric studies, as it enables the determination of angle distribution in a given fragment. The results obtained indicate a weak correlation between age and bilateral third-phalanx asymmetry in terms of the angle range of the plantar margins and no correlation between body weight and the asymmetry described.

  16. Soft x-ray scanning microtomography with submicron resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1994-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the XIA Beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degrees to +55 degrees. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2 x 10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 Jim, with 100 to 300-nm wide and 65-nm thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent in three-dimensional images rendered from the volumetric set

  17. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size.

    Directory of Open Access Journals (Sweden)

    Nicole Soranzo

    2009-04-01

    Full Text Available Recent genome-wide (GW scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8 and rs910316 in TMED10, P-value = 1.4x10(-7 and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7 and rs849141 in JAZF1, P-value = 3.2x10(-11. One locus (rs1182188 at GNA12 identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk and lower-body (hip axis and femur skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5 and rs6817306 in LCORL, P-value = 4x10(-4, hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4 and rs4911494 at UQCC, P-value = 1.9x10(-4, and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5 and rs10946808 at HIST1H1D, P-value = 6.4x10(-6. Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.

  18. Tomosynthesis in the Diagnostic Setting: Changing Rates of BI-RADS Final Assessment over Time.

    Science.gov (United States)

    Raghu, Madhavi; Durand, Melissa A; Andrejeva, Liva; Goehler, Alexander; Michalski, Mark H; Geisel, Jaime L; Hooley, Regina J; Horvath, Laura J; Butler, Reni; Forman, Howard P; Philpotts, Liane E

    2016-10-01

    Purpose To evaluate the effect of tomosynthesis in diagnostic mammography on the Breast Imaging Reporting and Data System (BI-RADS) final assessment categories over time. Materials and Methods This retrospective study was approved by the institutional review board. The authors reviewed all diagnostic mammograms obtained during a 12-month interval before (two-dimensional [2D] mammography [June 2, 2010, to June 1, 2011]) and for 3 consecutive years after (tomosynthesis year 1 [2012], tomosynthesis year 2 [2013], and tomosynthesis year 3 [2014]) the implementation of tomosynthesis. The requirement to obtain informed consent was waived. The rates of BI-RADS final assessment categories 1-5 were compared between the 2D and tomosynthesis groups. The positive predictive values after biopsy (PPV3) for BI-RADS category 4 and 5 cases were compared. The mammographic features (masses, architectural distortions, calcifications, focal asymmetries) of lesions categorized as probably benign (BI-RADS category 3) and those for which biopsy was recommended (BI-RADS category 4 or 5) were reviewed. The χ(2) test was used to compare the rates of BI-RADS final assessment categories 1-5 between the two groups, and multivariate logistic regression analysis was performed to compare all diagnostic studies categorized as BI-RADS 3-5. Results There was an increase in the percentage of cases reported as negative or benign (BI-RADS category 1 or 2) with tomosynthesis (58.7% with 2D mammography vs 75.8% with tomosynthesis at year 3, P tomosynthesis at year 3, P tomosynthesis (8.0% with 2D mammography vs 7.8% with tomosynthesis at year 3, P = .2), there was a significant increase in the PPV3 (29.6% vs 50%, respectively; P tomosynthesis use. Conclusion Tomosynthesis in the diagnostic setting resulted in progressive shifts in the BI-RADS final assessment categories over time, with a significant increase in the proportion of studies classified as normal, a continued decrease in the rate of studies

  19. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  20. Synthesis of Zn{sup 2+} doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen Ting [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China); Huang, Wan Zhen; Zhou, Huan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Yin, Hao Yong [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zheng, Yi Fan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Song, Xu Chun, E-mail: songxuchunfj@163.com [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China)

    2015-07-25

    Highlights: • Hierarchical-structured Zn-doped BiOCl were prepared by a facile solvothermal method. • The Zn-doped BiOCl showed higher photocatalytic ability than other BiOCl materials. • The effects of Zn-doping contents on the photocatalytic activity were discussed. • Repetitive tests implied the good stability of the Zn-doped BiOCl photocatalyst. - Abstract: In this study, BiOCl doped with different contents of zinc were successfully prepared via a facile ethylene glycol (EG)-assisted solvothermal process at 160 °C for 12 h. The as-synthesized samples were characterized in details by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), UV–vis diffuse reflectance spectra (UV–vis DRS) and Brunauer Emmet Teller (BET) measurement. The photocatalytic performances were evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The results showed that Zn doping did not change the morphologies and particle sizes of BiOCl. However, it had an obvious effect on the photocurrent and BET surface area of BiOCl and accordingly the photocatalytic performance of BiOCl was greatly improved. The Zn-doped BiOCl with R{sub Zn} = 0.07 showed the highest photocatalytic activities with almost all of the RhB decomposed in 8 min. Moreover, repetitive tests imply the good recyclability and stability of the catalysts. The enhanced photocatalytic activity was largely ascribed to the efficient separation of photogenerated electron–hole pairs and high BET surface area of the catalysts. In addition, a possible mechanism on basis of the experimental results was discussed.