WorldWideScience

Sample records for bi-digital o-ring test

  1. Regulatory concerns for leakage testing of packagings with three O-ring closure seals

    International Nuclear Information System (INIS)

    Oras, J.J.; Towell, R.H.; Wangler, M.E.

    1997-01-01

    The American National Standard for Radioactive Materials--Leakage Tests on Packages for Shipment (ANSI N14.5) provides guidance for leakage rate testing to show that a particular packaging complies with regulatory requirements and also provides guidance in determining appropriate acceptance criteria. Recent radioactive packagings designs have incorporated three O-ring closure seals, the middle O-ring being the containment seal. These designs have the potential for false positive results of leakage rate tests. The volume between the containment O-ring and the inner O-ring is used for the helium gas required for the leakage rate tests to reduce both the amount of helium used and the time required to conduct the tests. A leak detector samples the evacuated volume between the outer O-ring and the containment O-ring. False positive results can be caused in two ways, a large leakage in the containment seal or leakage in the inner seal. This paper will describe the problem together with possible solutions/areas that need to be addressed in a Safety Analysis Report for Packagings before a particular packaging design can be certified for transport

  2. Accidental ingestion of BiTine ring and a note on inefficient ring separation forceps

    Directory of Open Access Journals (Sweden)

    Baghele ON

    2011-05-01

    Full Text Available Om Nemichand Baghele1, Mangala Om Baghele21Department of Periodontology, SMBT Dental College and Hospital, Sangamner, Ahmednagar, Maharashtra, India; 2Private General Dental Practice, Mumbai, IndiaBackground: Accidental ingestion of medium-to-large instruments is relatively uncommon during dental treatment but can be potentially dangerous. A case of BiTine ring ingestion is presented with a note on inefficient ring separation forceps.Case description: A 28-year-old male patient accidentally ingested the BiTine ring (2 cm diameter, 0.5 cm outward projections while it was being applied to a distoproximal cavity in tooth # 19. The ring placement forceps were excessively flexible; bending of the beaks towards the ring combined with a poor no-slippage mechanism led to sudden disengagement of the ring and accelerated movement towards the pharynx. We followed the patient with bulk forming agents and radiographs. Fortunately the ring passed out without any complications.Clinical implications: Checking equipment and methods is as important as taking precautions against any preventable medical emergency. It is the responsibility of the clinician to check, verify and then use any instrument/equipment.Keywords: foreign bodies/radiography, foreign bodies/complications, equipment failure, dental instrument, accidental ingestion

  3. {open_quotes}O{close_quotes} ring sealed process tube, Phase II, test project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E.

    1951-04-09

    The {open_quotes}O{close_quotes} ring seal has been proposed to replace the van stone flange and the bellows thermal expansion assembly currently used on the existing Hanford piles to achieve water and gas seals, respectively. Possible advantages of the {open_quotes}O{close_quotes} ring seal are: (1) simplification of component parts and elimination of van stone corrosion; (2) simplification of maintenance; (3) lower costs of initial erection; (4) increased strength. This test supplements Test Project No. 27 (a preliminary thermal cycling test) in applying the {open_quotes}O{close_quotes} ring seal assembly to actual pile operating conditions.

  4. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  5. Permeability test and fuzzy orthogonal analysis of hydrogenated nitrile O-ring

    Directory of Open Access Journals (Sweden)

    Qin Hu

    2015-03-01

    Full Text Available In the high temperature, high pressure and high corrosive environment of the oil and gas drilling downhole, the weatherability of rubber sealing material has a great influence on the production safety. In order to study the important degree of every key environmental factor in downhole influencing the sealing performance of rubber sealing material, a new device of simulating downhole environment is designed to test the permeability of O-ring. The sample is hydrogenated nitrile O-ring and orthogonal experiment method is used to do nine tests by getting three levels from temperature, pressure and CO2 volume fraction. Test adopts fuzzy orthogonal method to analyze the main effects and the interaction between two factors, taking tensile strength, diameter variety rate and pH value of indicator as evaluation index. The results show that: the environmental factor influencing the sealing performance of hydrogenated nitrile O-ring from high to low by turns is temperature, pressure and CO2 volume fraction, while the interaction between temperature and pressure is the most significant. It provides a new way to study the influence of downhole complex environment on the performance of rubber sealing material. Moreover, the results have important reference value to further study the failure mechanism of rubber sealing ring in many environmental factors and the rational use in engineering.

  6. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  7. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3-BiAlO3 and LaAlO3-BiAlO3

    International Nuclear Information System (INIS)

    Hou, Yudong; Zheng, Mupeng; Si, Meiju; Cui, Lei; Zhu, Mankang; Yan, Hui

    2013-01-01

    In this work, two perovskite-type compounds, K 0.5 Bi 0.5 TiO 3 and LaAlO 3 , have been selected as host material to incorporate with BiAlO 3 using a solid-state reaction route. The phase evolution and dielectric properties for both systems have been investigated in detail. For the K 0.5 Bi 0.5 TiO 3 -BiAlO 3 system, it is interesting to find that when using Bi 2 O 3 , Al 2 O 3 , K 2 CO 3 , and TiO 2 as starting materials, the formed compounds are K 0.5 Bi 0.5 TiO 3 -K 0.5 Bi 4.5 Ti 4 O 15 and Al 2 O 3 only plays a dopant role. There are two distinct dielectric peaks appearing in the patterns of temperature dependence of dielectric constant, corresponding to the phase-transition points of perovskite-type K 0.5 Bi 0.5 TiO 3 and Aurivillius-type K 0.5 Bi 4.5 Ti 4 O 15 , independently. In comparison, using Bi 2 O 3 , Al 2 O 3 , and La 2 O 3 as starting materials, the pure perovskite phase LaAlO 3 -BiAlO 3 can be obtained. Compared to the inherent paraelectric behavior in LaAlO 3 , the diffuse phase-transition phenomena can be observed in the LaAlO 3 -BiAlO 3 binary system, which corresponds well to the Vogel-Fulcher (VF) relationship. Moreover, compared to pure LaAlO 3 , the synthesized LaAlO 3 -BiAlO 3 compound shows enhanced dielectric properties, which are promising in application as gate dielectric materials. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The modulation and reconstruction of a BiO layer of cuprate Bi2212

    International Nuclear Information System (INIS)

    Fan Wei; Zeng, Z

    2011-01-01

    Studies based on ab initio density functional theory show that the modulated structures of BiO surfaces of cuprate Bi2212 superconductors are spontaneously formed and closely related to the reconstructions of BiO surfaces. The reconstructions of BiO layers occur both on the surface and in the bulk, accompanied with the formations of BiO-zigzag chains and Bi 2 O 2 quadrilaterals. The structural modulations of the BiO surface are along the b axis, perpendicular to the BiO-zigzag chains along the a axis. Our calculations provide a unified understanding of the formation of modulating structures in Bi2212. Another interesting result is that electronic structures of BiO surfaces are significantly influenced by the CuO 2 layer beneath because of the structural modulations and reconstructions.

  9. Significance and Application of Digital Breast Tomosynthesis for the BI-RADS Classification of Breast Cancer.

    Science.gov (United States)

    Cai, Si-Qing; Yan, Jian-Xiang; Chen, Qing-Shi; Huang, Mei-Ling; Cai, Dong-Lu

    2015-01-01

    Full-field digital mammography (FFDM) with dense breasts has a high rate of missed diagnosis, and digital breast tomosynthesis (DBT) could reduce organization overlapping and provide more reliable images for BI-RADS classification. This study aims to explore application of COMBO (FFDM+DBT) for effect and significance of BI-RADS classification of breast cancer. In this study, we selected 832 patients who had been treated from May 2013 to November 2013. Classify FFDM and COMBO examination according to BI-RADS separately and compare the differences for glands in the image of the same patient in judgment, mass characteristics display and indirect signs. Employ Paired Wilcoxon rank sum test was used in 79 breast cancer patients to find differences between two examine methods. The results indicated that COMBO pattern is able to observe more details in distribution of glands when estimating content. Paired Wilcoxon rank sum test showed that overall classification level of COMBO is higher significantly compared to FFDM to BI-RADS diagnosis and classification of breast (PBI-RADS classification in breast cancer in clinical.

  10. Estudio de la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3

    Directory of Open Access Journals (Sweden)

    Caballero, A. C.

    2004-08-01

    Full Text Available Ceramic materials based in the ZnO- Bi2O3 system have their principal application as varistors. The binary system ZnO-Bi2O3 is specially relevant to the formation of the microstructure responsable of the varistor behaviour. The study of the different equilibrium phases at high temperatures at the Bi2O3-rich region of the ZnO-Bi2O3 will allow a correct understanding of the microstructural development. Equilibrium phases have been analyzed by XRD, SEM and DTA. Different temperature treatments of samples formulated in the Bi2O3 rich region of the ZnO-Bi2O3 binary system have allowed to determine the phase 19Bi2O3•ZnO as the equilibrium one instead of the 24Bi2O3•ZnO phase.Los materiales cerámicos basados en el sistema binario ZnO-Bi2O3 tienen su principal aplicación en el campo de los varistores. El sistema binario ZnO-Bi2O3 resulta especialmente relevante para la formación de la microestructura funcional de varistores. La determinación de las diferentes fases en equilibrio a alta temperatura en la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3 permitirá interpretar correctamente el desarrollo microestructural. El estudio de las fases en equilibrio se ha llevado a cabo mediante difracción de rayos X, microscopía electrónica de barrido (MEB y análisis térmico diferencial (ATD. Tratamientos a diferentes temperaturas, en la zona rica en Bi2O3 del sistema, han permitido determinar la presencia del compuesto 19Bi2O3•ZnO como fase estable en equilibrio, en lugar del compuesto 24Bi2O3•ZnO.

  11. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  12. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Wen Ting; Zheng, Yi Fan; Yin, Hao Yong; Song, Xu Chun

    2015-01-01

    BiOI/Bi 2 MoO 6 heterostructures with different amounts of BiOI were successfully prepared via a facile deposition method. The obtained BiOI/Bi 2 MoO 6 photocatalysts exhibited much higher visible light (λ > 420 nm) induced photocatalytic activity compared with single Bi 2 MoO 6 and BiOI photocatalysts. 20 % BiOI/Bi 2 MoO 6 nanocomposite exhibited the highest photocatalytic activity with almost all RhB decomposed within 70 min. However, excess BiOI covering on the surface of Bi 2 MoO 6 can inversely reduce the photocatalytic activity. The enhanced photocatalytic activities could be resulted from the function of the novel p–n heterojunction interface between Bi 2 MoO 6 and BiOI, which could separate photoinduced carriers efficiently. Possible mechanisms on the basis of the relative band positions were also discussed

  13. Thermodynamics of Bi2O3-SiO2 system

    Directory of Open Access Journals (Sweden)

    Onderka B.

    2017-01-01

    Full Text Available Thermodynamic properties of the liquid Bi2O3-SiO2 solutions were determined from the results of the electrochemical measurements by use of the solid oxide galvanic cells with YSZ (Yttria-Stabilized-Zirconia electrolyte. Activities of Bi2O3 in the solutions were determined for 0.2, 0.3, 0.4, and 0.5 SiO2 mole fractions in the temperature range 1073-1293 K from measured electromotive force (e.m.f of the solid electrolyte galvanic cell: Bi, Bi2O3-SiO2 | YSZ | air (pO2 = 0.213 bar Additionally, heat capacity data obtained for two solid phases 6Bi2O3•SiO2 and 2Bi2O3•3SiO2 were included into optimization of thermodynamic properties of the system. Optimization procedure was supported by differential thermal analysis (DTA data obtained in this work as well as those accepted from the literature. Using the data obtained in this work, and the information about phase equilibria found in the literature, binary system Bi2O3-SiO2 was assessed with the ThermoCalc software.

  14. FY2017 status report: Model 9975 O-ring fixture long-term leak performance

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    A series of experiments to monitor the aging performance of Viton® GLT and GLT-S O-rings used in the Model 9975 shipping package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups with GLT O-rings were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, a smaller test matrix with fourteen additional tests was initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. Leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The 300 °F GLT O-ring fixtures failed after 2.8 to 5.7 years at temperature. The remaining GLT O-ring fixtures aging at 300 ºF were retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 9 to 10.5 years, or in GLT O-ring fixtures aging at 270 ºF for 5.7 years. These aging temperatures bound O-ring temperatures anticipated during normal storage in K-Area Complex (KAC). Leak test failures have been experienced in all of the GLT-S O-ring fixtures aging at 300 ºF and above. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 and 250 ºF for 6.9 to 7.5 years. Data from the O-ring fixtures are generally consistent with results from compression stress relaxation testing, and provide confidence in the predictive models based on those results

  15. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2017-04-01

    Full Text Available The photocatalytic activity of Bi2O3 and Ag2O-Bi2O3 was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi2O3 was synthesized using chemical precipitation method. Structural analysis revealed that Bi2O3 contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi2O3 particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag2O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag2O-Bi2O3 nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight. Copyright © 2017 BCREC GROUP. All rights reserved Received: 15th August 2016; Revised: 20th December 2016; Accepted: 21st December 2016 How to Cite: Hosseini, S.A., Saeedi, R. (2017. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 96-105 (doi:10.9767/bcrec.12.1.623.96-105 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.623.96-105

  16. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  18. Contact interaction of the Bi12GeO20, Bi12SiO20, and Bi4Ge3O12 melts with noble metals

    Science.gov (United States)

    Denisov, V. M.; Podkopaev, O. I.; Denisova, L. T.; Kuchumova, O. V.; Istomin, S. A.; Pastukhov, E. A.

    2014-02-01

    The sessile drop method is used to study the contact interaction of Ag, Au, Pd, Pt, and Ir with the Bi2O3-GeO2 and Bi2O3-SiO2 melts. These melts spread over Ag and Pd and, in some cases, over Au and Pt at a rather high speed and form equilibrium contact angles on Ir.

  19. Thermodynamic study of the rich-Bi2O3 region of the Bi2O3-ZnO system

    Directory of Open Access Journals (Sweden)

    de la Rubia, M. A.

    2006-06-01

    Full Text Available Precise knowledge of the Bi2O3-ZnO system is fundamental to control the functional microstructure of ZnO-based varistors. Also the potential applications of materials based on ZnO and Bi2O3 as dielectric materials in the high frequency range have renewed the interest in this binary system. The aim of the present work is to carry out a thermodynamic analysis of the Bi2O3-ZnO phase diagram, taking into account the existing experimental information. Thermodynamic calculation has been performed according CALPHAD methodology (CALculation of PHAse Diagrams, using the software Thermo-Calc.El conocimiento preciso del sistema Bi2O3-ZnO es una herramienta básica para conseguir el control de la microestructura de los varistores basados en ZnO. Recientemente otros materiales basados en óxidos de cinc y bismuto han mostrado un gran potencial para su uso en aplicaciones como dieléctricos a frecuencias altas, renovando el interés por dicho sistema binario. El objetivo del presente trabajo es realizar una evaluación termodinámica del diagrama de fases consistente para el sistema Bi2O3-ZnO teniendo en cuenta la información experimental existente del mismo. La evaluación termodinámica del sistema se ha llevado a cabo mediante la metodología CALPHAD (CALculation of PHAse Diagrams, empleando el software Thermo- Calc.

  20. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  1. Development of digital shade guides for color assessment using a digital camera with ring flashes.

    Science.gov (United States)

    Tung, Oi-Hong; Lai, Yu-Lin; Ho, Yi-Ching; Chou, I-Chiang; Lee, Shyh-Yuan

    2011-02-01

    Digital photographs taken with cameras and ring flashes are commonly used for dental documentation. We hypothesized that different illuminants and camera's white balance setups shall influence color rendering of digital images and affect the effectiveness of color matching using digital images. Fifteen ceramic disks of different shades were fabricated and photographed with a digital camera in both automatic white balance (AWB) and custom white balance (CWB) under either light-emitting diode (LED) or electronic ring flash. The Commission Internationale d'Éclairage L*a*b* parameters of the captured images were derived from Photoshop software and served as digital shade guides. We found significantly high correlation coefficients (r² > 0.96) between the respective spectrophotometer standards and those shade guides generated in CWB setups. Moreover, the accuracy of color matching of another set of ceramic disks using digital shade guides, which was verified by ten operators, improved from 67% in AWB to 93% in CWB under LED illuminants. Probably, because of the inconsistent performance of the flashlight and specular reflection, the digital images captured under electronic ring flash in both white balance setups revealed less reliable and relative low-matching ability. In conclusion, the reliability of color matching with digital images is much influenced by the illuminants and camera's white balance setups, while digital shade guides derived under LED illuminants with CWB demonstrate applicable potential in the fields of color assessments.

  2. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  3. Fifth Interim Status Report: Model 9975 PCV O-Ring Fixture Long-Term Leak Performance

    International Nuclear Information System (INIS)

    Daugherty, W.; Hoffman, E.

    2010-01-01

    A series of experiments to monitor the aging performance of Viton reg. GLT O-rings used in the Model 9975 package has been ongoing for six years at the Savannah River National Laboratory. Sixty-seven mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested at nominal six month intervals to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 36 GLT O-ring fixtures at 200--350 F. Room temperature leak test failures have been experienced in 5 of the GLT O-ring fixtures aging at 300 and 350 F, and in all 3 of the GLT O-ring fixtures aging at higher temperatures. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 30--48 months, which is still bounding to O-ring temperatures during storage in KAMS. High temperature aging continues for 6 GLT-S O-ring fixtures at 200--300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 or 300 F for 19 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51--95%. This is significantly greater than seen to date for packages inspected during KAMS field surveillance (23% average). For GLT O-rings, service life based on the room temperature leak rate criterion is comparable to that predicted by compression stress relaxation (CSR) data at higher temperatures (350--400 F). While there are no comparable failure data yet at aging temperatures below 300 F, extrapolations of the data for GLT O-rings suggests that CSR model predictions provide a conservative prediction of service

  4. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  5. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  6. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  7. Effect of oxidant on resputtering of Bi from Bi--Sr--Ca--Cu--O films

    International Nuclear Information System (INIS)

    Grace, J.M.; McDonald, D.B.; Reiten, M.T.; Olson, J.; Kampwirth, R.T.; Gray, K.E.

    1992-01-01

    The type and partial pressure of oxidant mixed with argon can affect the selective sputtering of Bi in composite-target, magnetron-sputtered Bi--Sr--Ca--Cu--O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O + 2 , which interacts with the target to produce energetic O - . In contrast, ozone may form lower-energy O - by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y--Ba--Cu--O by others are comparable. Bi in Bi--Sr--Ca--Cu--O behaves as Ba in Y--Ba--Cu--O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi--Sr--Ca--Cu--O is similar to what is observed for Cu in Y--Ba--Cu--O

  8. modified BiFeO3–BaTiO3

    Indian Academy of Sciences (India)

    based perovskite structures lead- free BiFeO3–BaTiO3 solid solutions are popularly studied due to the high Curie temperature (TC). It was reported that the BiFeO3–BaTiO3 system possessed high piezoelectric. ∗. Author for correspondence ...

  9. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  10. Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Zhou Changrong; Liu Xinyu; Li Weizhou

    2008-01-01

    The (0.82 - x)Bi 0.5 Na 0.5 TiO 3 -0.18Bi 0.5 K 0.5 TiO 3 -xBiFeO 3 (x = 0-0.07) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of BiFeO 3 addition on microstructure and electrical properties of the ceramics was investigated. The specimens with x ≤ 0.05 maintained a rhombohedral-tetragonal phase coexistence and changed into a rhombohedral phase when x > 0.05 in crystal structure. The addition of BiFeO 3 caused a promoted grain growth. All the specimens reveal a low-frequency dielectric dispersion in the frequency range of 40-1 MHz. The piezoelectric constant d 33 and the electromechanical coupling factor k p show an obvious improvement by the addition of small amount of BiFeO 3 , which shows optimum values of d 33 = 170 pC/N and k p = 0.366 at x = 0.03. Contrary to the enhancement of piezoelectric properties, Q m decreases with increasing BiFeO 3 content. The mechanisms of intrinsic and extrinsic contributions to the dielectric and piezoelectric responses have been proposed. Intrinsic contributions are from the relative ion/cation shift that preserves the ferroelectric crystal structure. The remaining extrinsic contributions are from the domain-wall motion and point defects

  11. Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    Directory of Open Access Journals (Sweden)

    Craig A. Scurti

    2014-08-01

    Full Text Available We present an electron diffraction study of three sillenites, Bi12SiO20, Bi25FeO39, and Bi25InO39 synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi25FeO39 and Bi25InO39 show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi3+, random and ordered oxygen-vacancies, and a frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.

  12. Synthesis, crystal structure, and physical properties of the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Scott; Yuan, Fang [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Kosuda, Kosuke; Kolodiazhnyi, Taras [Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada)

    2016-01-15

    The second and third known rare-earth bismuthide oxides, Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, have been discovered via high temperature reactions at 1300 °C. Like its Gd–Sb–O counterparts, the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases crystallize in the monoclinic C2/m space group, with the latter containing disordered Bi atoms along the b direction of the unit cell. Unlike the RE{sub 8}Sb{sub 3}O{sub 8} series, the formation of the Gd{sub 3}BiO{sub 3} phase does not necessarily precede the formation of Gd{sub 8}Bi{sub 3}O{sub 8}, which is likely due to the difficulty of accommodating bismuth in the RE–O framework due to its larger size. Physical property measurements performed on a pure Gd{sub 8}Bi{sub 3}O{sub 8} sample reveal semiconducting behavior. Although electronic structure calculations predict metallic behavior due to an unbalanced electron count, the semiconducting behavior originates from the Anderson localization of the Bi p states near the Fermi level as a result of atomic disorder. - Graphical abstract: Reaction of GdBi and Gd{sub 2}O{sub 3} at high temperatures yields Gd–Bi–O phases. - Highlights: • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, the second and third rare-earth bismuthide oxides, have been discovered. • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} are isostructural with RE{sub 3}SbO{sub 3} and RE{sub 8}Sb{sub 3}O{sub 8}. • Gd{sub 8}Bi{sub 3}O{sub 8} displays semiconducting behavior despite an unbalanced electron count. • Anderson localization of Bi p states results in semiconducting behavior in Gd{sub 8}Bi{sub 3}O{sub 8}.

  13. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    OpenAIRE

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-01-01

    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respe...

  14. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  15. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    Science.gov (United States)

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-02-01

    A new BiS2-based superconductor, Bi2(O,F)S2, was discovered. It is a layered compound consisting of alternately stacked structure of rock-salt-type BiS2 superconducting layers and fluorite-type Bi(O,F) blocking layers. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2. This is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis lengths increased and decreased, respectively, and Tc increased to 5.1 K.

  16. Helium and deuterium permeability in O-rings

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1976-01-01

    To obtain more information on gas permeation through elastomeric O-rings, studies were performed on Parker Seal Company O-rings, Nos. 2-113, 2-006, 3-904, and 3-906, all made of a nitrile rubber. Also included in the tests was a valve packing (Autoclave Engineers) encased in AE Valve 20A-2142. Permeation experiments were run usually in duplicate to 82.7 MPa (12,000 psi) with helium and deuterium at room temperature. The data are extrapolated to give values for tritium

  17. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3)

    Science.gov (United States)

    Meng, Chang-Yu; Wei, Ming-Fang; Geng, Lei; Hu, Pei-Qing; Yu, Meng-Xia; Cheng, Wen-Dan

    2016-07-01

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV-vis-NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P21/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi3O2)(SeO3)2](NO3) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi3O2)(SeO3)2](NO3) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi3O2)(SeO3)2] 3∞ with NO3- anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO3)](NO3) features 2D bismuth(III) tellurite [Bi(TeO3)2]2∞ layers separated by NO3- anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors.

  18. Solid state compatibility in the ZnO-rich region of ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems

    Directory of Open Access Journals (Sweden)

    Jardiel, T.

    2010-04-01

    Full Text Available The obtaining of ZnO-Bi2O3-Sb2O3 (ZBS based varistor thick films with high non-linear properties is constrained by the bismuth loss by vaporization that takes place during the sintering step of these ceramics, a process which is yet more critical in the thick film geometry due to its inherent high are/volume ratio. This volatilization can be controlled to a certain extent by modifying the proportions of the Bi and/or Sb precursors. Obviously this requires a clear knowledge of the different solid state compatibilities in the mentioned ZBS system. In this sense a detailed study of the thermal evolution of the ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems in the ZnO-rich region of interest for varistors, is presented in this contribution. A different behaviour is observed when using Sb2O3 or Sb2O5 as starting precursor, which should be attributed to the oxidation process experimented by Sb2O3 compound during the heating. On the other hand the use of high amounts of Bi in the starting formulation leads to the formation of a liquid phase at lower temperatures, which would allow the use of lower sintering temperatures.La obtención de varistors en lámina gruesa basados en ZnO-Bi2O3-Sb2O3 (ZBS y con propiedades altamente no-lineales está limitada por la perdida de bismuto por volatilización durante la sinterización de estos cerámicos, un proceso que es todavía más crítico en la geometría de lámina gruesa debido a su elevada relación área/volumen inherente. Dicha volatilización puede ser no obstante controlada hasta cierta extensión modificando las proporciones de los precursores de Bi y/o Sb. Obviamente ello conlleva un amplio conocimiento de las diferentes compatibilidades en estado sólido en el mencionado sistema ZBS. En este sentido, en la presente contribución se presenta un estudio detallado de la evolución térmica de los sistemas ZnO-Bi2O3-Sb2O3 y ZnO-Bi2O3-Sb2O5 en la región rica en ZnO de interés para varistores. Como

  19. The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films

    Science.gov (United States)

    Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.

    1991-09-01

    The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.

  20. In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructured nanoparticles with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Yin, Xingtian; He, Zuoli; Liu, Xiaobin; Yang, Yawei; Shao, Jinyou [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-11-30

    Highlights: • Visible-light photocatalytic activities of the nanostructured In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructures were studied. • Effect of In{sub 2}O{sub 3} content on the photocatalytic activity of the In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructure was evaluated. • 0.1In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} heterostructure photocatalyst shows a superior photocatalytic activity. • Based on Mott-Schottky analysis and active species detection, a mechanism for the separation of photogenerated carriers is proposed. • The effective separation process of the photogenerated electron-hole pairs was testified by photocurrent test. - Abstract: In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7} composite photocatalysts with various contents of cubic In{sub 2}O{sub 3} nanoparticles were fabricated by using impregnation method. A thriving modification of Bi{sub 2}Sn{sub 2}O{sub 7} by an introduction of In{sub 2}O{sub 3} was confirmed by using X-ray diffraction, UV–vis diffuse reflectance spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The samples composed of hybrids of In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} exhibited a much higher photocatalytic activity for the degradation of Rhodamine B under visible light, as compared with pure In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} nanoparticles. Optimized composition of the composite photocatalysts was 0.1In{sub 2}O{sub 3}/Bi{sub 2}Sn{sub 2}O{sub 7}, which shows a rate constant higher than those of pure In{sub 2}O{sub 3} and Bi{sub 2}Sn{sub 2}O{sub 7} by 4.06 and 3.21 times, respectively. Based on Mott-Schottky analysis and active species detection, the photoexcited electrons in the conduction band of In{sub 2}O{sub 3} and the holes in the valence band of Bi{sub 2}Sn{sub 2}O{sub 7} participated in reduction and oxidation reactions, respectively. Hence, ·OH, ·O{sub 2}{sup −} and h

  1. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Preparation of Nd-doped BiFeO{sub 3} films and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Meng [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Tan Guoqiang, E-mail: tan3114@163.com [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Xue Xu; Xia Ao; Ren Huijun [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China)

    2012-09-01

    The Nd-doped BiFeO{sub 3} thin films were prepared on SnO{sub 2}(FTO) substrates spin-coated by the sol-gel method using Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O, Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O and Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O as raw materials. The microstructure and electric properties of the BiFeO{sub 3} thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO{sub 3} films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} films gives rise to the largest Pr of 64 {mu}C/cm{sup 2}. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} thin film at 10 kHz are 190 and 0.017 respectively.

  3. Fabrication of heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalyst and efficient photodegradation of organic contaminants under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Meng; Li, Shuangli; Yan, Tao; Ji, Pengge; Zhao, Xia; Yuan, Kun; Wei, Dong [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2017-07-05

    Highlights: • The product shows efficient activity in photodegradation of RhB, BPA, and phenol. • The BBOC-10 heterojunction exhibits the best activity under visible light. • Suppressed recombination of photo-generated carriers lead to the activity enhancement. - Abstract: Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts were fabricated by a facile one-pot hydrothermal method, in which melem served as the sacrificial reagent to supply carbonate anions. The as-synthesized Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction catalysts were characterized by X-ray diffraction, UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope. The XRD patterns of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} catalysts showed the distinctive peaks of Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}. The SEM and TEM results showed that the pure Bi{sub 2}O{sub 2}CO{sub 3} possessed large plate morphology, while Bi{sub 2}O{sub 4} were composed of various nanorods and particles. As for Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction, it was obviously observed that Bi{sub 2}O{sub 4} nanorods and particles were grown on the surfaces of Bi{sub 2}O{sub 2}CO{sub 3} plates. The visible light driven photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} heterojunction photocatalyst was evaluated by decomposing dyes, phenol, and bisphenol A in water. Compared with Bi{sub 2}O{sub 2}CO{sub 3} and Bi{sub 2}O{sub 4}, the Bi{sub 2}O{sub 2}CO{sub 3}/Bi{sub 2}O{sub 4} photocatalysts have exhibited remarkable enhanced activity under visible light. The excellent activity can be mainly attributed to the enhanced separation efficiency of photo-generated carriers. Controlled experiments using different radical scavengers proved that ·O{sub 2}{sup −} and h{sup +} played the main role in decomposing organic pollutants. The results of this work would

  4. Structural variations and dielectric properties of (Bi1-xL ax ) 2Si O5 (0 ≤x ≤0.1 ): Polycrystallines synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses

    Science.gov (United States)

    Taniguchi, Hiroki; Tatewaki, Shingo; Yasui, Shintaro; Fujii, Yasuhiro; Yamaura, Jun-ichi; Terasaki, Ichiro

    2018-04-01

    This paper focuses on effects of isovalent La substitution on the crystal structure and dielectric properties of ferroelectric B i2Si O5 . Polycrystalline samples of (Bi1-xL ax ) 2Si O5 are synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses with a composition range of 0 ≤x ≤0.1 . The crystal structure changes from monoclinic to tetragonal with increasing La-substitution rate x at room temperature. This structural variation stems from the change in orientation of Si O4 tetrahedra that form one-dimensional chains when they are in the ordered configuration, thus suggesting that lone-pair electrons play an important role in sustaining one-dimensional chains of Si O4 tetrahedra. Synchronizing with the disordering of Si O4 chains, ferroelectric phase transition temperature of (Bi1-xL ax ) 2Si O5 sharply decreases as x increases, and ferroelectricity finally vanishes at around x =0.03 . The present results demonstrate that lone-pair electrons of Bi play an important role in the ferroelectricity of B i2Si O5 through propping the ordered structure of one-dimensional Si O4 chains with stereochemical activity. Furthermore, an additional phase transition has been first discovered in the low-temperature region of (Bi1-xL ax ) 2Si O5 with x ≤0.01 , where the ordered one-dimensional Si O4 chains remain.

  5. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  6. Eleventh interim status report: Model 9975 O-Ring fixture long-term leak performance

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-01

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperature. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF.

  7. BiCaSrCuO superconductors

    International Nuclear Information System (INIS)

    Polvi, V.M.; Niemi, K.J.

    1989-01-01

    BiCaSrCuO and BiPbCaSrCuO powders have been synthesized. Different research methods (SEM,EDS,XRF,SRD,DTA) have been used to characterize the bulk specimen and wires. Resistance and current density measured as a function of temperature are reported. The ceramic products contained several phases. Lead containing specimen gave the best results and the synthesis was easily reproducible

  8. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  9. Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber heterojunction film with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Zhang, Tianxi [School of Physics, Northwest University, Xi’an 710069 (China); Pan, Chao; Pu, Chenchen; Hu, Yang [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun [School of Physics, Northwest University, Xi’an 710069 (China); Liu, Enzhou, E-mail: liuenzhou@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China)

    2017-01-01

    Highlights: • Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber film was synthesized. • TiO{sub 2} nanofiber film exhibits excellent visible light scattering property. • The scattering light from TiO{sub 2} overlaps with the absorption light of Bi{sub 2}MoO{sub 6}. • Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts show higher photocatalytic activity. - Abstract: TiO{sub 2} nanofiber film (TiO{sub 2} NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi{sub 2}MoO{sub 6} was grown on the surface of TiO{sub 2} nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO{sub 2} films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi{sub 2}MoO{sub 6}, which can enhance the utility of incident light. The prepared Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO{sub 2} nanofiber under visible light irradiation (λ > 420 nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

  10. Angle-resolved-photoemission study of Bi2Sr2CaCu2O8+δ: Metallicity of the Bi-O plane

    International Nuclear Information System (INIS)

    Wells, B.O.; Shen, Z.; Dessau, D.S.; Spicer, W.E.; Olson, C.G.; Mitzi, D.B.; Kapitulnik, A.; List, R.S.; Arko, A.

    1990-01-01

    We have performed high-resolution angle-resolved-photoemission experiments on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with different annealing histories. By depositing a small amount of Au on the surface, we were able to distinguish electronic states associated with the Bi-O surface layer. We found that the Bi-O atomic surface layer is metallic and superconducting for samples that were high-temperature annealed in oxygen but not for as-grown samples. The Cu-O plane is found to be superconducting in all samples

  11. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Long-Term Leak Tightness Of O-Ring Seals In The 9975 Shipping Package

    International Nuclear Information System (INIS)

    Hoffman, E.; Skidmore, E.; Daugherty, W.

    2010-01-01

    O-ring seals in the 9975 shipping package containment vessels are fabricated from a Viton GLT or GLT-S compound. Long-term testing of these O-rings has been performed to support service life predictions for packages used for long-term storage. Since the only criterion for O-ring performance is to maintain a leak-tight seal, leak testing is the primary indicator of service life. Fixtures have been aging at elevated temperatures to provide data for service life predictions. Limited leak test failures have been observed at the higher temperatures. This provides the opportunity for comparison to trends based on other O-ring properties, such as compression stress relaxation. Initial data suggest that the CSR data have some predictive value for a leak-tight service life, but other factors can complicate efforts to draw definitive conclusions.

  13. Optical properties of a new Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor with fluorite-type δ-Bi{sub 2}O{sub 3} structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Huang, Pengjie [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China); Zheng, Min, E-mail: zhengmin@suda.edu.cn [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China)

    2017-03-31

    Highlights: • Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor nanoparticles were synthesized by sol-gel method. • Bi{sub 38}Mo{sub 7}O{sub 78} keeps the structural characteristics of the patrimonial δ-Bi{sub 2}O{sub 3} structure. • Bi{sub 38}Mo{sub 7}O{sub 78} show an efficient optical absorption in visible light. • Photocatalytic property was markedly enhanced for Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles. • The mechanism of this photocatalysis system was proposed. - Abstract: Bi{sup 3+}-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi{sup 3+} ions. In this work, a new semiconductor of bismuth molybdate Bi{sub 38}Mo{sub 7}O{sub 78} (19Bi{sub 2}O{sub 3}·7MoO{sub 3}) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi{sub 38}Mo{sub 7}O{sub 78} can be regarded to be derived from the cubic δ-phase Bi{sub 2}O{sub 3} structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi{sub 38}Mo{sub 7}O{sub 78} (2.38 eV) was greatly narrowed in comparison with Bi{sub 2}O{sub 3} (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  14. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  15. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    Directory of Open Access Journals (Sweden)

    Yunhui Si

    2017-10-01

    Full Text Available In this study, MOF/BiFeO3 composite (MOF, metal-organic framework has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts.

  16. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories.

    Science.gov (United States)

    Tagliafico, A S; Tagliafico, G; Cavagnetto, F; Calabrese, M; Houssami, N

    2013-11-01

    To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging-Reporting and Data System (BI-RADS) categories, using automated software. Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity(©), developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (pBI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, pBI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories.

  17. Thermal analysis and prediction of phase equilibria in the TiO2-Bi2O3 system

    International Nuclear Information System (INIS)

    Lopez-Martinez, Jaqueline; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Zeifert, Beatriz; Gomez-Yanez, Carlos; Martinez-Sanchez, Roberto

    2011-01-01

    A thermodynamic study on the TiO 2 -Bi 2 O 3 system was carried out using differential thermal analysis (DTA) and X-Ray diffraction (XRD) techniques covering the composition range from 65 to 90 mol% Bi 2 O 3 . From the XRD results the only two intermediate compounds in the Bi 2 O 3 rich region were Bi 4 Ti 3 O 12 and Bi 12 TiO 20 . The Bi 4 Ti 3 O 12 phase presents the well known plate-like morphology. The experimentally determined phase transition temperatures with DTA technique were compared with thermodynamic calculated results and good agreement was obtained. The DTA results also showed that the limit of the peritectic reaction between liquid and Bi 4 Ti 3 O 12 occurs approximately at 90 mol% Bi 2 O 3 . The phase diagram of the TiO 2 -Bi 2 O 3 system was calculated using a quasichemical model for the liquid phase. The thermodynamic properties of the intermediate compounds were estimated from the data of TiO 2 and Bi 2 O 3 pure solids. In this manner, data for this binary system have been analysed and represented with a small adjustable parameter for the liquid phase.

  18. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  19. Anharmonic phonons and magnons in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill

    2012-01-01

    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.

  20. Helium/solid powder O-ring leakage correlation experiments using a radiotracer

    International Nuclear Information System (INIS)

    Bild, R.W.; Leisher, W.B.; Weissman, S.H.; Seya, M.

    1984-01-01

    UO 2 definitely leaked past the O-ring in three of the tests confirming the major results of the previous work. Continuous leakage at these levels may require additional precautions under present regulatory policies. The mechanism and the time and particle size dependence for the leakage are not known, but there is some indication leakage is more likely at low temperatures. It is possible leakage is due to movement of the O-ring during temperature or pressure cycling at the beginning or end of a test. The radiotracer method involves less labor and is much less susceptible to contamination than the previous method. Future work will investigate leakage past lubricated O-rings and time dependence of leakage. 1 reference, 1 table

  1. Exchange coupling in permalloy/BiFeO3 heterostructures

    Science.gov (United States)

    Heron, John; Wang, Chen; Carlton, David; Nowakowski, Mark; Gajek, Martin; Awschalom, David; Bokor, Jeff; Ralph, Dan; Ramesh, R.

    2010-03-01

    BiFeO3 is a ferroelectric and antiferromagnetic multiferroic with the ferroelectric and antiferromagnetic order parameters coupled at room temperature. This coupling results in the reorientation of the ferroelectric and magnetic domains as applied voltages switch the electric polarization. Previous studies using ferromagnet/BiFeO3 heterostructures have shown that the anisotropy of the ferromagnetic layer can be tuned by the ferroelectric domain structure of the BiFeO3 film [1, 2]. The physical mechanism driving this exchange bias with BiFeO3 is still under investigation. We use patterned permalloy structures, with varying aspect ratios, on BiFeO3 thin films to investigate the physics of this interaction. The results of our studies using MFM, PEEM, and MOKE to understand this mechanism as a means to electric field control of magnetic structures will be presented. [4pt] [1] H. Bea et al., Physical Review Letters 100, 017204 (2008).[0pt] [2] L.W. Martin et al., Nanoletters 8, 2050 (2008).

  2. Multiple-Ring Digital Communication Network

    Science.gov (United States)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  3. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  4. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  5. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    Energy Technology Data Exchange (ETDEWEB)

    Scurti, Craig A.; Arenas, D. J. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Auvray, Nicolas [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Laboratoire de Nanotechnologie et d’Instrumentation Optique - UMR CNRS 6279, Université Technologie de Troyes, 12 rue Marie Curie, Troyes 10010 (France); Lufaso, Michael W. [Department of Chemistry, University of North Florida, Jacksonville, FL 32224 (United States); Takeda, Seiji [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kohno, Hideo [School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 Japan (Japan)

    2014-08-15

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and a frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.

  6. Comportamiento eléctrico del compuesto Bi5FeTi3O15 y de sus soluciones sólidas con CaBi4Ti4O15

    Directory of Open Access Journals (Sweden)

    Durán, P.

    1999-12-01

    Full Text Available Bi5FeTi3O15 (BiFT compound has been prepared by solid state reaction between the corresponding oxides. Its crystalline structure has been established by X ray Diffraction, (XRD. Ceramic samples with apparent density > 95% Dth have been sintered. On these samples, electrical conductivity and Curie temperature have been measured. Solid solutions of Bi5FeTi3O15 (BiFT and CaBi4Ti4O15 (CBiT have been prepared. On poled samples of these solid solutions, piezoelectric parameters have been established. The BiFT compound shows electrical conductivity values very similar to those of the Bi4Ti3O12 (BiT compound. The electrical conductivity of solid solutions is a function of CBiT amount. A possible electrical conductivity mechanism which is different of that accepted for the BiT compound is discussed.Se ha preparado Bi5FeTi3O15 (BiFT por reacción en estado sólido de los óxidos correspondientes. Se ha determinado su estructura cristalina por Difracción de Rayos X (DRX. Se han preparado compactos sinterizados con densidades superiores al 95%. Se ha determinado su temperatura de Curie, y la conductividad eléctrica entre 150 y 850ºC. Se han preparado soluciones sólidas de Bi5FeTi3O15 con CaBi4Ti4O15, (CBiT y se han determinado los mismos parámetros de temperatura de Curie y de conductividad para ellas. En las soluciones sólidas se han determinado los parámetros Piezoeléctricos de muestras polarizadas Debe destacarse que el compuesto Bi5FeTi3O15 presenta unos valores de conducción eléctrica más próximos a los correspondientes al Bi4Ti3O12 (BiT que a los de los compuestos MeBi4Ti4O15. La conductividad eléctrica de las soluciones sólidas varía con el contenido de CBiT. Se discute la posible existencia de un modelo de conducción eléctrica que difiere del aceptado hasta el momento para el BiT, basado en los defectos localizados en las capas Bi2O2 2-.

  7. Bi{sub 2}O{sub 3} cocatalyst improving photocatalytic hydrogen evolution performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Difa; Hai, Yang; Zhang, Xiangchao; Zhang, Shiying; He, Rongan, E-mail: hslra@tom.com

    2017-04-01

    Highlights: • Bi-Bi{sub 2}O{sub 3}-anatase-rutile TiO{sub 2} multijunction photocatalyst was prepared. • Bi{sub 2}O{sub 3} quantum dots with size of 2–3 nm were uniformly distributed. • Improved H{sub 2} evolution was noticed in glycerol-water mixture. • Optimal amount of Bi{sub 2}O{sub 3} was found to be 0.89 mol%. - Abstract: Photocatalytic hydrogen production using water splitting is of potential importance from the viewpoint of renewable energy development. Herein, Bi{sub 2}O{sub 3}-TiO{sub 2} composite photocatalysts presented as Bi-Bi{sub 2}O{sub 3}-anatase-rutile TiO{sub 2} multijunction were first fabricated by a simple impregnation-calcination method using Bi{sub 2}O{sub 3} as H{sub 2}-production cocatalysts. The obtained multijunction samples exhibit an obvious enhancement in photocatalytic H{sub 2} evolution activity in the presence of glycerol. The effect of Bi{sub 2}O{sub 3} amount on H{sub 2}-evolution activity of TiO{sub 2} was investigated and the optimal Bi{sub 2}O{sub 3} content was found to be 0.89 mol%, achieving a H{sub 2}-production rate of 920 μmol h{sup −1}, exceeding that of pure TiO{sub 2} by more than 73 times. The enhanced mechanism of photocatalytic H{sub 2}-evolution activity is proposed. This study will provide new insight into the design and fabrication of TiO{sub 2}-based hydrogen-production photocatalysts using low-cost Bi{sub 2}O{sub 3} as cocatalyst.

  8. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    Science.gov (United States)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  9. Controlled hydrothermal synthesis of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites exhibiting visible-light photocatalytic degradation of crystal violet

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu-Rou; Lin, Ho-Pan [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Chung, Wen-Hsin [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Dai, Yong-Ming [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Lin, Wan-Yu [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Chen, Chiing-Chang, E-mail: ccchen@ms3.ntcu.edu.tw [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China)

    2015-02-11

    Highlights: • This is the first report on a series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} heterojunctions. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composition was controlled by adjusting the growth parameters. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO{sub 2}. • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O{sub 2}·{sup −} played a major role, and OH· or h{sup +} played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism.

  10. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties

    International Nuclear Information System (INIS)

    Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P.

    2011-01-01

    Research highlights: → We change Bi 2 O 3 , PbO and BaO concentration in silicate glasses. → The densities of Bi 2 O 3 glasses more than PbO glasses and BaO glasses. → The Um of Bi 2 O 3 glasses and PbO glasses are comparable and more than BaO glasses. → This suggests that Bi 2 O 3 can replace PbO in radiation shielding glasses. - Abstract: The radiation shielding and optical properties of xBi 2 O 3 :(100-x)SiO 2 , xPbO:(100-x)SiO 2 and xBaO:(100-x)SiO 2 glass systems (where 30 ≤ x ≤ 70 is the composition by weight%) have been investigated. Total mass attenuation coefficients (μ m ) of glasses at 662 keV were improved by increasing their Bi 2 O 3 and PbO content, which raised the photoelectric absorption in glass matrices. Raising the BaO content to the same fraction range, however, brought no significant change to μ m . These results indicate that photon is strongly attenuated in Bi 2 O 3 and PbO containing glasses, and but not in BaO containing glass. The results from the optical absorption spectra show an edge that was not sharply defined; clearly indicating the amorphous nature of glass samples. It is observed that the cutoff wavelength for Bi 2 O 3 containing glass was longer than PbO and BaO containing glasses.

  11. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  12. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi{sub 2}MoO{sub 6} with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China); Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Dai, Ke [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China)

    2017-01-01

    Highlights: • A visible light heterojunction photocatalyst of BiOBr-Bi{sub 2}MoO{sub 6} was simply synthesized. • Carriers transferred efficiently in sandwiched layers causing an enhance activity. • A possible direct Z-scheme charge transfer mechanism of BiOBr-Bi2MoO6 is proposed. - Abstract: In this study, a direct Z-scheme heterojunction BiOBr-Bi{sub 2}MoO{sub 6} with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi{sub 2}MoO{sub 6} through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi{sub 2}MoO{sub 6} occurred mainly on the (001) facets of BiOBr and (001) facets of Bi{sub 2}MoO{sub 6}. The photocatalytic activity of the BiOBr-Bi{sub 2}MoO{sub 6} was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi{sub 2}MoO{sub 6} could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  13. Structure and crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)]. E-mail: zjbcy@126.com; Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-05-15

    The experimental IR (infrared spectra) and differential scanning calorimetry (DSC) curves of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses, containing 30-60 mol% Bi{sub 2}O{sub 3}, have been investigated in the article. The composition dependence of IR absorption suggests that addition of Bi{sub 2}O{sub 3} results in a change in the short-range order structure of the borate matrix. The increase of Bi{sub 2}O{sub 3} content causes a progressive conversion of [BO{sub 3}] to [BO{sub 4}] units. Bi{sub 2}O{sub 3}, in the form of [BiO{sub 6}] octahedral units, plays the role of glass former. The crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses were described by thermal stability indexes (k {sub gl}, {delta}T), activation energy (E) for crystallization and numerical factors(n, m) depending on the nucleation process and growth morphology, which were calculated by Satava method and the modified Ozawa-Chen method. When Bi{sub 2}O{sub 3} {<=} 45 mol%, the increase of Bi{sub 2}O{sub 3} tends to improve the thermal stabilities of the glasses. In this case, k {sub gl} may be more suitable for estimating the glass thermal stability in above composition range than {delta}T. A further increase of Bi{sub 2}O{sub 3} content will increase the crystallization trends of investigated glasses. Two possible kinds of growth mechanisms were involved in Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses: one-dimensional growth and two-dimensional growth. Moreover, structures of crystallized glasses were observed by X-ray diffraction (XRD). BiBO{sub 3} crystal with special non-linear optical properties can be obtained when Bi{sub 2}O{sub 3} {>=} 50 mol%.

  14. Remarkable catalytic activity of Bi{sub 2}O{sub 3}/TiO{sub 2} nanocomposites prepared by hydrothermal method for the degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Malligavathy, M. [Manonmaniam Sundaranar University, Department of Physics (India); Iyyapushpam, S. [Thanthai Hans Roever Arts and Science College, PG and Research Department of Physics (India); Nishanthi, S. T. [Central Electro Chemical Research Institute, Electrochemical Materials Division (India); Pathinettam Padiyan, D., E-mail: dppadiyan@msuniv.ac.in [Manonmaniam Sundaranar University, Department of Physics (India)

    2017-04-15

    Visible light Bi{sub 2}O{sub 3}/TiO{sub 2} nanocomposites are successfully prepared with different dosages of Bi{sub 2}O{sub 3} by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N{sub 2} adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO{sub 2} and Bi{sub 2}O{sub 3}/TiO{sub 2} nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO{sub 2}, and Bi{sub 2}O{sub 3} is extremely dispersive on the surface of TiO{sub 2} nanoparticles. The incorporation of Bi{sub 2}O{sub 3} in TiO{sub 2} leads to the spectral response of TiO{sub 2} in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi{sub 2}O{sub 3}/TiO{sub 2} nanocomposites are superior than that of pure TiO{sub 2} which is ascribed to the efficient charge separation and transfer across the Bi{sub 2}O{sub 3}/TiO{sub 2} junction. Bi{sub 2}O{sub 3}/TiO{sub 2} nanocomposite (20 mg) loaded with 0.25 of Bi{sub 2}O{sub 3} dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi{sub 2}O{sub 3} and TiO{sub 2}.

  15. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  16. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  17. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight

    Science.gov (United States)

    Hao, Lin; Huang, Hongwei; Guo, Yuxi; Du, Xin; Zhang, Yihe

    2017-10-01

    Fabrication of homo/hetero-junctions by coupling of wide-band gap semiconductor and narrow-band gap semiconductor is desirable as they can achieve a decent balance between photoabsorption and photo-redox ability. Herein, a n-n type bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 was developed by facilely manipulating the basicity in a one-pot hydrothermal process. Compared with BiOCl which only responds to UV light, the photo-responsive range is remarkably extended to visible region. The BiOCl/Bi12O17Cl2 phasejunctions show much higher photocatalytic activity than the single BiOCl and Bi12O17Cl2 toward degradation of methyl orange (MO) under simulated solar light. In particular, it presented a high photo-oxidation ability in degrading diverse industrial contaminants including 2,4-dichlorophenol (2,4-DCP), phenol, bisphenol A (BPA) and tetracycline hydrochloride. Based on a series of photoelectrochemical and photoluminescence measurements, the fortified photocatalytic performance of BiOCl/Bi12O17Cl2 phasejunctions was manifested to be attributed to the efficient separation and transfer efficiencies of photoinduced electron-hole pairs because of the junctional interface formed between BiOCl and Bi12O17Cl2. The study may not only furnish a high-effective photocatalyst in the application of environment purification, but also pave a path to fabricate agnate phase-junctional photocatalyst.

  18. Facile synthesis of AgI/BiOI-Bi{sub 2}O{sub 3} multi-heterojunctions with high visible light activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Shi, Xiaodong; Liu, Enqin [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Crittenden, John C. [The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Ma, Xiangjuan; Zhang, Yi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China)

    2016-11-05

    Graphical abstract: Highly visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was developed. - Highlights: • Visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was prepared. • Highly enhanced photocatalytic reduction of Cr(VI) was observed. • k{sub Cr(VI)} on AgI/BiOI-Bi{sub 2}O{sub 3} increased by ca.16 times relative to Bi{sub 2}O{sub 3}. • Decreased E{sub g}, shifted E{sub fb} and reduced charge transfer resistance were observed. • Simultaneous reduction of Cr(VI) and degradation of organics were achieved. - Abstract: AgI sensitized BiOI-Bi{sub 2}O{sub 3} composite (AgI/BiOI-Bi{sub 2}O{sub 3}) with multi-heterojunctions was prepared using simple etching-deposition process. Different characterization techniques were performed to investigate the structural, optical and electrical properties of the as-prepared photocatalysts. It was found that the ternary AgI/BiOI-Bi{sub 2}O{sub 3} composite exhibited: (1) improved photocurrent response, (2) smaller band gap, (3) greatly reduced charge transfer resistance and (4) negative shift of flat band potential, which finally led to easier generation and more efficient separation of photo-generated electron-hole pairs at the hetero-interfaces. Thus, for the reduction of Cr(VI), AgI/BiOI-Bi{sub 2}O{sub 3} exhibited excellent photocatalytic activity under visible light irradiation at near neutral pH. AgI/BiOI-Bi{sub 2}O{sub 3} was optimized when the initial molar ratio of KI to Bi{sub 2}O{sub 3} and AgNO{sub 3} to Bi{sub 2}O{sub 3} was 1:1 and 10%, respectively. The estimated k{sub Cr(VI)} on optimized AgI/BiOI-Bi{sub 2}O{sub 3} was about 16 times that on pure Bi{sub 2}O{sub 3}. Good stability was also observed in cyclic runs, indicating that the current multi-heterostructured photocatalyst is highly desirable for the remediation of Cr(VI)-containing wastewater.

  19. Magnetoresistance and magnetothermopower properties of Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O misfit layer cobaltites

    CERN Document Server

    Maignan, A; Hervieu, M; Michel, C; Pelloquin, D; Khomskii, D

    2003-01-01

    Two new compounds of the Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O systems have been prepared. Their structure is built up from the intergrowth of four rock-salt-type layers and one [CoO sub 2 ] hexagonal layer. Both cobaltites exhibit large thermopower values (S sub 3 sub 0 sub 0 sub K approx 140 mu V K sup - sup 1), low resistivity values (rho sub 3 sub 0 sub 0 sub K = 40-60 m OMEGA cm) and small thermal conductivities (kappa sub 3 sub 0 sub 0 sub K approx 1 W K sup - sup 1 m sup - sup 1). Furthermore, these compounds exhibit a negative magnetoresistance, (MR = rho sub H - rho sub H sub sub 0 /rho sub H sub = sub 0), reaching, at 2.5 K, - 85% in 7 T for the Bi/Ca/Co/O misfit cobaltite. A large negative magnetothermopower is also found for these cobaltites in the same temperature range. A qualitative explanation of the observed behaviour is proposed.

  20. Study of the tellurite-rich composition range in the Bi2O3-TeO2 system

    International Nuclear Information System (INIS)

    Ghazaryan, A.A.

    2015-01-01

    The TeO 2 and Bi 2 O 3 based glasses and glass ceramics are widely used for various technical needs. However, information about the phase diagram of the Bi 2 O 3 -TeO 2 system is limited, and the existing data are inconsistent. According to Demina L.A. with co-authors the Bi 2 Te 4 O 1 1 compound has a congruent melting at 662°C and forms two eutectics with neighbors. In another case, according to the Schmidt P. with co-authors, it melts incongruently at 645°C without indication of Liquidus temperature. It was the motivation for the Bi 2 Te 4 O 1 1 melting behavior investigation and the binary Bi 2 O 3 -TeO 2 system phase diagram correction in the TeO 2 rich area of compositions. As initial materials the glass and solid state sintered samples were used for these purposes. The differential thermal and X-ray analyses were used for glassy and crystallized products identification. The exothermic effect with maximum at 420°C and two endothermal effects with minimum at 635°C and 720 Degree C are clearly observed on the DTA curve of the 80 TeO 2 -20 Bi 2 O 3 (mol.percent) glass composition corresponding to the Bi 2 Te 4 O 1 1 compound. The product of Bi 2 Te 4 O 1 1 glass powder crystallization at 420°C is the Bi 2 Te 4 O 1 1 compound with melting point of 635 ± 5°C. The second endothermic effect on the DTA curve in the range of temperature 680-765°C with minimum at 720°C, is associated with dissolution of TeO 2 in the melt, formed as result of the Bi 2 Te 4 O 1 1 incongruent melting. The existence of eutectic E 1 (87 mol.percent TeO 2 ) between Bi 2 Te 4 O 1 1 and TeO 2 with a melting point of 580 ±5°C has been confirmed. Incongruent melting promotes the peritectic P 1 (81 mol.percent TeO 2 ) formation between Bi 2 Te 4 O 1 1 and eutectic E 1 (87 mol.percent TeO 2 ) with a melting point of 635±5°C. Three endothermic effects at 560 °C, 635 °C and 720°C have been observed on the DTA curve of Bi 2 Te 4 O 1 1 compound, obtained by solid state synthesis. Last

  1. Efficient optical Kerr gate of Bi2O3–B2O3–SiO2 glass for acquiring high contrast ballistic imaging in turbid medium

    International Nuclear Information System (INIS)

    Zhan, Pingping; Tan, Wenjiang; Wu, Bin; Si, Jinhai; Chen, Feng; Hou, Xun; Liu, Xin

    2013-01-01

    We investigated the ballistic imaging of a 1.41 line pair mm −1 section of a resolution test chart hidden behind a solution of polystyrene spheres with a femtosecond optical Kerr gate (OKG). A better transillumination image contrast could be acquired with an OKG of Bi 2 O 3 –B 2 O 3 –SiO 2 (BI) glass than that with an OKG of fused silica in a highly scattering media, which indicated that the BI glass was a better OKG medium due to its large nonlinear refractive index. (paper)

  2. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  3. A comparative study of the Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15

    Science.gov (United States)

    Tellier, J.; Boullay, Ph.; Manier, M.; Mercurio, D.

    2004-06-01

    The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi 4Ti 4O 15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A2 1am. For the BaBi 4Ti 4O 15 phase, only a weak variation with respect to the F2 mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [ M2O 2] slabs is confirmed in agreement with the previous works but specific Ba 2+ and Bi 3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.

  4. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    Science.gov (United States)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  5. Microstructure and electrical properties of (1−x)[0.8Bi_0_._5Na_0_._5TiO_3-0.2Bi_0_._5K_0_._5TiO_3]-xBiCoO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Wang, Ting; Chen, Xiao-ming; Qiu, Yan-zi; Lian, Han-li; Chen, Wei-ting

    2017-01-01

    The (1−x)[0.8Bi_0_._5Na_0_._5TiO_3-0.2Bi_0_._5K_0_._5TiO_3]-xBiCoO_3 (x = 0, 0.02, 0.05, abbreviated as BNKT, BNKT-002Co, BNKT-005Co, respectively) lead-free ferroelectric ceramics were prepared via the solid state reaction method. The phase structure, microstructure, dielectric, ferroelectric, pyroelectric, and piezoelectric properties of the ceramics were investigated comparatively by using a combination of characterization techniques. All the samples exhibit typical X-ray diffraction peaks of ABO_3 perovskite structure. The doping of BiCoO_3 causes a decrease in lattice parameters and an increase in grain size of the ceramics. The Raman spectroscopy results suggest a lattice distortion due to the doping. It is found that BNKT-002Co and BNKT-005Co have higher depolarization temperatures compared with BNKT. The Curie-Weiss law and modified Curie-Weiss law explored a diffuse phase transition character for all the samples. The results of ultraviolet–visible diffuse reflectance suggests that BiCoO_3-doped ceramics possess higher defect concentration. The impedance analysis shows a temperature dependent relaxation behavior, and the activation energy for the electrical responses varies with the change of BiCoO_3 amount. The ferroelectric and piezoelectric properties of the ceramics decrease due to the doping of BiCoO_3. Based on the results of the Rayleigh analysis, it was suggested that the differences in the electrical properties among the ceramics are closely related to the change in oxygen vacancy concentration. - Highlights: • BNKT-xCo ceramics were prepared by solid-state reaction method. • Electrical properties of BNKT ceramics are changed by the doping of BiCoO_3. • The doping causes a decrease in lattice parameters and an increase in grain size. • T_d of the ceramics increases with increasing x. • Oxygen vacancies play key role in determining electrical properties of the ceramics.

  6. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  7. Design considerations for a digital feedback system to control self-bunching in ion-storage rings

    Directory of Open Access Journals (Sweden)

    V. Ziemann

    2001-04-01

    Full Text Available We discuss the feasibility of a digital feedback system to cure self-bunching of the electron-cooled coasting ion beam in ion-storage rings such as CELSIUS [S. Holm, A. Johansson, S. Kullander, and D. Reistad, Phys. Scr. 34, 513–532 (1986]. Such a system is based on a fast digital filter that acts as a tunable artificial wake potential. It may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production.

  8. BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Zhang

    2017-02-01

    Full Text Available A BiCuSeO system has been reported as a promising thermoelectric material and has attracted great attention in the thermoelectric community since 2010. Recently, several remarkable studies have been reported and the ZT of BiCuSeO was pushed to a higher level. It motivates us to systematically summarize the recent reports on the BiCuSeO system. In this short review, we start with several attempts to optimize thermoelectric properties of BiCuSeO. Then, we introduce several opinions to explore the origins of low thermal conductivity for BiCuSeO. Several approaches to enhance thermoelectric performance are also summarized, including modulation doping, introducing dual-vacancies, and dual-doping, etc. At last, we propose some possible strategies for enhancing thermoelectric performance of BiCuSeO in future research.

  9. Superconductivity induced by oxygen doping in Y{sub 2}O{sub 2}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Gordon, Elijah E. [Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2017-08-14

    When doped with oxygen, the layered Y{sub 2}O{sub 2}Bi phase becomes a superconductor. This finding raises questions about the sites for doped oxygen, the mechanism of superconductivity, and practical guidelines for discovering new superconductors. We probed these questions in terms of first-principles calculations for undoped and O-doped Y{sub 2}O{sub 2}Bi. The preferred sites for doped O atoms are the centers of Bi{sub 4} squares in the Bi square net. Several Bi 6p x/y bands of Y{sub 2}O{sub 2}Bi are raised in energy by oxygen doping because the 2p x/y orbitals of the doped oxygen make antibonding possible with the 6p x/y orbitals of surrounding Bi atoms. Consequently, the condition necessary for the ''flat/steep'' band model for superconductivity is satisfied in O-doped Y{sub 2}O{sub 2}Bi. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets

    International Nuclear Information System (INIS)

    Liu, Haipeng; Xu, Guangqing; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    Highlights: • BiOCl were deposited on TiO2 NTAs by sequential chemical bath deposition. • BiOCl can decrease background photocurrent and increase current response. • High sensitivity BiOCl/TiO2 is due to the direct oxidation of organics on BiOCl. - Abstract: BiOCl nanosheets were deposited on anodized TiO 2 nanotube arrays (NTAs) by sequential chemical bath deposition method to get BiOCl/TiO 2 NTAs for photoelectrochemical detection of organic compounds (represented by glucose). The structures, elemental components and morphologies of TiO 2 and BiOCl/TiO 2 NTAs were characterized by using X-ray diffraction diffractometer, scanning electron microscope and transmission electron microscope. The photoelectrochemical behaviors of TiO 2 and BiOCl/TiO 2 NTAs in the buffer and glucose solutions were measured by cyclic votammetry and amperometry with different optical powers. The modification of BiOCl nanosheets on TiO 2 NTAs decreases the photocurrents of TiO 2 NTAs in the buffer solution and increases the current response to glucose. Both of the background photocurrent decrease and current response increase are benefit for photoelectrochemical detection of organic compounds. When glucose was used as the target organic compound, the optimized BiOCl/TiO 2 NTAs sensor achieved a sensitivity of 0.327 μA/μM (0.417 μA·cm −2 ·μM −1 ), linear range from 0 to 1300 μM and calculated detection limit of 5.7 μM. Mechanisms of BiOCl modification were studied by measuring the optical absorption and hydroxyl radical HO· productivity. The transfer of holes from TiO 2 to BiOCl and the direct oxidation of organic compounds on BiOCl nanosheets led to the decrease of background photocurrent (lower reaction rate of water splitting on BiOCl nanosheets) and the increase of current response to organic compounds (higher reaction rate of direct oxidation of organic compounds)

  11. BiFeO3 Crystal Structure at Low Temperatures

    International Nuclear Information System (INIS)

    Palewicz, A.; Sosnowska, I.; Przenioslo, R.; Hewat, A.W.

    2010-01-01

    The crystal and magnetic structure of BiFeO 3 have been studied with the use of high resolution neutron diffraction between 5 K and 300 K. The atomic coordinates in BiFeO 3 are almost unchanged between 5 K and 300 K. (authors)

  12. Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light

    Science.gov (United States)

    Lahmar, H.; Benamira, M.; Akika, F. Z.; Trari, M.

    2017-11-01

    The CuBi2O4/TiO2 heterojunction was tested with success for the photo-catalytic reduction of chromate ions under sunlight. CuBi2O4, prepared by nitrate process, was characterised photo-electrochemically. The oxide is stable against photo corrosion by consumption of holes in presence of oxalic acid. The light absorption promotes electrons in the conduction band of the sensitizer (CuBi2O4) with a very negative potential (-1.74 VSCE) to participate in the exchange of the electron with HCrO4-. The enhanced activity is due to electron injection of activated CuBi2O4 into TiO2-CB (-0.97 VSCE). The band gap of the semiconductor CuBi2O4 is 1.50 eV with a direct optical transition. This compound is a p-type semiconductor with a flat band potential of -0.39 VSCE and activation energy of 0.18 eV. The electrochemical impedance spectroscopy was undertaken to study the semiconductor/electrolyte interfacial phenomena. The photoactivity on the heterojunction is strongly enhanced. A remarkable performance is obtained in less than 4 h for a concentration of 30 mg in (Cr (VI)) at pH ∼ 4 and a dose of 1 mg/mL; a 98% reduction has been obtained. The kinetic of chromate photoreduction is well described by the Langmuir-Hinshelwood model. The chromate elimination obeys to a pseudo-first order kinetic with an apparent rate constant of 0.014 min-1.

  13. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.

    Science.gov (United States)

    Wang, Limin; Cao, Bingfei; Kang, Wei; Hybertsen, Mark; Maeda, Kazuhiko; Domen, Kazunari; Khalifah, Peter G

    2013-08-19

    Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of Ag(x)Bi(5/6)Ta2O(6.25+x/2) with 0.5 semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy transition and involve different bands. This suggests that the minimum electronic band gap in these materials is slightly smaller than the onset energy for strong absorption in the optical measurements. The elevated valence band energies of the niobate and tantalate compounds are experimentally confirmed by the ability of these compounds to reduce 2 H(+) to H2 gas when illuminated after functionalization with a Pt cocatalyst.

  14. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Chang-Yu; Wei, Ming-Fang [Department of Chemistry and Materials, Yulin Normal University,Yulin, Guangxi 537000 (China); Geng, Lei, E-mail: lgeng.cn@gmail.com [Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, Anhui 235000 (China); Hu, Pei-Qing; Yu, Meng-Xia [Department of Chemistry and Materials, Yulin Normal University,Yulin, Guangxi 537000 (China); Cheng, Wen-Dan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-07-15

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV–vis–NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P2{sub 1}/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}] {sup 3}{sub ∞} with NO{sub 3}{sup −} anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO{sub 3})](NO{sub 3}) features 2D bismuth(III) tellurite [Bi(TeO{sub 3}){sub 2}]{sup 2}{sub ∞} layers separated by NO{sub 3}{sup −} anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors. - Graphical abstract: Two novel bismuth{sup III} selenite/tellurite nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) with 3D tunnel structure and [Bi(TeO{sub 3})](NO{sub 3}) with 2D layer structure have been firstly synthesized and characterized. Display Omitted - Highlights: • Two novel bismuth{sup III} nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}) were firstly

  15. Long-term evaluation of fluoroelastomer O-rings in UF6

    International Nuclear Information System (INIS)

    Russell, R.G.; Otey, M.G.; Dippo, G.L.

    1986-01-01

    A major component in the gaseous centrifuge enrichment plant (GCEP) was fluoroelastomer O-rings, which were used to seal the uranium hexafluoride (UF 6 ) gas system. A program utilizing accelerated test conditions was used to help identify the best material out of four selected candidates and to predict the service life of these materials at GCEP conditions. The tests included accelerated temperatures, mechanical stress, and UF 6 exposure. Data were evaluated using the Newman--Keuls 1 ranking system to identify the best material and a zero-order reaction rate equation to help predict service life. This presentation includes a description of the test facility, the materials tested, the types of tests, objectives of the study, service life predictions, and conclusions. The O-rings are predicted to last approx. 30 years, and a high-molecular-weight polymer had the best performance ranking

  16. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    International Nuclear Information System (INIS)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J

    2009-01-01

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi 2 O 3 or ZnS and Bi 2 O 3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  17. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J, E-mail: balemanl@fis.ucm.e [Departamento de Fisica de Materiales, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2009-11-21

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi{sub 2}O{sub 3} or ZnS and Bi{sub 2}O{sub 3} powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  18. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  19. Positron lifetime studies on the BiSrCaCuO(F) superconductors

    International Nuclear Information System (INIS)

    Shi Zhiqiang; Chao Xixu; Wu Lingyun

    1995-01-01

    We have measured the positron lifetime and the transition temperature T c as a function of doped F content for Bi 2 Sr 2 CaCu 2 O y-x F x superconductors. The observed results are interpreted in terms of the change of the electron density in the Bi - O layers, which is the region probed by the positron, and the hole concentration in the Cu - O planes, which is correlated with the T c of the sample. From this point of view, it is suggested that the F atom mainly substitutes the oxygen atom in the Bi - O layers, and it causes the electrons transfer from the Bi - O layers to the Sr - O planes; when x = 0.4, the F atom mainly substitues the oxygen atom in the Sr - O planes, it causes the electrons transfer from the Sr - O planes to the Bi - O layers and the Cu - O planes. (orig.)

  20. O-Ring sealing arrangements for ultra-high vacuum systems

    Science.gov (United States)

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  1. Facile one-pot transformation using structure-guided combustion waves of micro-nanostructured β-Bi2O3 to α-Bi2O3@C and analysis of electrochemical capacitance

    Science.gov (United States)

    Hwang, Hayoung; Shin, Jung-ho; Lee, Kang Yeol; Choi, Wonjoon

    2018-01-01

    Precise phase-transformation can facilitate control of the properties of various materials, while an organic coating surrounding inorganic materials can yield useful characteristics. Herein, we demonstrate facile, selective manipulation of micro-nanostructured bismuth oxide (Bi2O3) for phase transformation from microflower-like β-Bi2O3 to micropill-like α-Bi2O3, with carbon-coating layer deposition, using structure-guided combustion waves (SGCWs). Microflower-like β-Bi2O3 are synthesized as core materials and nitrocellulose is coated on their surfaces for the formation of core-shell hybrid structures of Bi2O3 and chemical fuel. The SGCWs, which propagate along the core-material and fuel interfaces, apply high thermal energy (550-600 °C) and deposit incompletely combusted carbonaceous fuel on the microflower-like β-Bi2O3 to enable transformation to α-phase and carbon-coating-layer synthesis. SGCW-induced improvements to the electrochemical characteristics of the developed micropill-like α-Bi2O3@C, compared with the microflower-like β-Bi2O3, are investigated. The enhanced stability from the α-phase Bi2O3 and micropill-like structures during charge-discharge cycling improves the specific capacitance, while the carbon-coating layers facilitate increased electrical conductivity. SGCW-based methods exhibit high potential for selective phase manipulation and synthesis of carbon coatings surrounding micro-nanomaterials. They constitute a low-cost, fast, large-scale process for metal oxides, ceramics, and hybrid materials, implemented through control of the processing parameters by tuning the temperature, chemical fuel, and ambient conditions.

  2. IAG ring test animal proteins 2015

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Rhee, van de N.E.; Scholtens-Toma, I.M.J.; Prins, T.W.; Vliege, J.J.M.; Pinckaers, V.G.Z.

    2015-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG - International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The organizer of the ring test was RIKILT - Wageningen UR, The

  3. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salak, A.N., E-mail: salak@ua.pt [Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pushkarev, A.V.; Radyush, Yu.V.; Olekhnovich, N.M. [Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka Street, 19, 220072 Minsk (Belarus); Shilin, A.D.; Rubanik, V.V. [Institute of Technical Acoustics of NAS of Belarus, Lyudnikov Avenue, 13, 210023 Vitebsk (Belarus)

    2017-03-15

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of the BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in BiFeO

  4. Containerless solidification of BiFeO3 oxide under microgravity

    Science.gov (United States)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  5. Studies of Eu2O3 - Bi2O3 - B2O3 glasses using Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Pop, Lidia; Culea, Eugen N.; Bratu, I.

    2004-01-01

    The bismuth borate (3Bi 2 O 3 ·B 2 O 3 ) glasses were prepared with different concentrations of Eu 3+ . The structure of these systems were investigated by Raman and IR spectroscopy. The structural study reveals that the glasses contain BiO 3 , BiO 6 , BO 3 , BO 4 and Eu-O structural units. For the samples with a higher content of Eu 2 O 3 , the spectra became very large indicating a more disordered structure. The hygroscopic character of the 3Bi 2 O 3 ·B 2 O 3 glass matrix and the progressive decrease of this behaviour with increasing the Eu 2 O 3 content was observed. Therefore, we conclude that the europium oxide acts as a network modifier in these glasses. (authors)

  6. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Ellis, W.P.; Borg, A.; Kang, J.; Mitzi, D.B.; Lindau, I.

    1989-01-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , BaBiO 3 , and Nd 1.85 Ce 0.15 CuO 4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO 3 than in Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO 3 and Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d→4f, La 4d→4f, and Nd 4d→4f transitions) are also reported

  7. Thermal analysis and prediction of phase equilibria in the TiO{sub 2}-Bi{sub 2}O{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Martinez, Jaqueline, E-mail: jacky-411@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Romero-Serrano, Antonio, E-mail: romeroipn@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Hernandez-Ramirez, Aurelio, E-mail: aurelioh@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Zeifert, Beatriz, E-mail: bzeifert@yahoo.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Gomez-Yanez, Carlos, E-mail: cgomezy@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F (Mexico); Martinez-Sanchez, Roberto, E-mail: roberto.martinez@cimav.edu.mx [CIMAV, Av. Miguel de Cervantes 120, Chihuahua C.P.31109 (Mexico)

    2011-03-20

    A thermodynamic study on the TiO{sub 2}-Bi{sub 2}O{sub 3} system was carried out using differential thermal analysis (DTA) and X-Ray diffraction (XRD) techniques covering the composition range from 65 to 90 mol% Bi{sub 2}O{sub 3}. From the XRD results the only two intermediate compounds in the Bi{sub 2}O{sub 3} rich region were Bi{sub 4}Ti{sub 3}O{sub 12} and Bi{sub 12}TiO{sub 20}. The Bi{sub 4}Ti{sub 3}O{sub 12} phase presents the well known plate-like morphology. The experimentally determined phase transition temperatures with DTA technique were compared with thermodynamic calculated results and good agreement was obtained. The DTA results also showed that the limit of the peritectic reaction between liquid and Bi{sub 4}Ti{sub 3}O{sub 12} occurs approximately at 90 mol% Bi{sub 2}O{sub 3}. The phase diagram of the TiO{sub 2}-Bi{sub 2}O{sub 3} system was calculated using a quasichemical model for the liquid phase. The thermodynamic properties of the intermediate compounds were estimated from the data of TiO{sub 2} and Bi{sub 2}O{sub 3} pure solids. In this manner, data for this binary system have been analysed and represented with a small adjustable parameter for the liquid phase.

  8. The DCCD: a digital data infrastructure for tree-ring research

    NARCIS (Netherlands)

    Jansma, E.; Lanen, R.J. van; Brewer, P.; Kramer, R. de

    2012-01-01

    Existing on-line databases for dendrochronology are not flexible in terms of user permissions, tree-ring data formats, metadata administration and language. This is why we developed the Digital Collaboratory for Cultural Dendrochronology (DCCD). This TRiDaS-based multi-lingual database allows users

  9. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  10. Synthesis and photocatalytic properties of MgBi2O6 with Ag additions

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhu, Binqing; Zhong, Yan; Zhou, Huaiying

    2018-02-01

    Ag-doped MgBi2O6 photocatalysts were synthesized by the low temperature hydrothermal method in combination with heat treatment reaction using NaBiO3·2H2O, MgCl2·6H2O, and AgNO3 as raw materials. The products were characterized by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray detector (EDS), and UV-Vis diffusion reflectance spectra. The photocatalytic activity of MgBi2O6 with Ag additions was evaluated by degrading MB (10 mg/L) under visible light irradiation (λ > 420 nm). The results showed that in comparison with pure MgBi2O6, the photocatalytic activity of MgBi2O6 with about 5% Ag concentration is increased by about 24% after 120 min reaction. The enhancement of catalytic activity of Ag-doped MgBi2O6 photocatalysts should be related to the band structure, morphology and larger specific surface area.

  11. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  12. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyuan; Niu, Junfeng, E-mail: junfengn@bnu.edu.cn; Bao, Yueping; Hu, Lijuan

    2013-11-15

    Highlights: • Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} can degrade SMX efficiently using visible light. • 36% of TOC reduction was achieved after 120 min treatment. • The main mineralization products were confirmed. • Formation of O{sub 2}·{sup −} was evidenced by using ESR and a chemiluminescent probe. -- Abstract: Photocatalytic degradation of sulfamethoxazole (SMX) was investigated using Bi{sub 2}O{sub 3}/Bi{sub 2}O{sub 2}CO{sub 3}/Sr{sub 6}Bi{sub 2}O{sub 9} (BSO) photocatalyst under visible light (>420 nm) irradiation. The photochemical degradation of SMX followed pseudo-first-order kinetics. The reaction kinetics was determined as a function of initial SMX concentrations (5–20 mg L{sup −1}), initial pH (3–11) and BSO concentrations (6–600 mg L{sup −1}). Approximately, 90% of SMX (10 mg L{sup −1}) degradation and 36% of TOC reduction were achieved at pH 7.0 after 120 min irradiation. The main mineralization products, including NH{sub 4}{sup +}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and CO{sub 2}, as well as intermediates 3-amino-5-methylisoxazole (AMI), p-benzoquinone (BZQ), and sulfanilic acid (SNA) were detected in aqueous solution. The formation of O{sub 2}·{sup −} radical was evidenced by using electron spin resonance and a chemiluminescent probe, luminal. A possible degradation mechanism involving excitation of BSO, followed by charge injection into the BSO conduction band and formation of reactive superoxide radical (O{sub 2}·{sup −}) was proposed for the mineralization of SMX. During the reaction, the O{sub 2}·{sup −} radical attacks the sulfone moiety and causes the cleavage of the S-N bond, which leads to the formation of two sub-structure analogs, AMI and SNA.

  13. Phase formations in the KOH-BaO2-KI(I2)-Bi2O3 system

    International Nuclear Information System (INIS)

    Klinkova, L.A.; Barkovskij, N.V.; Nikolajchik, V.I.

    2004-01-01

    Phase composition of electrochemical synthesis products in the system KOH-BaO 2 -KI(I 2 )-Bi 2 O 3 and its influence on superconducting properties of bismuth-containing oxides are studied by the methods of X-ray phase and elementary analyses, electron diffraction in transmission electron microscope and by measuring temperature dependence of magnetic susceptibility. It was been ascertained that in the presence of iodine introduced as KI or I 2 oxoiodides KBi 6 O 9 I and Bi 5 O 7 I are formed in the system above, giving rise to a change in the composition of synthesis products in KOH-BaO 2 -Bi 2 O 3 matrix system towards formation of superconducting oxides K n Ba m Bi m+n O y rich in bismuth, which are characterized by low values of superconducting transition point [ru

  14. Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Li-Li; Han, Qiao-Feng; Zhao, Jin; Zhu, Jun-Wu; Wang, Xin; Ma, Wei-Hua

    2014-01-01

    Graphical abstract: Flowerlike α-Bi 2 O 3 architectures assembled by nanobrick-based petals with pineapple surface were firstly synthesized by precipitation method at room temperature in DMF–H 2 O solution. - Highlights: • Nanobrick-based flowerlike Bi 2 O 3 crystals with pineapple surface were synthesized by precipitation method. • Good solubility of Bi(NO 3 ) 3 in DMF played a crucial role in the growth of flowerlike Bi 2 O 3 . • The growth mechanism of Bi 2 O 3 microcrystallites has been explained in detail. - Abstract: Well-crystalline flowerlike α-Bi 2 O 3 hierarchical architectures with pineapple-shaped petals have been synthesized by precipitation method at a volume ratio of DMF/H 2 O of 5, where DMF and H 2 O were used to dissolve Bi(NO 3 ) 3 and KOH, respectively. If the DMF/H 2 O ratio was decreased to 2:1, 1:1 and 0:30, flower-, bundle- and dendrite-shaped α-Bi 2 O 3 microcrystallites aggregated by nanorods were formed, respectively. The simple synthetic route and thus obtained Bi 2 O 3 architectures of various morphologies provide a basis insight for their formation mechanism. The photocatalytic activity of the as-prepared Bi 2 O 3 particles for degradation of Rhodamine B (RhB) under visible-light irradiation was obviously influenced by their morphologies. Bi 2 O 3 of nanorod-based microstructures exhibited higher photodegradation activity than nanobrick-based ones, owing to higher light absorption and carrier separation efficiency in one-dimensional (1D) nanostructured materials

  15. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  16. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    Science.gov (United States)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  17. Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B

    International Nuclear Information System (INIS)

    Lu, Haijing; Xu, Lingling; Wei, Bo; Zhang, Mingyi; Gao, Hong; Sun, Wenjun

    2014-01-01

    Herein, we report the enhanced photosensitization process in the nanosheet Bi 2 O 2 CO 3 /BiOCl heterojunctions photocatalyst. The combined XRD, FT-IR and Raman results have confirmed the co-existence of Bi 2 O 2 CO 3 and BiOCl phases in the composites. Although both Bi 2 O 2 CO 3 and BiOCl are wide bandgap semiconductors, the composites showed an unexpectedly high catalytic activity in decomposing RhB (rhodamine B) aqueous solution under visible light irradiation. The mechanism of enhanced photocatalytic activity was ascribed to the inner electric field formed in the Bi 2 O 2 CO 3 /BiOCl p–n junction.

  18. Modulation-free bismuth-lead cuprate superconductors: BiPbSr1+xL1-xCuO6 and BiPbSr2Y1-xCaxCu2O8

    International Nuclear Information System (INIS)

    Manivannan, V.; Gopalakrishnan, J.; Rao, C.N.R.

    1991-01-01

    Modulation-free BiPbSrLCuO 6 (L=La, Pr, Nd) and BiPbSr 2 YCu 2 O 8 , which are isotypic with the n=1 and 2 members of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 family, have been prepared and characterized. These parent compounds are nonsuperconducting, but when doped with holes by substitution chemistry give modulation-free superconducting cuprates of the general formulas BiPbSr 1+xL1-x CuO 6 and BiPbSr 2 Y 1-x Ca x Cu 2 O 8 , exhibiting maximum T c 's of 24 and 85 K, respectively. Significantly, the hole concentration at the maximum T c is 0.12 in the cuprate family with a single Cu-O layer and 0.22 in that with two Cu-O layers

  19. Aging and lifetime prediction of O-ring seals

    International Nuclear Information System (INIS)

    Koemmling, Anja

    2017-01-01

    In some applications, elastomer seals have to remain leak tight over extended time periods (up to several decades) as an exchange of the seals is not practical. Therefore, it is necessary to be able to predict the lifetime of such seals reliably. For this reason, ageing experiments with O-rings and sheets based on hydrogenated acrylonitrile butadiene rubber (HNBR), ethylene propylene diene rubber (EPDM) and fluorocarbon rubber (FKM) were performed over up to two years at different temperatures. For investigating the changes of material properties during ageing, measurements of i.a. hardness and tensile behaviour as well as dynamic-mechanical and thermogravimetric analyses were conducted. For assessing the relaxation and recovery behaviour of the ageing seals, compression stress relaxation and compression set experiments were performed. Furthermore, leakage rate was measured to detect seal failure. By examining the aged samples, both the property changes and the responsible degradation mechanisms were characterised. Additionally, the most suitable approach for lifetime predictions should be determined using the large database of results from different test methods performed at several ageing times and temperatures. This included identifying an end-of-lifetime criterion that correlates with leakage and thus seal failure. Regarding the property changes and degradation mechanisms of HNBR, a pronounced embrittlement was observed due to dominant crosslinking reactions during ageing. These also resulted in a decrease of oxygen permeability, leading to a reduction of the oxygen transport into the interior sample (mainly of the thicker O-rings). This resulted in diffusion-limited oxidation effects (DLO effects), meaning that the interior of the sample aged less strongly than regions close to the surface. During ageing of EPDM, both chain scission and crosslinking occurred, which became noticeable in deteriorated tensile properties and decreased compression force as well as

  20. Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures

    Indian Academy of Sciences (India)

    ning Electron Microscopy (SEM), BET surface area analysis and Diffuse Reflectance Spectroscopy (DRS). The. XRD patterns ... The SEM images reveal micron size polyhedral shaped ... based compounds such as BiVO4, Bi2WO6, Bi2MoO6,.

  1. IAG ring test animal proteins 2014

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Scholtens-Toma, I.M.J.; Prins, T.W.; Voet, van der H.; Vliege, J.J.M.

    2014-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG – International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The aim of the ring study was to provide the participants

  2. IAG ring test animal proteins 2013

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Scholtens-Toma, I.M.J.; Prins, T.W.; Vliege, J.J.M.

    2013-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG - International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The organizer of the the ring study was to provide the

  3. Non-isothermal crystallization kinetics and phase transformation of Bi2O3-SiO2 glass-ceramics

    Directory of Open Access Journals (Sweden)

    Guo H.W.

    2011-01-01

    Full Text Available The Bi2O3-SiO2 (BS glass-ceramics were prepared by melt-quench technique, and the crystallization kinetics and phase transformation behavior were investigated in accordance with Kissinger and Johson-Mehl-Avrami equation, DSC, XRD and SEM. The results show that in the heat treatment process (or termed as re-crystallizing process Bi2SiO5 and Bi4Si3O12 crystals were found consequently. Respectively, the crystallization activation energies of the two crystals are Ep1=14.8kJ/mol and Ep2=34.1kJ/mol. And the average crystallization index of n1=1.73 and n2=1.38 suggested volume nucleation, one-dimensional growth and surface nucleation, one-dimensional growth from surface to the inside respectively. The meta-stable needle-like Bi2SiO5 crystals are easily to be transformed into stable prismatic Bi4Si3O12 crystals. By quenching the melt and hold in 850°C for 1h, the homogenous single Bi4Si3O12 crystals were found in the polycrystalline phase of the BS glassceramics system.

  4. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers from a preform

    International Nuclear Information System (INIS)

    Zheng, H.; Hu, Y.; Mackenzie, J.D.

    1991-01-01

    Several issues related to drawing Bi-Ca-Sr-Cu-O glass fibers from a preform are discussed. Continuous drawing of Bi-Ca-Sr-Cu-O glass fibers was successfully accomplished. Bi-Ca-Sr-Cu-O glass fibers are drawn above the crystallization temperature. Minimizing crystallization of the glass preforms is a key for successful drawing of the glass fibers. Two effective means, high glass melting temperature and V 2 O 5 doping, have been used to minimize the crystallization of the preforms, thus assuring the continuous drawing of Bi-Ca-Sr-Cu-O glass fibers

  5. Composite correlation filter for O-ring detection in stationary colored noise

    Science.gov (United States)

    Hassebrook, Laurence G.

    2009-04-01

    O-rings are regularly replaced in aircraft and if they are not replaced or if they are installed improperly, they can result in catastrophic failure of the aircraft. It is critical that the o-rings be packaged correctly to avoid mistakes made by technicians during routine maintenance. For this reason, fines may be imposed on the o-ring manufacturer if the o-rings are packaged incorrectly. That is, a single o-ring must be packaged and labeled properly. No o-rings or more than one o-ring per package is not acceptable. We present an industrial inspection system based on real-time composite correlation filtering that has successfully solved this problem in spite of opaque paper o-ring packages. We present the system design including the composite filter design.

  6. Bi--Sr--Ca--Cu--O superconducting films fabricated using metal alkoxides

    International Nuclear Information System (INIS)

    Katayama, S.; Sekine, M.

    1991-01-01

    Superconducting films in the Bi--Sr--Ca--Cu--O systems were made using metal alkoxides. To prepare a dip-coating solution using a mixed alkoxide solution, insoluble Cu and Bi alkoxides were dissolved by modification with 2-dimethylaminoethanol and formation of a double alkoxide, respectively. Formation of the double alkoxides of Bi with Ca or Sr was confirmed using FT-IR and 1 H-NMR. Bi--Sr--Ca--Cu--O films on yttria-stabilized ZrO 2 and single crystal MgO(100) substrates were made using this solution. The films were closely oriented along the c-axis perpendicular to the substrate. The film on MgO(100) fired at 850 degree C for 48 h showed two resistance drops around 115 and 85 K, corresponding to the high-T c and low-T c phases, respectively, and zero resistance at 72 K

  7. Enhanced photocatalytic property of BiFeO_3/N-doped graphene composites and mechanism insight

    International Nuclear Information System (INIS)

    Li, Pai; Li, Lei; Xu, Maji; Chen, Qiang; He, Yunbin

    2017-01-01

    Highlights: • A hydrothermal process was used to prepare BiFeO_3/N-doped graphene composites. • BiFeO_3/N-doped graphene exhibits superior photocatalytic activity and stability. • The energy band of BiFeO_3 bends downward by ∼1.0 eV at the composite interface. • Downward band bending leads to rapid electron transfer at the composite interface. • Holes and ·OH are predominant active species in the photo-degradation process. - Abstract: A series of BiFeO_3/(N-doped) graphene composites are prepared by a facile hydrothermal method. BiFeO_3/N-doped graphene shows photocatalytic performance superior to that of BiFeO_3/graphene and pristine BiFeO_3. The enhanced photo-degradation performance of BiFeO_3/N-doped graphene are mainly attributable to the improved light absorbance of the composite, abundant active adsorption sites and high electrical charge mobility of N-doped graphene, and the downward band bending of BiFeO_3 at the composite interface. In particular, X-ray photoelectron spectroscopy analyses reveal that the electron energy band of BiFeO_3 is downward bent by 1.0 eV at the interface of BiFeO_3/N-doped graphene, because of different work functions of both materials. This downward band bending facilitates the transfer of photogenerated electrons from BiFeO_3 to N-doped graphene and prompts the separation of photo-generated electron-hole pairs, leading eventually to the enhanced photocatalytic performance.

  8. Structures of Bi14WO24 and Bi14MoO24 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Ling, C.D.; Withers, R.L.; Thompson, J.G.; Schmid, S.

    1999-01-01

    The (isomorphous) structures of Bi 14 WO 24 , tetradecabismuth tungsten tetracosaoxide, and Bi 14 MoO 24 , tetradecabismuth molybdenum tetracosaoxide, have been solved and refined using neutron powder diffraction data in the space group I4/m. The metal-atom array is fully ordered in terms of composition, and in terms of atomic positions deviates only slightly from a fluorite-type δ-Bi 2 O 3 -related parent structure. Three independent O-atom sites (accounting for 70 out of 78 O atoms in the unit cell) are also very close to fluorite-type parent positions. The remaining two O-atom sites, which coordinate W, exhibit partial occupancies and displacive disorder, neither of which could be better modelled by lowering of symmetry. The W site is coordinated by four O atoms in highly distorted tetrahedral coordination, the tetrahedron necessarily being orientationally disordered on that site. Nonetheless, the structure appears to be chemically reasonable. (orig.)

  9. Coexistence of room temperature ferroelectricity and ferrimagnetism in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solution

    International Nuclear Information System (INIS)

    Tian, Z.M.; Wang, C.H.; Yuan, S.L.; Wu, M.S.; Ma, Z.Z.; Duan, H.N.; Chen, L.

    2011-01-01

    Highlights: → In this study, the coexistence of ferroelectrics and ferrimagnetism have been observed at room temperature for the (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solutions. → X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. → A magnetic transition from paramagnetic (PM) to ferrimagnetic (Ferri) ordering is observed for the solution with Curie temperature T C ∼ 330 K. - Abstract: The structure, ferroelectric and magnetic properties of (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO 3 , the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization P r = 1.41 μC/cm 2 and remnant magnetization M r = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature T C ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.

  10. Deformation Characteristics and Sealing Performance of Metallic O-rings for a Reactor Pressure Vessel

    Directory of Open Access Journals (Sweden)

    Mingxue Shen

    2016-04-01

    Full Text Available This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV. A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.

  11. Deformation characteristics and sealing performance of metallic-O-ring for a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ming Xue; Peng, Xudong; Xie, Linjun; Meng, Xiang Kai [Engineering Research Center of Process Equipment and Its Remanufacture, Ministry of Education, Zhejiang University of Technology, Hangzhou (China); Li, Xing Gen [Ningbo Tiansheng Sealing Packing Co., Ltd., Ningbo (China)

    2016-04-15

    This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV). A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap) have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.

  12. A study of the formation processes of the 2212 phase in the Bi-based superconductor systems. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Lo; Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-04-15

    A study towards the identification of the reactions contributing to and accompanying the formation of the 2212 phase from oxides and carbonates by solid state reaction processes was conducted. The formation processes were investigated by thermal analysis, powder X-ray diffractometry and AC magnetic susceptometry. The 2212 phase was found to form from reactions between the 2201 phases (the non-superconducting pseudo-tetragonal and the superconducting monoclinic phases), Bi{sub 6}Ca{sub 7}O{sub 16}, CuO and SrCO{sub 3}. The 2201 phases were produced by the reactions of Bi-Sr-Cu-O or Bi-Sr-O compounds with SrCO{sub 3} or CuO. The 2201 phases could also be formed through the direct reaction between Bi{sub 2}CuO{sub 4} and SrCO{sub 3}. (orig.).

  13. Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi,Pb)2Ba2O4+/-ω]0.5CoO2

    Science.gov (United States)

    Sakai, K.; Karppinen, M.; Chen, J. M.; Liu, R. S.; Sugihara, S.; Yamauchi, H.

    2006-06-01

    We report strongly enhanced thermoelectric characteristics for a misfit-layered oxide, [Bi2Ba2O4±ω]0.5CoO2, in a wide temperature range, as achieved through substituting up to 20% of Bi by Pb. The Pb substitution kept the thermal conductivity (κ) unchanged but decreased the electrical resistivity (ρ) and increased the Seebeck coefficient (S) simultaneously, such that a three-fold enhancement in the thermoelectric figure of merit, Z (≡S2/ρκ), was realized. At the same time x-ray absorption near-edge structure data indicated that the valence and spin states of Co are not affected by the Pb-for-Bi substitution.

  14. Electric and Magnetic Properties of Sputter Deposited BiFeO3 Films

    Directory of Open Access Journals (Sweden)

    N. Siadou

    2013-01-01

    Full Text Available Polycrystalline BiFeO3 films have been magnetron sputter deposited at room temperature and subsequently heat-treated ex situ at temperatures between 400 and 700°C. The deposition was done in pure Ar atmosphere, as the use of oxygen-argon mixture was found to lead to nonstoichiometric films due to resputtering effects. At a target-to-substrate distance d=2′′ the BiFeO3 structure can be obtained in larger range process gas pressures (2–7 mTorr but the films do not show a specific texture. At d=6′′ codeposition from BiFeO3 and Bi2O3 has been used. Films sputtered at low rate tend to grow with the (001 texture of the pseudo-cubic BiFeO3 structure. As the film structure does not depend on epitaxy similar results are obtained on different substrates. A result of the volatility of Bi, Bi rich oxide phases occur after heat treatment at high temperatures. A Bi2SiO5 impurity phase forms on the substrate side, and does not affect the properties of the main phase. Despite the deposition on amorphous silicon oxide substrate weak ferromagnetism phenomena and displaced loops have been observed at low temperatures showing that their origin is not strain. Ba, La, Ca, and Sr doping suppress the formation of impurity phases and leakage currents.

  15. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  16. Luminescence of Bi3+ ions in Y3Al5O12:Bi single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Vistovsky, V.; Nedilko, S.; Nikl, M.

    2007-01-01

    The absorption and cathodoluminescence spectra of single crystalline films (SCF) of Y 3 Al 5 O 12 :Bi garnet depending on Bi concentration were analyzed. For consideration of the nature of the UV and visible Bi-related emission bands the time-resolved luminescence of Bi 3+ (ns 2 ) ions in YAG:Bi SCF was studied at 10 K under excitation by synchrotron radiation. The difference in the excitation spectra and emission decay of the UV and visible bands has been explained via radiative relaxation from the 3 P 1,0 excited states to the 1 S 0 ground state of the isolated and pair/clustered Bi 3+ emission centers in the garnet lattice, respectively

  17. Acetone gas-sensing properties of multiple-networked Pd-decorated Bi_2O_3 nanorod sensors

    International Nuclear Information System (INIS)

    Park, Sung Hoon; Kim, Soo Hyun; Lee, Sang Min; Lee, Chong Mu

    2015-01-01

    This study examined the sensing properties of Bi_2O_3 nanorods decorated with Pd nanoparticles. Pd-decorated β-Bi_2O_3 nanorods were prepared by immersing the Bi_2O_3 nanorods in ethanol/(50 mM)PdCl_2 solution followed by UV irradiation and annealing. The Bi_2O_3 nanorods decorated with Pd nanoparticles showed faster and stronger response to acetone gas than the pristine Bi_2O_3 nanorods. Interestingly, the difference in response time between the Pd-decorated Bi_2O_3 nanorod sensor and pristine Bi_2O_3 nanorod sensor increased with increasing the acetone gas concentration. In contrast, the difference in recovery time between the two nanorod sensors decreased with increasing the acetone gas concentration. This difference can be explained using the chemical mechanism. The underlying mechanism for the enhanced response of the Bi_2O_3 nanorods decorated with Pd nanoparticles to acetone gas is also discussed

  18. Photoelectric properties and charge dynamics in ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institue of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Zhang, Jingwei; Zhang, Jiwei [The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004 (China)

    2014-12-28

    ZnO nanowires arrays were preformed in a horizontal double-tube system. Two types of heterostructures (ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} and ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9}) and three-dimensional solar cells were fabricated with ZnO nanowires arrays as working electrode, In{sub 2}O{sub 3} as buffer layer, and Cu{sub 4}Bi{sub 4}S{sub 9} as inorganic dye and hole collector. It is suggested that two types of heterostructures have the similar absorption properties with single Cu{sub 4}Bi{sub 4}S{sub 9}. However, the results of steady state and electric field-induced surface photovoltage indicate that ZnO nanowires/In{sub 2}O{sub 3}/Cu{sub 4}Bi{sub 4}S{sub 9} exhibits the higher photovoltaic response than ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9}. Using the transient surface photovoltage spectroscopy, we further studied the separation and transport mechanism of photogenerated charges. Furthermore, Cu{sub 4}Bi{sub 4}S{sub 9}/In{sub 2}O{sub 3}/ZnO cells presents the better performance than Cu{sub 4}Bi{sub 4}S{sub 9}/ZnO cells and the highest efficiencies are about 6.4% and 5.2%, respectively. It is suggested that direct paths, interface barrier, built-in electric field, and double energy level matchings between conduction bands (Cu{sub 4}Bi{sub 4}S{sub 9} and In{sub 2}O{sub 3}, In{sub 2}O{sub 3} and ZnO) have obvious effect on the separation of photogenerated charges. Then we discussed the synthetic action on the charge dynamics from these factors.

  19. A note on structural and dielectric properties of BiFeO3- PbTiO3 and BiFeO3- PbZrO3 composites

    International Nuclear Information System (INIS)

    Satpathy, S. K.; Mohanty, N. K.; Behera, A. K.; Behera, B.; Nayak, P.

    2015-01-01

    The composites of BiFeO 3 -PbTiO 3 (BF-PT) and BiFeO 3 -PbZrO 3 (BF-PZ) were prepared by mixed oxide method. Room temperature X-ray diffraction data confirms the rhombohedral and tetragonal crystal structure respectively. Dielectric constant of BF-PZ is found to give high value compared to BF-PT and hence, there is an increase value of ac conductivity for the former. Both the composites show negative temperature coefficient of resistance (NTCR) behavior. The activation energies of BF-PT and BF-PZ are found to be 0.35 eV and 0.53 eV respectively. The d 33 coefficients are found to be 2.0 and 2.1 pC/N for BF-PT and BF-PZ respectively

  20. Structural, magnetic and dielectric properties of Pr-modified BiFeO3 multiferroic

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Sharma, Poorva; Satapathy, S.; Gupta, P.K.

    2014-01-01

    Graphical abstract: -- Highlights: • BFO and Bi 0.95 Pr 0.05 FeO 3 prepared successfully via solid state reaction route. • XRD confirms rhombohedral structure with space group R3c. • Relaxation process is attributed to thermal motion and hopping of V O 2+ . • Magnetization is enhanced in Bi 0.95 Pr 0.05 FeO 3 sample. • Enhanced magnetization stem from suppression of the spiral spin modulation. -- Abstract: The structural, vibrational, magnetic and dielectric properties of polycrystalline BiFeO 3 and Bi 0.95 Pr 0.05 FeO 3 are investigated by combining X-ray diffraction, Raman scattering spectra, magnetometry and dielectric measurements. Structural symmetry with rhombohedral R3c phase is revealed for both parent and 5% Pr substitution at Bi site, serving no chemical pressure and causes no structural transition from R3c to any other phase is identified from X-ray diffraction patterns and Raman scattering spectra. The shifting of phonon modes towards higher frequency side is attributed to lower atomic mass of Pr ion as compared to Bi ion. The magnetic measurements at room temperature indicate that Pr substitution induces ferromagnetism and discerns large and non-zero remnant magnetization as compare to pristine BiFeO 3 . Both dielectric permittivity and loss factor of Bi 0.95 Pr 0.05 FeO 3 strongly decreases with increased frequency. Significant role of hopping of oxygen ion vacancies in Bi 0.95 Pr 0.05 FeO 3 is inferred from modulus spectra and ac conductivity analysis

  1. Synergy effects in mixed Bi2O3, MoO3 and V2O5 catalysts for selective oxidation of propylene

    DEFF Research Database (Denmark)

    Nguyen, Tien The; Le, Thang Minh; Truong, Duc Duc

    2012-01-01

    % Bi2Mo3O12 and 78.57 mol% BiVO4), corresponding to the compound Bi1-x/3V1-xMoxO4 with x = 0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol–gel method possessed higher activity than...

  2. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  3. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

    Science.gov (United States)

    Wang, J. J.; Hu, J. M.; Yang, T. N.; Feng, M.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures. PMID:24686503

  4. Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior

    International Nuclear Information System (INIS)

    Chen, T.; Thio, C.; Desu, S.B.

    1997-01-01

    In this research, a fatigue model for ferroelectric materials is proposed. The reasons for the electrical fatigue resistance of SrBi 2 Ta 2 O 9 (SBT), SrBi 2 Nb 2 O 9 (SBN), and PbZr 1-x Ti x O 3 (PZT) are discussed in terms of the bulk ionic conductivities of the compounds. To obtain the bulk ionic conductivity of SBT and SBN, we have used impedance spectroscopy which provides an effective method that allows us to separate the individual contributions of bulk, grain boundaries, and electrode-ferroelectric interfaces from the total capacitor impedance. The bulk ionic conductivities of SBT and SBN (∼10 -7 S/cm) are much higher than those of the perovskite ferroelectrics, e.g., PZT (∼10 -11 -10 -10 S/cm). The high ionic conductivities led us to conclude that the good fatigue resistance of SrBi 2 Ta 2 O 9 and SrBi 2 Nb 2 O 9 is due to easy recovery of defects. Specifically, oxygen vacancies entrapped within the capacitors are easily released, resulting in limited space charge buildup and domain wall pinning during the polarization reversal process. However, the oxygen vacancies in PZT are trapped at trap sites to become space charges, resulting in capacitor fatigue. copyright 1997 Materials Research Society

  5. The effect of FR enhancement in reactive ion beam sputtered Bi, Gd, Al-substituted iron- garnets: Bi2O3 nanocomposite films

    OpenAIRE

    Berzhansky, V.; Shaposhnikov, A.; Karavainikov, A.; Prokopov, A.; Mikhailova, T.; Lukienko, I.; Kharchenko, Yu.; Miloslavskaya, O.; Kharchenko, N.

    2012-01-01

    The effect of considerable Faraday rotation (FR) and figure of merit (Q) enhancement in Bi, Gd, Al-substituted iron garnets: Bi2O3 nano-composite films produced by separate reactive ion beam sputtered Bi:YIG and Bi2O3 films was found. It reached threefold enhancement of the FR and twofold of the Q one on GGG substrates.

  6. New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-02-01

    Full Text Available BiVO4/Mn1−xZnxFe2O4 was prepared by the impregnation roasting method. XRD (X-ray Diffractometer tests showed that the prepared BiVO4 is monoclinic crystal, and the introduction of Mn1−xZnxFe2O4 does not change the crystal structure of BiVO4. The introduction of a soft-magnetic material, Mn1−xZnxFe2O4, was beneficial to the composite photocatalyst’s separation from the liquid solution using an extra magnet after use. UV-vis spectra analysis indicated that Mn1−xZnxFe2O4 enhanced the absorption intensity of visible light for BiVO4. EIS (electrochemical impedance spectroscopy investigation revealed that the introduction of Mn1−xZnxFe2O4 enhanced the conductivity of BiVO4, further decreasing its electron transfer impedance. The photocatalytic efficiency of BiVO4/Mn1−xZnxFe2O4 was higher than that of pure BiVO4. In other words, Mn1−xZnxFe2O4 could enhance the photocatalytic reaction rate.

  7. Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films

    Science.gov (United States)

    Kodan, Nisha; Mehta, B. R.

    2018-05-01

    Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.

  8. Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe{sub 3}O{sub 4} hybrid nanocomposites under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shengwang [Department of Chemistry, College of Science, North University of China, Taiyuan 030051 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Hou, Song; Wan, Li [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Qiang [Heilongjiang Research Academy of Environmental Sciences, Harbin 150056 (China); Lv, Jiapei; Zhang, Yuan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Gao, Jianfeng [Department of Chemistry, College of Science, North University of China, Taiyuan 030051 (China); Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xu, Jian, E-mail: xujian@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2017-06-05

    Highlights: • A novel BiOBr/BiOI/Fe{sub 3}O{sub 4} hybrid nanocomposites was prepared for the first time. • BiOBr-BiOI-Fe{sub 3}O{sub 4} (2:2:0.5) displays superior photocatalytic activity for TBBPA. • Good magnetic property makes it easy for the material’s recovery from solution. • The photocatalytic reaction mechanism of BiOBr/BiOI/Fe{sub 3}O{sub 4} was proposed. • Superoxide radical is the dominant ROS in TBBPA degradation. - Abstract: A novel flower-like three-dimensional BiOBr/BiOI/Fe{sub 3}O{sub 4} heterojunction photocatalyst was synthesized using a simple in situ co-precipitation method at room temperature. The hybrid composites were characterized by a couple of techniques including X-ray powder diffraction, scanning electron microscope, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, Brunauer-Emmett-Teller, X-ray photo-electron spectroscopy, photoluminescence technique, and vibrating sample magnetometer. Fe{sub 3}O{sub 4} nanoparticles were perfectly loaded on the surface of BiOBr/BiOI microspheres. The recyclable magnetic BiOBr/BiOI/Fe{sub 3}O{sub 4} was employed to degrade TBBPA under visible light irradiation. The optimal removal efficiency of the ternary BiOBr/BiOI/Fe{sub 3}O{sub 4} (2:2:0.5) nanocomposite reached up to 98.5% for TBBPA in aqueous solution. The superior photocatalytic activity of BiOBr/BiOI/Fe{sub 3}O{sub 4} was mainly ascribed to large surface area and appropriate energy gaps, resulting in the effective adsorption and separation of electrons-hole pairs. The photogenerated reactive species determined by free radicals trapping experiments revealed that the excellent catalytic activity was primarily driven by ·O{sub 2}{sup −} radical. The photocatalytic degradation kinetics and a detailed mechanism were also proposed. Result demonstrated that the BiOBr/BiOI/Fe{sub 3}O{sub 4} can be magnetically recycled, and maintain high photocatalytic activity after reuse over five cycles. It

  9. REVIEW OF AGING DATA ON EPDM O-RINGS IN THE H1616 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E.

    2012-03-27

    Currently, all H1616 shipping package containers undergo annual re-verification testing, including containment vessel leak testing to verify leak-tightness (<1 x 10{sup -7} ref cc/sec air) as per ANSI N14.5. The purpose of this literature review is to supplement aging studies currently being performed by SRNL on the EPDM O-rings to provide the technical basis for extending annual re-verification testing for the H1616 shipping package and to predict the life of the seals at bounding service conditions. The available data suggest that the EPDM O-rings can retain significant mechanical properties and sealing force at or below bounding service temperatures (169 F or 76 C) beyond the 1 year maintenance period. Interpretation of available data suggests that a service life of at least 2 years and potentially 4-6 years may be possible at bounding temperatures. Seal lifetimes at lower, more realistic temperatures will likely be longer. Being a hydrocarbon elastomer, EPDM O-rings may exhibit an inhibition period due to the presence of antioxidants. Once antioxidants are consumed, mechanical properties and seal performance could decline at a faster rate. Testing is being performed to validate the assumptions outlined in this report and to assess the long-term performance of O-ring seals under actual service conditions.

  10. The magnetic and multiferroic properties in BiMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Liang-Jun, E-mail: zhailiangjun@jsut.edu.cn [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Wang, Huai-Yu [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    In this paper, the magnetic and multiferroic properties in the multiferroic material BiMnO{sub 3} are studied. A Heisenberg type Hamiltonian for BiMnO{sub 3} is proposed, in which the nearest and farther neighbors are considered. Thermodynamic quantities such as magnetization and magnetic susceptibility for different magnetic orderings under high pressure or magnetic field are calculated, and the simulation results fit the experimental results. Farther neighboring exchanges can result in the coexistence of the ferromagnetic ordering and certain antiferromagnetic ordering with no centrosymmetry. Our study demonstrates that the BiMnO{sub 3} should be the type-II multiferroic, and the ferromagnetic and ferroelectric orderings could coexist. The magnetic field control of ferroelectric polarization is also studied. The ferroelectric polarization is always suppressed by the external magnetic field. - Highlights: • A Hamiltonian including the nearest and farther neighbors of BiMnO{sub 3} is proposed. • Thermodynamic quantities for different magnetic orderings are calculated. • It is shown that BiMnO{sub 3} should be the type-II multiferroic. • The obtained results fit the experimental results quite well. • The mechanism of magnetic control of polarization is also studied.

  11. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  12. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    ). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of BiO 0.75 F 0.25 BiS 2 . The Tc in our sample is 5.3 K, at ambient pressure, ...

  13. Study on spectroscopic properties and effects of tungsten ions in 2Bi2O3-3GeO2/SiO2 glasses.

    Science.gov (United States)

    Yu, Pingsheng; Su, Liangbi; Cheng, Junhua; Zhang, Xia; Xu, Jun

    2017-04-01

    The 2Bi 2 O 3 -3GeO 2 /SiO 2 glass samples have been prepared by the conventional melt quenching technique. XRD patterns, absorption spectra, excitation-emission spectra and Raman measurements were utilized to characterize the synthesized glasses. When substitute SiO 2 for GeO 2 , the 0.4Bi 2 O 3 -(0.4-0.1)GeO 2 -(0.2-0.5)SiO 2 glasses exhibit strong emission centered at about 475nm (under 300nm excitation), and the decay constants are within the scope of 20-40ns. W doping into 2Bi 2 O 3 -3SiO 2 glass could increase the emission intensity of 470nm, and the W-doped 2Bi 2 O 3 -3SiO 2 glass has shown another emission at about 433nm with much shorter decay time (near 10ns). The 2Bi 2 O 3 -3GeO 2 /SiO 2 glass system could be the possible candidate for scintillator in high energy physics applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  15. Enhanced multiferroic properties in scandium doped Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Tyagi, A. K.

    2013-01-01

    Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical method. The phase purity of the samples was checked using powder X-rau diffraction technique. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . This is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1-x) Sc x O 9 (x = 0.1) nanoparticles. Hence it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials.

  16. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  17. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  18. Out-of-plane tilted Josephson junctions of bi-epitaxial YBa2Cu3O x thin films on tilted-axes NdGaO3 substrates with CeO2 seeding layer

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Kotelyanskii, Iosif M.; Luzanov, Valery A.; Zybtsev, Sergey G.; Hansen, Jorn Bindslev; Jacobsen, Claus S.

    2006-01-01

    Bi-epitaxial heterostructures YBa 2 Cu 3 O x (YBCO)/CeO 2 /NdGaO 3 were prepared on tilted-axes NdGaO 3 substrates using laser ablation technique. The heterostructures were patterned for electrical measurements using photolithography and ion-beam milling. Electrical anisotropy of the YBCO film was tested on the ion-beam etched surface. Bi-epitaxial junctions with four different orientations of the bi-epitaxial border were fabricated and studied. The measured I V curves showed flux-flow behavior with critical current density 2.5 x 10 4 A/cm 2 for the twist-type junctions and 1.5 x 10 3 A/cm 2 for [1 0 0]-tilt type junctions

  19. Improved photoelectrochemical performance of Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} heterostructure and degradation property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqi, E-mail: sfmlab@163.com; Yuan, Huan; Zhu, Zhenfeng

    2016-11-01

    Highlights: • A novel Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite was synthesized. • The Z-scheme system we made can remain the strong reducibility and oxidizability of the photocatalysts. • The solar light was made the utmost use both the ultraviolet and visible region light through the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite. - Abstract: In g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, the p–n junction between p-type Bi{sub 2}O{sub 3} and n-type BiPO{sub 4} was encapsulated by g-C{sub 3}N{sub 4} and a direct Z-scheme was built between g-C{sub 3}N{sub 4} and Bi{sub 2}O{sub 3}. The optical, morphological and photoelectrochemical (PEC) properties of BiPO{sub 4}, g-C{sub 3}N{sub 4}/BiPO{sub 4}, Bi{sub 2}O{sub 3}/BiPO{sub 4} and g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} hierarchical Z-scheme system were studied. More than 90% photodegradation of methyl orange (MO) with the exposure of simulated solar light was achieved within 160 min with the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, which displayed remarkably promoted photocatalytic activities than other samples. The electrochemical impedance spectra and photocurrent results also proved that efficient charge separation and better electron transport properties were achieved by g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}. In general, the addition of g-C{sub 3}N{sub 4} can guide the residual electrons on p-type Bi{sub 2}O{sub 3} to recombine with photoholes of g-C{sub 3}N{sub 4} and make sure the left carries exhibit stronger oxidation and reduction ability to boost the production of active groups.

  20. Microstructure and electrical properties of (1−x)[0.8Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.2Bi{sub 0.5}K{sub 0.5}TiO{sub 3}]-xBiCoO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Chen, Xiao-ming, E-mail: xmchen@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Qiu, Yan-zi [School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119 (China); Lian, Han-li [School of Science, Xi’an University of Posts and Telecommunications, Xi’an, 710121 (China); Chen, Wei-ting [Department of Electrical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan (China)

    2017-01-15

    The (1−x)[0.8Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.2Bi{sub 0.5}K{sub 0.5}TiO{sub 3}]-xBiCoO{sub 3} (x = 0, 0.02, 0.05, abbreviated as BNKT, BNKT-002Co, BNKT-005Co, respectively) lead-free ferroelectric ceramics were prepared via the solid state reaction method. The phase structure, microstructure, dielectric, ferroelectric, pyroelectric, and piezoelectric properties of the ceramics were investigated comparatively by using a combination of characterization techniques. All the samples exhibit typical X-ray diffraction peaks of ABO{sub 3} perovskite structure. The doping of BiCoO{sub 3} causes a decrease in lattice parameters and an increase in grain size of the ceramics. The Raman spectroscopy results suggest a lattice distortion due to the doping. It is found that BNKT-002Co and BNKT-005Co have higher depolarization temperatures compared with BNKT. The Curie-Weiss law and modified Curie-Weiss law explored a diffuse phase transition character for all the samples. The results of ultraviolet–visible diffuse reflectance suggests that BiCoO{sub 3}-doped ceramics possess higher defect concentration. The impedance analysis shows a temperature dependent relaxation behavior, and the activation energy for the electrical responses varies with the change of BiCoO{sub 3} amount. The ferroelectric and piezoelectric properties of the ceramics decrease due to the doping of BiCoO{sub 3}. Based on the results of the Rayleigh analysis, it was suggested that the differences in the electrical properties among the ceramics are closely related to the change in oxygen vacancy concentration. - Highlights: • BNKT-xCo ceramics were prepared by solid-state reaction method. • Electrical properties of BNKT ceramics are changed by the doping of BiCoO{sub 3}. • The doping causes a decrease in lattice parameters and an increase in grain size. • T{sub d} of the ceramics increases with increasing x. • Oxygen vacancies play key role in determining electrical properties of the ceramics.

  1. Contributions of conduction band offset to the enhanced separation efficiency of photoinduced charges for SrTiO3/Bi2O3 heterojunction semiconductor

    International Nuclear Information System (INIS)

    Zhang, Zhenlong; Zhu, Jichun; Li, Shengjun; Mao, Yanli

    2014-01-01

    SrTiO 3 /Bi 2 O 3 heterojunction semiconductor was prepared and characterized by X-ray diffraction, UV–vis absorption spectrum, and scanning electron microscope, surface photovoltage spectroscopy, and photoluminescence spectroscopy. The surface photovoltage spectra indicate that the separation efficiency of photoinduced charges for SrTiO 3 /Bi 2 O 3 was enhanced compared with that of SrTiO 3 or Bi 2 O 3 . The energy band diagram of SrTiO 3 /Bi 2 O 3 heterojunction was directly determined with X-ray photoelectron spectroscopy, and the conduction band offset between SrTiO 3 and Bi 2 O 3 was quantified to be 0.28±0.03 eV. The photoluminescence spectra display that the recombination rate of photoinduced carriers for SrTiO 3 /Bi 2 O 3 decreases compared with that of SrTiO 3 or Bi 2 O 3 , which is mainly due to the energy levels matching between them. Therefore the enhanced separation efficiency of photoinduced charges is resulting from the energy difference between the conduction band edges of SrTiO 3 and Bi 2 O 3 . -- Graphical abstract: Enhanced separation efficiency for SrTiO 3 /Bi 2 O 3 is resulting from the energy difference between the conduction band edges. Highlights: ●Heterojunction semiconductor of SrTiO 3 /Bi 2 O 3 was prepared. ●SrTiO 3 /Bi 2 O 3 presents enhanced separation efficiency. ●Conduction band offset between SrTiO 3 and Bi 2 O 3 is quantified. ●Recombination rate of SrTiO 3 /Bi 2 O 3 decreases compared with single phases

  2. New structural and electrical data on Bi-Mo mixed oxides with a structure based on [Bi12O14]∞ columns

    International Nuclear Information System (INIS)

    Vannier, R.N.; Abraham, F.; Nowogrocki, G.; Mairesse, G.

    1999-01-01

    The authors recently described a new family of oxide anion conductors with a structure based on [Bi 12 O 14 ] ∞ columns (Journal of Solid State Chemistry 122, 394 (1996)). The parent compound of this series can be formulated as Bi 26 Mo 10 O 69 and formation of a solid solution, in the Bi 2 O 3 -MoO 3 binary system, in the range 2.57 ≤ Bi/Mo ≤ 2.77 was established. The stoichiometry of this series was questioned by R. Enjalbert et al. (Journal of Solid State Chemistry 131, 236 (1997)), but confirmed by D.J. Buttrey et al. (Materials Research Bulletin 32, 947 (1997)). The first part of this paper is devoted to a refutation of criticisms by R. Enjalbert et al. In the second part, a comparison with other Bi 2 O 3 -based oxide anion conductors enables the authors to propose an iono-covalent description of this novel structure type, taking into account all the structural and electrical features, especially new neutron powder diffraction refinement and conductivity measurements under variable oxygen partial pressures

  3. Bi sub 2 Sr sub 2 Ca sub n sub - sub 1 Cu sub n O sub y films sputtered on substrates of Bi sub 2 Sr sub 2 CuO sub y single crystals

    CERN Document Server

    Katsurahara, K; Matsumoto, K; Fujiwara, N; Tanaka, H; Kishida, S

    2003-01-01

    We prepared Bi sub 2 Sr sub 2 CaCu sub 2 O sub y (Bi-2212) films on substrates of Bi sub 2 Sr sub 2 CuO sub y (Bi-2201) single crystals by a rf magnetron sputtering method, where He and O sub 2 mixture sputtering gas and an off-axis geometry were used. The EPMA measurement indicated that the films deposited on the Bi-2201 single crystal had approximately the same composition as those on MgO substrate, which showed a Bi-221 single-phase. The film deposited on the Bi-2201 single crystal post-annealed at 500degC for 0.5h showed a metallic temperature dependent resistance in the normal state and the superconducting transition (T sub c sup o sup n sup s sup e sup t) of about 80 K. Therefore, the Bi-2212 films are considerate to grow on the substrate of the Bi-2201 singe crystal. (author)

  4. Phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Mao, Chaoliang; Liu, Zhen; Dong, Xianlin; Cao, Fei; Wang, Genshui, E-mail: genshuiwang@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2015-03-02

    The phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature T{sub d}. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under T{sub d} indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE and AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics but also they may be helpful for further investigation on lead-free ceramics.

  5. High dielectric permittivity in the microwave region of SrBi2Nb2O9 (SBN) added La2O3, PbO and Bi2O3, obtained by mechanical alloying

    Science.gov (United States)

    Rocha, M. J. S.; Silva, P. M. O.; Theophilo, K. R. B.; Sancho, E. O.; Paula, P. V. L.; Silva, M. A. S.; Honorato, S. B.; Sombra, A. S. B.

    2012-08-01

    This paper presents the microwave dielectric properties and a structural study of SrBi2Nb2O9 (SBN) added La2O3, PbO or Bi2O3 obtained by a solid state procedure. High-energy mechanical milling was used to reduce the particle size, which allows for a better shaping of the green body and an increased reactivity. The mechanical milling activation process produced a reduced sintering temperature in the material, decreasing the loss of the volatile elements and controlling the growth of the grain that is produced when a high temperature is required to obtain dense ceramics. The incorporation of La3+, or Pb2+, or Bi3+ of different amounts (0, 3, 5, 10 and 15 wt%) was used to improve the densification without changing the crystal structure, since with a low doping content these ions can occupy the A site of the perovskite blocks; they can also occupy the Bi3+ sites in Bi2O3 layers. A single orthorhombic phase was formed after calcination at 800 °C for 2 h. X-ray diffraction, Fourier transformation, infrared and Raman spectroscopy have been carried out in order to investigate the effects of doping on SBN. The dielectric permittivity (ɛ‧r) and loss in the microwave region (2-4 GHz) of SBN ceramics with additions of Bi2O3, La2O3 and PbO were studied. Higher values of permittivity (ɛr‧ = 154.6) have been obtained for the SBN added La (15 wt%) a lower loss (tg δ = 0.01531) was also achieved in the SBN added La (15 wt%) sample with PVA and TEOS, respectively. The samples that showed the highest dielectric permittivities were all lanthanum doped, all with values of permittivity above 90. A comparative study associated with different types of binders was completed (with glycerin, PVA and TEOS). This procedure allowed us to obtain phases at lower temperatures than usually appear in the literature. The microwave dielectric properties (permittivity and loss) in the region 2-4 GHz, were studied for all samples. The structural and microwave dielectric properties of SBN show a

  6. Rose-like I-doped Bi_2O_2CO_3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    International Nuclear Information System (INIS)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng

    2017-01-01

    Highlights: • DFT reveals I"− can partially substitute CO_3"2"−to narrow the bandgap of Bi_2O_2CO_3. • Sodium citrate play a key role on the formation of rose-like I-doped Bi_2O_2CO_3. • Rose-like I-doped Bi_2O_2CO_3 show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi_2O_2CO_3, I"− can partly replace the CO_3"2"−in Bi_2O_2CO_3 to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi_2O_2CO_3 microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi_2O_2CO_3 microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi_2O_2CO_3 by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi_2O_2CO_3 microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  7. Enhanced photocatalytic activity of Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang; Yu, Wei [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Zhu, Guang [Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000 (China); Niu, Lengyuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Sun, Chang Q. [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-08-30

    Graphical abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi{sub 2}O{sub 3} (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag{sub 2}O.

  8. Research on degradation of vacuum O-rings under gamma radiation

    CERN Document Server

    Ino, H; Saitô, Y; Kubo, T; Kinsho, M

    2003-01-01

    The high-intensity proton accelerator being constructed by JAERI and KEK will generates greater beam power than conventional accelerators. The radiation emission due to beam losses will therefore increase. Since vacuum O-rings installed in the accelerator will be degraded badly by the radiation, there is need to find an O-ring that has more resistant to radiation. To find an O-ring that has better radiation resistant than that of the fluororubber used for conventional accelerators in general, some O-rings which are expected to have enough resistant to the radiation were irradiated, and estimated a degradation by measurement of outgassing rate, hardness, permeation time of helium gas, and an outward observation. Most of the O-rings were irradiated in an oxygen free atmosphere and in the air. The irradiations were carried out at room temperature in Co-60 gamma irradiation facility until a dose of 1 MGy was reached. The radiation resistance of PURE-RUBBER O-ring showed somewhat better than that of the fluororubb...

  9. CaO-matrix processing of MnBi alloys for permanent magnets

    Directory of Open Access Journals (Sweden)

    A. M. Gabay

    2017-05-01

    Full Text Available The possibility to suppress agglomeration of MnBi alloy particles during milling and their unwanted sintering during subsequent annealing was explored by embedding the particles in CaO through co-milling. A 15 h annealing of the micron-sized MnBi particles embedded in the CaO matrix at 300 °C is not accompanied by sintering or growth of the particles while it significantly increases their coercivity – presumably by healing the milling-induced crystal defects. After separation from the CaO matrix, the annealed MnBi powder combines a calculated energy product of 10 MGOe with a room-temperature coercivity of 14.4 kOe. At the same time, the partial loss and degradation of the MnBi low-temperature phase during warm compaction of the powders makes the effect of the CaO-matrix annealing less pronounced in the case of fully dense magnets; the residue from the solvents employed for the removal of the CaO might have contributed to the decline of the properties. Still, a relatively high room-temperature coercivity of 8.5 kOe was obtained for the fuslly-dense MnBi magnet exhibiting an energy product of 5.3 MGOe.

  10. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses

    Science.gov (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.

    2018-04-01

    In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.

  11. Radiological assessment of breast density by visual classification (BI-RADS) compared to automated volumetric digital software (Quantra): implications for clinical practice.

    Science.gov (United States)

    Regini, Elisa; Mariscotti, Giovanna; Durando, Manuela; Ghione, Gianluca; Luparia, Andrea; Campanino, Pier Paolo; Bianchi, Caterina Chiara; Bergamasco, Laura; Fonio, Paolo; Gandini, Giovanni

    2014-10-01

    This study was done to assess breast density on digital mammography and digital breast tomosynthesis according to the visual Breast Imaging Reporting and Data System (BI-RADS) classification, to compare visual assessment with Quantra software for automated density measurement, and to establish the role of the software in clinical practice. We analysed 200 digital mammograms performed in 2D and 3D modality, 100 of which positive for breast cancer and 100 negative. Radiological density was assessed with the BI-RADS classification; a Quantra density cut-off value was sought on the 2D images only to discriminate between BI-RADS categories 1-2 and BI-RADS 3-4. Breast density was correlated with age, use of hormone therapy, and increased risk of disease. The agreement between the 2D and 3D assessments of BI-RADS density was high (K 0.96). A cut-off value of 21% is that which allows us to best discriminate between BI-RADS categories 1-2 and 3-4. Breast density was negatively correlated to age (r = -0.44) and positively to use of hormone therapy (p = 0.0004). Quantra density was higher in breasts with cancer than in healthy breasts. There is no clear difference between the visual assessments of density on 2D and 3D images. Use of the automated system requires the adoption of a cut-off value (set at 21%) to effectively discriminate BI-RADS 1-2 and 3-4, and could be useful in clinical practice.

  12. The influence of Bi content on dielectric properties of Bi4–xTi3O12–1.5x ceramics

    Directory of Open Access Journals (Sweden)

    Hui Gong

    2017-06-01

    Full Text Available A kind of lead-free dielectric materials, such as the bismuth layered perovskite-type structure of Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04, was prepared by the conventional solid-state method at 800∘C and sintered at 1100∘C. The variation of structure and electrical properties with different Bi concentration was studied. All the Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04 samples exhibited a single structured phase. SEM could be a better approach to present the microstructure of Bi4–xTi3O12–1.5x (x=0.04,0.02,0,–0.02,–0.04 ceramics. It could be found that the grain size of Bi4.02Ti3O12.03 sintered at 1100∘C was smaller than that of others among the five samples through grain size mechanics. Through impedance spectra analysis, we knew, when the Bi content was fixed, that the dielectric constant and the loss values increased with the decrease of frequency. The Curie temperature of the five samples was about 670∘C. In particular, while at the frequency of 100kHz, the lowest loss was 0.001 when Bi content was 3.98. The Bi4.02Ti3O12.03 ceramics with the minimum grain size had highest dielectric constant and the relatively low loss. Due to its high Curie temperature, high permittivity and low loss, the Bi4Ti3O12 (BIT ceramics have a broad application prospect in high density memory, generator, sensor, ferroelectric tunnel junctions and so on.

  13. Facile Solvothermal Synthesis of BiOCl/ZnO Heterostructures with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yong-Fang Li

    2014-01-01

    Full Text Available Well-defined nanosheet-assembled (BiOClx(ZnO1−x nanoflowers were synthesized by a solvothermal method. It was found that ZnO nanoparticles were anchored on the flower-like BiOCl nanostructures, as demonstrated by varying the initial compositions of the Bi precursor and the volume ratios of mixed solvents (ethylene glycol to water. The as-prepared (BiOCl0.6(ZnO0.4 nanocomposites showed enhanced photocatalytic activity toward rhodamine B degradation under ultraviolet (UV irradiation. And the photocatalytic mechanism was discussed in detail.

  14. Modification of TiO{sub 2} nanorods by Bi{sub 2}MoO{sub 6} nanoparticles for high performance visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Zhu Li [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Yu Yuxiang; Zhang Wenhui; Hou Meifang [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2011-10-13

    Highlights: > Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts. > Effective separation of photoexcited electrons and holes. > High visible light photocatalytic activity. - Abstract: In this work, TiO{sub 2} nanorods were prepared by a hydrothermal process and then Bi{sub 2}MoO{sub 6} nanoparticles were deposited onto the TiO{sub 2} nanorods by a solvothermal process. The nanostructured Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites was evaluated by degradation of methylene blue. The Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites exhibit higher catalytic activity than pure Bi{sub 2}MoO{sub 6} and TiO{sub 2} for degradation of methylene blue under visible light irradiation ({lambda} > 420 nm). Further investigation revealed that the ratio of Bi{sub 2}MoO{sub 6} to TiO{sub 2} in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi{sub 2}MoO{sub 6}:TiO{sub 2} = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.

  15. Synthesis and crystal structure analysis of titanium bismuthide oxide, Ti{sub 8}BiO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Shinsaku; Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp

    2016-08-05

    Silver metallic luster columnar single crystals of a novel compound, Ti{sub 8}BiO{sub 7}, were synthesized using a bismuth flux. Ti{sub 8}BiO{sub 7} having a new structure type crystallizes in an orthorhombic cell, a = 7.8473(4) Å, b = 16.8295(10) Å, c = 3.0256(2) Å, space group: Cmmm. The Ti atoms enter the sites of isosceles-triangle 3-fold and rectangular 4-fold coordination of O atoms and the site of octahedral 6-fold coordination of O and Bi atoms. O atoms are in the rectangles, tetrahedra, and orthogonal pyramids of Ti atoms. The electrical resistivity measured for a Ti{sub 8}BiO{sub 7} single crystal in the c-axis direction was 6.2 × 10{sup −7} Ωm at 300 K and 1.3 × 10{sup −7} Ωm at 10 K. - Highlights: • A novel bismuthide oxide containing titanium, Ti{sub 8}BiO{sub 7}, was synthesized. • Single crystals of Ti{sub 8}BiO{sub 7} were grown by heating a mixture of Ti and Bi{sub 2}O{sub 3}. • Single crystal X-ray diffraction revealed that Ti{sub 8}BiO{sub 7} has a new structure type. • O atoms and Bi atoms are surrounded by Ti atoms in the structure. • Metallic conduction of Ti{sub 8}BiO{sub 7} was exhibited.

  16. Enhancement of the chemical stability in confined δ-Bi2O3

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Andreasen, Jens Wenzel

    2015-01-01

    Bismuth-oxide-based materials are the building blocks for modern ferroelectrics1, multiferroics2, gas sensors3, light photocatalysts4 and fuel cells5,6. Although the cubic fluorite δ-phase of bismuth oxide (δ-Bi2O3) exhibits the highest conductivity of known solid-state oxygen ion conductors5, its...... instability prevents use at low temperature7–10. Here we demonstrate the possibility of stabilizing δ-Bi2O3 using highly coherent interfaces of alternating layers of Er2O3-stabilized δ-Bi2O3 and Gd2O3-doped CeO2. Remarkably, an exceptionally high chemical stability in reducing conditions and redox cycles...

  17. A sea cucumber-like BiOBr nanosheet/Zn2GeO4 nanorod heterostructure for enhanced visible light driven photocatalytic activity

    Science.gov (United States)

    Zhang, Zhiping; Ge, Xin; Zhang, Xueyu; Duan, Lianfeng; Li, Xuesong; Yang, Yue; Lü, Wei

    2018-01-01

    In present work, a two-step hydrothermal/solvothermal method was developed to fabricate sea cucumber-like p-n heterojunctions of p-BiOBr/n-Zn2GeO4. The BiOBr nanosheets were grafted onto the surface of Zn2GeO4 nanorods. BiOBr/Zn2GeO4 nanocomposites exhibit remarkable photocatalytic activity under visible-light irradiation, and photocatalytic activity was studied in the catalytic test of rhodamine B decolorization. The mechanism for improved photocatalytic activity is interpreted in terms of the formation of type II band alignment between BiOBr and Zn2GeO4, which is confirmed by UV-vis diffuse absorption and VB-XPS spectra. BiOBr nanosheet as an admirable electron transport medium provide desirable specific surface area for the nanocomposite and a suitable band gap for heterojunction structure. Furthermore, scavenger experiments confirmed that h+ and {{{{O}}}2}\\cdot - were the main oxygen active species in the decolorization process.

  18. Narrow band gap and visible light-driven photocatalysis of V-doped Bi{sub 6}Mo{sub 2}O{sub 15} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Qin, Chuanxiang; Huang, Yanlin [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong, E-mail: yrwang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2017-02-28

    Highlights: • V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} was synthesized by the electrospinning preparation. • The band gap energy of Bi{sub 6}Mo{sub 2}O{sub 15} was greatly reduced by V-doping in the lattices. • V-doped Bi{sub 6}Mo{sub 2}O{sub 15} shows high activity in RhB degradation under visible light. • Crystal structure of Bi{sub 6}Mo{sub 2}O{sub 15} is favorable for high photocatalytic capacity. - Abstract: Pure and V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} (3Bi{sub 2}O{sub 3}·2MoO{sub 3}) photocatalysts were synthesized through electrospinning, followed by low-temperature heat treatment. The samples developed into nanoparticles with an average size of approximately 50 nm. The crystalline phases were verified via X-ray powder diffraction measurements (XRD). The surface properties of the photocatalysts were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses. The UV–vis spectra showed that V doping in Bi{sub 6}Mo{sub 2}O{sub 15} shifted the optical absorption from the UV region to the visible-light wavelength region. The energy of the band gap of Bi{sub 6}Mo{sub 2}O{sub 15} was reduced by V doping in the lattices. The photocatalytic activities of the pure and V-doped Bi{sub 6}Mo{sub 2}O{sub 15} were tested through photodegradation of rhodamine B (RhB) dye solutions under visible light irradiation. Results showed that 20 mol% V-doped Bi{sub 6}Mo{sub 2}O{sub 15} achieved efficient photocatalytic ability. RhB could be degraded by V-doped Bi{sub 6}Mo{sub 2}O{sub 15} in 2 h. The photocatalytic activities and mechanisms were discussed according to the characteristics of the crystal structure and the results of EIS and XPS measurements.

  19. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Sudakar, C.; Mocherla, Pavana S.V.; Mandal, Balaji P.; Jayakumar, Onnatu D.; Tyagi, Avesh K.

    2012-01-01

    In this study we report the synthesis of undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . A magnetization of 0.144 μB/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles. Thus it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been demonstrated. The Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi 2 Fe 4 O 9 . Highlights: ► Phase pure Bi 2 Fe 4 O 9 nanostructures synthesized using a facile sonochemical technique. ► Nanoparticles show a weak ferromagnetic order at room temperature. ► Sc 3+ doping in Bi 2 Fe 4 O 9 nanoparticles alters their magnetic and ferroelectric properties. ► A

  20. Study of magnetization and magnetoelectricity in CoFe2O4/BiFeO3 core-shell composites

    Science.gov (United States)

    Kuila, S.; Tiwary, Sweta; Sahoo, M. R.; Barik, A.; Babu, P. D.; Siruguri, V.; Birajdar, B.; Vishwakarma, P. N.

    2018-02-01

    CoFe2O4 (core)/BiFeO3 (shell) nanoparticles are prepared by varying the relative molar concentration of core and shell materials (40%CoFe2O4-60%BiFeO3, 50%CoFe2O4-50%BiFeO3, and 60%CoFe2O4-40%BiFeO3). The core-shell nature is confirmed from transmission electron microscopy on these samples. A plot of ΔM (=MFC-MZFC) vs temperature suggests the presence of two types of spin dynamics: (a) particle size dependent spin blocking and (b) spin-disorder. These two spin dynamic processes are found to contribute independently to the generation of magnetoelectric voltage. Very clear first order and second order magnetoelectric voltages are recorded. The resemblance of the first order magnetoelectric coefficient vs temperature plot to that of building up of order parameters in the mean field theory suggests that spin disorder can act like one of the essential ingredients in building the magnetoelectric coupling. The best result is obtained for the 50-50 composition sample, which may be due to better coupling of magnetostrictive CoFe2O4, and piezoelectric BiFeO3, because of the optimum thickness of shell and core.

  1. Síntese e caracterização de perovesquites do sistema BiFeO3

    OpenAIRE

    Carvalho, Teresa Maria Tranchete de

    2007-01-01

    Dissertação de Mestrado em Física e Química para o Ensino, apresentada à Universidade de Trás-os-Montes e Alto Douro Os materiais multiferróicos, como o caso do BiFeO3, são bastante promissores em termos tecnológicos, possuindo uma potencial aplicação em sensores, memórias não voláteis e actuadores. A perovesquite BiFeO3 apresenta vantagens relativamente a outros compostos multiferróicos: elevada temperatura de Curie (TC=1100 K); elevada temperatura de Néel (TN=640 K); não contém chumbo...

  2. Vastly Enhanced BiVO4 Photocatalytic OER Performance by NiCoO2 as Cocatalyst

    KAUST Repository

    Palaniselvam, Thangavelu

    2017-08-07

    Here, a simple and efficient preparation of NiCoO nanoparticle modified nanoporous bismuth vanadate (BiVO) thin film and its application in photoelectrocatalytic (PEC) oxygen evolution reaction (OER) is demonstrated. The role of NiCoO in the composite electrode (BiVO/NiCoO) is twofold: OER cocatalyst and band structure modifier. It improves surface reaction kinetics for PEC OER and enhances charge separation efficiency simultaneously, which is believed to be a determining factor for the unprecedentedly high PEC OER performance of this BiVO/NiCoO nanocomposite. The photocurrent density of 3.6 mA cm at 1.23 V versus RHE in 0.1 m potassium phosphate buffered (pH = 7) electrolyte by BiVO/NiCoO is three times that of BiVO and significantly higher than most literature values. The BiVO/NiCoO nanocomposite shows/possess a high charge separation efficiency (η) of ≈72% as compared to only 23% for pure nanoporous BiVO at 1.23 V versus RHE, which demonstrates convincing role of NiCoO in the composite electrode. Both the excellent photocurrent density and great operational stability of this BiVO/NiCoO nanocomposite makes it a promising photocatalytic material for practical applications.

  3. Acurácia dos achados mamográficos do câncer de mama: correlação da classificação BI-RADS e achados histológicos Accuracy of mammographic findings in breast cancer: correlation between BI-RADS classification and histological findings

    Directory of Open Access Journals (Sweden)

    José Hermes Ribas do Nascimento

    2010-04-01

    Full Text Available OBJETIVO: A proposta deste estudo foi avaliar a acurácia da classificação BI-RADS® na mamografia. Os pontos secundários foram descrever a frequência de apresentação dos diferentes achados mamográficos e avaliar a concordância entre observadores. MATERIAIS E MÉTODOS: Os exames de 115 pacientes, encaminhados para core biopsy, foram reavaliados independentemente por dois médicos especialistas, cegados, utilizando a recomendação do BI-RADS. Posteriormente, os exames foram comparados com a histologia. A acurácia da classificação BI-RADS na mamografia foi avaliada. A concordância entre os médicos foi calculada pela estatística kappa (κ de Cohen e as diferenças nos grupos de comparação foram analisadas com teste qui-quadrado. RESULTADOS: Esta pesquisa demonstrou que a acurácia mamográfica oscilou de 75% a 62% na diferenciação entre lesões benignas de malignas com o uso do BI-RADS. Houve importante concordância na descrição das margens dos nódulos (κ= 0,66. Baixa concordância foi identificada na descrição dos contornos (formas dos nódulos (κ= 0,40 e na descrição das calcificações, tanto em relação à sua distribuição (κ= 0,24 como também em relação à morfologia (κ= 0,36. CONCLUSÃO: O presente estudo demonstrou que o método é acurado na diferenciação de lesões benignas de malignas. A concordância foi fraca na análise das calcificações quanto a morfologia e distribuição, no entanto, identificou-se elevação progressiva dos valores preditivos positivos nas subcategorias 4.OBJECTIVE: The present study was aimed at evaluating the BI-RADS® classification accuracy in mammography. Additionally, the frequency of different findings was described and the interobserver agreement was evaluated. MATERIALS AND METHODS: Mammographic images of 115 patients were independently and blindly reviewed by two specialists in compliance with BI-RADS recommendations, and later compared with histological data. The

  4. Fabricaion of improved novel p–n junction BiOI/Bi{sub 2}Sn{sub 2}O{sub 7} nanocomposite for visible light driven photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weicheng [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Cen, Chaoping [The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Guangzhou 510655 (China)

    2015-12-15

    Graphical abstract: - Highlights: • A p–n heterojunction photocatalyst BiOI/Bi{sub 2}Sn{sub 2}O{sub 7} was prepared by hydrothermal method. • 4% BiOI/Bi{sub 2}Sn{sub 2}O{sub 7} with maximal photocatalytic degradation efficiency (RhB) of 99.9%. • A specific degradation routes of RhB was illustrated. • The photocatalytic mechanism is discussed according to p–n junction principles. • • O{sub 2}{sup −} and h+ are the main reactive species for the degradation of RhB. - Abstract: A series of novel p−n junction photocatalysts BiOI/Bi{sub 2}Sn{sub 2}O{sub 7} (BiOI/BSO) were successfully fabricated via a facile hydrothermal method. The phase structures, morphologies and optical properties of the as-prepared samples were studied by XRD, TEM, HRTEM, BET, XPS, UV–vis DRS and photoluminescence (PL) spectroscopy. The results showed that BiOI/BSO heteronanostructures displayed much higher photocatalytic activity than pure BSO and BiOI for the degradation of rhodamine B (RhB). The best photocatalytic activity of BiOI/BSO with almost 99.9% RhB degradation situated at molar percentage ratio of 4% after 6 h irradiation. The enhanced photocatalytic performance of BiOI/BSO could be mainly attributed to the formation of the heterojunction between p-BiOI and n-BSO, which effectively restrains the recombination of photoinduced electron–hole pairs. Moreover, the study of radical scavengers affirmed that h{sup +} and • O{sub 2}{sup −} were the primary reactive species for the degradation of RhB.

  5. Simulated-sunlight-activated photocatalysis of Methyl Orange using carbon and lanthanum co-doped Bi{sub 2}O{sub 3}–TiO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hao [Institute of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010 (China); Song, Mianxin, E-mail: songmianxin@swust.edu.cn [Institute of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010 (China); Yi, Facheng [Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010 (China); Bian, Liang [The Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011 (China); Liu, Pan [Institute of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Shuai [Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-09-25

    The C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} composite was prepared by sol-gel method. The physicochemical properties of as-synthesized samples were characterized by the TG-DSC, FESEM, EDS, XRD, XPS, TEM, HRTEM and UV–vis DRS. Besides, their photoactivities were valuated by degrading Methyl Orange. The experimental results showed that the C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} composite has anatase crystal structure and exhibits a remarkable optical absorption in UV–visible light region. In addition, carbon and lanthanum are deposited in the Bi{sub 2}O{sub 3}–TiO{sub 2} composite in the form of amorphous carbon and oxide, respectively. When the concentration of C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} loading was 2.5 g/L, the decomposition rate of 25 mg/L Methyl Orange reached 94.3% under the irradiation of the 500 W xenon lamp after 60 min. The corresponding degradation rate constant of C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} was 2.1, 9.2, 1.3 and 6.8 times higher than that of P25, Bi{sub 2}O{sub 3}–TiO{sub 2}, C/Bi{sub 2}O{sub 3}–TiO{sub 2} and La/Bi{sub 2}O{sub 3}–TiO{sub 2}, respectively. The reuse evaluation of C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} indicated that its photocatalytic activity has good stability. - Highlights: • C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} composite was prepared by sol-gel method. • Carbon is deposited in Bi{sub 2}O{sub 3}–TiO{sub 2} composite in the form of amorphous carbon. • Lanthanum is deposited in Bi{sub 2}O{sub 3}–TiO{sub 2} composite in the form of oxide. • C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} exhibited superior photocatalytic activity than Bi{sub 2}O{sub 3}–TiO{sub 2}, C/Bi{sub 2}O{sub 3}–TiO{sub 2} and La/Bi{sub 2}O{sub 3}–TiO{sub 2}. • C/La/Bi{sub 2}O{sub 3}–TiO{sub 2} has good stability.

  6. The highly enhanced visible light photocatalytic degradation of gaseous o-dichlorobenzene through fabricating like-flowers BiPO{sub 4}/BiOBr p-n heterojunction composites

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xuejun [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Dong, Yuying, E-mail: dongy@dlnu.edu.cn [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Cui, Yubo; Ou, Xiaoxia [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian, 116600 (China); Qi, Xiaohui [College of Life Science, Dalian Nationalities University, Dalian, 116600 (China)

    2017-01-01

    Highlights: • Like-flowers BiPO{sub 4}/BiOBr was fabricated by mixing in solvent method. • o-Dichlorobenzene removal efficiency was 53.6% using BiPO{sub 4}/BiOBr. • The p–n junction improved o-dichlorobenzene degradation activity. - Abstract: In this paper, in order to enhance photo-induced electron-hole pairs separation of BiOBr, flowers-like BiPO{sub 4}/BiOBr p-n heterojunction composites was fabricated by a mixing in solvent method. The as-prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV–vis absorption spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and N{sub 2} adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of gaseous o-dichlorobenzene under visible light irradiation. Due to its strong adsorption capacity and the formation of p-n heterojunction, compared with BiPO{sub 4} and BiOBr, the BiPO{sub 4}/BiOBr composites showed higher photocatalytic activity in the degradation of gaseous o-DCB under visible light. Among them, 2% BiPO{sub 4}/BiOBr showed the maximum value of the activity, whose degradation rate was about 2.6 times as great as the pure BiOBr. Furthermore, the OH· was confirmed the main active species during the photocatalytic process by the trapping experiments. The outstanding performance indicated that the photocatalysts could be applied to air purification for chlorinated volatile organic compound.

  7. Violet-green excitation for NIR luminescence of Yb3+ ions in Bi2O3-B2O3-SiO2-Ga2O3 glasses.

    Science.gov (United States)

    Li, Weiwei; Cheng, Jimeng; Zhao, Guoying; Chen, Wei; Hu, Lili; Guzik, Malgorzata; Boulon, Georges

    2014-04-21

    60Bi(2)O(3)-20B(2)O(3)-10SiO(2)-10Ga(2)O(3) glasses doped with 1-9 mol% Yb(2)O(3) were prepared and investigated mainly on their violet-green excitation for the typical NIR emission of Yb(3+), generally excited in the NIR. Two violet excitation bands at 365 nm and 405 nm are related to Yb(2+) and Bi(3+). 465 nm excitation band and 480 nm absorption band in the blue-green are assigned to Bi(0) metal nanoparticles/grains. Yb-content-dependence of the excitation and absorption means that Bi(0) is the reduced product of Bi(3+), but greatly competed by the redox reaction of Yb(2+) ↔ Yb(3+). It is proved that the violet-green excitations result in the NIR emission of Yb(3+). On the energy transfer, the virtual level of Yb(3+)-Yb(3+) as well as Bi(0) dimers probably plays an important role. An effective and controllable way is suggested to achieve nano-optical applications by Bi(0) metal nanoparticles/grains and Yb(3+).

  8. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2. ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C GUPTA A K GANGULI. Volume 40 Issue 6 October 2017 pp 1121-1125 ...

  9. Aurivillius-Popper mixed superconductors in BiO--CuO--(Sr/sub 0.5/, Ca/sub 0.5/)O system

    International Nuclear Information System (INIS)

    Fukuhara, M.; Bhalla, A.S.; Mulay, L.N.; Newnham, R.E.

    1989-01-01

    We report the effect of inhomogeneities on the electric resistivity and ac magnetic susceptibility in Aurivillius-like bismuth mixed phase oxides of the BiO--Cuo--(Sr/sub 0.5/, Ca/sub 0.5/)O system and propose a crystal structure of the major phase having highest T/sub c/. Nominal Aurivillius compositions with molar ratios of BiO/(Sr/sub 0.5/, Ca/sub 0.5/)O = 1/2 are superconductors with T/sub c/ ranging from 83 to 107 K, and are accompanied by a large expansion during sintering due to the formation of Kirkendall voids. T/sub c/ increases with decreasing of the c lattice parameter. An oxide BiSrCaCu 2 O/sub x/ (n = 2) shows a maximum T/sub c/ value of 107 K and an onset of superconductivity at a much higher temperature. It seems that the structure of Bi 2 Sr 2 CaCu 2 O/sub x/ consists of an Aurivillius-like phase having two perovskite layers and a Popper mixed phase. The ac magnetic susceptibility showed an overall decrease in susceptibility with time up to 220 days. This appears to be related to the relief of intralattice strain

  10. Fabrication of ZnS-Bi-TiO2 Composites and Investigation of Their Sunlight Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Xuewei Dong

    2014-01-01

    Full Text Available The ZnS-Bi-TiO2 composites were prepared by the sol-gel method and were characterized by X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM, X-ray diffraction (XRD and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS. It is found that the doped Bi as Bi4+/Bi3+ species existed in composites, and the introducing of ZnS enhanced further the light absorption ability of TiO2 in visible region and reduced the recombination of photogenerated electrons and holes. As compared to pure TiO2, the ZnS-Bi-TiO2 exhibited enhanced photodegradation efficiency under xenon lamp irradiation, and the kinetic constant of methyl orange removal with ZnS-Bi-Ti-0.005 (0.0141 min−1 was 3.9 times greater than that of pure TiO2 (0.0029 min−1, which could be attributed to the existence of Bi4+/Bi3+ species, the ZnS/TiO2 heterostructure.

  11. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  12. Melt processing of Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Zanotto, E.D.; Cronin, J.P.; Dutta, B.

    1988-01-01

    Several Bi-Ca-Sr-Cu-O compositions were melted in Al/sub 2/O/sub 3/ or Pt crucibles at temperatures between 1050C and 1200C. As-quenched specimens crystallized from the upper surfaces, while the bottom layers were glassy. Glass formation was improved for higher Bi/sub 2/O/sub 3/ concentrations. The crystalline portions were highly conductive, while the glassy layers were insulating. Both did not show superconductivity down to 10K. Thermal treatment in air caused a dramatic effect on the electronic properties; and annealing at 865C for long periods converted the two types of specimens (previously glassy or crystalline) to superconductors, at least for one composition. Aluminum impurity (up to 8.6 atom. pct.) had no detectable effect on the transition temperatures, i.e., T/sub c/ 85K for all superconducting samples. The flake-like (Bi/sub 2/Ca/sub 1/Sr/sub 2/Cu/sub 2/) phase, reported by other authors, was responsible for superconductivity

  13. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    Science.gov (United States)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  14. Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination

    Science.gov (United States)

    Cheng, Lijun; Hu, Xumin; Hao, Liang

    2017-06-01

    Bi2O3 photocatalyst coatings derived from Bi coatings were first prepared by a two-step method, namely ball milling followed by the calcination process. The as-prepared samples were characterized by XRD, SEM, XPS and UV-Vis spectra, respectively. The results showed that monoclinic Bi2O3 coatings were obtained after sintering Bi coatings at 673 or 773 K, while monoclinic and triclinic mixed phase Bi2O3 coatings were obtained at 873 or 973 K. The topographies of the samples were observably different, which varied from flower-like, irregular, polygonal to nanosized particles with the increase in calcination temperature. Photodegradation of malachite green under simulated solar irradiation for 180 min showed that the largest degradation efficiency of 86.2% was achieved over Bi2O3 photocatalyst coatings sintered at 873 K. The Bi2O3 photocatalyst coatings, encapsulated with Al2O3 ball with an average diameter around 1 mm, are quite easily recycled, which provides an alternative visible light-driven photocatalyst suitable for practical water treatment application.

  15. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  16. Characterization of BaBi2Ta2O9 prepared through amorphous precursor

    International Nuclear Information System (INIS)

    Maczka, M.; Kepinski, L.; Hermanowicz, K.; Dacko, S.; Czapla, Z.; Hanuza, J.

    2011-01-01

    Research highlights: → Formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. → Mechanochemical activation lowers the synthesis temperature by 150-200 deg. C. → The lateral size of the synthesized plate-like crystallites is about 100-200 nm. → Properties of the synthesized crystallites are different from the bulk material. - Abstract: Formation of ferroelectric BaBi 2 Ta 2 O 9 by annealing of an amorphous precursor prepared by high energy milling in ball mill has been studied by X-ray, scanning electron microscopy (SEM), Raman, infrared spectroscopy (IR), diffuse reflectivity and dielectric measurements. Our results show that formation of Bi-layered BaBi 2 Ta 2 O 9 proceeds via an intermediate fluorite phase. Mechanochemical activation allows obtaining BaBi 2 Ta 2 O 9 at short time and much lower temperatures than those required in a conventional solid state reaction. The lateral size of the plate-like crystallites is about 100-200 nm and properties of the synthesized particles are different compared to the bulk material.

  17. Analysis of multiferroic properties in BiMnO3 thin films

    International Nuclear Information System (INIS)

    Grizalez, M; Mendoza, G A; Prieto, P

    2009-01-01

    Textured BiMnO 3 [111] thin films on SrTiO 3 (100) and Pt/TiO 2 /SiO 2 substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO 3 films. The films grown on SrTiO 3 (100) showed higher crystalline quality than those developed on Pt/TiO 2 /SiO 2 . Through optimized oxygen pressure of 5x10 -2 mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO 3 film was improved with respect to the previously reported value of 2x10 -1 mbar. The values of spontaneous polarization (P s ), remnant polarization (P r ), and coercive field (F c ) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P s and P r values and a low F c ). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO 3 films grown on SrTiO 3 and Pt/TiO 2 /SiO 2 substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  18. Fast preparation of Bi2GeO5 nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    International Nuclear Information System (INIS)

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-01-01

    Highlights: ► Bi 2 GeO 5 nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi 2 GeO 5 nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi 2 GeO 5 nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi 2 GeO 5 . -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi 2 GeO 5 nanoflakes. Ag nanoparticles were subsequently deposited on the Bi 2 GeO 5 nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi 2 GeO 5 nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi 2 GeO 5 . The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  19. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Hankwon Lim

    2017-06-01

    Full Text Available An integrated Bi2O3 (i-Bi2O3 nanostructure with a particle size 10 nm inducing agglomerated structure were synthesized by dissolving bismuth nitrate pentahydrate in diethylene glycol at 180 °C with post heat treatment. The prepared i-Bi2O3 nanostructures were employed for the construction of Au/i-Bi2O3 composite system and characterized by X-ray diffraction pattern, UV–visible diffuse reflectance spectroscopy (DRS, and transmission electron microscopy, X-ray photoemission spectroscopy (XPS and Energy dispersive X-ray spectroscopy (EDS. The i-Bi2O3 nanostructure and Au/i-Bi2O3 composite system were found to exhibit high photocatalytic activity than commercial Bi2O3 in decomposing salicylic acid under visible light irradiation. The high catalytic activity of i-Bi2O3 nanostructure was deduced to be caused by charge separation facilitated by electron hopping between the particles within the integrated structure and space-charge separation between i-Bi2O3 and Au. The charge separation behavior in i-Bi2O3 nanostructure was further bolstered by comparing the measured. OH radical produced in the solution with i-Bi2O3 nanostructure, commercial Bi2O3 and Au/i-Bi2O3 composite which readily react with 1,4-terephthalic acid (TA inducing 2-hydroxy terephthalic acid (TAOH that shows unique fluorescence peak at 426 nm. The space-charge separation between i-Bi2O3 and Au was confirmed by measuring the electron spin resonance (ESR spectra.

  20. Magneto-optical properties of BiFeO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO{sub 3} thin films. BiFeO{sub 3} thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO{sub 3}/air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO{sub 3} thin films. The SPR reflectance curves obtained for prism/Au/BiFeO{sub 3}/air structure were utilized to investigate the optical properties of BiFeO{sub 3} thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO{sub 3} film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO{sub 3} film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO{sub 3} film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T.

  1. Growth of Ba1-zSrzBiO3-y single crystals and the prospects for its application for liquid phase epitaxy of Ba1-xKxBiO3-δ superconductor

    International Nuclear Information System (INIS)

    Soldatov, A.G.; Barilo, S.N.; Shiryaev, S.V.; Finskaya, V.M.

    2002-01-01

    In order to get a substrate for liquid phase epitaxy of the Ba 1-x K x BiO 3-δ (BKBO) superconducting films a possibility to grow single crystals of the Ba 1-z Sr z BiO 3-y (BSBO) solid solution series was investigated. The BSBO crystals with z = 0; 0.2; 0.29; 0.45; 0.49; 0.50; 0.54; 0.58 were obtained by crystallization from melt. The temperature versus composition phase diagram of the BaO · 1/2Bi 2 O 3 -SrO · 1/2Bi 2 O 3 system was constructed. A comparative analysis of the effect of cation composition and oxygen nonstoichiometry on the BSBO lattice parameters was carried out. The growth features of superconducting BKBO films onto BSBO substrates are discussed [ru

  2. Multifunctional BiFeO{sub 3}/TiO{sub 2} nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ayan; Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD2, Sector III, Salt Lake City, Kolkata 700 098 (India); Chaudhuri, Arka [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India); Department of Applied Science, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India); Das, Avishek [Department of Electronic Science, University of Calcutta, 92 APC Road, Kolkata 700009 (India); Mandal, Kalyan [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 098 (India)

    2016-01-18

    Multifunctional BiFeO{sub 3} nanostructure anchored TiO{sub 2} nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO{sub 3}/TiO{sub 2} nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO{sub 3} nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO{sub 3.} The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO{sub 3}/TiO{sub 2} nano-heterostructure has been studied, which demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO{sub 3}/TiO{sub 2} nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.

  3. Novel composition above the limit of Bi:Zr solid solution; synthesis and physical properties of Bi1.33Zr0.67O3+δ

    International Nuclear Information System (INIS)

    Meatza, Iratxe de; Chapman, Jon P.; Mauvy, Fabrice; Larramendi, Jose I. Ruiz de; Arriortua, Maria I.; Rojo, Teofilo

    2004-01-01

    This paper presents an increase to x = 0.67 of the zirconium content in the conductive Bi 2-x Zr x O 3+δ solid solution. Complete incorporation of Zr in the β III -Bi 2 O 3 structure, confirmed by X-ray powder diffraction, has produced a phase with a lower volume and superior conductivity than those predicted by an earlier study. The observed β III -δ Bi 2-x Zr x O 3+δ phase transition around 730 deg. C has been characterised for the first time and shows a segregation of a mixture of predominantly γ-Bi 2 O 3 and approximately 30% of the ZrO 2 , before total reincorporation of the Zr in the high temperature δ-phase

  4. Unusual Concentration Induced Antithermal Quenching of the Bi(2+) Emission from Sr2P2O7:Bi(2.).

    Science.gov (United States)

    Li, Liyi; Peng, Mingying; Viana, Bruno; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Zhang, Qinyuan; Qiu, Jianrong

    2015-06-15

    The resistance of a luminescent material to thermal quenching is essential for the application in high power LEDs. Usually, thermal luminescence quenching becomes more and more serious as the activator concentration increases. Conversely, we found here that a red phosphor Sr2P2O7:Bi(2+) is one of the exceptions to this as we studied the luminescence properties at low (10-300 K) and high (300-500 K) temperatures. As Bi(2+) ions are incorporated into Sr2P2O7, they exhibit the emissions at ∼660 and ∼698 nm at room temperature and are encoded, hereafter, as Bi(1) and Bi(2) due to the substitutions for two different crystallographic sites Sr(1) and Sr(2), respectively, in the compound. However, they will not substitute for these sites equally. At lower dopant concentration, they will occupy preferentially Sr(2) sites partially due to size match. As the concentration increases, more Bi(2+) ions start to occupy the Sr(1) sites. This can be verified by the distinct changes of emission intensity ratio of Bi(2) to Bi(1). As environment temperature increases, the thermal quenching happens, but it can be suppressed by the Bi(2+) concentration increase. This becomes even more pronounced in Bi(2+) heavily doped sample as we decompose the broad emission band into separated Bi(1) and Bi(2) Gaussian peaks. For the sample, the Bi(1) emission at ∼660 nm even shows antithermal-quenching particularly at higher temperatures. This phenomenon is accompanied by the blue shift of the overall emission band and almost no changes of lifetimes. A mechanism is proposed due to volume expansion of the unit cell, the increase of Bi(1) content, and temperature dependent energy transfer between Bi(2) and Bi(1). This work helps us better understand the complex luminescent behavior of Bi(2+) doped materials, and it will be helpful to design in the future the heavily doped phosphor for WLEDs with even better resistance to thermal quenching.

  5. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review

    Directory of Open Access Journals (Sweden)

    Bernardo, M. S.

    2014-02-01

    Full Text Available BiFeO3-based materials are currently one of the most studied multiferroics due to their possible applications at room temperature. However, among the large number of published papers there is much controversy. For example, possibility of synthesizing a pure BiFeO3 phase is still source of discussion in literature. Not even the nature of the binary Bi2O3-Fe2O3 diagram has been clarified yet. The difficulty in controlling the formation of parasite phases reaches the consolidation step. Accordingly, the sintering conditions must be carefully determined both to get dense materials and to avoid bismuth ferrite decomposition. However, the precise conditions to attain dense bismuth ferrite materials are frequently contradictory among different works. As a consequence, the reported properties habitually result opposed and highly irreproducible hampering the preparation of BiFeO3 materials suitable for practical applications. In this context, the purpose of the present review is to summarize the main researches regarding BiFeO3 synthesis, microstructure and properties in order to provide an easier understanding of these materials.Los materiales basados en BiFeO3 son en la actualidad uno de los multiferroicos más estudiados debido a sus posibles aplicaciones a temperatura ambiente. Sin embargo, entre la multitud de trabajos publicados referentes a estos materiales existe mucha controversia. Por ejemplo, la posibilidad de sintetizar una fase BiFeO3 pura es aún objeto de discusión en la bibliografía y la naturaleza de los diagramas de fases del sistema Bi2O3-Fe2O3 aún no está clara. La dificultad para controlar las fases parásitas se extiende al proceso de consolidación por lo que las condiciones de sinterización deben ser cuidadosamente controladas para obtener materiales densos y al mismo tiempo evitar la descomposición de la ferrita. No obstante, las condiciones precisas para obtener materiales densos de BiFeO3 son frecuentemente

  6. Nd-doped Bi2O3 nanocomposites: simple synthesis and improved photocatalytic activity for hydrogen production under visible light

    Science.gov (United States)

    Al-Namshah, Khadijah S.; Mohamed, Reda M.

    2018-04-01

    Bi2O3 has 2.4 eV band gap energy, which means it absorb in visible region. Though the photocatalytic activity of Bi2O3 is extremely little due to rapid rate of photogenerated electron-hole recombination. To face the economical and practical needs, the photocatalytic efficiency of Bi2O3 should be upgraded. In this paper, this was achieved by addition of neodymium to Bi2O3 nanosheets and Nd/Bi2O3 nanocomposites were prepared by a easy process at room temperature using a surfactant of Pluronic F127. The Bi2O3 nanosheets and Nd/Bi2O3 nanocomposites were investigated by many tools. The photocatalytic activity of Nd/Bi2O3 samples is better than Bi2O3 due to reduced band gap and reduced electron-hole recombination of Bi2O3 with addition of neodymium. In addition, Nd/Bi2O3 nanocomposites exhibit photocatalytic stability for hydrogen production which enables it to be reused on other occasions also.

  7. Survey of Digital Feedback Systems in High Current Storage Rings

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions

  8. Microstructural dynamics of Bi-2223/Ag tapes annealed in 8% O2

    DEFF Research Database (Denmark)

    Andersen, L.G.; Poulsen, H.F.; Abrahamsen, A.B.

    2002-01-01

    The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting in an in......The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting...... in an incorporation of Pb in Bi-2212. The associated grain growth of Bi-2212 is the main cause of the strain relief and the c-axis grain alignment of the Bi containing phases. Above 825 degreesC the Bi-2212 partly dissociates into (Ca,Sr)(14)Cu24Ox and a liquid phase. The linewidth of Bi-2212 is constant during...... the transformation to Bi-2223, indicating no strain or finite-size broadening. The most probable transformation mechanism is found to be nucleation and growth with a fast decomposition of the individual Bi-2212 grain, followed by a growth of Bi-2223 from the Bi-2212 melt reacting with (Ca,Sr)(14)Cu24Ox. The multi...

  9. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  10. Synthesis of Bi{sub 2}O{sub 3} architectures in DMF–H{sub 2}O solution by precipitation method and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li-Li; Han, Qiao-Feng, E-mail: hanqiaofeng@njust.edu.cn; Zhao, Jin; Zhu, Jun-Wu; Wang, Xin, E-mail: wangx@njust.edu.cn; Ma, Wei-Hua

    2014-11-25

    Graphical abstract: Flowerlike α-Bi{sub 2}O{sub 3} architectures assembled by nanobrick-based petals with pineapple surface were firstly synthesized by precipitation method at room temperature in DMF–H{sub 2}O solution. - Highlights: • Nanobrick-based flowerlike Bi{sub 2}O{sub 3} crystals with pineapple surface were synthesized by precipitation method. • Good solubility of Bi(NO{sub 3}){sub 3} in DMF played a crucial role in the growth of flowerlike Bi{sub 2}O{sub 3}. • The growth mechanism of Bi{sub 2}O{sub 3} microcrystallites has been explained in detail. - Abstract: Well-crystalline flowerlike α-Bi{sub 2}O{sub 3} hierarchical architectures with pineapple-shaped petals have been synthesized by precipitation method at a volume ratio of DMF/H{sub 2}O of 5, where DMF and H{sub 2}O were used to dissolve Bi(NO{sub 3}){sub 3} and KOH, respectively. If the DMF/H{sub 2}O ratio was decreased to 2:1, 1:1 and 0:30, flower-, bundle- and dendrite-shaped α-Bi{sub 2}O{sub 3} microcrystallites aggregated by nanorods were formed, respectively. The simple synthetic route and thus obtained Bi{sub 2}O{sub 3} architectures of various morphologies provide a basis insight for their formation mechanism. The photocatalytic activity of the as-prepared Bi{sub 2}O{sub 3} particles for degradation of Rhodamine B (RhB) under visible-light irradiation was obviously influenced by their morphologies. Bi{sub 2}O{sub 3} of nanorod-based microstructures exhibited higher photodegradation activity than nanobrick-based ones, owing to higher light absorption and carrier separation efficiency in one-dimensional (1D) nanostructured materials.

  11. A Study for Shelf Life Evaluation of Rubber O-ring

    International Nuclear Information System (INIS)

    Jung, Sun Chul; Kim, Jong Seog

    2005-01-01

    Non-metallic materials stored in warehouses in nuclear power plants have shelf life. The shelf life means the maximum storage time allowable such that the install life of the material is not affected. Materials whose shelf lives expire are generally discarded. unless the shelf lives of these materials can be extended by reducing the install life. Examples of this case are rubber materials. Rubber materials are widely used for sealing of various machines. There are various life evaluation methods for rubber material. For example, the compression set is generally used for evaluation the aging condition of rubber materials used for sealing. A compression set value can be calculated according to the ASTM D395. We have tried the compression set test by using specimens with 6.99mm diameter O-ring even when ASTM D 395 recommends the use of bar specimen. Test results and comparison between O-ring and reference data of EPRI NP-6608 are presented below

  12. Fabrication of Ba-K-Bi-O thick film artefacts with improved critical currents

    International Nuclear Information System (INIS)

    Moore, J.C.; Salter, C.J.; Jenkins, R.J.; Grovenor, C.R.M.; Jones, H.

    1993-01-01

    The Ba-K-Bi-O system has a maximum T c of around 30K for a composition of Ba 0.6 K 0.4 BiO 3 . Fabrication of good quality single phase samples is extremely difficult and requires careful control of the fabrication conditions. Successful synthesis procedures for Ba-K-Bi-O powder and melt cast material which allow some control of the potassium content of the product were established by Hinks et al. The process is based on a melt and sinter step in an inert atmosphere which creates oxygen vacancies and allows potassium to enter the lattice. The oxygen vacancies are then filled by a subsequent oxygen anneal to obtain superconductivity. Ba-K-Bi-O is, therefore, metastable and consequently difficult to synthesise. There have been few reports of transport measurements and even fewer reports of transport critical currents for bulk material. It is often accepted that Ba-K-Bi-O has an intrinsically low critical current, and extremely poor critical current densities of 0.05 Acm -2 have been quoted for melt cast material. It has been suggested that the presence of weak links is the cause. However, there has been little research into the relationship between process conditions and superconducting properties for melt processed Ba-K-Bi-O to confirm this. (orig.)

  13. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    Science.gov (United States)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  14. Structure and phase transition of BiFeO3 cubic micro-particles prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong

    2012-01-01

    Graphical abstract: Bismuth ferrite (BiFeO 3 ) cubic micro-particles with smooth surfaces were synthesized. BiFeO 3 has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe 2 O 3 above 939 °C. Highlights: ► BiFeO 3 micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO 3 enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO 3 transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO 3 ) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO 3 cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi 3+ , Fe 3+ and O 2− ). The high temperature XRD and differential scanning calorimetry show that BiFeO 3 powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO 3 undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe 2 O 3 above 939 °C.

  15. Growth and characterization of Nd:Bi12SiO20 single crystal

    Science.gov (United States)

    Xu, Honghao; Zhang, Yuanyuan; Zhang, Huaijin; Yu, Haohai; Pan, Zhongben; Wang, Yicheng; Sun, Shangqian; Wang, Jiyang; Boughton, R. I.

    2012-09-01

    A Nd:Bi12SiO20 crystal was grown by the Czochralski method. The thermal properties of the crystal were systematically studied. The thermal expansion coefficient was measured to be α=11.42×10-6 K-1 over the temperature range of 295-775 K, and the specific heat and thermal diffusion coefficient were measured to be 0.243 Jg-1 k-1 and 0.584 mm2/s, respectively at 302 K. The density was measured to be 9.361 g/cm3 by the buoyancy method. The thermal conductivity of Nd:Bi12SiO20 was calculated to be 1.328 Wm-1 K-1 at room temperature (302 K). The refractive index of Nd:Bi12SiO20 was measured at room temperature at eight different wavelengths. The absorption and emission spectra were also measured at room temperature. Continuous-wave (CW) laser output of a Nd:Bi12SiO20 crystal pumped by a laser diode (LD) at 1071.5 nm was achieved with an output power of 65 mW. To our knowledge, this is the first time LD pumped laser output in this crystal has been obtained. These results show that Nd:Bi12SiO20 can serve as a laser crystal.

  16. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets

    International Nuclear Information System (INIS)

    Chen, Lin; Hua, Hao; Yang, Qi; Hu, Chenguo

    2015-01-01

    Graphical abstract: - Highlights: • Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets are synthesized. • Ag 2 O/Bi 2 WO 6 heterostuctures exhibites an enhanced photocatalytic activity compared with the Bi 2 WO 6 nanostructures. • Photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the nanosheets. • Bi 2 WO 6 hierarchical structure is an excellent architecture for loading of Ag 2 O nanoparticles. - Abstract: Bi 2 WO 6 hierarchical microspheres assembled by nanosheets and dispersed nanosheets were synthesized by hydrothermal reaction in different conditions. Ag 2 O nanoparticles were deposited on the surface of Bi 2 WO 6 microspheres and nanosheets by the chemical precipitation method. The photocatalytic performance of pure Bi 2 WO 6 nanostructures and Ag 2 O/Bi 2 WO 6 heterostructures were evaluated by the photocatalytic decolorization of RhB solution under visible-light irradiation. Compared with the pure Bi 2 WO 6 nanostructures, the Ag 2 O/Bi 2 WO 6 heterostructures exhibited an obviously enhanced photocatalytic activity. And photocatalytic activity of the Ag 2 O/Bi 2 WO 6 microspheres is higher than that of the Ag 2 O/Bi 2 WO 6 nanosheets. This work demonstrates that the Bi 2 WO 6 hierarchical three-dimensional structure is an excellent architecture for the loading of Ag 2 O nanoparticles to build a highly efficient photocatalyst

  17. Digital closed orbit feedback system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Chung, Y.; Barr, D.; Decker, G.; Galayda, J.; Lenkszus, F.; Lumpkin, A.; Votaw, A.J.

    1995-01-01

    Closed orbit feedback for the Advanced Photon Source (APS) storage ring employs unified global an local feedback systems for stabilization of particle and photon beams based on digital signal processing (DSP). Hardware and software aspects of the system will be described. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm. application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware, including the DSPS, is distributed in 20 VNE crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically-networked reflective memories

  18. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  19. Synthesis and characterization of PbO-CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Nabil A.A. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Al-Gaashani, R. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha (Qatar); Abd-Shukor, R. [Universiti Kebangsaan Malaysia, School of Applied Physics, Bangi, Selangor (Malaysia)

    2017-03-15

    A PbO-CdO nanocomposite-added Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} ((Bi,Pb)-2223) superconductor has been prepared. The effect of the PbO-CdO nanocomposite addition on the transport critical current density (J{sub c}) of (Bi,Pb)-2223 superconductor was investigated. The transition temperature (T{sub c-onset}), zero electrical resistance temperature (T{sub c-R=0}), and J{sub c} of the samples were measured by the four-probe method. Phase formation, structure, and microstructure of samples were investigated. The distribution of nanoparticle size was determined. The results indicated that the PbO-CdO-added samples showed larger grain size and an increased volume fraction of high-T{sub c} phase (Bi-2223) compared to the non-added sample. A slight increase in T{sub c-R=0} of x = 0.15 wt% was observed. J{sub c} of the PbO-CdO nanocomposite-added samples was significantly higher than for the non-added sample. That could be explained by the possibility that the PbO-CdO nanocomposite acts as an effective flux pinning center in (Bi,Pb)-2223. At 77 K, J{sub c} of x = 0.15 wt% added sample was more than 20 times larger than J{sub c} of the non-added sample (x = 0 wt%). A combined effect of enhanced flux pinning, increased fraction of high-T{sub c} phase and improved grain size, which led to increase in the J{sub c} of added samples, is discussed. (orig.)

  20. Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O

    Science.gov (United States)

    Brandt, Iuri S.; Tumelero, Milton A.; Martins, Cesar A.; Plá Cid, Cristiani C.; Faccio, Ricardo; Pasa, André A.

    2018-04-01

    Doping leading to low electrical resistivity in electrodeposited thin films of Cu2O is a straightforward requirement for the construction of efficient electronic and energy devices. Here, Bi (7 at. %) doped Cu2O layers were deposited electrochemically onto Si(100) single-crystal substrates from aqueous solutions containing bismuth nitrate and cupric sulfate. X-ray photoelectron spectroscopy shows that Bi ions in a Cu2O lattice have an oxidation valence of 3+ and glancing angle X-ray diffraction measurements indicated no presence of secondary phases. The reduction in the electrical resistivity from undoped to Bi-doped Cu2O is of 4 and 2 orders of magnitude for electrical measurements at 230 and 300 K, respectively. From variations in the lattice parameter and the refractive index, the electrical resistivity decrease is addressed to an increase in the density of Cu vacancies. Density functional theory (DFT) calculations supported the experimental findings. The DFT results showed that in a 6% Bi doped Cu2O cell, the formation of Cu vacancies is more favorable than in an undoped Cu2O one. Moreover, from DFT data was observed that there is an increase (decrease) of the Cu2O band gap (activation energy) for 6% Bi doping, which is consistent with the experimental results.

  1. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  2. Synthesis, crystal structure, and properties of Bi{sub 3}TeBO{sub 9} or Bi{sub 3}(TeO{sub 6})(BO{sub 3}): a non-centrosymmetric borate-tellurate(VI) of bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Daub, Michael; Krummer, Michael; Hoffmann, Anke [Institut fuer Anorganische und Analytische Chemie, Albert-Ludwigs-Universitaet, Albertstrasse 21, 79104, Freiburg (Germany); Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Abt. Kristallographie, Goethe-Universitaet, Altenhoeferallee 1, 60438, Frankfurt am Main (Germany); Hillebrecht, Harald [Institut fuer Anorganische und Analytische Chemie, Albert-Ludwigs-Universitaet, Albertstrasse 21, 79104, Freiburg (Germany); Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universitaet, Stefan-Meier-Strasse 25, 79104, Freiburg (Germany)

    2017-01-26

    Pale-yellow single crystals of the new borate tellurate(VI) Bi{sub 3}TeBO{sub 9} were obtained by reaction of stoichiometric amounts of Bi{sub 2}O{sub 3}, B{sub 2}O{sub 3}, and Te(OH){sub 6} at 780 C. The non-centrosymmetric crystal structure (P6{sub 3}, Z=2, a=8.7454(16), c=5.8911(11) Aa, 738 refl., 43 param, R1=0.037, wR2=0.093) contains isolated trigonal-planar BO{sub 3} units and nearly undistorted TeO{sub 6} octahedra. The Bi{sup 3+} cations are located in between in octahedral voids. The BiO{sub 6} octahedra are significantly distorted to a [3+3] pattern (2.25/2.50 Aa) due to the ns{sup 2} configuration. According to the structural features, the formula can be written as Bi{sub 3}(TeO{sub 6})(BO{sub 3}). Alternatively, the structure can also be described as hcp of oxygen with Te{sup VI} and Bi{sup III} in octahedral voids and B{sup III} in trigonal- planar voids. The vibrational spectra show the typical features of BO{sub 3} and TeO{sub 6} units with a significant {sup 10}B/{sup 11}B isotopic splitting of the IR-active B-O valence mode (1248 and 1282 cm{sup -1}). The UV/Vis spectrum shows an optical band edge with an onset around 480 nm (2.6 eV). MAS-NMR spectra of {sup 11}B show an anisotropic signal with a quadrupole coupling constant of C{sub Q}=2.55 MHz. and a very small deviation from rotational symmetry (η=0.2). The isotropic chemical shift is 20.1 ppm. The second harmonic generation (SHG) test was positive with an activity comparable to potassium dihydrogen phosphate (KDP). Bi{sub 3}TeBO{sub 9} decomposes in air at 825 C to Bi{sub 2}TeO{sub 5}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The ionic conductivity and local environment of cations in Bi9ReO17

    International Nuclear Information System (INIS)

    Thompson, M.; Herranz, T.; Santos, B.; Marco, J.F.; Berry, F.J.; Greaves, C.

    2010-01-01

    The influence of temperature on the structure of Bi 9 ReO 17 has been investigated using differential thermal analysis, variable temperature X-ray diffraction and neutron powder diffraction. The material undergoes an order-disorder transition at ∼1000 K on heating, to form a fluorite-related phase. The local environments of the cations in fully ordered Bi 9 ReO 17 have been investigated by Bi L III - and Re L III -edge extended X-ray absorption fine structure (EXAFS) measurements to complement the neutron powder diffraction information. Whereas rhenium displays regular tetrahedral coordination, all bismuth sites show coordination geometries which reflect the importance of a stereochemically active lone pair of electrons. Because of the wide range of Bi-O distances, EXAFS data are similar to those observed for disordered structures, and are dominated by the shorter Bi-O bonds. Ionic conductivity measurements indicate that ordered Bi 9 ReO 17 exhibits reasonably high oxide ion conductivity, corresponding to 2.9x10 -5 Ω -1 cm -1 at 673 K, whereas the disordered form shows higher oxide ion conductivity (9.1x10 -4 Ω -1 cm -1 at 673 K). - Graphical abstract: The structure of Bi 9 ReO 17 is discussed and related to the ionic conductivity of the ordered and disordered forms.

  4. Microstructure, Mechanical and Tribological Properties of Ag/Bi2Sr2CaCu2O x Self-lubricating Composites

    Science.gov (United States)

    Tang, Hua; Zhang, Du; Wang, Yuqi; Zhang, Yi; Ji, Xiaorui; Song, Haojie; Li, Changsheng

    2014-01-01

    Ag/Bi2Sr2CaCu2O x self-lubricating composites were successfully fabricated by a facile powder metallurgy method. The structure and morphology of the as-synthesized composites and the worn surface after tribometer testing are characterized by using X-ray diffraction and scanning electron microscopy together with energy dispersive spectrometry. The results indicated that self-lubricating composites are composed of superconductor phase and Ag phase. Moreover, the effects of Ag on mechanical and tribological properties of the novel composites were investigated. The friction test results showed that the friction coefficient of the pure Bi2212 against stainless steel is about 0.40 at ambient temperature and abruptly decreases to about 0.17 when the temperature is cooled to 77 K. The friction coefficients of the composites from room temperature to high temperature were lower and more stable than those of pure Bi2Sr2CaCu2O x . When the content of Ag is 10 wt.%, the Ag/Bi2Sr2CaCu2O x composites exhibited excellent tribological performance, the improved tribological properties are attributed to the formation of soft metallic Ag films at the contacted zone of the composites.

  5. Magnetic properties of Aurivillius lanthanide-bismuth (LnFeO3nBi4Ti3O12 (n = 1,2 layered titanates

    Directory of Open Access Journals (Sweden)

    Tartaj, J.

    2008-06-01

    Full Text Available Bismuth titanates of Aurivillius layer-structure (BiFeO3nBi4Ti3O12, are of great technological interest because of their applications as non-volatile ferroelectric memories and high-temperature piezoelectric materials. The synthesis and crystallographic characterization of a new family of compounds (LnFeO3nBi4Ti3O12 was recently reported, in which the layers consist of LnFeO3 perovskites with a lanthanide Ln3+ substituting diamagnetic Bi3+. We report herein the magnetic properties of bulk samples, with Ln = Nd, Eu, Gd and Tb, and n = 1 and 2. Single-layer materials are paramagnetic, similar to non-substituted bismuth titanate Bi5FeTi3O15, and show crystal field effects due to the crystallographic environment of Eu3+ and Tb3+. Several anomalies are detected in the magnetization M(T of double-layer (LnFeO32Bi4Ti3O12 compounds, related to the strong magnetism of Tb and Gd, since they weakly appear for Nd and they are absent in the VanVleck Eu3+ ion and in the parent Bi6Fe2Ti3O18 compound.Los titanatos de hierro y bismuto con estructura laminar tipo Aurivillius, (BiFeO3nBi4Ti3O12, tienen un gran interés tecnológico debido a sus aplicaciones como memorias ferroeléctricas no volátiles y como piezoeléctrico cerámico de alta temperatura. La síntesis y la caracterización cristalina de una nueva familia de compuestos (LnFeO3nBi4Ti3O12 han sido recientemente reportadas, en la que el catión diamagnético Bi3+ ha sido sustituido por los paramagnéticos Ln3+ en los bloques de perovskita. Se estudian las propiedades magnéticas de muestras cerámicas en volumen con Ln = Nd, Eu, Gd y Tb, y n = 1 y 2. Los materiales con n=1 son paramagnéticos y similares al no sustituido Bi5FeTi3O15, y muestran efectos de campo cristalino debido al entorno cristalino de Eu3+ y Tb3+. Se han detectado algunas anomalías en la magnetización M(T de los compuestos n=2 (LnFeO32Bi4Ti3O12 que están relacionadas con el fuerte magnetismo de Tb y Gd, que aparecen d

  6. Speckle reduction in digital holography with resampling ring masks

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Jin, Guofan

    2018-01-01

    One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.

  7. The effect of Bi2 O3 on the electrical properties of Zr O2: 3 wt% Mg O ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Cosentino, I.C.

    1991-01-01

    Zr O 2 : 3 wt% Mg O ceramic solid electrolytes have been prepared to study the effect of Bi 2 O 3 addition on densification and electrical conductivity. Microstructural characterization have been done by X-ray diffractometry, scanning electron microscopy and electron microprobe analyses. Electrical conductivity measurements have been done by two probe dc technique in the 400 0 C - 700 0 C temperature range. The results show that 5 wt% Bi 2 O 3 addition improves densification: 93% TD and 98% TD specimens are obtained from zirconia stabilized by powder mixture and by coprecipitation of oxides, respectively. Moreover, electrical conductivity values are found to be two orders of magnitude higher for Zr O 2 : 3 wt% Mg O with 5% Bi 2 O 3 . (author)

  8. Investigation of the phase formation and dielectric properties of Bi7Ta3O18

    International Nuclear Information System (INIS)

    Chon, M.P.; Tan, K.B.; Khaw, C.C.; Zainal, Z.; Taufiq Yap, Y.H.; Chen, S.K.; Tan, P.Y.

    2014-01-01

    Highlights: • Synthesis condition of Bi 7 TaO 3 O 18 had been determined. • Recombination of intermediate BiTaO 4 and Bi 3 TaO 7 phases are required for the Bi 7 TaO 3 O 18 phase formation. • Stable material as confirmed by thermal and structural analyses. • Typical ferroelectric showing high dielectric constants and low losses. • Resonance and thermal activated polarisation processes are responsible for the excellent dielectric characteristic. -- Abstract: Polycrystalline Bi 7 Ta 3 O 18 was synthesised at the firing temperature of 950 °C over 18 h via conventional solid state method. It crystallised in a monoclinic system with space group C2/m, Z = 4 similar to that reported diffraction pattern in the Inorganic Crystal Structure Database (ICSD), 1-89-6647. The refined lattice parameters were a = 34.060 (3) Å, b = 7.618 (9) Å, c = 6.647 (6) Å with α = γ = 90° and β = 109.210 (7), respectively. The intermediate phase was predominantly in high-symmetry cubic structure below 800 °C and finally evolved into a low-symmetry monoclinic structured, Bi 7 Ta 3 O 18 at 950 °C. The sample contained grains of various shapes with different orientations in the size ranging from 0.33–22.70 μm. The elemental analysis showed the sample had correct stoichiometry with negligible Bi 2 O 3 loss. Bi 7 Ta 3 O 18 was thermally stable and it exhibited a relatively high relative permittivity, 241 and low dielectric loss, 0.004 at room temperature, ∼30 °C and frequency of 1 MHz

  9. Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-01-01

    Graphical abstract: A novel multi-heterojunction photocatalyst (graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3) was prepared for the first time. The as-obtained samples showed much higher activity compared to pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3 for dye degradation, which is almost 14 times higher than that of pure Bi_2O_2CO_3 and also much higher than the sum of graphene–Bi_2O_2CO_3 and TiO_2. - Highlights: • Graphene and TiO_2 co-modified flower-like Bi_2O_2CO_3 was prepared for the first time. • The sample shows enhanced photocatalytic activity due to the formation of multi-heterojunction. • The sample also exhibits a synergetic effect of graphene and TiO_2. • The composite photocatalyst shows a good stability for dye degradation. - Abstract: In this paper, graphene (GR) and titania co-modified flower-like Bi_2O_2CO_3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N_2 adsorption–desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi_2O_2CO_3/TiO_2 composites exhibited much higher photocatalytic activity than pure Bi_2O_2CO_3, TiO_2 and GR–Bi_2O_2CO_3. The higher performance of GR/Bi_2O_2CO_3/TiO_2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron–hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO_2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi_2O_2CO_3/TiO_2 remained without striking decrease after five cycles

  10. Electronic structure of clean and Ag-covered single-crystalline Bi2Sr2CuO6

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1989-01-01

    Photoemission studies of single-crystalline samples of Bi 2 Sr 2 CuO 6 show clear resemblance to the corresponding data for single crystals of Bi 2 Sr 2 CaCu 2 O 8 . In particular, a sharp Fermi-level cutoff, giving evidence of metallic conductivity at room temperature, as well as single-component O 1s emission and Cu 2p satellites with a strength amounting to about 50% of that of the main Cu 2p line, are observed. An analysis of the relative core-level photoemission intensities shows that the preferential cleavage plane of single-crystalline Bi 2 Sr 2 CuO 6 is between adjacent Bi-O layers. Deposition of Ag adatoms causes only weak reaction with the Bi and O ions of the Bi 2 Sr 2 CuO 6 substrate, while the Cu states rapidly react with the Ag adatoms, as monitored by a continuous reduction of the Cu 2p satellite intensity as the Ag overlayer becomes thicker

  11. Local and average structure of Mn- and La-substituted BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo; Selbach, Sverre M., E-mail: selbach@ntnu.no

    2017-06-15

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO{sub 3} is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO{sub 3}. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions. - Graphical abstract: The experimental and simulated partial pair distribution functions (PDF) for BiFeO{sub 3}, BiFe{sub 0.875}Mn{sub 0.125}O{sub 3}, BiFe{sub 0.75}Mn{sub 0.25}O{sub 3} and Bi{sub 0.9}La{sub 0.1}FeO{sub 3}.

  12. Thermal behavior of GeO{sub 2} doped PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: hnxiao@hnu.cn; Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2006-05-15

    PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass is a representative system for vacuum and electronic sealing. Effects of GeO{sub 2} on thermal properties of the glass have been investigated in this paper. Activation energy for crystallization, glass structure, the type of crystals were characterized by differential scanning calorimetry, infrared spectroscopy, X-ray diffraction and optical microscopy. Results indicate that the addition of GeO{sub 2} (0.4-2 wt.%) to PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass can suppress crystallization of the glass and decrease the sealing temperature. With the increase of GeO{sub 2} content, germanate crystals were revealed, resulting in a slight increase of sealing temperature. When the content of GeO{sub 2} is 0.7 wt.%, the glass possesses the highest stability and lowest sealing temperature (400 deg. C), which is desirable for low-temperature sealing. The coefficient of thermal expansion of PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass was measured by dilatometry. The result shows that the coefficient of thermal expansion of the glass increases with the content of GeO{sub 2}. The adjustability of the coefficient of thermal expansion would expand the applications of PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass. A flexural strength of 28.3 MPa was obtained at the GeO{sub 2} content of 0.7 wt.%, showing good mechanical property for sealing process.

  13. Ac susceptibility studies on Bi-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chakravarti, Arani; Mukherjee, C.D.; Ranganathan, R.; Chatterjee, N.; Raychaudhuri, A.K.

    1991-01-01

    We report the low a.c. susceptibility data χ'(T,Hsub(rms)), χsup(double inverted commas)(T,Hsub(rms)) for the newly prepared superconducting system Bi x Sr 4 Ca 2 Cu 4 O y (x=0.5, 1.0 and 1.5) containing Bi at concentrations lower than that in the conventional Bi-based system. The experimental results are discussed in the light of existing theories. (author). 10 refs., 3 figs

  14. Inclusão digital via acessibilidade web | Digital inclusion via web accessibility

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Cusin

    2009-03-01

    Full Text Available Resumo A natureza atual da web, que destaca a participação colaborativa dos usuários em diversos ambientes informacionais digitais, conduz ao desenvolvimento de diretrizes que enfocam a arquitetura da informação digital inclusiva para diferentes públicos nas mais diversas ambiências informacionais. A pesquisa propõe e objetiva um ambiente informacional digital inclusivo, visando apontar os elementos de acessibilidade que permitam a promoção da inclusão informacional digital, de forma a destacar os referenciais da Arquitetura da Informação Digital, de recomendações internacionais, com o olhar da Ciência da Informação e das novas tecnologias de informação e comunicação (TIC. Palavras-chave inclusão digital; web; acessibilidade; ciência da informação; arquitetura da informação. Abstract The current nature of the web, which highlights the collaborative participation of users in various digital informational environments, leads to the development of guidelines that focus on the digital inclusive information architecture for different audiences in diverse informational environments. The study proposes an inclusive digital information environment, aiming to establish the elements of accessibility that  enable the promotion of digital inclusion information in order to highlight the references of digital information architecture, the international recommendations, with the perspective of Information Science and the new information and communication technologies (ICT. Keywords digital inclusion; web; accessibility; information science; information architecture.

  15. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  16. Structural and electrical characterization of BiFeO3-NaTaO3 multiferroic

    International Nuclear Information System (INIS)

    Mohanty, Suchismita; Choudhary, R.N.P.; Parida, B.N.; Padhee, R.

    2014-01-01

    Using a standard high-temperature solid-state reaction technique, polycrystalline samples of (Bi 1-x , Na x ) (Fe 1-x , Ta x ) O 3 (x = 0.0, 0.5) were prepared. The formation of the desired materials was confirmed by X-ray diffraction. The surface texture of the prepared materials recorded by scanning electron microscope exhibits a uniform grain distribution with small voids suggesting the formation of high-density pellet samples. The impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The relative dielectric constant and loss tangent of BiFeO 3 decrease on addition of NaTaO 3 (x = 0.5). The effect of addition of NaTaO 3 on grain and grain boundary contributions in the resistive and capacitive components of BiFeO 3 was studied using complex impedance spectroscopy. The value of activation energy due to both grain and grain boundary of both the samples is nearly same. The nature of variation of dc conductivity confirms the Arrhenius behavior of the materials. Study of frequency dependence of ac conductivity suggests that the materials obey Jonscher's universal power law and the presence of ionic conductivity. (orig.)

  17. Formation of layered microstructure in the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Kammlott, G.W.; Tiefel, T.H.; Chen, S.K.

    1992-01-01

    The layered grain microstructure is essential for overcoming the weak link problem and ensuring high transport critical currents in the cuprate superconductors. In this paper we discuss the processing and the mechanisms for layer information in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. In melt-processed Y-Ba-Cu-O, sympathetic nucleation on previously nucleated YBa 2 Cu 3 O 7-δ plates during solidification appears to be dominant mechanism for the formation of parallel plate-shaped grains. In the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons, the interface reaction between the superconductor layer and the silvers substrate seems to be the main mechanism for the c-axis texturing of the layered grains. The drastically different critical current behavior in the c-axis textured Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons is discussed in terms of possible differences in the nature of the twist and tilt grain boundaries. (orig.)

  18. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  19. Ferroelectric properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/ (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Bao Dinghua; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Sandwich structured (Bi, La) 4 Ti 3 O 12 /Pb(Zr, Ti)O 3 /(Bi, La) 4 Ti 3 O 12 thin films were fabricated on Pt/Ti/SiO 2 /Si substrates, with the intention of simultaneously utilizing the advantages of both (Bi, La) 4 Ti 3 O 12 (BLT) and Pb(Zr, Ti)O 3 (PZT) thin films such as non-fatigue behaviours of BLT and good ferroelectric properties of PZT. Both BLT and PZT layers were prepared by a chemical solution deposition technique. The experiments demonstrated that the sandwich structure showed fatigue-free characteristics at least up to 10 10 switching bipolar pulse cycles under 8 V and excellent retention properties. The sandwich structured thin films also exhibited well-defined hysteresis loops with a remanent polarization (2P r ) of 8.8 μC cm -2 and a coercive field (E c ) of 47 kV cm -1 . The room-temperature dielectric constant and dissipation factor were 210 and 0.031, respectively, at a frequency of 100 kHz. These results suggest that this sandwich structure is a promising material combination for ferroelectric memory applications. (author)

  20. Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.V.; Deus, R.C. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R.; Longo, E. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Bauru, Dept. de Eng. Mecânica, Av. Eng. Luiz Edmundo C. Coube 14-01, 17033-360 Bauru, SP (Brazil); Cilense, M. [Universidade Estadual Paulista, UNESP, Instituto de Química – Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, 14800-90 Araraquara, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-04-01

    Calcium (Ca)-doped bismuth ferrite (BiFeO{sub 3}) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO{sub 3} where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO{sub 3} film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO{sub 3}. - Highlights: • Ca doped BiFeO{sub 3} thin films were obtained by the polymeric precursor method. • Co-existence of distorted rhombohedral and tetragonal phases are evident. • Enhanced ferroelectric and piezoelectric properties are produced by the internal strain in the Ca doped BiFeO{sub 3} film.

  1. The effect of calcination temperature on the performance of Co3O4-Bi2O3 as a heterogeneous catalyst of peroxymonosulfate

    Science.gov (United States)

    Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing

    2017-11-01

    In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.

  2. Enhanced piezoelectricity in plastically deformed nearly amorphous Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dan; Zhao, Minglei, E-mail: zhaoml@sdu.edu.cn; Wang, Chunlei; Wang, Lihai; Su, Wenbin; Gai, Zhigang; Wang, Chunming; Li, Jichao; Zhang, Jialiang [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2016-07-18

    Bulk Bi{sub 12}TiO{sub 20}-BaTiO{sub 3} (BTO-BT) nanocomposites are fabricated through the high-temperature interfacial reaction between nanometer-sized BaTiO{sub 3} particles and melting Bi{sub 12}TiO{sub 20}. Although the obtained BTO-BT nanocomposites are nearly amorphous and display very weak ferroelectricity, they exhibit relatively strong piezoelectricity without undergoing the electrical poling process. The volume fraction of crystalline Bi{sub 12}TiO{sub 20} is reduced to less than 10%, and the piezoelectric constant d{sub 33} is enhanced to 13 pC/N. Only the presence of the macroscopic polar amorphous phases can explain this unusual thermal stable piezoelectricity. Combining the results from X-ray diffraction, Raman spectroscopy, and thermal annealing, it can be confirmed that the formation of macroscopic polar amorphous phases is closely related to the inhomogeneous plastic deformation of the amorphous Bi{sub 12}TiO{sub 20} during the sintering process. These results highlight the key role of plastically deformed amorphous Bi{sub 12}TiO{sub 20} in the Bi{sub 12}TiO{sub 20}-based polar composites, and the temperature gradient driven coupling between the plastic strain gradient and polarization in amorphous phases is the main poling mechanism for this special type of bulk polar material.

  3. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Bi, Jinhong; Fang, Wei; Li, Li; Li, Xiaofen; Liu, Minghua; Liang, Shijing; Zhang, Zizhong; He, Yunhui; Lin, Huaxiang; Wu, Ling; Liu, Shengwei; Wong, Po Keung

    2015-01-01

    A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. RGO/Bi 2 MoO 6 /Au was characterized by X-ray powder diffraction patterns, transmission electron microscopy, UV–vis diffuse reflectance spectra, Raman spectroscopy and X-ray photoelectron spectroscopy. In comparison with Bi 2 MoO 6 , RGO/Bi 2 MoO 6 and Au/Bi 2 MoO 6 , RGO/Bi 2 MoO 6 /Au exhibits an enhanced photocatalytic activity for decomposition of Rhodamine B under visible light. The separation efficiency of the photogenerated holes and electrons on Bi 2 MoO 6 is promoted by the combined effect of both RGO and Au in the ternary composite, and thus enhances photocatalytic activity. The scavenger study revealed that both hole and superoxide are the major reactive species for the photocatalytic degradation of Rhodamine B using RGO/Bi 2 MoO 6 /Au photocatalyst. - Graphical abstract: A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. The resulted ternary nanocomposites greatly enhanced the visible light photocatalytic properties compared to Bi 2 MoO 6 , RGO/Bi 2 MoO 6 or Au/Bi 2 MoO 6 binary systems. The improved photocatalytic activity was mainly attributed to the synergistic effect of Au and RGO with better separation of the photogenerated holes and electrons, resulting from the surface plasmonic resonance and extra strong electron magnetic field of Au nanoparticles and the high electron conductivity of RGO. - Highlights: • The ternary nanocomposites RGO/Bi 2 MoO 6 /Au were constructed for the first time. • RGO/Bi 2 MoO 6 /Au showed much higher visible photoactivity than RGO (Au)/Bi 2 MoO 6 . • The improved

  4. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  5. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Huang, Hongwei; Liu, Liyuan; Zhang, Yihe; Tian, Na

    2015-01-01

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO 4 /Bi 2 MoO 6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO 4 /Bi 2 MoO 6 composites were synthesized by a one-step hydrothermal method. • The BiIO 4 /Bi 2 MoO 6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h + ) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO 4 /Bi 2 MoO 6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO 4 and Bi 2 MoO 6 , the BiIO 4 /Bi 2 MoO 6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO 4 /Bi 2 MoO 6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h + ) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  6. Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation

    International Nuclear Information System (INIS)

    Ai Zhihui; Huang Yu; Lee Shuncheng; Zhang Lizhi

    2011-01-01

    Research highlights: → We got the monoclinic α-Bi 2 O 3 powders after the calcinations of the plate-like (BiO) 2 CO 3 precursors at 500 deg. C for 4 h. → The synthetic α-Bi 2 O 3 showed high visible light photocatalytic activity for removal of NO and HCHO. - Abstract: The investigation was focused on the visible-light-driven photocatalytic removal of gaseous NO and HCHO at typical indoor air concentration over synthetic α-Bi 2 O 3 . Monoclinic α-Bi 2 O 3 was synthesized via calcination of hydrothermally prepared (BiO) 2 CO 3 precursor at 500 deg. C for 4 h. The synthetic α-Bi 2 O 3 samples were systematically characterized by XRD, SEM, FT-IR, and UV-vis diffuse reflectance spectra (DRS). The optical band gap energy of the resulting α-Bi 2 O 3 was estimated to be 2.72 eV from the UV-vis absorption spectra. Comparing with the commercial Bi 2 O 3 counterpart, the fabricated α-Bi 2 O 3 showed superior visible-light-induced photocatalytic activity on degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical indoor air concentration. No obvious deactivation of synthetic α-Bi 2 O 3 was observed during the prolonged photocatalytic reaction. This work suggests that the synthesized monoclinic α-Bi 2 O 3 with suitable band gap and high activity is promising photocatalyst for indoor air purification.

  7. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  8. Structure of δ-Bi2O3 from density functional theory: A systematic crystallographic analysis

    International Nuclear Information System (INIS)

    Aidhy, Dilpuneet S.; Sinnott, Susan B.; Wachsman, Eric D.; Phillpot, Simon R.; Nino, Juan C.

    2009-01-01

    A systematic crystallographic analysis of the and vacancy-ordered structure of cubic δ-Bi 2 O 3 obtained from electronic-structure calculations is presented. The ordering of vacancies leads to a doubling of the unit-cell that results in a 2x2x2 fluorite super-structure, with an associated reduction in its space group symmetry from Fm3-barm to Fm3-bar. The Bi atoms present inside the vacancy-ordered oxygen sublattice have equal Bi-O bond lengths, whereas, those present inside the vacancy-ordered oxygen sublattice have three different pairs of Bi-O bond lengths. The specific ionic displacements and electronic charge configurations also depend on the nature of vacancy ordering in the oxygen sub-lattice. - Graphical abstract: 1/8 of a 2x2x2 δ-Bi 2 O 3 superstructure having Fm3-bar space group. Every oxygen (black) has three possible positions, only one of which is filled either by O1 (red) or O 2 (blue).

  9. Synthesis and characterization of BNO (BiNbO4) ceramics added to 3% of ZnO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Pires Junior, G.F.M.; Rodrigues, H.O.; Sousa, D.G.; Sales, J.C.; Sombra, A.S.B.

    2012-01-01

    This work describes the synthesis and study of the structural characterization of ceramic BiNbO4 and density behavior when added 3% by weight of ZnO with a view to use in capacitors. The manufacture of BiNbO4 was made by conventional ceramic method. The powders were milled for two hours, calcined at 850 ° C for 3 h and characterized by XRD with Diffractometer Rigaku DMAXB of Co-α radiation. A more detailed XRD characterization was performed with the program DBWS9807a using the Rietveld refinement of crystal structures, which confirmed the achievement of phase -α-BiNbO4. Were made 'buks' with the calcined powder and these were sintered at 1025 ° C. In order to study the grain morphology and distribution of pores in the ceramic body, the surface of the sample with addition of 3% by weight of ZnO was analyzed by Scanning Electron Microscopy which confirmed a better densification. (author)

  10. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates

    International Nuclear Information System (INIS)

    Chen Xinman; Zhang Hu; Ruan Kaibin; Shi Wangzhou

    2012-01-01

    Highlights: ► Annealing effect on the bipolar resistive switching behaviors of BiFeO 3 thin films with Pt/BiFeO 3 /LNO was reported. ► Rectification property was explained from the asymmetrical contact between top and bottom interfaces and the distinct oxygen vacancy density. ► The modification of Schottky-like barrier was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices. - Abstract: We reported the annealing effect on the electrical behaviors of BiFeO 3 thin films integrated on LaNiO 3 (LNO) layers buffered Si substrates by sol–gel spin-coating technique. All the BiFeO 3 thin films exhibit the reversible bipolar resistive switching behaviors with Pt/BiFeO 3 /LNO configuration. The electrical conduction mechanism of the devices was dominated by the Ohmic conduction in the low resistance state and trap-controlled space charged limited current in the high resistance state. Good diode-like rectification property was observed in device with BiFeO 3 film annealed at 500 °C, but vanished in device with BiFeO 3 film annealed at 600 °C. This was attributed to the asymmetrical contact between top and bottom interfaces as well as the distinct oxygen vacancy density verified by XPS. Furthermore, the modification of Schottky-like barrier due to the drift of oxygen vacancies was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices.

  11. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  12. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    Science.gov (United States)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  13. Digital test objects (D.T.O.) for treatment planning systems quality control in external beam radiotherapy

    International Nuclear Information System (INIS)

    Denis, E.

    2008-04-01

    This work presents the conception and implementation of new automatic and quantitative quality assessment methods for geometric treatment planning in external radiotherapy. Treatment planning Systems (T.P.S.) quality control is mandatory in France and in the world because of encountered risks but the physical tools recommended to lead this quality control are not adapted to the situation. We present a new methodology for control quality based on the definition of Digital Test Objects (D.T.O.) that are directly introduced in the T.P.S. without acquisition device. These D.T.O. are consistently defined in a continuous and discrete modes. The T.P.S. responses to input D.T.O. are compared to theoretical results thanks to figures of merit specifically designed for each elementary control. The tests we carried out during this study allow to validate our solutions for the quality assessment of the auto-contouring, auto-margining, isocenter computation, collimator conformation and digitally reconstructed radiograph generation tools, as well as our solutions for marker positioning, collimator and displayed bean rotation, incidence, divergence and dimensions. Quality assessment solutions we propose are then fast and effective (no acquisition by the device, reduced manipulations), and more precise thanks to the continuous-discrete equivalence realized at the beginning of the modelling

  14. Luminescence and electron degradation properties of Bi doped CaO phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Kroon, R.E.; Coetsee, E.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2015-11-30

    Graphical abstract: - Highlights: • Blue emitting Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully prepared. • Strong blue near-UV emission was obtained. • Electron beam induced cathodoluminescence intensity degradation occurred. • XPS was successfully used to explain the degradation process. - Abstract: Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully synthesized by the sol-gel combustion method. The structure, morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and cathodoluminescence (CL) spectroscopy. The results showed that the Ca{sub 1−x}O:Bi{sub x=0.5%} consisted of single face-centred cubic crystals and that the phosphor particles were uniformly distributed. When the phosphor was excited by a xenon lamp at 355 nm, or a 325 nm He–Cd laser, or electron beam, it emitted strongly in the blue near-UV range with a wavelength of 395 nm ({sup 3}P{sub 1} → {sup 1}S{sub 0} transition of Bi{sup 3+}). The CL intensity was monitored as a function of the accelerating voltage and also as a function of the beam current. The powder was also subjected to a prolonged electron beam irradiation to study the electron beam induced CL intensity degradation. X-ray photoelectron spectroscopy was used to analyze the Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor sample surface before and after degradation.

  15. Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ping, E-mail: zhoujp@snnu.edu.cn [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Deng, Chao-Yong [Department of Electronic Science, Guizhou University, Guizhou Guiyang 550025 (China)

    2012-11-15

    Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.

  16. Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2018-02-01

    Full Text Available Dyes are one of the most important existing pollutants in textile industrial wastewater. These compounds are often toxic, carcinogenic, and mutagenic to living organisms, chemically and photochemically stable, and non-biodegradable. Acid red 18 is one of the azo dyes that are currently used in the textile industries. Photocatalytic degradation offers a great potential as an advanced oxidation process, in this study photocatalytic degradation of Acid red 18 by using BiOI/ZnO nanocomposite was evaluated under visible light irradiation. The influence of most essential parameters such as pH and BiOI/ZnO dosage were studied for optimum conditions. The dye removal efficiency was 85.1% at optimum experimental conditions of pH of 7, and BiOI/ZnO dosage of 1.5 g/L. The data had a good agreement with pseudo first-order kinetic model. Thus, the BiOI/ZnO/UV is an efficient process for dye degradation. Keywords: Photodegradation, Nanocomposite, BiOI/ZnO, Degradation, Dye, Acid red 18

  17. Bi2O2Se nanosheet: An excellent high-temperature n-type thermoelectric material

    Science.gov (United States)

    Yu, Jiabing; Sun, Qiang

    2018-01-01

    Motivated by the recent synthesis of an ultrathin film of layered Bi2O2Se [Wu et al., Nat. Nanotechnol. 12, 530 (2017); Wu et al., Nano Lett. 17, 3021 (2017)], we have systematically studied the thermoelectric properties of a Bi2O2Se nanosheet using first principles density functional theory combined with semiclassical Boltzmann transport theory. The calculated results indicate that the Bi2O2Se nanosheet exhibits a figure of merit (ZT) of 3.35 for optimal n-type doping at 800 K, which is much larger than the ZT value of 2.6 at 923 K in SnSe known as the most efficient thermoelectric material [Zhao et al., Nature 508, 373 (2014)]. Equally important, the high ZT in the n-type doped Bi2O2Se nanosheet highlights the efficiency of the reduced dimension on improving thermoelectric performance as compared with strain engineering by which the ZT of n-type doped bulk Bi2O2Se cannot be effectively enhanced.

  18. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  19. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides

    International Nuclear Information System (INIS)

    Hsiao, Chun-Lung; Qi, Xiaoding

    2016-01-01

    Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted

  20. Dye-Sensitized Solar Cells Based on Bi4Ti3O12

    Directory of Open Access Journals (Sweden)

    Zeng Chen

    2011-01-01

    Full Text Available Bismuth titanate (Bi4Ti3O12 particles were synthesized by hydrothermal treatment and nanoporous thin films were prepared on conducting glass substrates. The structures and morphologies of the samples were examined with X-ray diffraction and scanning electron microscope (SEM. Significant absorbance spectra emerged in visible region which indicated the efficient sensitization of Bi4Ti3O12 with N3 dye. Surface photovoltaic properties of the samples were investigated by surface photovoltage. The results further indicate that N3 can extend the photovoltaic response range of Bi4Ti3O12 nanoparticles to the visible region, which shows potential application in dye-sensitized solar cell. As a working electrode in dye-sensitized solar cells (DSSCs, the overall efficiency reached 0.48% after TiO2 modification.

  1. Hydrothermal synthesis, structure and photocatalytic properties of La/Bi co-doped NaTaO3

    International Nuclear Information System (INIS)

    Lan, Nguyen Thi; Huan, Bui Doan; Anh, Trinh Xuan; Chinh, Huynh Dang; Phan, Le Gia; Hoang, Luc Huy; Hong, Le Van

    2016-01-01

    La/Bi co-doped NaTaO 3 nanomaterials for photocatalytic applications have been successfully synthesized by hydrothermal method at low temperature. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and UV-Vis molecular absorption spectroscopy. The results showed that the particle sizes of La/Bi co-doped NaTaO 3 were smaller than that of the pure NaTaO 3 . La/Bi co-doping has extended optical absorption in the visible light region and then successfully increased photocatalytic activity of the La/Bi-codoped NaTaO 3 that were evaluated by degradation of methylene blue (MB). (author)

  2. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China); Luo, Heng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China)

    2017-03-15

    The single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2–18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi{sub 1-x}Nd{sub x}FeO{sub 3}. Electromagnetic measurement suggested that both microwave permeability μ′ and magnetic loss tanδ{sub m} increased remarkably over 2–18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.15) and Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.2). Results show that Nd substitution is an effective way to push BiFeO{sub 3} to become microwave absorbing materials with high performance. - Highlights: • Single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} samples were prepared by a sol-gel method. • Strong dielectric loss peak was observed in BiFeO{sub 3} with high doping content. • Significant enhancement of microwave absorption property was found in Nd-doped BiFeO{sub 3}.

  3. Bi-epitaxial tilted out-of-plane YBCO junctions on NdGaO{sub 3} substrates with YSZ seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P.B. (Institute of Physics and Technology RAS, Moscow (Russian Federation)); Mozhaev, J.E.; Bindslev Hansen, J.; Jacobsen, C.S. (Technical Univ. of Denmark, Dept. of Physics, Kgs. Lyngby (Denmark)); Kotelyanskil, I.M.; Luzanov, V.A. (Institute of Radio Engineering and Electronics RAS, Moscow (Russian Federation)); Benacka, S.; Strbik, V. (Institute of Electrical Engineering SAS, Bratislava (SK))

    2008-10-15

    Bi-epitaxial junctions with out-of plane tilt of the c axis were fabricated of YBCO superconducting thin films on NdGaO{sub 3} substrates with different miscut angles. Bi-epitaxial growth was provided by implementation of an Y:ZrO{sub 2} seeding layer on a certain part of the substrate. Junctions with different orientation of the bi-epitaxial boundaries were fabricated, their DC electrical properties were studied as a function of the boundary orientation angle. The junctions showed extremely high critical current densities for all tested miscut angles and bi-epitaxial boundary orientations (about 105 A/cm2 at 77 K and up to 106 A/cm2 at 4.2 K). The dependence of critical current density on the bi-epitaxial boundary orientation angle may be explained as an effect of a d-wave pairing mechanism in the HTSC with the simple Sigrist-Rice model. The studied boundaries may be considered as model structures for the grain boundaries in the coated conductors. (au)

  4. DIGITAL STORYTELLING, EDUCAÇÃO SUPERIOR E LITERACIA DIGITAL

    Directory of Open Access Journals (Sweden)

    Josias Ricardo Hack

    2013-04-01

    Full Text Available O texto revisa e dialoga com autores de artigos e livros em Língua Inglesa e Língua Portuguesa sobre fundamentos técnicos da produção audiovisual, como o Digital Storytelling, a ser utilizada na educação superior e produzida pelos próprios interlocutores do processo de aprendizagem. O intuito é refletir sobre algumas características necessárias para se desenvolver uma experiência contextualizada com curtas histórias audiovisuais pessoais na aprendizagem de adultos. A metodologia de investigação é pautada em pesquisa bibliográfica nas bases de dados da Nottingham Trent University (Inglaterra e da Universidade Federal de Santa Catarina (Brasil. Os resultados do estudo apontam que certas habilidades, como a capacidade de construir uma narrativa e editar imagem, vídeo e som são requeridas dos envolvidos em educação superior em razão da inserção de múltiplas tecnologias digitais no cotidiano. Assim, a experiência prática de produção audiovisual educativa pode trazer a possibilidade de literacia digital pela realização de peças audiovisuais no processo de aprendizagem colaborativa de adultos. Palavras-chave: Histórias digitais. Digital Storytelling. Educação superior. Literacia digital. Aprendizagem de adultos.

  5. YIG: Bi2O3 Nanocomposite Thin Films for Magnetooptic and Microwave Applications

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm, achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz.

  6. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  7. Effect of copper valence on the glass structure and crystallization behavior of Bi-Pb-Cu-O glasses

    International Nuclear Information System (INIS)

    Hu, Yi; Lin, U.-L.; Liu, N.-H.

    1997-01-01

    Bi 0.43 Pb 0.35 Cu 0.22 O y glasses with different Cu + contents were prepared by melting at different temperatures. The glass structure consists of [BiO 3 [ and [BiO 6 [ units and the ratio of [BiO 3 [/[BiO 6 [ increases with increasing Cu + content. The glass transition temperature, the first crystallization temperature peak, and the thermal stability of the glasses decreases with increasing Cu + content. The value of the activation energy, E a , varies as a function of the Cu + content. The crystallization mechanism in the glasses is closely related to the glass structure, which is mainly affected by the Cu + content. (orig.)

  8. Physicochemical investigation of Bi2MoO6 solid-phase interaction with Sm2MoO6

    International Nuclear Information System (INIS)

    Khajkina, E.G.; Kovba, L.M.; Bazarova, Zh.G.; Khal'baeva, K.M.; Khakhinov, V.V.; Mokhosoev, M.V.

    1986-01-01

    Bi 2 MoO 6 -Sm 2 MoO 6 interaction in the temperature range of 700-1000 deg C is studied using X-ray phase analysis and vibrational spectroscopy. Formation of monoclinic solid solutions based on γ'-Bi 2 MoO 6 and B 2-x Sm x MoO 6 varied composition phase with α-Ln 2 MoO 6 structure which homogeneity region extent at 1000 deg C constitutes ∼ 50 mol % (0.7≤x≤1.7) is stated. Crystallographic characteristics of the synthesized phases are determined

  9. Preparation of thin layers of BiSrCaCuO by method MOCVD

    International Nuclear Information System (INIS)

    Beran, P.; Stejskal, J.; Strejc, A.; Nevriva, M.; Sedmibudsky, D.; Leitner, J.

    1999-01-01

    Preparation of superconducting material on the basis mixed oxides of BiSrCaCuO by chemical vapour deposition (CVD) method is described. Surface morphology and concentration profiles of elements were analyzed by scanning electron microscope and microprobe. Phase of layers was analysed by X-ray diffraction (radiation of Cu kα ). Samples of thin layers were characterized by magnetic susceptibility in temperature interval 10 to 150 K. Obtained results confirm formation of superconducting phases Bi 2 Sr 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Xa 2 Cu 3 O x

  10. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures

    Science.gov (United States)

    Gaikwad, Vishwajit M.; Goyal, Saveena; Yanda, Premakumar; Sundaresan, A.; Chakraverty, Suvankar; Ganguli, Ashok K.

    2018-04-01

    Nanostructures of complex oxides [BiFexMn2-xO5 (x = 0, 1, 2)] have been designed to study their structural, optical and magnetic behaviour. X-ray diffraction data (XRD) revealed orthorhombic phase with Pbam space group. Noticeable expansion in unit cell parameters has been found from BiMn2O5 (x = 0) to BiFe2O4.5 (x = 2). The observed structural changes via tuning of B-site (x = 0-2) played an important role in overall magnetic properties. Transmission electron microscopic images confirm that the average particle size of all the materials are in nano domain range with different morphologies. From optical studies, it has been found that the observed energy band gap values are strongly related to 3d electron numbers. These values appear to be larger than that reported for bulk. Isothermal magnetization plots (at 5 K) show increase in coercivity (Hc) from x = 0 to x = 2. Temperature dependent magnetization studies implied anti-ferromagnetic interactions for BiMn2O5, frustrated magnet for BiFeMnO5 and ferromagnetic behaviour for BiFe2O4.5. Ferromagnetic state of nanostructured BiFe2O4.5 is in contrast with its bulk counterparts.

  11. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Hakim, M. A.; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Basith, M. A., E-mail: mabasith@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Hossain, Md. Sarowar [S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata, West Bengal 700098 (India); Ahmmad, Bashir [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-03-15

    Improvement in magnetic and electrical properties of multiferroic BiFeO{sub 3} in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe{sup 2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO{sub 3} nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO{sub 3}.

  12. Assessment of enamel demineralization using conventional, digital, and digitized radiography Avaliação da desmineralização do esmalte por meio de radiografias convencional, digital e digitalizada

    Directory of Open Access Journals (Sweden)

    Rívea Inês Ferreira

    2006-04-01

    Full Text Available This experimental research aimed at evaluating the accuracy of enamel demineralization detection using conventional, digital, and digitized radiographs, as well as to compare radiographs and logarithmically contrast-enhanced subtraction images. Enamel subsurface demineralization was induced on one of the approximal surfaces of 49 sound third molars. Standardized radiographs of the teeth were taken prior to and after the demineralization phase with three digital systems - CygnusRay MPS®, DenOptix® and DIGORA® - and InSight® film. Three radiologists interpreted the pairs of conventional, digital, and digitized radiographs in two different occasions. Logarithmically contrast-enhanced subtraction images were examined by a fourth radiologist only once. Radiographic diagnosis was validated by cross-sectional microhardness profiling in the test areas of the approximal surfaces. Accuracy was estimated by Receiver Operating Characteristic (ROC analysis. Chi-square test, at a significance level of 5%, was used to compare the areas under the ROC curves (Az calculated for the different imaging modalities. Concerning the radiographs, the DenOptix® system (Az = 0.91 and conventional radiographs (Az = 0.90 presented the highest accuracy values compared with the other three radiographic modalities. However, logarithmically contrast-enhanced subtraction images (Az = 0.98 were significantly more accurate than conventional, digital, and digitized radiographs (p = 0.0000. It can be concluded that the DenOptix® system and conventional radiographs provide better performance for diagnosing enamel subsurface demineralization. Logarithmic subtraction significantly improves radiographic detection.O objetivo desta pesquisa experimental foi investigar a acurácia da detecção de desmineralizações em esmalte por meio de radiografias convencionais, digitais e digitalizadas, e compará-las às imagens por subtração logarítmica. Foram induzidas desmineraliza

  13. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    Science.gov (United States)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  14. Out-of-plane tilted Josephson junctions of bi-epitaxial YBa{sub 2}Cu{sub 3}O {sub x} thin films on tilted-axes NdGaO{sub 3} substrates with CeO{sub 2} seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, Peter B. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation) and Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark)]. E-mail: pbmozh@nm.ru; Mozhaeva, Julia E. [Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation); Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark); Bdikin, Igor K. [CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Kotelyanskii, Iosif M. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Luzanov, Valery A. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Zybtsev, Sergey G. [Institute of Radio Engineering and Electronics RAS, Moscow 125009 (Russian Federation); Hansen, Jorn Bindslev [Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark); Jacobsen, Claus S. [Department of Physics, Technical University of Denmark, Lyngby DK-2800 (Denmark)

    2006-03-15

    Bi-epitaxial heterostructures YBa{sub 2}Cu{sub 3}O {sub x}(YBCO)/CeO{sub 2}/NdGaO{sub 3} were prepared on tilted-axes NdGaO{sub 3} substrates using laser ablation technique. The heterostructures were patterned for electrical measurements using photolithography and ion-beam milling. Electrical anisotropy of the YBCO film was tested on the ion-beam etched surface. Bi-epitaxial junctions with four different orientations of the bi-epitaxial border were fabricated and studied. The measured I V curves showed flux-flow behavior with critical current density 2.5 x 10{sup 4} A/cm{sup 2} for the twist-type junctions and 1.5 x 10{sup 3} A/cm{sup 2} for [1 0 0]-tilt type junctions.

  15. Fabrication, modification and application of (BiO)_2CO_3-based photocatalysts: A review

    International Nuclear Information System (INIS)

    Ni, Zilin; Sun, Yanjuan; Zhang, Yuxin; Dong, Fan

    2016-01-01

    Graphical abstract: - Highlights: • The (BiO)_2CO_3 with Aurivillius structure y is an emergent material. • Synthesis of (BiO)_2CO_3 micro/nano structures was reviewed. • The mechanisms of (BiO)_2CO_3 based nanocomposites were discussed. • Doping (BiO)_2CO_3 with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO)_2CO_3 based derivatives was demonstrated. - Abstract: (BiO)_2CO_3 (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi_2O_2"2"+ layers and CO_3"2"− layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO)_2CO_3 have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi_xMO_y)/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The enhanced photocatalytic activity of BOC-based systems can be attributed to the unique interaction of

  16. Ab initio study of properties of BaBiO3 at high pressure

    Science.gov (United States)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  17. One-dimensional BiFeO{sub 3} nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lei [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Sui, Wenbo; Dong, Chunhui; Zhang, Chao [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Jiang, Changjun, E-mail: 779322052@qq.com [Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2016-10-30

    Highlights: • We present a fabrication method of one-dimensional BFO nanotubes prepared using a sol–gel-based electrospinning process followed by thermal treatment. • By compared with BiFeO{sub 3} bulks, enhanced room temperature ferromagnetism has been successfully realized in BFO nanotubes. • The impacts of processing temperature on the final microscopic structure and component are characterized in detail. • The existence of plentiful oxygen vacancies will play a key role in terms of enhanced ferromagnetism. - Abstract: With the progress of science and technology, the growing demands for practical applications make low-dimensional multiferroics more appealing in areas such as chemical and bio-sensors, nanoelectronic, high-density data storage devices. One-dimensional BiFeO{sub 3} nanotubes were successfully synthesized by sol–gel-based electrospinning process. The images of scanning electron microscopy and transmission electron microscopy collectively demonstrate that BiFeO{sub 3} nanotubes with long slender structure and virtually uniform diameter of approximately 100 nm were observed at 500 °C annealing temperature. By compared with BiFeO{sub 3} bulks observed at 800 °C annealing temperature, enhanced room temperature ferromagnetism was successfully realized in BiFeO{sub 3} nanotubes at room temperature. The results of electron spin resonance measurement further confirm that ferromagnetic resonances were detected in BiFeO{sub 3} nanotubes at different temperature. X-ray photoelectron spectroscopy study proves the existence of plentiful oxygen vacancies in BiFeO{sub 3} nanotubes, which will play a key role in terms of enhanced ferromagnetism. The results will contribute to expand the applications of BiFeO{sub 3} into the new field of spintronic devices and high-density data storage media.

  18. Analysis of multiferroic properties in BiMnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grizalez, M [Universidad de la Amazonia, Florencia (Colombia); Mendoza, G A [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Prieto, P, E-mail: pprieto@calima.univalle.edu.c [Center of Excellence on Novel Materials - CENM (Colombia)

    2009-05-01

    Textured BiMnO{sub 3} [111] thin films on SrTiO{sub 3} (100) and Pt/TiO{sub 2}/SiO{sub 2} substrates were grown via r.f. magnetron sputtering (13.56 MHz). The XRD spectra confirmed a monoclinic structure and high-quality textured films for the BiMnO{sub 3} films. The films grown on SrTiO{sub 3} (100) showed higher crystalline quality than those developed on Pt/TiO{sub 2}/SiO{sub 2}. Through optimized oxygen pressure of 5x10{sup -2} mbar during the r.f. sputtering deposition, the crystalline orientation of the BiMnO{sub 3} film was improved with respect to the previously reported value of 2x10{sup -1} mbar. The values of spontaneous polarization (P{sub s}), remnant polarization (P{sub r}), and coercive field (F{sub c}) from ferroelectric hysteresis loops (P-E) at different temperatures were also obtained. Samples with higher crystalline order revealed better dielectric properties (high P{sub s} and P{sub r} values and a low F{sub c}). For films on both types of substrates, the ferroelectric behavior was found to persist up to 400K. Measurements at higher temperatures were difficult to obtain given the increased conductivity of the films. Magnetic hysteresis loops from 5K to 120K were obtained for BiMnO{sub 3} films grown on SrTiO{sub 3} and Pt/TiO{sub 2}/SiO{sub 2} substrates. The results suggested that the coexistence of the magnetic and electric phases persists up to 120K.

  19. First assessment of Li2O–Bi2O3 ceramic oxides for high temperature carbon dioxide capture简

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá?ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O–Bi2O3 system. The compounds(Li7BiO6, Li5BiO5, Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 °C under the CO2 atmosphere to evaluate the carbonate formation, which is indicative of the capacity of CO2 capture. Moreover, Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g, which is considerably higher than those of other previously reported ceramics. Li7BiO6 is able to react with CO2 from 240 °C to approximately 660 °C showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  20. Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-vis-NIR broad spectrum for photodegradation of organic pollutants.

    Science.gov (United States)

    Chen, Yannan; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Zhu, Runliang; Wang, Chenghui; Wei, Xiumei; Liu, Peng

    2018-02-15

    Ag 2 O nanoparticles-loaded Bi 5 O 7 I microspheres forming a three dimensional Ag 2 O/Bi 5 O 7 I p-n heterojunction photocatalyst with wide-spectrum response were synthesized in this study. The results of transmission electron microscopy observations revealed that the Ag 2 O nanoparticles with the diameter of ca. 10-20nm were distributed on the surfaces of Bi 5 O 7 I nanosheets. The as-synthesized Ag 2 O/Bi 5 O 7 I exhibited an excellent wide-spectrum response to wavelengths ranging from ultraviolet (UV) to near-infrared (NIR), indicating its potential for effective utilization of solar energy. Compared with pure Bi 5 O 7 I, the Ag 2 O/Bi 5 O 7 I composite also demonstrated excellent photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution under visible LED light irradiation. Among samples, the 20% Ag 2 O/Bi 5 O 7 I composite photocatalyst showed the highest photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution. In addition, the 20% Ag 2 O/Bi 5 O 7 I composite also exhibited a photocatalytic activity for the degradation of Bisphenol A under NIR light irradiation. The improved photocatalytic activity is attributed to the formation of a p-n heterojunction between Ag 2 O and Bi 5 O 7 I, allowing the efficient utilization of solar energy (from UV to NIR) and high separation efficiency of photogenerated electron-hole pairs. The present work is desirable to explore a possible avenue for the full utilization of solar energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polymorphism of Bi1-xLnxO1.5 phases (04Ln2O9 (x=0.33; Ln=La, Pr, Nd)

    International Nuclear Information System (INIS)

    Drache, Michel; Huve, Marielle; Roussel, Pascal; Conflant, Pierre

    2003-01-01

    The Bi 1-x Ln x O 1.5 solid solutions (Ln=La, Pr, Nd), of the β 2 /β 1 /ε (Bi-Sr-O) structural type, have been investigated in their Ln-rich domains. For Ln=La, Pr, and Nd, the upper limits are 0.35, 0.35 and 0.33, respectively. The Bi 4 Ln 2 O 9 ε phase (x=0.33) appears to be the single definite compound. For Bi 4 La 2 O 9 , Bi 4 Pr 2 O 9 and Bi 4 Nd 2 O 9 , the ε-type cells are respectively: a=9.484(4) A, b=3.982(2) A, c=7.030(3) A, β=104.75(3) deg.; a=9.470(5) A, b=3.945(2) A, c=6.968(4) A, β=104.73(3) deg. and a=9.439(3) A, b=3.944(2) A, c=6.923(2) A, β=105.03(3) deg. . Upon heating, each monoclinic (ε) compound transforms successively into rhombohedral phases (β 2 /β 1 ) and finally into a cubic fluorite-type phase. For La- and Pr-based compounds, all transitions are reversible; for Nd, depending on the thermal treatment, the reversibility of ε→β 2 can be incomplete. These transformations are characterized using X-ray thermodiffractometry, differential thermal analysis, dilatometry and impedance spectroscopy versus temperature. Examination of Bi 4 (Ln, Ln') 2 O 9 samples allows to correlate the evolution of the thermal behavior and of the unit cell parameters, to the lanthanide size. A partial plot of the (Bi 2 O 3 ) 1-x -(La 2 O 3 ) x phase diagram (0≤x≤0.40) is proposed

  2. Investigations on the Synthesis and Properties of Fe2O3/Bi2O2CO3 in the Photocatalytic and Fenton-like Process

    Science.gov (United States)

    Sun, Dongxue; Shen, Tingting; Sun, Jing; Wang, Chen; Wang, Xikui

    2018-01-01

    Catalyst of Bi2O2CO3 and Fe2O3 modified Bi2O2CO3 (Fe2O3/Bi2O2CO3) were prepared by hydrothermal method and characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and UV-vis DRS. The catalytic activity of Bi2O2CO3 and Fe2O3/Bi2O2CO3 were comparatively investigated in the photodegradation and Fento-like process. Rhodamine B(RhB) was selected as the target pollutant under the irradiation of 300 W xenon lamp. The results indicated that Fe2O3 plays a great role in the enhancing the treatment efficiency and the and the maximum reaction rate was achieved at the Fe2O3 loading of 1.5%. The Fenton-like degradation rate constant of RhB with bare Bi2O2CO3 in dark is 0.4 min-1, while that with 1.5 Fe2O3/Bi2O2CO3 increases to 28.4 min-1 under visible light irradiation, a 71-fold improvement. It is expected to shed a new light for the constructing novel composite photocatalyst and also provide a potential method for the removal of dyes in the aqueous system.

  3. Simultaneous achievement of high dielectric constant and low temperature dependence of capacitance in (111-oriented BaTiO3-Bi(Mg0.5Ti0.5O3-BiFeO3 solid solution thin films

    Directory of Open Access Journals (Sweden)

    Junichi Kimura

    2016-01-01

    Full Text Available The temperature dependence of the capacitance of (111c-oriented (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films is investigated. These films are prepared on (111cSrRuO3/(111Pt/TiO2/SiO2/(100Si substrates by the chemical solution deposition technique. All the films have perovskite structures and the crystal symmetry at room temperature varies with increasing x ratio, from pseudocubic when x = 0–0.30 to rhombohedral when x = 0.50–0.90. The pseudocubic phase shows a high relative dielectric constant (εr (ranging between 400 and 560 at room temperature and an operating frequency of 100 kHz and a low temperature dependence of capacitance up to 400°C, while maintaining a dielectric loss (tan δ value of less than 0.2 at 100 kHz. In contrast, εr for the rhombohedral phase increases monotonically with increasing temperature up to 250°C, and increasingly high tan δ values are recorded at higher temperatures. These results indicate that pseudocubic (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films with (111 orientation are suitable candidates for high-temperature capacitor applications.

  4. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Parmigiani, F.; Shen, Z.X.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1991-01-01

    High-quality Bi 2 Sr 2 CaCu 2 O 8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ∼0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure

  5. Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method

    International Nuclear Information System (INIS)

    Cheng Hefeng; Huang Baibiao; Dai Ying; Qin Xiaoyan; Zhang Xiaoyang; Wang Zeyan; Jiang Minhua

    2009-01-01

    Metastable Bi 20 TiO 32 samples were synthesized by a high-temperature quenching method using α-Bi 2 O 3 and anatase TiO 2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi 20 TiO 32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi 20 TiO 32 was studied. Photodegradation against methyl orange was much better than α-Bi 2 O 3 prepared by the same way. The photocatalytic activity of Bi 20 TiO 32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination. - Graphical abstract: Metastable Bi 20 TiO 32 samples were successfully synthesized by a quenching process. Photodegradation against methyl orange showed high visible-light activity and it was supposed to be associated with its corresponding band structure.

  6. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  7. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2O3-PbTiO3 ternary solid solution perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Weilin Zheng

    2016-08-01

    Full Text Available For low dielectric loss perovskite-structured (1-x-yBiFeO3-xBi(Zn1/2Ti1/2O3-yPbTiO3 (BF-BZT-PT (x = 0.04-0.15 and y = 0.15-0.26 ceramics in rhombohedral/tetragonal coexistent phase, structural phase transitions were studied using differential thermal analyzer combined with temperature-dependent dielectric measurement. Two lattice structural phase transitions are disclosed in various BF-BZT-PT perovskites, which is different from its membership of BiFeO3 exhibiting just one lattice structural phase transition at Curie temperature TC= 830oC. Consequently, residual internal tensile stresses were revealed experimentally through XRD measurements on ceramic pellets and counterpart powders, which are reasonably attributed to special structural phase transition sequence of BF-BZT-PT solid solution perovskites. Low piezoresponse was observed and argued extrinsically resulting from residual tensile stresses pinning ferroelectric polarization switching. Post-annealing and subsequent quenching was found effective for eliminating residual internal stresses in those BZT-less ceramics, and good piezoelectric property of d33 ≥ 28 pC/N obtained for 0.70BF-0.08BZT-0.22PT and 0.05 wt% MnO2-doped 0.70BF-0.04BZT-0.26PT ceramics with TC ≥ 640oC, while it seemed no effective for those BZT-rich BF-BZT-PT ceramics with x = 0.14 and 0.15 studied here.

  8. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  9. Synthesis and crystal structure of Bi6.4Pb0.6P2O15.2

    International Nuclear Information System (INIS)

    Arumugam, N.; Lynch, V.; Steinfink, H.

    2007-01-01

    Bi 6.4 Pb 0.6 P 2 O 15.2 is a polymorph of structures with the general stoichiometry Bi 6+x M 1-x P 2 O 15+y . However, unlike previously published structures that consist of layers formed by edge sharing OBi 4 tetrahedra bridged by PO 4 and TO 6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) A, b=11.3692(3) A, c=16.3809(5) A, β=101.167(1) o , Z=10. Single-crystal X-ray diffraction data were refined by least squares on F 2 converging to R 1 =0.0387, wR 2 =0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb) 4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) A. Pairs of such cubes share an edge to form a Pb 3 O 20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb) 4 units, and some oxygen ions of the polyhedra are also part of PO 4 tetrahedra. One, two, three and or four PO 4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ≤3.1 A vary from 2.090(12) to 3.07(3) A. The articulations of Pb cubes, Bi polyhedra and PO 4 tetrahedra link into the three-dimensional structure. - Graphical abstract: View of the structure of Bi 6.4 Pb 0.6 P 2 O 15.2 parallel to the b-axis

  10. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.

    Science.gov (United States)

    Peng, Mingying; Qiu, Jianrong; Chen, Danping; Meng, Xiangeng; Zhu, Congshan

    2005-09-05

    The broadband emission in the 1.2~1.6mum region from Li2O-Al2O3-ZnO-SiO2 ( LAZS ) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum ) more than 250nm and a fluorescent lifetime longer than 500mus when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

  11. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses

    Science.gov (United States)

    Sayyed, M. I.; Çelikbilek Ersundu, M.; Ersundu, A. E.; Lakshminarayana, G.; Kostka, P.

    2018-03-01

    In this work, glasses in the MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) system, which show a great potential for optoelectronic applications, were used to evaluate their resistance under high energy ionizing radiations. The basic shielding quantities for determining the penetration of radiation in glass, such as mass attenuation coefficient (μ/ρ), half value layer (HVL), mean free path (MFP) and exposure buildup factor (EBF) values were investigated within the energy range 0.015 MeV ‒ 15 MeV using XCOM program and variation of shielding parameters were compared with different glass systems and ordinary concrete. From the derived results, it was determined that MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses show great potentiality to be used under high energy radiations. Among the studied glass compositions, Bi2O3 and WO3 containing glasses were found to possess superior gamma-ray shielding effectiveness.

  12. IAG ring test animal proteins 2016

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Rhee, van de N.E.; Scholtens-Toma, I.M.J.; Prins, T.W.; Vliege, J.J.M.; Pinckaers, V.G.Z.

    2016-01-01

    The annual ring test for the detection of animal proteins in animal feed of the IAG - International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy was organized by RIKILT - Wageningen UR, The Netherlands. The aim of the ring study was to provide the participants information

  13. Radiation shielding with Bi2O3 and ZrO2:Y composites: preparation and characterization

    International Nuclear Information System (INIS)

    Fontainha, Crissia C.P.

    2015-01-01

    Despite the benefits of medical imaging examinations, there is a worrying contribution of dose of radiation to population due to the high dose procedures. Procedures as interventional radiology, Computed Tomography (CT) and nuclear medicine provide high doses to the skin of patients, provoking radiation deleterious effects. New attenuators materials have been widely investigated for radiation shielding in those regions of high risk, allowing significant dose reduction near the patient's skin. Composites with Bi 2 O 3 and ZrO 2 :Y metals were obtained by mixing them with P(VDF-TrFe) copolymers from casting. Composites were produced with concentrations of 2, 4 and 8% wt. of Yttrium stabilized zirconia. Bi 2 O 3 containing composites were produced with the same concentrations (2, 4 and 8% wt.), with Bi 2 O 3 particles being previously functionalized with methacrylic acid (MAA). The composites were characterized by FTIR. The entrance skin dose characterization was performed with and without the use of radiation protective shielding. The composite samples were exposed to an absorbed dose of 100 mGy of RQR5 beam quality (70 kV X-ray beam). The attenuation factors, evaluated by XR-QA2 radiochromic films, indicate that both P(VDF-TrFE)/Bi 2 O 3 and P(VDF-TrFE)/ZrO 2 :Y composites are good candidates for use as patient radiation shielding in high dose medical procedures. (author)

  14. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    Science.gov (United States)

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-01

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  15. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  16. Contact mechanical analysis of O-ring stresses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu

    2007-02-15

    The purpose of this project is to develop the approximate solutions of contact traction and internal stress of an O-ring by using a two dimensional elasticity for enhancing the design and failure prediction technology. Investigated were the applicability of Lindley's formulae of contact force prediction and the Hertz theory. Three cases of O-ring installation were considered. The approximate solution of contact tractions and internal stresses of each case were derived. The key results are summarized as follows: 1. It is verified that Lindley's formulae predicts the relationship between the fractional compression and contact force. 2. In the case of Case I, II and III without internal pressure, it is found that a function form of the contact traction is the Hertzian. So it is possible to express the traction with a Hertzian form and correction factors. 3. The internal stresses are derived in the case of the Hertzian traction profile. The stresses at the center of O-ring show a satisfactory result when compared with the finite element result.

  17. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  18. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    International Nuclear Information System (INIS)

    Wang, Lingyun; Daoud, Walid A.

    2015-01-01

    Highlights: • BiOI/TiO 2 photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO 2 (PVP) showed a 13-fold increase in photocurrent density compared to TiO 2 . • Charge transport kinetics within the BiOI/TiO 2 heterojunctions are discussed. - Abstract: A series of BiOI/TiO 2 -nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO 2 nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO 2 (PVP) as photoanode can reach a short current density (J sc ) of 0.13 mA/cm 2 and open circuit voltage (V oc ) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO 2 , the IPCE of BiOI/TiO 2 (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed

  19. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  20. Crystallization and chemical durability of glasses in the system Bi2O3-SiO2

    International Nuclear Information System (INIS)

    Fredericci, C.

    2011-01-01

    The crystallization of the Bi 2 O 3 -SiO 2 -TiO 2 -Al 2 O 3 -Na 2 O-K 2 O and Bi 2 O 3 -SiO 2 -ZnO-Al 2 O 3 -B 2 O 3 -Na 2 O glasses was studied using glass samples prepared by traditional melt-quench method. Differential thermal analysis (DTA) curves suggested that surface crystallization played a major role in the crystallization of the glass samples. X-ray diffraction (XRD) analysis revealed the crystallization of bismuth silicate for both glasses and bismuth silicate and zinc silicate for the glass containing ZnO. Through scanning electron microscopy (MEV) and energy dispersive spectroscopy (EDS), it was possible to observe that the crystals of zinc silicate (Zn 2 SiO 4 ) were readily attacked by hot 0,1 N sulfuric acid, whereas bismuth silicate crystals were more resistant to acidic attack etching. (author)

  1. Investigation of the crystal structure of a basic bismuth(III) nitrate with the composition [Bi6O4(OH)(4)](0.54(1))[Bi6O5(OH)(3)](0.46(1))(NO3)(5.54(1))

    DEFF Research Database (Denmark)

    Christensen, Axel Norlund; Lebech, Bente

    2012-01-01

    A basic bismuth(III) nitrate with the composition [Bi6O4(OH)(4)](0.5)[Bi6O5(OH)(3)](0.5)(NO3)(5.5) formed in a slow crystal growth mode has an ordered crystal structure with the monoclinic space group P2(1) and lattice parameters a = 15.850(3), b = 14.986(3), c = 18.230(4) angstrom, beta = 107...... a trigonal R (3) over bar cell with a = 15.1865(1) and c = 15.8416(1) angstrom (hexagonal setting). In a Rietveld type structure model refinement with a total of 28 atom sites (4 Bi, 3 N, 15 O and 6 H), the composition of this sample is determined to be [Bi6O4(OH)(4)](0.54(1))[Bi6O5(OH)(3)](0.46(1))(NO3)(5.54(1))....

  2. Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.

    2005-05-01

    We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.

  3. Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals

    International Nuclear Information System (INIS)

    Clayton, N; Musolino, N; Giannini, E; Garnier, V; Fluekiger, R

    2004-01-01

    Single crystals of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) have been grown using the travelling solvent floating zone technique in an image furnace. Annealing the crystals under high pressures of O 2 increased their critical temperature to 109 K, and resulted in sharp superconducting transitions of ΔT c = 1 K. The superconducting anisotropy of Bi-2223 was found to be ∼ 50, from measurements of the lower critical field with the magnetic field applied parallel and perpendicular to the c-axis. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212), and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy

  4. A study on the method for estimating the life time of O-rings made of NBR used in sealing air operating cylinders

    International Nuclear Information System (INIS)

    Fujii, Yuzo; Mitsuta, Yasumasa

    2003-01-01

    At nuclear power plants, a large number of O-rings made of rubber are attached to safety related machines and apparatus for sealing two metallic components. O-rings degrade during the long term exposure in environmental conditions in use, and finally lose the requested functions. Therefore it is important to exchange them in a proper period based on the precise life time estimation. This study aimed at to investigate the method for estimating the life time of O-rings made of NBR (acrylonitrile butadiene rubber) attached to the air cylinders which drive the dampers of ventilation systems in nuclear power plants. It has been conducted as follows: (1) After confirming that the main cause of degradation of O-rings is thermo-oxidation reaction, thermally accelerated aging tests were carried out for O-rings with three different temperatures. (2) It was certified that the elongation values of O-rings obtained by the tests could be fitted by the Arrhenius rule, and then the life time of O-rings was estimated using the Arrhenius rule. (3) In order to validate the reliability of this estimation, we measured the elongation values of the O-rings which had been actually used at nuclear power plants, and compared them to the predicted elongation values obtained by the above estimation. The average and standard deviation of the values which is calculated by the equation {(measured value-predicted value)/ predicted value} are 11% and 8%, respectively and there are small errors between the measured value and the predicted values. As a result we can judge that good estimation of life time of O-rings can be done by the above method. (author)

  5. Electric-field-induced internal deformation in piezoelectric BiB{sub 3}O{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, O.; Gorfman, S.; Pietsch, U. [Solid State Physics Department, University of Siegen (Germany)

    2008-11-15

    For the first time electric-field-induced atomic displacements (internal strains) in non-ferroelectric polar BiB{sub 3}O{sub 6} single crystal plates (point symmetry 2) were investigated using X-ray diffraction technique. The intensity variations of selected Bragg reflections were collected for three different orientations of the applied external electric field vector with respect to the crystal lattice and used for calculating the microscopic structural response of BiB{sub 3}O{sub 6}. Due to the limited number of the reflections providing measurable changes in Bragg intensities we restricted ourselves in analyzing the shift of the B{sub 3}O{sub 6} sublattice relative to the Bi one. In addition, we considered the deformation of the Bi-O, B(1)-O and B(2)-O bond lengths and identified the [B(2)O{sub 3}] group as the most sensitive structural unit to an external electric perturbation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Temperature dependence of positron lifetime in the two-mixed-phase Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Zhang, D.M.; Tang, C.Q.; Gen, T.; Li, G.Y.

    1993-01-01

    As compared with the YBaCuO(123) system, the studies of positron annihilation performed for other cuprate superconductors, specifically for the BiSrCaCuO and TlBaCa.CuO systems, are very few. Thus further study of positron annihilation in BiSrCaCuO and TlBaCaCuO systems is necessary. In this note, we report the results of the temperature dependence of positron lifetime parameters in the two-mixed-phase system BiSrCaCuO and discuss the results. (orig.)

  7. Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng, E-mail: xfqian@sjtu.edu.cn

    2017-01-05

    Highlights: • DFT reveals I{sup −} can partially substitute CO{sub 3}{sup 2−}to narrow the bandgap of Bi{sub 2}O{sub 2}CO{sub 3}. • Sodium citrate play a key role on the formation of rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3}. • Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi{sub 2}O{sub 2}CO{sub 3}, I{sup −} can partly replace the CO{sub 3}{sup 2−}in Bi{sub 2}O{sub 2}CO{sub 3} to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi{sub 2}O{sub 2}CO{sub 3} by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  8. Structural and electronic investigations of PbTa4O11 and BiTa7O19 constructed from α-U3O8 types of layers

    Science.gov (United States)

    Boltersdorf, Jonathan; Maggard, Paul A.

    2015-09-01

    The PbTa4O11 and BiTa7O19 phases were prepared by ion-exchange and solid-state methods, respectively, and their structures were characterized by neutron time-of-flight diffraction and Rietveld refinement methods (PbTa4O11, R 3 (No. 146), a=6.23700(2) Å, c=36.8613(1) Å; BiTa7O19, P 6 bar c 2 (No. 188), a=6.2197(2) Å, c=20.02981(9) Å). Their structures are comprised of layers of TaO6 octahedra surrounded by three 7-coordinate Pb(II) cations or two 8-coordinate Bi(III) cations. These layers alternate down the c-axis with α-U3O8 types of single and double TaO7 pentagonal bipyramid layers. In contrast to earlier studies, both phases are found to crystallize in noncentrosymmetric structures. Symmetry-lowering structural distortions within PbTa4O11, i.e. R 3 bar c →R3, are found to be a result of the displacement of the Ta atoms within the TaO7 and TaO6 polyhedra, towards the apical and facial oxygen atoms, respectively. In BiTa7O19, relatively lower reaction temperatures leads to an ordering of the Bi/Ta cations within a lower-symmetry structure, i.e., P63/mcm→ P 6 bar c 2 . In the absence of Bi/Ta site disorder, the Ta-O-Ta bond angles decrease and the Ta-O bond distances increase within the TaO7 double layers. Scanning electron microscopy images reveal two particle morphologies for PbTa4O11, hexagonal rods and finer irregularly-shaped particles, while BiTa7O19 forms as aggregates of irregularly-shaped particles. Electronic-structure calculations confirm the highest-energy valence band states are comprised of O 2p-orbitals and the respective Pb 6s-orbital and Bi 6s-orbital contributions. The lowest-energy conduction band states are composed of Ta 5d-orbital contributions that are delocalized over the TaO6 octahedra and layers of TaO7 pentagonal bipyramids. The symmetry-lowering distortions in the PbTa4O11 structure, and the resulting effects on its electronic structure, lead to its relatively higher photocatalytic activity compared to similar structures without

  9. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    Science.gov (United States)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  11. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO_3 nanoparticles

    International Nuclear Information System (INIS)

    Chauhan, Sunil; Kumar, Manoj; Katyal, S. C.

    2016-01-01

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO_3 nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO_3 and Bi_0_._8_5A_0_._1_5FeO_3 (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO_3 nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO_3 to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO_3 nanoparticles respectively. The magnetic measurements indicate enhancement in magnetization for heterovalent A"2"+ substituted BiFeO_3 samples and the magnetization increases with increase of ionic radius of the substituted ions.

  12. Positron-annihilation studies on the Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Ching, W.Y.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Huang, Z.J.; Chu, C.W.

    1991-01-01

    The results of positron-lifetime measurements as a function of temperature, across T c , and as a function of heat treatment are presented. The lifetime in Bi-Sr-Ca-Cu-O does not show any variation with temperature in the range of 10 to 300 K, a result that is in contrast with other cuprate superconductors. The absence of lifetime variation across T c is understood in terms of the calculated positron-density distribution, which indicates that the maximum of the positron density is in the region between the Bi-O layers with no significant density in the superconducting CuO 2 layers. Positron-lifetime measurements as a function of heat treatment indicate a decrease in lifetime as the annealing temperature is lowered from 800 degree C to 100 degree C. The decrease in lifetime, which is correlated with the increase in the weight of the sample, is explained in terms of the intercalation of the excess oxygen in the region between the Bi-O layers, which is the region probed by the positron

  13. Luminescence and excited state dynamics in Bi3+-doped LiLaP4O12 phosphates

    International Nuclear Information System (INIS)

    Babin, V.; Chernenko, K.; Demchenko, P.; Mihokova, E.; Nikl, M.; Pashuk, I.; Shalapska, T.; Voloshinovskii, A.; Zazubovich, S.

    2016-01-01

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP 4 O 12 phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP 4 O 12 phosphate. The broad 2.95 eV emission band of LiLaP 4 O 12 :Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi 3+ ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi 3+ ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi 3+ -related localized exciton in LiLaP 4 O 12 :Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi 3+ centers; LiLaP 4 O 12 :Bi powders

  14. SOI Fully complementary BI-JFET-MOS technology for analog-digital applications with vertical BJT's

    International Nuclear Information System (INIS)

    Delevoye, E.; Blanc, J.P.; Bonaime, J.; Pontcharra, J. de; Gautier, J.; Martin, F.; Truche, R.

    1993-01-01

    A silicon-on-insulator, fully complementary, Bi-JFET-MOS technology has been developed for realizing multi-megarad hardened mixed analog-digital circuits. The six different active components plus resistors and capacitors have been successfully integrated in a 25-mask process using SIMOX substrate and 1 μm thick epitaxial layer. Different constraints such as device compatibility, complexity not higher than BiCMOS technology and breakdown voltages suitable for analog applications have been considered. Several process splits have been realized and all the characteristics presented here have been measured on the same split. P + gate is used for PMOS transistor to get N and PMOST symmetrical characteristics. Both NPN and PNP vertical bipolar transistors with poly-emitters show f T > 5 GHz. 2-separated gate JFET's need no additional mask. (authors). 9 figs., 1 tab

  15. Magnetic properties of Eu doped BiGdO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Yadagiri, K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN (India); Shukla, Neeraj [UGC-DAE-CSR Kalpakkam Node, Kokilamedu-603 104, TN (India)

    2016-05-23

    Bulk Bismuth Gadolinium Oxide, BiGdO{sub 3} and Eu doped BiGdO{sub 3} compounds were synthesized by the conventional solid state reaction in air. Phase formation of these compounds was tracked using powder X-ray characterization technique since single phase formation was found to be sensitive to thermal treatment parameters such as cooling and heating rates. Analysis of X-ray diffraction patterns revealed cubic structure with Pm-3m symmetry. An antiferromagnetic transition around 3.8 K was observed in the pristine compound whereas doped samples showed paramagnetic nature in the whole measured temperature range.

  16. Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.

    Science.gov (United States)

    Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab

    2017-06-14

    The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

  17. O Mercado Único Digital Europeu

    Directory of Open Access Journals (Sweden)

    Fernanda Ferreira Dias

    2016-11-01

    Full Text Available A Internet e as tecnologias digitais estão a transformar o nosso mundo a todos os níveis e invadem todos os aspetos da nossa vida. Na União Europeia, quando o Mercado Único Digital funcionar em pleno, oferecerá novas oportunidades para dinamizar a economia; é atualmente uma das áreas mais importantes e que mais desafios apresenta em termos de progresso e crescimento. O Mercado Único Digital Europeu exige um quadro jurídico que permita o desenvolvimento dos vários aspetos que abrange, e que vão desde o comércio eletrónico, à administração pública em linha, infraestruturas de telecomunicações, fiscalidade, direitos de autor, conectividade dos dados, segurança ou privacidade dos dados pessoais. A “Estratégia para o Mercado Único Digital na Europa” enquadra esta ação. O Mercado Único Digital está em curso e tem por objetivo eliminar as barreiras regulamentares existentes nos mercados nacionais dos 28 Estados-membros da União Europeia para um único mercado europeu. Este artigo revela os passos que a União Europeia e os seus Estados-membros estão a dar para a concretização deste objetivo e tem obviamente o enfoque na participação de Portugal nesse contexto, no ano em que se realiza em Lisboa, pela primeira vez, a Web Summit – o maior evento de empreendedorismo tecnológico ao nível europeu. | "The European Digital Single Market". The Internet and digital technologies are transforming our world at all levels and invade all aspects of our lives. When the European Digital Single Market will be fully operational, it will offer new opportunities to boost the European Union’s economy; it is currently one of the most important and challenging areas in terms of progress and growth. The European Digital Single Market requires a legal framework for the development of various aspects ranging from e-commerce to e-government, telecommunications infrastructure, taxation, copyright, data connectivity, security or privacy of

  18. Multiferroic properties of nanocrystalline BiFe1−xNixO3 (x=0.0–0.15) perovskite ceramics

    International Nuclear Information System (INIS)

    Chaudhari, Yogesh; Mahajan, Chandrashekhar M.; Singh, Amrita; Jagtap, Prashant; Chatterjee, Ratnamala; Bendre, Subhash

    2015-01-01

    Ni doped BiFeO 3 (x=0, 0.05, 0.1 and 0.15) nanocrystalline ceramics were synthesized by the solution combustion method (SCM) to obtain optimal multiferroic properties. The effect of Ni doping on structural, morphological, ferroelectric, magnetic and dielectric properties of BiFeO 3 was studied. The structural investigations by using X-ray diffraction (XRD) pattern confirmed that BiFe 1−x Ni x O 3 ceramics have rhombhohedral perovskite structure. The ferroelectric hysteresis measurements for BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1, 0.15) compound at room temperature found to exhibit unsaturated behavior and presents partial reversal of polarization. The magnetic measurements demonstrated an enhancement of ferromagnetic property due to Ni doping in BiFeO 3 when compared with undoped BiFeO 3 . The variation of dielectric constant with temperature in BiFe 0.9 Ni 0.1 O 3 and BiFe 0.85 Ni 0.15 O 3 samples evidenced an apparent dielectric anomaly around 350 °C and 300 °C which corresponds to antiferromagnetic to paramagnetic phase transition of (T N ) of BiFeO 3 . The dependence of room temperature dielectric properties on frequency signifies that both dielectric constant (ε) and dielectric loss (tan δ) are the strong function of frequency. The results show that solution combustion method leads to synthesis of an excellent and reproducible BiFe 1−x Ni x O 3 multiferroic ceramics. - Highlights: • Synthesis of BiFe 1−x Ni x O 3 (x=0, 0.05, 0.1 and 0.15) multiferroic ceramics. • Solution Combustion Method (SCM). • Ferroelectric and dielectric properties of undoped and Ni doped BiFeO 3 ceramics. • High temperature synthesis of BiFe 1−x Ni x O 3 multiferroic ceramics. • First detailed report about SCM synthesized the BiFe 1−x Ni x O 3 ceramics

  19. Enhancing visible light photocatalytic and photocharge separation of (BiO)_2CO_3 plate via dramatic I"− ions doping effect

    International Nuclear Information System (INIS)

    Liang, Lei; Cao, Jing; Lin, Haili; Guo, Xiaomin; Zhang, Meiyu; Chen, Shifu

    2016-01-01

    Highlights: • Novel I-(BiO)_2CO_3 was prepared by a facile chemical precipitation method. • I"− ions impurity level located on the top of valence band of (BiO)_2CO_3. • I"− ions doping largely improved photocatalytic activity of I-(BiO)_2CO_3. • I-(BiO)_2CO_3 displayed excellent photocharge separation efficiency. - Abstract: Novel I"− ions doped (BiO)_2CO_3 (I-(BiO)_2CO_3) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO)_2CO_3 displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO)_2CO_3. The pseudo-first-order rate constant k_a_p_p of RhB degradation over 15.0% I-(BiO)_2CO_3 was 0.54 h"−"1, which is 11.3 times higher than that of (BiO)_2CO_3. The doped I"− ions formed an impurity level on the top of valence band of (BiO)_2CO_3 and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO)_2CO_3 system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO)_2CO_3 via intense doping effect of I"− ions.

  20. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  1. Synthesis of activated charcoal supported Bi-doped TiO{sub 2} nanocomposite under solar light irradiation for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Chandraboss, V.L.; Kamalakkannan, J.; Senthilvelan, S., E-mail: dr_senthilvel@yahoo.co.in

    2016-11-30

    Highlights: • Particle size and band gap of TiO{sub 2} is decreased upon Bi doping. • Methylene blue is successfully degraded over Bi/TiO{sub 2} and AC-Bi/TiO{sub 2}. • AC-Bi/TiO{sub 2} is more active photocatalyst than TiO{sub 2} and Bi/TiO{sub 2}. • AC-Bi/TiO{sub 2} led to a maximum extension of the spectral wavelength. • AC-Bi/TiO{sub 2} with enhanced photocatalytic activity produced much more reactive ·OH. - Abstract: In this study, activated charcoal (AC) supported bismuth (Bi)-doped Titanium dioxide (TiO{sub 2}) nanocomposite was synthesized by precipitation method. The photocatalytic activity of AC-Bi/TiO{sub 2} was investigated for the degradation of methylene blue (MB) in aqueous solution under solar light irradiation. The incorporation of Bi{sup 3+} into the TiO{sub 2} lattice shifts the absorbance of TiO{sub 2} to the visible region then the addition of high adsorption capacity activated charcoal to improve the efficiency of TiO{sub 2}. AC-Bi/TiO{sub 2} is found to be more efficient than Bi/TiO{sub 2} and undoped TiO{sub 2} for the degradation of MB under solar light irradiation. Surface morphology and bulk composition of the composite was obtained using high resolution-scanning electron microscopy with energy dispersive X-ray analysis. The crystal structure evolution and elemental composition were analyzed by combining Fourier transform-Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The ultraviolet-visible (UV–vis) absorption spectra show that the absorption edge for the composite with Bi{sup 3+} has red shift as compared with that of undoped TiO{sub 2}. UV–vis diffuse reflectance spectra demonstrated a decrease in the direct band gap of AC-Bi/TiO{sub 2}. BET surface area, pore radius and pore volume of the materials were calculated by applying the BET equation to the sorption isotherms. The production of hydroxyl radicals (·OH) on the surface of solar light irradiated materialswere detected by

  2. Synthesis and Dielectric Properties of Ba3NaBiNb10O30 Ceramics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new niobate Ba3NaBiNb10O30 was synthesized by the solid state reaction.The reaction mixture was characterized by thermogravimetric and differential thermal analysis (TG-DTA),X-ray diffraction and dielectric constant measurements.The results show that Ba3NaBiNb10O30 has an orthorhombic tungsten bronze structure with space group Cmm2 and the unit cell parameters are a=1.7660(1) nm,a=1.7626(1) nm,c=0.78621(6) nm,Z=4.Ba3NaBiNb10O30 undergoes two phase transitions at 200℃ and 400℃,respectively.

  3. Facile Br- assisted hydrothermal synthesis of Bi2MoO6 nanoplates with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Peng; Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin; Zhang, Guoqing; Ding, Shimin

    2017-01-01

    Bi 2 MoO 6 nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br - containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi 2 MoO 6 nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi 2 MoO 6 nanoplates. KBr-templated Bi 2 MoO 6 nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi 2 MoO 6 but inferior to that of CTAB-templated Bi 2 MoO 6 nanoplates. (orig.)

  4. Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2013-01-01

    Single crystalline films of Bi-doped Y 2 SiO 5 are studied at 4.2–350 K by the time-resolved luminescence methods under excitation in the 3.8–6.2 eV energy range. Ultraviolet luminescence of Y 2 SiO 5 :Bi (≈3.6 eV) is shown to arise from the radiative decay of the metastable and radiative minima of the triplet relaxed excited state (RES) of Bi 3+ centers which are related to the 3 P 0 and 3 P 1 levels of a free Bi 3+ ion, respectively. The lowest-energy excitation band of this emission, located at ≈4.5 eV, is assigned to the 1 S 0 → 3 P 1 transitions of a free Bi 3+ ion. The phenomenological model is proposed to describe the excited-state dynamics of Bi 3+ centers in Y 2 SiO 5 :Bi, and parameters of the triplet RES are determined. -- Highlights: •Luminescence of Y 2 SiO 5 :Bi is investigated for the first time. •Ultraviolet emission arises from Bi 3+ ions located in Y lattice sites. •The triplet relaxed excited states parameters of Bi 3+ centers are determined

  5. Digital closed orbit feedback system for the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Chung, Y.; Barr, D.; Decker, G.

    1995-01-01

    The Advanced Photon Source (APS) is a dedicated third-generation synchrotron light source with a nominal energy of 7 GeV and a circumference of 1104 m. The closed orbit feedback system for the APS storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing (DSP). Hardware and software aspects of the system will be described in this paper. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware including the DSPs is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically-networked reflective memories

  6. Electronic structure and lattice dynamics of rhombohedral BiAlO_3 from first-principles

    International Nuclear Information System (INIS)

    Kaczkowski, J.

    2016-01-01

    The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO_3 were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO_3 is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm"2 (87 μC/cm"2) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO_3 were compared with those in isostructural BiFeO_3. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO_3 were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.

  7. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    Science.gov (United States)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  8. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  9. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  10. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  11. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    Science.gov (United States)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  12. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  13. Synthesis of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shijie [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Xu, Kaibing [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai 201620 (China); Hu, Shiwei, E-mail: hushiweihai@163.com [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Jiang, Wei [Innovation & Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022 (China); Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021 (China); Zhang, Junlei [Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Liu, Jianshe [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Lisha, E-mail: lszhang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2017-03-01

    Highlights: • Ag{sub 2}O/BiOCOOH p-n heterojunctions are prepared by a solvothermal deposition-precipitation method. • They consist of flower-like BiOCOOH microspheres decorated with Ag{sub 2}O nanoparticles. • Heterojunction with the Ag/Bi molar ratio of 0.2/1 showed the highest photocatalytic activity. • The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species. - Abstract: The development of efficient semiconductor heterojunction photocatalysts has drawn much attention. Herein, we have reported a kind of flower-like Ag{sub 2}O/BiOCOOH p-n heterojunction as a novel and efficient visible-light-driven photocatalyst. The Ag{sub 2}O/BiOCOOH heterojunctions have been successfully prepared via a solvothermal precipitation-deposition method. They consist of flower-like BiOCOOH microspheres (diameters: 1–2.5 μm) decorated with Ag{sub 2}O nanoparticles (size: ∼14 nm). In addition, optical characterization reveals that they have broad visible-light photo-absorption. Importantly, under visible-light irradiation (λ > 400 nm), all Ag{sub 2}O/BiOCOOH heterojunctions exhibit enhanced photocatalytic activity than pure BiOCOOH or Ag{sub 2}O for the degradation of rhodamine B (RhB) dye and para-chlorophenol (4-CP). Especially, the Ag{sub 2}O/BiOCOOH heterojunction with the Ag/Bi molar ratio of 0.2/1 shows the highest photocatalytic activity, which is even higher than the activity from the mechanical mixture (8 wt% Ag{sub 2}O + 92 wt% BiOCOOH). This enhanced photocatalytic performance could be predominantly attributed to the efficient separation of photogenerated electron-hole pairs. The photogenerated holes (h{sup +}) and superoxide radical anions (·O{sub 2}{sup −}) have been found to be the main reactive species responsible for the photodegradation of RhB dye in aqueous solution. Therefore, the Ag{sub 2}O/BiOCOOH p-n heterojunction has great potential to be used as a kind of efficient

  14. BiFeO3-doped (Na0.5K0.5NbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Xueyi Sun et al

    2008-01-01

    Full Text Available Lead-free piezoelectric ceramics (1−x(Na0.5K0.5NbO3-xBiFeO3 (x=0~0.07 were synthesized by the solid-state reaction. Differential scanning calorimetry (DSC measurements revealed that an increase in the amount of BiFeO3 dopant resulted in a decrease in the orthorhombic-tetragonal and tetragonal-cubic phase transition temperature of the material. One percent BiFeO3 additive suppressed grain growth, which not only benefits the sintering of ceramics but also enhances the piezoelectric and ferroelectric properties, where d33=145pC/N, kp=0.31, Qm=80, Pr=11.3 μC cm−2 and Ec=16.5 kV cm−1. As xBF>0.01, both piezoelectric and ferroelectric properties decreased rapidly with an increasing amount of dopant.

  15. Synthesis of Bi4Si3O12 powders by a sol–gel method

    International Nuclear Information System (INIS)

    Xie Huidong; Jia Caixia; Jiang Yuanru; Wang Xiaochang

    2012-01-01

    Highlights: ► Bi 4 Si 3 O 12 were synthesized by a sol–gel method, using stoichiometric materials. ► The calcining process of the as-dried gel was studied by different analyses. ► Phase separation in the sol–gel process was found during the calcination. - Abstract: Micro-crystals of bismuth orthosilicate (Bi 4 Si 3 O 12 ) were synthesized by a sol–gel method, using stoichiometric Si(OC 2 H 5 ) 4 , Bi(NO 3 ) 3 ·5H 2 O as the precursors and acetic acid as the solvent. The calcining process of the as-dried gel was studied by total gravity/differential scanning calory (TG/DSC), X-ray diffraction (XRD) and infrared (IR) spectra. Experiments showed that single phase of Bi 4 Si 3 O 12 could be obtained by sol–gel method at a calcining temperature of 900 °C. Phase separation in the sol–gel process was found during the calcination.

  16. 17O knight shifts of the various types of CuO2 planes in Bi-cuprates high-Tc superconductors

    International Nuclear Information System (INIS)

    Le Noc, L.; Trokiner, A.; Schneck, J.; Pougnet, A.M.; Mellet, R.; Primot, J.; Savary, H.

    1992-01-01

    A 17 O NMR study has been performed on a 17 O enriched powder sample of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O y , also called n=3 phase (with Tc=110K) which belongs to the Bi-based superconductors family (Bi,Pb) 2 Sr 2 Ca n-1 Cu n O 2n+4 . The n=3 compound which contains in its unit cell two types of CuO 2 planes (labelled type I and II), is compared to the n=2 compound where only one type of CuO 2 planes (type I) is present. 17 O Knight shift measurements versus temperature, in the normal phase, have allowed us to evidence the distinct behaviours of the two types of planes present in the n=3 compound. The results are consistent with the existence of stronger electron correlations, or smaller charge carrier density in the type II planes. 14 refs., 3 figs

  17. A standardized way to select, evaluate, and test an analog-to-digital converter for ultrawide bandwidth radiofrequency signals based on user's needs, ideal, published,and actual specifications

    Science.gov (United States)

    Chang, Daniel Y.; Rowe, Neil C.

    2012-06-01

    The most important adverse impact on the Electronic Warfare (EW) simulation is that the number of signal sources that can be tested simultaneously is relatively small. When the number of signal sources increases, the analog hardware, complexity and costs grow by the order of N2, since the number of connections among N components is O(N*N) and the signal communication is bi-directional. To solve this problem, digitization of the signal is suggested. In digitizing a radiofrequency signal, an Analog-to-Digital Converter (ADC) is widely used. Most research studies on ADCs are conducted from designer/test engineers' perspective. Some research studies are conducted from market's perspective. This paper presents a generic way to select, evaluate and test ultra high bandwidth COTS ADCs and generate requirements for digitizing continuous time signals from the perspective of user's needs. Based on user's needs, as well as vendor's published, ideal and actual specifications, a decision can be made in selecting a proper ADC for an application. To support our arguments and illustrate the methodology, we evaluate a Tektronix TADC-1000, an 8-bit and 12 gigasamples per second ADC. This project is funded by JEWEL lab, NAWCWD at Point Mugu, CA.

  18. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia; Yao, Yingbang; Chen, Yao; Wang, Dongliang; Zhang, Xianping; Awaji, Satoshi; Watanabe, Kazuo; Ma, Yanwei

    2012-01-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  19. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  20. Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Kexin Wang

    2016-01-01

    Full Text Available p-BiOI nanosheets/n-TiO2 nanofibers (p-BiOI/n-TiO2 NFs have been facilely prepared via the electrospinning technique combining successive ionic layer adsorption and reaction (SILAR. Dense BiOI nanosheets with good crystalline and width about 500 nm were uniformly assembled on TiO2 nanofibers at room temperature. The amount of the heterojunctions and the specific surface area were well controlled by adjusting the SILAR cycles. Due to the synergistic effect of p-n heterojunctions and high specific surface area, the obtained p-BiOI/n-TiO2 NFs exhibited enhanced visible-light photocatalytic activity. Moreover, the p-BiOI/n-TiO2 NFs heterojunctions could be easily recycled without decreasing the photocatalytic activity owing to their one-dimensional nanofibrous structure. Based on the above, the heterojunctions of p-BiOI/n-TiO2 NFs may be promising visible-light-driven photocatalysts for converting solar energy to chemical energy in environment remediation.

  1. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses

    Science.gov (United States)

    Dimowa, Louiza; Piroeva, Iskra; Atanasova-Vladimirova, S.; Petrova, Nadia; Ganev, Valentin; Titorenkova, Rositsa; Yankov, Georgi; Petrov, Todor; Shivachev, Boris L.

    2016-10-01

    In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2-Bi2O3-GeO2-Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV-Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).

  2. Preparation and characterization of p–n heterojunction CuBi2O4/CeO2 and its photocatalytic activities under UVA light irradiation

    Directory of Open Access Journals (Sweden)

    Abdelkader Elaziouti

    2015-04-01

    Full Text Available CuBi2O4/CeO2 nanocomposites were synthesized by the solid state method and were characterized by a number of techniques such as X-ray diffraction, scanning electron microscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was investigated under UVA light and assessed using Congo red (CR dye as probe reaction. The efficiency of the coupled CuBi2O4/CeO2 photocatalyst was found to be related to the amount of added CuBi2O4 and to the pH medium. The CuBi2O4/CeO2 photocatalyst exhibited the high efficiency as a result of 83.05% of degradation of CR under UVA light for 100 min of irradiation time with 30 wt% of CuBi2O4 at 25 °C and pH 7, which is about 6 times higher than that of CeO2. The photodegradation reactions satisfactorily correlated with the pseudo-first-order kinetic model. The mechanism of the enhanced photocatalytic efficiency was explained by the heterojunction model.

  3. Synthesis, crystal structure, and nonlinear optical properties of Bi2Cu5B4O14

    International Nuclear Information System (INIS)

    Pan Shilie; Smit, Jared P.; Marvel, Michael R.; Stampler, Evan S.; Haag, Jacob M.; Baek, Jaewook; Halasyamani, P. Shiv; Poeppelmeier, Kenneth R.

    2008-01-01

    Bi 2 Cu 5 B 4 O 14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) A, b=9.3917(11) A, c=3.4566(4) A, α=105.570(2) o , β=92.275(2) o , γ=107.783(2) o , Z=1 and R 1 =0.0401 and wR 2 =0.0980. It is a layered structure that is built up from sheets of rectangular CuO 4 and trigonal BO 3 groups. The sheets are connected by infinite chains of edge shared BiO 6 polyhedra that intersect the bc plane at an angle slightly greater than 90 o . The second-harmonic generation efficiency of Bi 2 Cu 5 B 4 O 14 , using 1064 nm radiation, is about one half times that of KH 2 PO 4 . - Graphical abstract: The figure shows a layered structure that is built up from sheets of distorted rectangular CuO 4 and trigonal BO 3 groups. The sheets are connected by infinite chains of edge shared BiO 6 polyhedra that intersect the bc plane. These distortions lead to the second-harmonic generation efficiency of Bi 2 Cu 5 B 4 O 14 about one half times that of KH 2 PO 4 Display Omitted

  4. Enhanced Photoluminescence of Sm3+/Bi3+ Co-Doped La2O3 Nanophosphors by Combustion Synthesis

    Science.gov (United States)

    Zhang, Ying; Wu, Muying; Zhang, W. F.

    Nanosized La2O3:Sm3+ and La2O3:Sm3+, Bi3+ phosphor powders were prepared via combustion synthesis. The structures and morphology were examined using powder X-ray diffraction and transmission electron microscope, respectively. The photoluminescence spectra were investigated at different doping concentrations of Sm3+ and Bi3+ ions. The results indicate that La2O3:Sm3+ (Bi3+) exhibited good crystallinity and spherical-like particles. All phosphors give emission bands centered at 564, 608 and 650 nm corresponding to 4G5/2→6HJ (J=5/2, 7/2 and 9/2) transitions of Sm3+ ions, respectively. Interestingly, the emission intensity of Sm3+ ions is significantly enhanced with the addition of Bi3+ ions to La2O3:Sm3+ and the maximum occurs at a Bi3+ concentration of 0.8 mol%. The La2O3:Sm3+, Bi3+ phosphor with highly enhanced luminescence is very encouraging for applications in display and tunable solid lasers.

  5. Characterization and study of dielectric and electrical properties of CaBi4Ti4O_1_5 (CBT) added with Bi_2O_3

    International Nuclear Information System (INIS)

    Freitas, D.B.; Campos Filho, M.C.; Sales, J.C.; Silva, P.M.O.; Sombra, A.S.

    2011-01-01

    The ceramic perovskite CaBi_4Ti_4O_1_5 (CBT) of space group A21am, Aurivillius family with deficiency A_5B_4O_1_5 cation has been prepared by solid state method in a planetary ball mill of high energy. The reagents samples were ground and calcined and then added with Bi_2O_3 (2% wt.) This work aims to characterize by X-ray diffraction to study the electrical properties and dielectric properties of (CBT). The x-ray diffraction revealed the formation of single orthorhombic phase. As for the dielectric properties (dielectric constant and dielectric loss) were measured at 30 deg C to 450 deg C, through which can be verified the presence of thermally activated processes. This phase has properties very relevant for possible use in capacitive devices, miniaturized filters, dielectric resonators antennas and oscillators. (author)

  6. PS BOOSTER BEAM TESTS OF THE NEW DIGITAL BEAM CONTROL SYSTEM FOR LEIR

    CERN Document Server

    Angoletta, Maria Elena; Bento, J; De Long, J H; Findlay, A; Matuszkiewicz, P; Pedersen, F; Salom-Sarasqueta, A; CERN. Geneva. AB Department

    2005-01-01

    We have been developing a scaled-down prototype of the new digital beam control and cavity servoing system for CERN’s Low Energy Ion Ring (LEIR) slated for commissioning in 2005. The system’s hardware and software, developed as part of a CERN-BNL collaboration, are based on new all-digital technology already deployed at BNL's AGS Booster. The system relies on VME modules, carrying Digital Signal Processors (DSPs) as well as Field Programmable Gate Arrays (FPGAs), and daughter cards. New concepts deployed include software implementation, through DSPs & FPGAs, of functions traditionally executed by analogue hardware, such as reference-functions and timings generation. Additionally, a user-selectable digital data acquisition functionality provides diagnostic and troubleshoot access points, a new feature which is very useful in a digital system. The scaled-down prototype implements frequency program, radial steering, phase and radial loops capabilities and it has been tested in CERN's PS Booster (PSB) dur...

  7. Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/Bi2SnTiO7

    Directory of Open Access Journals (Sweden)

    Yunjun Yang

    2012-03-01

    Full Text Available A novel polyaniline/Bi2SnTiO7 composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi2SnTiO7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi2SnTiO7 was found to be a = 10.52582(8 Å. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi2SnTiO7 as catalyst. The results showed that novel polyaniline/Bi2SnTiO7 possessed higher catalytic activity compared with Bi2InTaO7 or pure TiO2 or N-doped TiO2 for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi2SnTiO7 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min−1. After visible light irradiation for 220 minutes with novel polyaniline/Bi2SnTiO7 as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.

  8. Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite

    International Nuclear Information System (INIS)

    Zatsiupa, A.A.; Bashkirov, L.A.; Troyanchuk, I.O.; Petrov, G.S.; Galyas, A.I.; Lobanovsky, L.S.; Truhanov, S.V.

    2014-01-01

    Magnetic susceptibility for ferrite Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T. It is found that at 5−300 K the effective magnetic moment of Fe 3+ ions in Bi 25 FeO 39 is equal to 5.82μ B . - Graphical abstract: The dependence of the magnetization (n, μ B ) on the magnetic field for one formula unit of Bi 25 FeO 39 at 5 K. - Highlights: • Magnetic susceptibility for Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. • It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. • The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T

  9. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi{sub 2}Fe{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudakar, C.; Mocherla, Pavana S.V. [Department of Physics, IIT Madras, Chennai 600 036 (India); Mandal, Balaji P.; Jayakumar, Onnatu D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Avesh K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-08-15

    In this study we report the synthesis of undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc{sup 3+} doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M-H relationship reported for bulk Bi{sub 2}Fe{sub 4}O{sub 9}. A magnetization of 0.144 {mu}B/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc{sup 3+} dopant in varying concentrations in these Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles. Thus it can be inferred that Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been demonstrated. The Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi{sub 2}Fe{sub 4}O{sub 9}. Highlights: Black-Right-Pointing-Pointer Phase pure Bi{sub 2}Fe{sub 4}O{sub 9} nanostructures synthesized using a facile

  10. The effect of lanthanides on color properties of the (Bi2O30.7(Ln2O30.3 compounds

    Directory of Open Access Journals (Sweden)

    Šulcová P.

    2008-01-01

    Full Text Available (Bi2O30.7(Ln2O30,3 solid solutions were synthesized as new inorganic yellow and orange pigments and their color properties have been investigated as possible ecological materials. The pigments were prepared by the solid state reaction of mixed oxides (Bi2O30.7(Ln2O30.3 of various rare earth cations (Ln = Eu, Gd, Tm, Yb and Lu. All the synthesized pigment samples were found to have color coordinates, low a* and high b* and exhibit the color from pale light yellow to orange. Reflectance spectra of the samples show high reflectance percentage in the 600 - 700 nm range. Characterization of the (Bi2O30.7(Ln2O30,3 solid solutions suggests that they have a potential to be alternative yellow colorants for paints, inks, plastics, and ceramics.

  11. Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2015-06-01

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  12. The effects of Zn doping on magnetic properties of Cu3Bi(SeO3)2O2Cl

    Science.gov (United States)

    Yang, Pei-Ying; Tseng, Wu-Jyun; Wu, Hung-Cheng; Kakarla, D. Chandrasekhar; Yang, Hung-Duen; Department of Physics, Natl Sun Yat Sen Univ Team

    Recently, layered spin-frustrated Cu3Bi(SeO3)2 O2Cl has received considerable research attention due to its unusual magnetic properties. Two inequivalent Cu2 + ions form a pseudo-kagome lattice that invokes spin frustration and anisotropic magnetic properties. In this study, the influence of Zn doping on the complex magnetic properties has been explored. Polycrystalline (Cu1-xZnx) Bi(SeO3)2 O2Cl (0 x 0.5) samples were synthesized using solid-state reaction and characterized by X-ray diffraction and magnetic measurements. The Zn doping strongly modulates the magnetic ground state of the system. The antiferromagnetic transition temperature TN = 24 K and magnetic field-induced hysteresis observed for x = 0 at low field are systematically shifted to lower temperature and reduced with Zn doping. These results can illustrate the insight of the occurrence of field-induced spin-flip type multiferroics in Cu3Bi(SeO3)2 O2Cl.

  13. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  14. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference

  15. BiOI/TiO{sub 2}-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingyun; Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk

    2015-01-01

    Highlights: • BiOI/TiO{sub 2} photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO{sub 2} (PVP) showed a 13-fold increase in photocurrent density compared to TiO{sub 2}. • Charge transport kinetics within the BiOI/TiO{sub 2} heterojunctions are discussed. - Abstract: A series of BiOI/TiO{sub 2}-nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO{sub 2} nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO{sub 2} (PVP) as photoanode can reach a short current density (J{sub sc}) of 0.13 mA/cm{sup 2} and open circuit voltage (V{sub oc}) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO{sub 2}, the IPCE of BiOI/TiO{sub 2} (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed.

  16. Synthesis of TiO2/Bi2S3 heterojunction with a nuclear-shell structure and its high photocatalytic activity

    International Nuclear Information System (INIS)

    Lu, Juan; Han, Qiaofeng; Wang, Zuoshan

    2012-01-01

    Highlights: ► Bi 2 S 3 was doped into TiO 2 and it was clearly proved by the expander of the crystalline lattice in XRD result. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have a nuclear-shell structure which has not been reported. ► As-prepared TiO 2 /Bi 2 S 3 heterojunctions have the excellent photocatalytic activity. -- Abstract: TiO 2 /Bi 2 S 3 heterojunctions with a nuclear-shell structure were prepared by the coprecipitation method. The products were characterized by X-ray diffraction analysis, Raman spectra, transmission electron microscope images and energy dispersion X-ray spectra. Results showed that as-prepared Bi 2 S 3 was urchin-like, made from many nanorods, and TiO 2 /Bi 2 S 3 heterojunctions have a similar nuclear-shell structure, with Bi 2 S 3 as the shell and TiO 2 as the nuclear. The photocatalytic experiments performed under UV irradiation using methyl orange as the pollutant revealed that the photocatalytic activity of TiO 2 could be improved by introduction of an appropriate amount of Bi 2 S 3 . However, excessive amount of Bi 2 S 3 would result in the decrease of photocatalytic activity of TiO 2 . The relative mechanism was proposed.

  17. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO

    International Nuclear Information System (INIS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-01-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2 O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2 O 3 , BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  18. Comparing Sources of Storm-Time Ring Current O+

    Science.gov (United States)

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  19. O livro e a biblioteca, o documento e o arquivo na era digital

    Directory of Open Access Journals (Sweden)

    Diana Gonçalves Vidal

    2012-07-01

    Full Text Available  O artigo almeja refletir sobre o lugar do livro e do documento na era digital, defendendo a convivência das linguagens oral, escrita e digital e de seus produtos no presente e futuro e advogando a preservação dos vários suportes de informação. Propõe a elaboração de uma política de descarte afinada aos interesses da história da educação e aos princípios da arquivística que deve levar em conta os aportes das novas tecnologias.Palavras-chave: livro, biblioteca, documento, arquivo, era digital, história da educação.   Abstract The article aims to discuss the place of books and documents in the digital era. Defends the surviving of oral and written languages, as well as their products, in the digital world. Claims for the development of a preservation policy built upon the union of history of education and archivology interests made possible by using the new technology. Keywords: book, library, document, archive, digital era, history of education. 

  20. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Directory of Open Access Journals (Sweden)

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  1. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    Science.gov (United States)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  2. Phase formation, structure and dielectric properties of ceramics (Na0.5Bi0.5TiO3–(K0.5Na0.5NbO3–BiFeO3

    Directory of Open Access Journals (Sweden)

    G. M. Kaleva

    2016-03-01

    Full Text Available Influence of BiFeO3 (BF on phase formation, unit cell parameters, microstructure, dielectric and ferroelectric properties of solid solutions close to the morphotropic phase boundary in the (Na0.5Bi0.5TiO3–(K0.5Na0.5NbO3 system additionally modified by the low-melting KCl additives has been studied. The formation of pure perovskite structure samples decrease in the unit cell parameters and increase in the TC value stimulated by the BF addition have been revealed. It was proved that modification of compositions by small amounts of the BF and KCl additives leads to improvement of dielectric parameters.

  3. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  4. Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics.

    Science.gov (United States)

    Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu

    2017-06-14

    A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.

  5. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  6. Structural transitions and multiferroic properties of high Ni-doped BiFeO3

    Science.gov (United States)

    Betancourt-Cantera, L. G.; Bolarín-Miró, A. M.; Cortés-Escobedo, C. A.; Hernández-Cruz, L. E.; Sánchez-De Jesús, F.

    2018-06-01

    Nickel doped bismuth ferrite powders, BiFe1-x NixO3 (0 ≤ x ≤ 0.5), were synthesized by high-energy ball milling followed by an annealing at 700 °C. A detailed study about the substitution of Fe3+ by Ni2+ on the crystal structure and multiferroic properties is presented. The X-ray diffraction patterns reveal the formation of rhombohedral structure with small amounts of Bi2Fe4O9 as a secondary phase for x behavior indicates the frustration of the G-antiferromagnetic order typical of the un-doped BiFeO3, caused by the presence of small amounts of Ni2+ (x Behavior modifications of electrical conductivity, permittivity and dielectric loss versus frequency are related with crystal structure transformations, when nickel concentration is increased.

  7. Position annihilation study on the (Bi,Pb)-Sr-Ca-Cu-(O,F) superconductor

    International Nuclear Information System (INIS)

    Wang Xiaogang; Gao Xiaohui; Wang Ruidan; Hu Pingya

    1993-01-01

    In this note, we report the results of positron lifetime measurements in heat-treated (Bi, Pb)-Sr-Ca-Cu-(O, F), and discuss the possible location of the doped fluorine in the (Bi, Pb)-system superconductors. (orig.)

  8. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    Energy Technology Data Exchange (ETDEWEB)

    Li Manrong; Retuerto, Maria; Bok Go, Yong; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States); Croft, Mark; Ignatov, Alex [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ramanujachary, Kandalam V. [Department of Chemistry and Biochemistry, Rowan University, 210 Mullica Hill Road, Glassboro, NJ 08028 (United States); Dachraoui, Walid; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tang Meibo; Zhao Jingtai [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai 200050 (China); Greenblatt, Martha, E-mail: martha@rutchem.rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long

  9. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  10. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan

    2015-04-30

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  11. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance

    Science.gov (United States)

    Qiu, Yongfu; Fan, Hongbo; Chang, Xueyi; Dang, Haifeng; Luo, Qun; Cheng, Zhiyu

    2018-03-01

    In this paper, the ultrathin Bi2O3 nanowires are synthesized by an oxidative metal vapor transport deposition technique. Their diameters and length are about 10 nm and several tens of micrometers, the growth direction is along [101] and the specific surface area is about 7.34 m2 g-1. The galvanostatic charge-discharge measurement results show that the specific capacitances of the Bi2O3 nanowires-based electrodes increase with the decrease of the current densities. The maximum capacitance is 691.3 F g-1 at the current density of 2.0 A g-1. The Ragone plot shows that the Bi2O3 nanowires has excellent supercapacitive performance. Moreover, the cyclic stability is measured by the galvanostatic charge/discharge technique at a constant current density of 10.0 A g-1 in 6.0 M KOH electrolyte. The results show the excellent capacitance retention of 75.5% over 3000 cycles. In a word, the Bi2O3 nanowires should be the ideal potential electrode materials for low-costing and effective electrochemical supercapacitors.

  12. Synthesis and characterization of hierarchical Bi2MoO6/Polyaniline nanocomposite for all-solid-state asymmetric supercapacitor

    International Nuclear Information System (INIS)

    Wu, Fangsheng; Wang, Xiaohong; Zheng, Wanru; Gao, Haiwen; Hao, Chen; Ge, Cunwang

    2017-01-01

    Bi 2 MoO 6 /Polyaniline (PANI) hybrid nanocomposite with enhanced specific capacity and rate performance was synthesized by compositing Bi 2 MoO 6 with the PANI layer using sodium lignosulphonate (SLS) as a dopant through a simple chemical polymerization. The Bi 2 MoO 6 /PANI (BMP) nanocomposite affords a large reaction surface area, an excellent structural stability, a large number of active sites, good strain accommodation, and fast electron and ion transportation compared with pure Bi 2 MoO 6 , which all are beneficial for improving the electrochemical performance. Hence, the Bi 2 MoO 6 /PANI electrode with 0.15 g Bi 2 MoO 6 (BMP-2) shows a high specific capacitance of 826 F g −1 at a current density of 1 A g −1 and capacitance retention of 75.5% after 3000 cycles at a current density of 5 A g −1 , which is higher than pristine Bi 2 MoO 6 and other electrodes. In addition, an all-solid-state asymmetric supercapacitor (ASC) fabricated by the BMP-2 electrode and activated carbon (AC) displays a high specific capacitance of 90.0 F g −1 and a high energy density of 31.9 Wh kg −1 . Moreover, the BMP-2//AC ASC device exhibits high cycle stability, and 86.5% of its initial capacitance is retained after continuous 6000 cycles. Therefore, these results will promote a promising potential application of the Bi 2 MoO 6 /PANI nanocomposite for use as an effective electrode material in supercapacitors.

  13. Microwave synthesis and electrochemical characterization of mesoporous carbon@Bi{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Nannan [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Yuan, Dingsheng, E-mail: tydsh@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhou, Tianxiang; Chen, Jingxing; Mo, Shanshan; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-05-15

    Graphical abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance is up to 386 F g{sup -1}. Research highlights: {yields} An efficient and quick microwave method has been employed. {yields} A worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites have been successfully prepared. {yields} This composite exhibits excellent capacitance performance. {yields} This composite could be a potential electrode material for the supercapacitors. -- Abstract: An efficient and quick microwave method has been employed to prepare worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites for the first time. As-prepared products have been characterized by X-ray diffraction, N{sub 2} adsorption-desorption, scanning electron microscopy, transmission electron microscopy and inductive coupled plasma atomic emission spectroscopy. The electrochemical measurement shows the worm-like mesoporous carbon@Bi{sub 2}O{sub 3} composites exhibits excellent capacitance performance and the maximum specific capacitance reaches 386 F g{sup -1}, three times more than the pure worm-like mesoporous carbon.

  14. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  15. Anisotropic pressure effects on the Kagome Cu3Bi(SeO3)2O2Cl metamagnet

    Science.gov (United States)

    Wu, H. C.; Tseng, W. J.; Yang, P. Y.; Chandrasekhar, K. D.; Berger, H.; Yang, H. D.

    2017-07-01

    The anisotropic spin-flip-induced multiferroic property of the Kagome single-crystal Cu3Bi(SeO3)2O2Cl was recently investigated. The doping effects on the structural and magnetic properties of Cu3Bi(Se1-x Te x O3)2O2Cl (0 ≤slant x≤slant 0.6) polycrystalline samples were studied to further explore and manipulate the metamagnetic spin-flip transition. With higher Te concentration, the lattice constants a and b exhibit a linear increase, whereas the lattice constant c gradually decreases, which indicates that the anisotropic expansion and compression effect is induced by Te substitution in the Se site. Subsequently, the antiferromagnetic transition (T N) shifts to a higher temperature, the critical field ({{H}\\text{c}} ) of the metamagnetic spin-flip transition increases, and the value of the saturation magnetisation ({{M}\\text{s}} ) diminishes. Meanwhile, the effects of isotropic expansion (with Br doping) and compression (with external pressure) do not show a clear influence on the spin-flip phenomena. Our results emphasise the introduction of anisotropic pressure in Cu3Bi(SeO3)2O2Cl, which modulates the magnetic interaction of Cu (I)-O1-Cu (I) and Cu (I)-O1-Cu (II) and, consequently, enhances the {{H}\\text{c}} of the spin-flip transition.

  16. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  17. A novel stress distribution analytical model of O-ring seals under different properties of materials

    International Nuclear Information System (INIS)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian

    2017-01-01

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials

  18. A novel stress distribution analytical model of O-ring seals under different properties of materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian [School of Automation Science and Electrical Engineering, Beihang University, Beijing (China)

    2017-01-15

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials.

  19. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    Science.gov (United States)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  20. Technology for cleaning of Pb-Bi adhering to steel (1). Basic tests

    International Nuclear Information System (INIS)

    Saito, Shigeru; Sasa, Toshinobu; Umeno, Makoto; Kurata, Yuji; Kikuchi, Kenji; Futakawa, Masatoshi

    2004-12-01

    The accelerator driven system (ADS) is proposed to transmute minor actinides (MA) in high-level waste from spent fuels of nuclear power reactors. Liquid Pb-Bi alloy is a candidate material for spallation target and coolant of ADS. Pb-Bi cleaning technology is required to reduce radiation exposure during maintenance service and to decontaminate replaced components. In this study, three cleaning methods were tested; silicon oil cleaning at 170degC, mixture of acetic acid and nitric acid cleaning. Specimens were prepared by immersion in melted Pb-Bi. After silicon oil tests, most of Pb-Bi remained on the surface of the specimens. It was found that blushing was needed to remove Pb-Bi effectively. On the other hands, Pb-Bi was easily dissolved and almost removed in the mixed acid and nitric acid. Silicon oil cleaning did not affect on base metals. The surface of base metals was slightly blacked after mixed acid cleaning. F82H base metals were corroded by nitric acid. (author)

  1. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  2. A new anion-deficient fluorite-related superstructure of Bi{sub 28}V{sub 8}O{sub 62}

    Energy Technology Data Exchange (ETDEWEB)

    Đorđević, T., E-mail: tamara.djordjevic@univie.ac.at [Institut für Mineralogie und Kristallographie-Geozentrum, Universität Wien, Althansstr. 14, A-1090 Wien (Austria); Karanović, Lj., E-mail: ljika2002@yahoo.com [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade (Serbia)

    2014-12-15

    New hydrothermally synthesized Bi{sub 28}V{sub 8}O{sub 62} was structurally characterized using single-crystal X-ray diffraction data. Bi{sub 28}V{sub 8}O{sub 62} crystallizes in the novel type of defect fluorite structure related to the face-centered cubic δ-Bi{sub 2}O{sub 3}. It is monoclinic, s. g. P2{sub 1}/c, and the relation to the fluorite subcell is given as a∼(3/2)a{sub F}+(3/2)c{sub F}; b∼ −b{sub F}; c∼2a{sub F} −4c{sub F} (F in subscript indicate the unit cell parameter of fluorite). Its structure is characterized by slabs of edge sharing OBi{sub 4} tetrahedra surrounded by the OBi{sub 3} triangles. As a part of these OBi{sub 3} triangles, two positionally disordered Bi{sup 3+} cations were observed in the marginal part of the slabs. The slabs are extending along b axis and are linked by inter-slab portion of the structure composed of VO{sub 4} tetrahedra and BiO{sub 6−x} coordination polyhedra, where x is a number of vacant oxygen sites. Raman spectra verified the coordination environment of vanadium atoms in the structure. - Graphical abstract: The [4{sup ¯}01] projection of two slabs and inter-slab part of the structure in one layer parallel to the (3{sup ¯}08)=(002{sup ¯}){sub F} plane (F in subscript indicate a fluorite type structure). The large green circles are Bi atoms. Small blue circles represent partly and fully occupied O sites, respectively. Pink (hatched black) are V1O{sub 4} and blue (hatched white) are V2O{sub 4} coordination tetrahedra. - Highlights: • Single crystals of Bi{sub 28}V{sub 8}O{sub 62} were grown using hydrothermal technique. • The crystal structure of Bi{sub 28}V{sub 8}O{sub 62} was solved using single-crystal XRD method. • Bi{sub 28}V{sub 8}O{sub 62} has an anion-deficient fluorite-related superstructure. • Raman spectrum confirmed the coordination environment of vanadium atoms. • Relation to the structurally related compound was discussed.

  3. Digital Low Level RF Systems for Fermilab Main Ring and Tevatron

    Science.gov (United States)

    Chase, B.; Barnes, B.; Meisner, K.

    1997-05-01

    At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.

  4. Stress analysis of HLW containers. Preliminary ring test exercise Compas project

    International Nuclear Information System (INIS)

    1989-01-01

    This document describes the series of experiments and associated calculations performed as the Compas preliminary ring test exercise. A number of mild steel rings, representative of sections through HLW containers, some notched and pre-cracked, were tested in compression right up to and beyond their ultimate load. The Compas project partners independently modelled the behaviour of these rings using their finite element codes. Four different ring types were tested, and each test was repeated three times. For three of the ring types, the three test repetitions gave identical results. The fourth ring, which was not modelled by the partners, had a 4 mm thick layer of weld metal deposited on its surface. The three tests on this ring did not give identical results and suggested that the effect of welding methods should be addressed at a later stage of the project. Fracture was not found to be a significant cause of ring failure. The results of the ring tests were compared with the partners predictions, and additionally some time was spent assessing where the use of the codes could be improved. This exercise showed that the partners codes have the ability to produce results within acceptable limits. Most codes were unable to model stable crack growth. There were indications that some codes would not be able to cope with a significantly more complex three-dimensional analysis

  5. Investigation of the phase formation and dielectric properties of Bi{sub 7}Ta{sub 3}O{sub 18}

    Energy Technology Data Exchange (ETDEWEB)

    Chon, M.P. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Tan, K.B., E-mail: tankb@science.upm.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Mechanical and Material Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zainal, Z.; Taufiq Yap, Y.H. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Chen, S.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Tan, P.Y. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-03-25

    Highlights: • Synthesis condition of Bi{sub 7}TaO{sub 3}O{sub 18} had been determined. • Recombination of intermediate BiTaO{sub 4} and Bi{sub 3}TaO{sub 7} phases are required for the Bi{sub 7}TaO{sub 3}O{sub 18} phase formation. • Stable material as confirmed by thermal and structural analyses. • Typical ferroelectric showing high dielectric constants and low losses. • Resonance and thermal activated polarisation processes are responsible for the excellent dielectric characteristic. -- Abstract: Polycrystalline Bi{sub 7}Ta{sub 3}O{sub 18} was synthesised at the firing temperature of 950 °C over 18 h via conventional solid state method. It crystallised in a monoclinic system with space group C2/m, Z = 4 similar to that reported diffraction pattern in the Inorganic Crystal Structure Database (ICSD), 1-89-6647. The refined lattice parameters were a = 34.060 (3) Å, b = 7.618 (9) Å, c = 6.647 (6) Å with α = γ = 90° and β = 109.210 (7), respectively. The intermediate phase was predominantly in high-symmetry cubic structure below 800 °C and finally evolved into a low-symmetry monoclinic structured, Bi{sub 7}Ta{sub 3}O{sub 18} at 950 °C. The sample contained grains of various shapes with different orientations in the size ranging from 0.33–22.70 μm. The elemental analysis showed the sample had correct stoichiometry with negligible Bi{sub 2}O{sub 3} loss. Bi{sub 7}Ta{sub 3}O{sub 18} was thermally stable and it exhibited a relatively high relative permittivity, 241 and low dielectric loss, 0.004 at room temperature, ∼30 °C and frequency of 1 MHz.

  6. X-ray photoelectron spectroscopy and luminescent properties of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 South Africa (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 South Africa (South Africa); Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 South Africa (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kroon, R.E.; Ntwaeaborwa, O.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 South Africa (South Africa)

    2015-03-30

    Highlights: • XPS results for high Bi concentration indicated the Bi 4f peaks inside the Y 3d energy range. • XPS also indicated the C{sub 2} and S{sub 6} sites in both Y{sub 2}O{sub 3} and Bi{sub 2}O{sub 3} that results in blue and green luminescence centers. • The false-color CL overlay results also proved the emission of the Bi{sup 3+} ion in the two different sites. - Abstract: X-ray photoelectron spectroscopy (XPS) results provided proof for the blue and green emission of Bi{sup 3+} in the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor. The Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor was successfully prepared by the combustion process during the investigation of down-conversion materials for Si solar cell application. The X-ray diffraction (XRD) patterns indicated that a single-phase cubic crystal structure with the Ia3 space group was formed. X-ray photoelectron spectroscopy (XPS) showed that the Bi{sup 3+} ion replaces the Y{sup 3+} ion in two different coordination sites in the Y{sub 2}O{sub 3} crystal structure. The O 1s peak shows five peaks, two which correlate with the O{sup 2−} ion in Y{sub 2}O{sub 3} in the two different sites, two which correlate with O{sup 2−} in Bi{sub 2}O{sub 3} in the two different sites and the remaining peak relates to hydroxide. The Y 3d spectrum shows two peaks for the Y{sup 3+} ion in the Y{sub 2}O{sub 3} structure in two different sites and the Bi 4f spectrum shows the Bi{sup 3+} ion in the two different sites in Bi{sub 2}O{sub 3}. The photoluminescence (PL) results showed three broad emission bands in the blue and green regions under ultraviolet excitation, which were also present for panchromatic cathodoluminescence (CL) results. These three peaks have maxima at ∼3.4, 3.0 and 2.5 eV. The PL emission ∼3.0 eV (blue emission) showed two excitation bands centered at ∼3.7 and 3.4 eV while the PL emission at ∼2.5 eV (green emission) showed a broad excitation band from ∼4 to 3.4 eV. The panchromatic CL images were obtained

  7. Phase transitions and electrical properties of Bi2W1−xNbxO6−y and Bi2W1−xTaxO6−y

    International Nuclear Information System (INIS)

    Kharitonova, E.P.; Voronkova, V.I.; Gagor, A.B.; Pietraszko, A.P.; Alekseeva, O.A.

    2013-01-01

    Highlights: •The limit of Bi 2 W 1−x Me x O 6−y solid solutions is at x = 0.1, 0.15 for Me = Nb, Ta. •Ta and Nb substitutions for W suppress the reconstructive phase transition. •Bi 2 W 0.9 Nb 0.1 O 6−y samples belong to Aurivillius-type structure up to their melting. •Nb and Ta doping shifts ferroelectric transition to low temperatures up to 200 °C. •The highest conductivity reaches 10 −1 S/cm at 800 °C (x = 0.05, 0.1; Me = Nb, Ta). -- Abstract: Polycrystalline samples of Bi 2 W 1−x Me x O 6−y (Me = Nb, Ta) solid solutions have been prepared by solid-state reactions, and the influence of Nb and Ta substitutions for W on the polymorphism and electrical properties of Bi 2 WO 6 has been studied. The limit of the solid solutions is at x = 0.1 for Me = Nb and at x = 0.15 for Me = Ta. The distinctive features of the polymorphism of the Nb- and Ta-doped materials have been identified. According to differential scanning calorimetry data, tantalum and niobium substitutions for tungsten increase the temperature of the high-temperature, orthorhombic-to-monoclinic reconstructive phase transition and suppress the transition starting at x = 0.05 for Me = Nb and x = 0.10 for Me = Ta. As a result, the Bi 2 W 1−x Nb x O 6−y samples have an orthorhombic Aurivillius-type structure up to their melting point. The Bi 2 W 1−x Ta x O 6−y solid solutions at high temperatures consist of a mixture of an orthorhombic and a monoclinic phase. Nb and Ta doping shifts the ferroelectric phase transition to lower temperatures by more than 200 °C, thus markedly extending the stability range of the nonpolar orthorhombic paraelectric phase, which exists in a temperature range as narrow as 930–960 °C in the case of undoped Bi 2 WO 6 . The increase in oxygen vacancy concentration due to heterovalent substitutions of Nb 5+ and Ta 5+ for W 6+ leads to an increase in conductivity by two orders of magnitude relative to the unsubstituted compound

  8. Optical properties of the Na{sub 2}O-B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-MoO{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saddeek, Yasser B. [Physics Department, Faculty of Science, Al-Azhar University, P.O. 71452, Assiut (Egypt); Aly, K.A., E-mail: kamalaly2001@gmail.co [Physics Department, Faculty of Science, Al-Azhar University, P.O. 71452, Assiut (Egypt); Dahshan, A., E-mail: adahshan73@gmail.co [Department of Physics, Faculty of Science, Suez Canal University, Port Said (Egypt); Kashef, I.M.El. [Department of Physics, Faculty of Education, Suez Canal University, Al Arish (Egypt)

    2010-04-02

    Glasses with compositions (100 - x)Na{sub 2}B{sub 4}O{sub 7}-0.5Bi{sub 2}O{sub 3}-0.5MoO{sub 3}, with 0 {<=} x {<=} 40 mol% have been prepared using the melt quenching technique. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range 300-1100 nm. The values of the optical band gap E{sub g}{sup opt} for indirect transition and refractive index have been determined for 0 {<=} x {<=} 40 mol%. The average electronic polarizability of the oxide ion {alpha}{sub O{sup 2-}} and the optical basicity have been estimated from the calculated values of the refractive indices. The variations in the different physical parameters such as the optical band gap, the refractive index, the average electronic polarizability of the oxide ion and the optical basicity with Bi{sub 2}O{sub 3} and MoO{sub 3} content have been analyzed and discussed in terms of the changes in the glass structure. The results are interpreted in terms of the increase in the number of non-bridging oxygen atoms, substitution of longer bond-lengths of Bi-O, and Mo-O in place of shorter B-O bond and the change in Na{sup +} ion concentration.

  9. Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications

    International Nuclear Information System (INIS)

    Kaur, Kulwinder; Singh, K.J.; Anand, Vikas

    2016-01-01

    Glass samples of the xBi 2 O 3 –(0.70−x)B 2 O 3 –0.15SiO 2 –0.15Na 2 O (where x=0 up to 0.5 mol fraction) have been prepared in the laboratory by using melt quenching technique. 137 Cs source has been used for experimental measurements of mass attenuation coefficient of γ-rays at 662 keV. Mass attenuation coefficient of our glass samples has been compared with standard nuclear radiation shield “barite concrete”. It has been concluded that bismuth containing glass samples can be potential candidates for γ-ray shielding applications. Glasses must have appreciable elastic moduli values for their practical utility as γ-ray shields which are related to coordination number and non-bridging oxygens. Structural properties including coordination number and non-bridging oxygens of the structural units of the glass system have been estimated from the detailed analysis of Optical, Raman and FTIR spectra. Reported investigations can contribute to the development of transparent gamma ray shields. - Highlights: • Bi containing samples can be potential candidates as γ-ray shielding materials. • Number of non-bridging oxygens increases with the increase in the content of Bi 2 O 3 . • Coordination number of boron decreases with increase in the content of Bi 2 O 3 .

  10. Preparation and characterization of Bi26-2xMn2xMo10O69-d and Bi26.4Mn0.6Mo10-2yMe2yO69-d (Me = V, Fe Solid Solutions

    Directory of Open Access Journals (Sweden)

    Z. A. Mikhaylovskaya

    2017-09-01

    Full Text Available Single phase samples of bismuth molybdate, Bi26Mo10O69, doped with Mn on the bismuth sublattice and V, Fe on the molybdenum sublattice were found to crystallize in the triclinic Bi26Mo10O69 structure at low doping levels and in the monoclinic Bi26Mo10O69 structure - at higher dopant concentration. The assumption that all Mn ions have an oxidation state of +2 was confirmed by means of magnetic measurement results analysis using Curie-Weiss law. Conductivity was investigated using impedance spectroscopy. The conductivity of Bi26.4Mn0.6Mo9.6Fe0.4O69-d was 1.2*10-2 S*cm-1 at 973 K and 2.2*10-4 S*cm-1 at 623 K, and the conductivity of Bi26.4Mn0.6Mo9.2V0.8O69-d was 2.2*10-3 S*cm-1 at 973 K and 2.2*10-5 S*cm-1 at 623 K.

  11. Exfoliated thin Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying; Jia, Yulong; Wang, Lina [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Min [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Bi, Yingpu, E-mail: yingpubi@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Qi, Yanxing, E-mail: qiyx@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China)

    2016-12-30

    Highlights: • Thin Bi{sub 2}MoO{sub 6} nanosheets were prepared by microwave assisted ultrasonic separation. • The thin Bi{sub 2}MoO{sub 6} nanosheets could be more favorable to charge shift and separation. • The WO{sub 3}/thin Bi{sub 2}MoO{sub 6} exhibits superior photoelectric activity than WO{sub 3}/Bi{sub 2}MoO{sub 6} film. • The efficient photoelectric property results from facilitated charge separation. - Abstract: Thin Bi{sub 2}MoO{sub 6} nanosheets are obtained by a microwave-assisted ultrasonic separation process. After exfoliation, the thinner and uniform nanosheets with a thickness of about 10 nm were obtained. The exfoliated nanosheets would provide many amazing functionalities such as high electron mobility and quantum Hall effects. Therefore, thin Bi{sub 2}MoO{sub 6} supported on WO{sub 3} electrode (WO{sub 3}/thin Bi{sub 2}MoO{sub 6}) exhibits facilitated charge separation than pure WO{sub 3} film and the un-exfoliated Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode (WO{sub 3}/Bi{sub 2}MoO{sub 6}). As a result, WO{sub 3}/thin Bi{sub 2}MoO{sub 6} shows remarkably stable photocurrent density of 2.2 mA/cm{sup 2} at 0.8 V{sub SCE} in 0.1 M Na{sub 2}SO{sub 4} which is higher than that of that of WO{sub 3} (1.1 mA/cm{sup 2}) and WO{sub 3}/Bi{sub 2}MoO{sub 6} (1.5 mA/cm{sup 2}).

  12. Magnetic contribution of Bi{sub 0.85}La{sub 0.15}FeO{sub 3} in (1−x)Bi{sub 0.85}La{sub 0.15}FeO{sub 3}–(x)CoFe{sub 2}O{sub 4} nanocomposite powders

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ru-shuai; Qi, Li-qian; Hou, Xue; Liu, Li-hu; Liu, Hui-yuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang, Hebei 050024 (China); Xian, Xiao-Ning [Department of Information technology, Yuncheng Agricultural College, Shanxi 044000 (China); Guo, Ge-Xin [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang, Hebei 050024 (China); Sun, Hui-yuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang, Hebei 050024 (China)

    2016-12-15

    In this work, a solid phase reaction method was used to fabricate (1−x)Bi{sub 0.85}La{sub 0.15}FeO{sub 3}–xCoFe{sub 2}O{sub 4} (x=0.1, 0.2, 0.3, 0.4) composite powders. X-ray diffraction patterns showed that no chemical reaction occurred between the separate Bi{sub 0.85}La{sub 0.15}FeO{sub 3} and CoFe{sub 2}O{sub 4} phases and indicated that the powder samples had two distinct phases with a CoFe{sub 2}O{sub 4} spinel phase and a Bi{sub 0.85}La{sub 0.15}FeO{sub 3} perovskite phase. The average crystallite sizes of the Bi{sub 0.85}La{sub 0.15}FeO{sub 3} in the composite powder were almost unchanged as the CoFe{sub 2}O{sub 4} content was increased. By comparing the experimental and theoretical values for the magnetization, we found that the Bi{sub 0.85}La{sub 0.15}FeO{sub 3} phase contributed to the magnetization of the composite powders. In addition, it also provides a new way to prove the existence of magnetoelectric coupling in the sample. - Highlights: • Theoretical magnetic value of the samples was calculated. • The experimental value of the magnetism was greater than the theoretical value. • The effect of the crystallite sizes on the magnetism was eliminated by calculating the crystallite sizes of BLFO. • The BLFO contributed to the magnetic moment through the magnetoelectric coupling.

  13. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-12-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

  14. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6

    International Nuclear Information System (INIS)

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-01-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe 2 O 6 is possible by the solution–gel method. • The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr 3+ for Mn 3+ substitution in the BiMnFe 2 O 6 structure. The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe 2 O 6 structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R I = 0.036, R P = 0.011) with only a slight decrease in the cell parameters associated with the Cr 3+ for Mn 3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr x Mn 1−x Fe 2 O 6 (x = 0.2; 0.3) and parent BiMnFe 2 O 6 . Only T N slightly decreases upon Cr doping that indicates a very subtle influence of Cr 3+ cations on the magnetic properties at the available substitution rates

  15. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  16. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    Science.gov (United States)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  17. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO{sub 4}:Bi{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunjian, E-mail: wangyunjianmail@163.com; Xu, Hui; Shao, Congying; Cao, Jing, E-mail: caojing@mail.ipc.ac.cn

    2017-01-15

    Graphical abstract: Photocatalytic performance of SrMoO{sub 4} was greatly improved by Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction. - Highlights: • An efficient SrMoO{sub 4} photocatalyst was fabricated by Bi{sup 3+} doping under hydrothermal condition. • Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction were discovered in SrMoO{sub 4} nanomaterials. • The photocatalytic activity was great improved on account of Bi{sup 3+} doping effects. • Photoluminescence studies found that hydroxyl radical (·OH) is the main active species in the photocatalytic degradation process. - Abstract: Ion doping is one of the most effective ways to develop photocatalysts by creating impurity levels in the energy band structure. In this paper, novel Bi{sup 3+} doped SrMoO{sub 4} (SrMoO{sub 4}:Bi{sup 3+}) nanocrystals were prepared by a simple hydrothermal method. By systematic characterizations using x-ray diffraction, infrared spectra, UV–vis spectra, X-ray photoelectron spectroscopy and transmission electron microscopy, it is demonstrated that all the samples crystallized in a single phase of scheelite structure, and particle sizes of SrMoO{sub 4}:Bi{sup 3+} gradually decreased. The Bi{sup 3+} doped nanoparticles showed lattice contraction, and band-gap narrowing. The photocatalytic activity of the samples was measured by monitoring the degradation of methylene blue dye in an aqueous solution under UV-radiation exposure. It is found that SrMoO{sub 4}:Bi{sup 3+} showed excellent activity toward photodegradation of methylene blue solution under UV light irradiation compared to the pure SrMoO{sub 4}. These observations are interpreted in terms of the Bi{sup 3+} doping effects and the increased the surface active sites, which results in the improved the ratio of surface charge carrier transfer rate and reduced the electron–hole recombination rate. These

  18. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    Science.gov (United States)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  19. Environment dependent enhanced photoluminescence and Boolean logic gates like behavior of Bi2O3 and Ag:Bi2O3 nanostructures

    Science.gov (United States)

    Hariharan, S.; Karthikeyan, B.

    2018-03-01

    In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.

  20. Structural study, photoluminescence, and photocatalytic activity of semiconducting BaZrO{sub 3}:Bi nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A.C., Leon, Gto 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A.C., Leon, Gto 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro 76000 (Mexico); Moctezuma, E. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P., Mexico 78290 (Mexico); Vega, M. [Centro de Geociencias-UNAM, A.P. 1-1010, Queretaro 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D.F. 07730 (Mexico)

    2011-10-25

    Wide band gap nanocrystalline bismuth doped barium zirconate is synthesized by a facile hydrothermal method at 100 deg. C. The obtained cubic perovskites are characterized by powder X-ray diffraction (XRD), UV-VIS diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy, and photocatalytic activity. The estimated band gap in the 2.4-4.9 eV range, depending on Bi concentration, suggests nanocrystalline BaZrO{sub 3}:Bi as a useful visible-light activated photocatalyst under excitation wavelengths <800 nm. Displacement of main XRD pattern peaks suggest that bismuth ion mostly substitutes into Zr{sup 4+} sites within the BaZrO{sub 3} host lattice. It is found that BaZrO{sub 3}:Bi decomposes methylene blue (MB) under both UV and visible light irradiation. The photocatalyst efficiency depends strongly on Bi content and induced defects.

  1. Growth of Bi 12SiO 20 single crystals by the pulling-down method with continuous feeding

    Science.gov (United States)

    Maida, Shigeru; Higuchi, Mikio; Kodaira, Kohei

    1999-09-01

    Bi 12SiO 20 single crystals were successfully grown by the pulling-down method with continuous feeding. As-grown crystals were amber in color and transparent, and had no cracks or inclusions. A crystal with homogeneous composition was obtained from Bi-rich feed powder having a composition of 14.1 mol% SiO 2, whereas precipitates of Bi 4Si 3O 12 were observed on the surface of a crystal grown with stoichiometric powder. The shape of the solid-liquid interface during the crystal growth was estimated to be almost flat, which was favorable to avoid core formation. Average dislocation density was 4×10 3/cm 2, which was comparable to that of Bi 12SiO 20 crystals grown by the Czochralski method.

  2. Photoreduction of non-noble metal Bi on the surface of Bi{sub 2}WO{sub 6} for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojing [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Yu, Shan; Liu, Yang; Zhang, Qian [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China)

    2017-02-28

    Highlights: • Bi{sub 2}WO{sub 6}-Bi composite was synthesized by in situ photoreduction of Bi{sub 2}WO{sub 6}. • Bi{sub 2}WO{sub 6}-Bi exhibits improved photocatalytic efficiency towards degradation of Rhodamine B. • The generation of elemental Bi in Bi{sub 2}WO{sub 6}-Bi induces vacancy and structure distortion of Bi{sub 2}WO{sub 6}. • The surface oxygen adsorption mode changes from hydroxyl group on Bi{sub 2}WO{sub 6} to molecular oxygen on Bi{sub 2}WO{sub 6}-Bi. - Abstract: In this report, Bi{sub 2}WO{sub 6}-Bi composite was prepared through an in situ photoreduction method and was characterized systematically by X-Ray diffraction, transmission electron microscopy, X-Ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared Bi{sub 2}WO{sub 6}-Bi maintains the same crystal structure with the pristine Bi{sub 2}WO{sub 6} regardless of some surface defects. Nevertheless, these surface defects result in the change of surface oxygen adsorption mode from hydroxyl to molecular oxygen on Bi{sub 2}WO{sub 6}. Photocatalytic activity over Bi{sub 2}WO{sub 6}-Bi is 2.4 times higher than that of Bi{sub 2}WO{sub 6} towards the degradation of organic dye Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). A deep study shows that cleavage of benzene ring is the main pathway for RhB degradation over Bi{sub 2}WO{sub 6}, but both the benzene cleavage and de-ethylation pathway coexist for RhB decomposition in the presence of Bi{sub 2}WO{sub 6}-Bi as the photocatalyst. Photoelectrochemical study including transient photocurrent tests and electrochemical impedance spectroscopy measurements shows that Bi{sub 2}WO{sub 6}-Bi could facilitate the charge transfer process compared to Bi{sub 2}WO{sub 6}. These data above has indicated a new insight into the promotion mechanism based on Bi related heterostructures.

  3. Characterization and study of dielectric and electrical properties of CaBi4Ti4O{sub 15} (CBT) added with Bi{sub 2}O{sub 3}; Caracterizacao e estudo das propriedades eletricas e dieletricas do CaBi{sub 4}Ti{sub 4}O{sub 15} (CBT) adicionado com Bi{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, D.B.; Campos Filho, M.C.; Sales, J.C.; Silva, P.M.O.; Sombra, A.S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2011-07-01

    The ceramic perovskite CaBi{sub 4}Ti{sub 4}O{sub 15} (CBT) of space group A21am, Aurivillius family with deficiency A{sub 5}B{sub 4}O{sub 15} cation has been prepared by solid state method in a planetary ball mill of high energy. The reagents samples were ground and calcined and then added with Bi{sub 2}O{sub 3} (2% wt.) This work aims to characterize by X-ray diffraction to study the electrical properties and dielectric properties of (CBT). The x-ray diffraction revealed the formation of single orthorhombic phase. As for the dielectric properties (dielectric constant and dielectric loss) were measured at 30 deg C to 450 deg C, through which can be verified the presence of thermally activated processes. This phase has properties very relevant for possible use in capacitive devices, miniaturized filters, dielectric resonators antennas and oscillators. (author)

  4. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  5. Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water

    International Nuclear Information System (INIS)

    Park, Hyunwoong; Bak, Ayoung; Ahn, Yong Yoon; Choi, Jina; Hoffmannn, Michael R.

    2012-01-01

    Highlights: ► We demonstrated that the electrocatalytic performance of BiO x –TiO 2 anodes for the degradation of aqueous phenol could be highly boosted by light irradiation. ► Although BiO x –TiO 2 anodes have been originally developed as the electrocatalytic anodes that operate in the absence of light by degeneratively doping Bi in TiO 2 , the presence of TiO 2 made them retain photoelectrocatalytic activity as well. ► Such dual functionality of BiO x –TiO 2 electrodes with high synergy effects may be directly used for water treatment with simultaneous hydrogen production from water. - Abstract: Multi-layered BiO x –TiO 2 electrodes were used for the oxidation of chemical contaminants coupled with the production of H 2 characterized by a synergistic enhancement. The BiO x –TiO 2 electrodes were composed of a mixed-metal oxide array involving an under layer of TaO x –IrO x , a middle layer of BiO x –SnO 2 , and a top layer of BiO x –TiO 2 deposited in a series on both sides of Ti foil. Cyclic voltammograms showed that the BiO x –TiO 2 electrodes had an electrocatalytic activity for oxidation of phenol that was enhanced by 70% under illumination with AM 1.5 light. When the BiO x –TiO 2 anode was coupled with a stainless steel cathode in a Na 2 SO 4 electrolyte with phenol and irradiated with UV light at an applied DC voltage, the anodic phenol oxidation rate and the cathodic H 2 production rates were enhanced by factors of four and three, respectively, as compared to the sum of each light irradiation and direct DC electrolysis. These synergistic effects depend on the specific electrode composition and decrease on TaO x –IrO x and BiO x –SnO 2 anodes in the absence of a top layer of BiO x –TiO 2 . These results indicate that the BiO x –TiO 2 layer functions as the key photo-electrocatalyst. The heavy doping level of Bi (25 mol%) in TiO 2 increases the electric conductivity of the parent TiO 2 .

  6. O livro digital e o direito à luz do Copyleft, Creative Commons e Digital Right Management

    Directory of Open Access Journals (Sweden)

    Juliani Menezes dos Reis

    2017-04-01

    Full Text Available Discorre sobre os desafios do direito autoral a partir da disseminação e do crescimento da comercialização do livro digital e de aparelhos leitores. Discute o Copyright no contexto da Internet. Apresenta breve panorama da legislação brasileira, comentando propostas de mudanças que visam penalizar os infratores da pirataria e plágio em ambiente virtual. Aborda a Lei de Direitos Autorais 9.610/1998 e os projetos de lei PL 236/2012 e PL 2793-11. Descreve as novas formas de proteção e licenças de uso desenvolvidas por autores, editores e empresas com o intuito de disponibilizar as obras ao público, bem como proteger e garantir o repasse dos direitos autorais. Aborda o Copyleft, o Digital Right Management (DRM e o Creative Commons dentre as novas formas de proteção da produção intelectual em meio digital. Conclui que é necessária uma discussão mais intensa, não apenas em nível nacional, mas mundial, que provoque as adaptações necessárias na legislação sobre direito autoral, especialmente no contexto do ciberespaço.

  7. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    Science.gov (United States)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  8. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  9. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  10. Soft x-ray photoemission spectroscopy of the Ba atomic layer deposition on the ceramic multiferroic BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Benemanskaya, G.V., E-mail: galina.benemanskaya@mail.ioffe.ru [Ioffe Institute, Politekhnicheskaya str. 26, St. Petersburg, 194021 (Russian Federation); Dementev, P.A.; Lapushkin, M.N. [Ioffe Institute, Politekhnicheskaya str. 26, St. Petersburg, 194021 (Russian Federation); Timoshnev, S.N. [St Petersburg Academic University, Khlopina str.8/3, St. Petersburg, 194021 (Russian Federation); Senkovskiy, B. [Helmholts-Zentrum Berlin, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2017-04-01

    Highlights: • Ba/BiFeO{sub 3} interface was studied by X-ray synchrotron- photoemission spectroscopy. • Ba adsorption is found to modify the Bi 4f, O 1s and Fe 2p core level spectra. • Ba induced charge transfer causes increasing in Bi-valency and O-ionicity. • Ba adsorption results in increasing the amount of Fe{sup 2+} ions in the surface region. - Abstract: Electronic structure of the ceramic multiferroic BiFeO{sub 3} and the Ba/BiFeO{sub 3} nanointerface is investigated in situ in an ultrahigh vacuum by synchrotron-based photoemission spectroscopy with the excited photon energy from 120 eV to 900 eV. The Bi 4f, O 1s, Fe 2p, and Ba 5p core-levels spectra are studied. The Ba atomic layer deposition is found to induce a significant change in spectra that is originated from the charge transfer between Ba adatoms and Bi, O surface atoms with increasing the Bi-valency and O-ionicity. The Fe 2p{sub 3/2} core level spectrum for the clean BiFeO{sub 3} is shown to contain both the Fe{sup 2+} and Fe{sup 3+} ion components with the atomic ratio of Fe{sup 2+}/Fe{sup 3+} ∼1. The Ba adsorption is found to increase the ratio up to ∼1.5. This new effect is clearly caused by recharge between Fe{sup 3+} ↔ Fe{sup 2+} ions with increasing the amount of Fe{sup 2+} ions.

  11. Bi2Se3/CdS/TiO2 hybrid photoelectrode and its band-edge levels

    International Nuclear Information System (INIS)

    Zhang, Qi; Su, Jun; Zhang, Xianghui; Li, Jian; Zhang, Aiqing; Gao, Yihua

    2012-01-01

    Highlights: ► CVD synthesis of Bi 2 Se 3 nanoparticles. ► Bi 2 Se 3 and CdS co-sensitized TiO 2 nanorod arrays electrode was assembled by CVD. ► Direct physical contact heterojunctions were formed at the interfaces of electrode. ► Cascade structure of band-edge levels was formed in Bi 2 Se 3 /CdS/TiO 2 electrode. - Abstract: Bismuth selenide (Bi 2 Se 3 ) was chosen as the sensitizer to TiO 2 nanorod (NR) arrays photoelectrode to harvest infrared (IR) light for its narrow band gap. For utilizing more amount of IR solar energy, Bi 2 Se 3 nanoparticles (NPs) were grown up to a relative larger grain size. And, a cadmium sulfide (CdS) NPs intermediate layer was introduced to help, to coordinate, the structure of band-edge levels in Bi 2 Se 3 /CdS/TiO 2 electrode. Here, a chemical vapor deposition (CVD) strategy was introduced to assemble this kind of composite photoelectrode. And a cascade structure of band-edge levels constructed in it when achieving electrostatic equilibrium in Na 2 S/Na 2 SO 3 aqueous solution electrolyte revealed by electrochemical analysis method, which will facilitate the hydrogen generation.

  12. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  13. Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide

    International Nuclear Information System (INIS)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2011-01-01

    Highlights: → Visible active Bi-TiO 2 photocatalyst preparation and thorough charaterization. → Bi-TiO 2 shows high activity for isoproturon degradation under solar light irradiation. → The spectral response of TiO 2 shifts from UV to visible light region by Bi doping. → Bi 3+δ+ species are playing a vital role in minimizing e - /h + recombination. -- Abstract: Bi-doped TiO 2 catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO 2 showed red shift in optical absorption. The presence of Bi 3+δ+ species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO 2 .

  14. The crystal structure of the mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15

    Science.gov (United States)

    Tellier, J.; Boullay, Ph.; Créon, N.; Mercurio, D.

    2005-09-01

    The crystal structure of the 1+2 mixed-layer Aurivillius phase Bi 5Ti 1.5W 1.5O 15 (SG I2cm n o 46: -cba, Z=4, a=5.4092(3) Å, b=5.3843(3) Å and c=41.529(3) Å) consisting of the ordered intergrowth of one and two octahedra thick perovskite-type blocks separated by [Bi 2O 2] 2+ slabs is reported. Supported by an electron diffraction investigation and, using the Rietveld analysis, it is shown that this compound should be described using a I-centering lattice in agreement with the generalised structural model of the Aurivillius type compounds recently presented by the authors. The structure of this Bi 5Ti 1.5W 1.5O 15 phase is analyzed in comparison with the related simple members (Bi 2WO 6 and Bi 3Ti 1.5W 0.5O 9). The crystal structure of Bi 3Ti 1.5W 0.5O 9 is also reported.

  15. Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer

    International Nuclear Information System (INIS)

    Hao, Chunxue; FushengWen,; Xiang, Jianyong; Hou, Hang; Lv, Weiming; Lv, Yifei; Hu, Wentao; Liu, Zhongyuan

    2014-01-01

    Highlights: • Three different synthesis routes have been taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm. • For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increases quickly with the decrease in size. • The enhanced photocatalytic efficiency of BiFeO 3 nanoparticles may attribute to more surface active catalytic-sites and shorter distances carriers have to migrate to the surface reaction sites. - Abstract: Three different synthesis routes were taken to successfully prepare the BiFeO 3 particles with the different morphologies and average size in 50, 500 nm, and 15 μm, respectively. The crystal structure was recognized to be a distorted rhombohedral one with the space group R3c. With the decrease in particle size, obvious decrease in peak intensity and redshift in peak position were observed for the Raman active bands. The narrow band gap was determined from the UV–vis absorption spectra, indicating the semiconducting nature of the BiFeO 3 . For photodegradation of dyes under visible irradiation in the presence of BiFeO 3 , the photocatalytic efficiency increased quickly with the decrease in size which may attribute to more surface active catalytic-sites and shorter distances carriers had to migrate to the surface reaction sites

  16. First hydrothermal synthesis of Bi{sub 5}O{sub 7}Br and its photocatalytic properties for molecular oxygen activation and RhB degradation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yurong; Ding, Chenghua; Dang, Yuanlin [College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Wang, Hui [CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Techniques, and Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ye, Liqun, E-mail: yeliquny@163.com [College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Jin, Xiaoli [College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Xie, Haiquan, E-mail: Xie-hq@163.com [College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Liu, Chao [College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China)

    2015-08-15

    Graphical abstract: Bi{sub 5}O{sub 7}Br was firstly synthesized by via hydromel method and showed good photocatalytic properties for molecular oxygen activation and RhB degradation. - Highlights: • Bi{sub 5}O{sub 7}Br, a new Bi{sub x}O{sub y}X{sub z} semiconductor photocatalyst was firstly synthesized by via hydromel method. • As-synthesized Bi{sub 5}O{sub 7}Br can effectively activate molecular oxygen under UV–vis light irradiation. • The appearance of Bi{sub 5}O{sub 7}Br photocatalysis enriched the Bi-O-X photocatalysts. - Abstract: Comparing with BiOX (X = Cl, Br, I), Bi{sub x}O{sub y}X{sub z} as the newest bismuth-based photocatalysts have more appropriate conduction band position. And so, they can be used to active molecular oxygen. In this paper, Bi{sub 5}O{sub 7}Br, a new Bi{sub x}O{sub y}X{sub z} semiconductor photocatalyst was firstly synthesized by via hydromel method. It was characterized by X-ray diffraction (XRD), UV–visible diffused reflectance spectra (DRS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and the corresponding selected-area electron diffraction (SAED) pattern. It can be found that the crystal structure and morphology are same with Bi{sub 5}O{sub 7}I. The size of a single rod is about 2 μm in width and 50 μm in length. As-synthesized Bi{sub 5}O{sub 7}Br can effectively activate molecular oxygen to generate superoxide radical (O{sub 2}{sup •} {sup −}) and hydroxyl radical (• OH) under UV–vis light irradiation. And it also showed high photocatalytic activity than BiOBr for the degradation of dyes. Thus, it can be seen, the appearance of Bi{sub 5}O{sub 7}Br photocatalysis enriched the bismuth-rich strategy of Bi-O-X photocatalysts.

  17. Fabrication, modification and application of (BiO){sub 2}CO{sub 3}-based photocatalysts: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zilin; Sun, Yanjuan [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Yuxin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The (BiO){sub 2}CO{sub 3} with Aurivillius structure y is an emergent material. • Synthesis of (BiO){sub 2}CO{sub 3} micro/nano structures was reviewed. • The mechanisms of (BiO){sub 2}CO{sub 3} based nanocomposites were discussed. • Doping (BiO){sub 2}CO{sub 3} with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO){sub 2}CO{sub 3} based derivatives was demonstrated. - Abstract: (BiO){sub 2}CO{sub 3} (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi{sub 2}O{sub 2}{sup 2+} layers and CO{sub 3}{sup 2−} layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO){sub 2}CO{sub 3} have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi{sub x}MO{sub y})/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The

  18. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    Science.gov (United States)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  19. Fabrication of BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts for enhanced visible-light activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Huang, Xiang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Science, Tibet University, Lhasa 850000 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000 (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Li, Xiangli [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Libin [College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457 (China); Wang, Shucong [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-03-01

    Graphical abstract: - Highlights: • BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts have been synthesized. • The p–n junction photocatalysts improved water splitting and dye degradation activity. • BiOBr amount in the BiOBr@TiO{sub 2} photocatalysts was investigated. - Abstract: The construction of p–n junction structure is a smart strategy for improving the photocatalytic activity, since p–n junctions can inhibit the recombination of photo-induced charges. Herein, BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts were prepared by assembling BiOBr nanosheets on the surface of TiO{sub 2} nanobelts via a hydrothermal route followed by a co-precipitation process. BiOBr@TiO{sub 2} p–n junction photocatalysts exhibited enhanced photocatalytic activity in photocatalytic H{sub 2} production over water splitting and photodegradation of Rhodamine B (RhB) under visible light irradiation. Mott–Schottky plots confirmed the formation of p–n junctions in the interface of BiOBr and TiO{sub 2}. The enhanced photocatalytic performance can be ascribed to the 1D nanostructure and the formation of p–n junctions. This work shows a potential application of low cost BiOBr as a substitute for noble metals in photocatalytic H{sub 2} production under visible light irradiation.

  20. Ultrafast microwave hydrothermal synthesis and characterization of Bi1−xLaxFeO3 micronized particles

    International Nuclear Information System (INIS)

    Ponzoni, C.; Cannio, M.; Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K.; Leonelli, C.

    2015-01-01

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi 1−x La x FeO 3 where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi 1−x La x FeO 3 crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO 3 lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO 3 and Bi 0.85 La 0.15 FeO 3 . The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi 1−x La x FeO 3 , x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T c shift in La doped BiFeO 3 DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic

  1. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Savina, A.A. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 670047 (Russian Federation); Department of Chemistry, Buryat State University, Ulan-Ude 670000 (Russian Federation); Atuchin, V.V., E-mail: atuchin@isp.nsc.ru [Laboratory of Optical Materials and Structures, Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikov, S.F. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikova, Z.A. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Krylov, A.S. [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Maximovskiy, E.A. [Laboratory of Epitaxial Layers, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Laboratory of Research Methods of Composition and Structure of Functional Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Molokeev, M.S. [Laboratory of Crystal Structure, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Oreshonkov, A.S [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk 660079 (Russian Federation); Pugachev, A.M. [Laboratory of Condenced Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation); and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  2. Experience with the New Digital RF Control System at the CESR Storage Ring

    CERN Document Server

    Liepe, Matthias; Dobbins, John; Kaplan, Roger; Strohman, Charles R; Stuhl, Benjamin K

    2005-01-01

    A new digital control system has been developed, providing great flexibility, high computational power and low latency for a wide range of control and data acquisition applications. This system is now installed in the CESR storage ring and stabilizes the vector sum field of two of the superconducting CESR 500 MHz cavities and the output power from the driving klystron. The installed control system includes in-house developed digital and RF hardware, very fast feedback and feedforward control, a state machine for automatic start-up and trip recovery, cw and pulsed mode operation, fast quench detection, and cavity frequency control. Several months of continuous operation have proven high reliability of the system. The achieved field stability surpasses requirements.

  3. Photocatalytic and Magnetic Behaviors Observed in BiFeO3 Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2013-01-01

    Full Text Available Perovskite-type BiFeO3 nanofibers with wave nodes-like morphology were prepared by electrospinning. The nanofibers show a highly enhanced visible-light-active photocatalytic property. The results also showed that the diameter could affect the band gap and photocatalytic performances of nanofibers. Additionally, weak ferromagnetic behaviors can be observed at room temperature, which should be correlated to the size-confinement effect on the magnetic ordering of BiFeO3 structure.

  4. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  5. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO{sub 4} leads to improved photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sonal [Deen Dayal Upadhyaya College, Dwarka, University of Delhi, New Delhi 110078 (India); Sharma, Rishabh, E-mail: rishabh.rammstien@gmail.com [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi 110016 (India); Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, New Delhi 110016 (India)

    2017-07-31

    Highlights: • In this study, we report novel nitrogen doped ZnO (nanosheet)/BiVO{sub 4} nanocomposite with enhanced visible light photocatalytic activity tested on methylene blue dye. • In a typical composite synthesis process, individual metal oxides synthesized by chemical route were mixed through ultrasonication followed by annealing at the temperature of 400 °C. • To understand mechanism of action we carried out XRD, TEM, UV–vis spectroscopy, XPS, BET & PL of the samples. • Enhancement in photocatalytic performance of the composite was due to increased light absorption due to band gap reduction and formation intermediate band. • Also, charge exchange as per Z-scheme at the hetrojunction between N-ZnO and BiVO{sub 4} resulted in reduced charge recombination rate which is further responsible for enhancement in photocatalytic activity. - Abstract: For the first time, a series of Nitrogen-doped-ZnO nanosheet coupled with BiVO{sub 4} (N-ZnO/BiVO{sub 4}) heterojunctioned photocatalysts have been synthesized. The new N-ZnO/BiVO{sub 4} material has been prepared via a simple and effective method of precipitation followed by high temperature annealing process. The photocatalytic activities of the N-ZnO/BiVO{sub 4} composites were evaluated for the degradation of methylene blue (MB) a common organic pollutant under visible-light irradiation. The results revealed that photocatalytic activity of the coupled system was directly influenced by the percentage amount of BiVO{sub 4} in N-ZnO which affected the available exposed surface area for photoreactions. 30% N-ZnO/BiVO{sub 4} system exhibited remarkable performance than 10%N-ZnO/BiVO{sub 4}, 50%N-ZnO/BiVO{sub 4}, and also to their pristine counterparts. The composite demonstrated the degradation efficiency of 90% in 90 min which is 1.76 times the efficiency of pure ZnO for same time duration. This pronounced photocatalytic effect is ascribed to the reduced band gap and lowered recombination rate of ZnO due to

  6. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  7. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO6

    International Nuclear Information System (INIS)

    Weng, Ke-Chuan; Wang, Y. K.

    2015-01-01

    The electronic structure and magnetic properties of BiPbCrCuO 6 double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO 6 double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr 5+ (t 2g 1 ↓) and Cu 2+ (t 2g 3 ↑t 2g 3 ↓e g 2 ↑e g ↓) via the intermediate O 2− (2s 2 2p 6 ) ion

  8. Ordinary mode instability associated with thermal ring distribution

    Science.gov (United States)

    Hadi, F.; Yoon, P. H.; Qamar, A.

    2015-02-01

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  9. Ordinary mode instability associated with thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, F.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  10. Study into non-quasibinary sections of Pr2S3-Bi2S3-Pr2O3 triple system (Bi2S3)0. 45(Pr2O3)0. 55 - (Bi2S3)0. 45(Pr2S3)0. 55 and (Bi2S3)0. 75 (Pr2S3)0. 25 - (Bi2S3)0. 75(Pr2O3)0. 25

    OpenAIRE

    НЕЙМАТОВА А.В.; МАМЕДОВ Ф.М.; БАХТИЯРЛЫ И.Б.

    2016-01-01

    Методами дифференциальнo-термическoго (ДТ), рентгенофазового (РФ), микроструктурного (МС) методов анализа исследованы неквазибинарные разрезы (Bi2S3)0.45(Pr2O3)0.55 (Bi2S3)0.45(Pr2S3)0.55 и (Bi2S3)0.75 (Pr2S3)0.25 (Bi2S3)0.75(Pr2O3)0.25 тройной системы Pr2S3-Bi2S3-Pr2O3 построена диаграмма состояния, определены координанты нони моновариантныхравновесий....

  11. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    photolithography followed by etching of the silver film. Saturation ... Fe in +3 state. Films thus obtained are therefore highly resistive (ρ ∼ 108–109 cm) and hence exhibit saturated ferroelectric hysteresis loop (figure 3). Anomaly in ... BiFeO3 bulk sample by Rogniskaya et al [4] had indicated abrupt change in lattice parame-.

  12. Selective resputtering of bismuth in sputtered Bi-Sr-Ca-Cu-O films

    Science.gov (United States)

    Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.

    1991-10-01

    We present studies using a dc magnetron in an on-axis configuration to sputter Bi-Sr-Ca-Cu-O films from a composite target. These studies show that bismuth can be preferentially resputtered. The influence of ozone, molecular oxygen, and total pressure on the resputtering of bismuth is investigated and discussed. Ozone, in low concentrations, can dramatically affect the degree of resputtering. By comparing the effects of molecular oxygen and ozone, some insight is gained regarding the possible mechanisms of negative ion formation in the magnetron environment. Based on our results we suggest that molecular oxygen can bring about resputtering primarily by forming O+2, which collides with the target to produce energetic negative oxygen ions. In contrast, ozone may form negative ions by electron impact in the dark space above the target, giving rise to lower-energy negative ions, which can traverse the plasma unneutralized and can be stopped with an applied bias on the sample block. With no added oxidant, negative oxygen ions from the target oxygen may dominate the background resputtering. Similarity is found between our results and those for similar studies on Y-Ba-Cu-O by other workers. Bismuth in Bi-Sr-Ca-Cu-O behaves as barium in Y-Ba-Cu-O with regards to preferential resputtering; furthermore, the response of strontium, calcium, and copper to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for copper in Y-Ba-Cu-O.

  13. Selective resputtering of bismuth in sputtered Bi-Sr-Ca-Cu-O films

    International Nuclear Information System (INIS)

    Grace, J.M.; McDonald, D.B.; Reiten, M.T.; Olson, J.; Kampwirth, R.T.; Gray, K.E.

    1991-01-01

    We present studies using a dc magnetron in an on-axis configuration to sputter Bi-Sr-Ca-Cu-O films from a composite target. These studies show that bismuth can be preferentially resputtered. The influence of ozone, molecular oxygen, and total pressure on the resputtering of bismuth is investigated and discussed. Ozone, in low concentrations, can dramatically affect the degree of resputtering. By comparing the effects of molecular oxygen and ozone, some insight is gained regarding the possible mechanisms of negative ion formation in the magnetron environment. Based on our results we suggest that molecular oxygen can bring about resputtering primarily by forming O + 2 , which collides with the target to produce energetic negative oxygen ions. In contrast, ozone may form negative ions by electron impact in the dark space above the target, giving rise to lower-energy negative ions, which can traverse the plasma unneutralized and can be stopped with an applied bias on the sample block. With no added oxidant, negative oxygen ions from the target oxygen may dominate the background resputtering. Similarity is found between our results and those for similar studies on Y-Ba-Cu-O by other workers. Bismuth in Bi-Sr-Ca-Cu-O behaves as barium in Y-Ba-Cu-O with regards to preferential resputtering; furthermore, the response of strontium, calcium, and copper to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for copper in Y-Ba-Cu-O

  14. Beam Tests of a New Digital Beam Control System for the CERN LEIR Accelerator

    CERN Document Server

    Angoletta, Maria Elena; Blas, Alfred; De Long, Joseph; Findlay, Alan; Matuszkiewicz, Pawel; Pedersen, Flemming; Salom-Sarasqueta, Angela

    2005-01-01

    The Low Energy Ion Ring (LEIR) is a major component in the Large Hadron Collider ion injector chain. We have been developing an all-digital beam control and cavity servo system for the RF acceleration in LEIR. The system is housed by VME motherboards that may hold various daughter boards. Fast tasks are executed in Field Programmable Gate Arrays (FPGAs), slower tasks and communication with the software layer above are achieved in Digital Signal Processors (DSPs). We describe a simplified system prototype, which we tested with low intensity beams on the CERN PS Booster (PSB). The aim was to verify the combined DSP+FPGA architecture and the feedback loop dynamics. An additional goal was to deploy and validate novel software concepts, such as reference-functions and timings generation, and user-selectable digital data acquisition.

  15. Structure and electrical properties of (1 − x) (Na0.5Bi0.5)0.94Ba0.06TiO3–x BiAlO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Wu, Xueyan; Li, Wei; Li, Xiaodong

    2013-01-01

    Highlights: ► (1 − x) BNBT6–x BA ceramics were prepared by solid-state reaction method. ► Electrical properties of BNBT6 ceramics are improved by the addition of BA. ► (1 − x) BNBT6 - x BA ceramics at x = 0.0225 have the best electrical properties. - Abstract: (1 − x) (Na 0.5 Bi 0.5 ) 0.94 Ba 0.06 TiO 3 –x BiAlO 3 ((1 − x) BNBT6–x BA) lead-free piezoelectric ceramics were synthesized by conventional solid-state processes. Effects of BiAlO 3 (BA) on the structure and electrical properties of (Na 0.5 Bi 0.5 ) 0.94 Ba 0.06 TiO 3 (BNBT6) ceramics were investigated. X-ray diffraction (XRD) data shows that (1 − x) BNBT6–x BA ceramics form the pure perovskite phases, and the ceramics have the morphotropic phase boundary (MPB) when x r = 42.5 μC/cm 2 ), the highest piezoelectric coefficient (d 33 = 204 pC/N), the highest planar coupling factor (k p = 0.3292), the highest dielectric constant (ε r = 1687) and higher mechanical quality factor (Q m = 112)

  16. Phonon and magnon scattering of Bi{sub 2}Fe{sub 4}O{sub 9} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Poorva, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Kumar, Ashwini, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India)

    2014-04-24

    We report the phonon structure of Bi{sub 2}Fe{sub 4}O{sub 9} ceramics as synthesized by solid-state reaction route. Rietveld refined X-ray diffraction patterns confirmed the formation of single-phase perovskite structure and all the peaks of Bi{sub 2}Fe{sub 4}O{sub 9} perfectly indexed to the orthorhombic (space group Pbam). Raman scattering measurements identifies 12A{sub g}+1B{sub 2g}+1B{sub 3g} Raman active optical phonon modes. Apart from phonon scattering, mode at 470 cm{sup −1} is observed which is due to magnon scattering. The P-E loop infers paraelectric nature of Bi{sub 2}Fe{sub 4}O{sub 9}.

  17. Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3–BaBiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Nitish Kumar

    2016-12-01

    Full Text Available Ceramics of the composition BaBiO3 (BB were sintered in oxygen to obtain a single phase with monoclinic I2/m symmetry as suggested by high-resolution X-ray diffraction. X-ray photoelectron spectroscopy confirmed the presence of bismuth in two valence states — 3+ and 5+. Optical spectroscopy showed presence of a direct bandgap at ∼ 2.2eV and a possible indirect bandgap at ∼ 0.9eV. This combined with determination of the activation energy for conduction of 0.25eV, as obtained from ac impedance spectroscopy, suggested that a polaron-mediated conduction mechanism was prevalent in BB. The BB ceramics were crushed, mixed with BaTiO3 (BT, and sintered to obtain BT–BB solid solutions. All the ceramics had tetragonal symmetry and exhibited a normal ferroelectric-like dielectric response. Using ac impedance and optical spectroscopy, it was shown that resistivity values of BT–BB were orders of magnitude higher than BT or BB alone, indicating a change in the fundamental defect equilibrium conditions. A shift in the site occupancy of Bi to the A-site is proposed to be the mechanism for the increased electrical resistivity.

  18. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    Science.gov (United States)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  19. Comprehensive study of electronic polarizability and band gap of B2O3–Bi2O3–ZnO–SiO2 glass network

    Directory of Open Access Journals (Sweden)

    Iskandar Shahrim Mustafa

    2017-10-01

    Full Text Available Quaternary glasses were successfully fabricated using melt quenching technique based on the chemical compound composition (xBi2O3–(0.5−x ZnO–(0.2B2O3–(0.3SiO2, where (x=0.1, 0.2, 0.3, 0.4, 0.45 mole. The sources of SiO2 was produced from rice husk ash (RHA at 99.36% of SiO2. The Urbach energy was increased from 0.16eV to the 0.29eV as the mole of Bi2O3 increased in the glass structure. The indirect energy band gap is indicated in decrement pattern with 3.15eV towards 2.51eV. The results of Urbach energy and band gap energy that were obtained are due to the increment of Bi3+ ion in the glass network. The refractive indexes for the prepared glasses were evaluated at 2.36 to 2.54 based on the Lorentz–Lorentz formulation which correlated to the energy band gap. The calculated of molar polarizability, electronic polarizability and optical basicity exemplify fine complement to the Bi2O3 addition in the glass network. The glass sample was indicated in amorphous state.

  20. Investigation of phases developed in Bi/sub 4/Ti/sub 3/O/sub 12/ system by thermal and analytical techniques

    International Nuclear Information System (INIS)

    Naz, S.; Shazad, S.; Qureshi, A.H.; Waqas, H.; Hussain, N.; Ahmed, N.; Saeed, K.; Ali, L.

    2012-01-01

    Bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/) powders were prepared by conventional mixed oxide method using oxide mixture i.e. bismuth oxide (Bi/sub 2/O/sub 3/) and titanium oxide (TiO/sub 3). The mixed powders were ball milled for different times (8, 16, and 24 hours). The phase formation was investigated by X-ray diffraction (XRD) and the results revealed that milled powder mainly consisted of Bi/sub 2/O/sub 3/ and TiO/sub 2 /phases and a small amount corresponded to Bi/sub 4/Ti/sub 3/O/sub 12/. However, after calcination at 700 deg. C, Bi/sub 4/Ti/sub 3/O/sub 12/ phase was mainly observed. Thermal decomposition (Differential Scanning Calorimetry (DSC)-Thermal Gravimetric Analysis (TGA)-Differential Thermometric Analysis (DTA)) and XRD results showed that the formation of desired phase Bi/sub 4/Ti/sub 3/O/sub 12/ was only possible above 600 deg. C. Single phase Bi/sub 4/Ti/sub 3/O/sub 12/ ceramic was obtained with the orthorhombic structure in three pellets by sintering at 800 deg. C. XRD patterns of sintered pellets are shown. Maximum density (8.61 g/cm/sup 3/) was achieved in the sample milled for 24 hours due to reduction in particle size which ultimately enhanced the diffusion process during sintering. (Orig./A.B.)

  1. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  2. Dependency of the properties of Sr xBi yTa2O9 thin films on the Sr and Bi stoichiometry

    International Nuclear Information System (INIS)

    Viapiana, Matteo; Schwitters, Michael; Wouters, Dirk J.; Maes, Herman E.; Van der Biest, Omer

    2005-01-01

    In this study the properties of ferroelectric SBT thin films crystallized at 700 deg. C have been investigated as function of the Sr and Bi stoichiometry. A matrix of 130 nm Sr x Bi y Ta 2 O 9 films with 0.7 ≤ x ≤ 1.0 and 2.0 ≤ y ≤ 2.4 has been realized by metal-organic spin-on deposition technique on Pt/IrO 2 /Ir/TiAlN/SiO 2 /Si substrates. Within this composition range, we found that the ferroelectric properties peak into a narrow window of 0.8 ≤ x ≤ 0.9 and y ∼ 2.25 with Pr and Ec of 6.5 μC/cm 2 and 50 kV/cm, respectively (at 2.5 V). Outside this composition window, the Pr decreases while the hysteresis loop becomes slanted. For some Sr/Bi-ratios even no ferroelectricity was achieved. 2Ec-tendencies were seen as function of the x/y-ratios, too. Examination of the microstructure of the films by scanning electron microscopy showed that film grain size increased with decreasing Sr-deficiency and that nucleation increased with increasing Bi-excess. At high Sr-deficiency and low Bi-excess, no complete crystallization of the SBT film occurs. From the film morphology, also different phases can be discriminated. X-ray diffraction analysis showed a strong correlation of the film orientation with the film composition. While our results show a clear correlation of Pr, film grain size and orientation with composition, further investigations are required to clarify the relation of the hysteresis parameters with film orientation

  3. Optical properties and visible-light-driven photocatalytic activity of Bi8V2O17 nanoparticles

    International Nuclear Information System (INIS)

    Pu, Yinfu; Liu, Ting; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-01-01

    Bi 8 V 2 O 17 (4Bi 2 O 3 ·V 2 O 5 ) nanoparticles with the uniform size of about 50 nm were fabricated through the Pechini method. The crystal structure was investigated by X-ray powder diffraction and the structural refinement. The surface of the as-synthesized samples was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy, and X-ray photoelectron spectroscopy. The optical properties, band structure, and the degradation mechanisms were discussed. The experimental results demonstrate that Bi 8 V 2 O 17 nanoparticles have an efficient visible-light absorption with band-gap energy of 1.85 eV and a direct allowed electronic transition. The photocatalytic activity was evaluated by the photodegradation of the methylene blue (MB) under visible-light irradiation (λ > 420 nm) as a function of time. These results indicate that Bi 8 V 2 O 17 could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the base of the crystal structure characteristic

  4. Luminescence and excited state dynamics of Bi{sup 3+} centers in Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St. Petersburg (Russian Federation); Lipińska, L. [Institute of Electronic Materials Technology, Wólczyńska 133, 01919 Warsaw (Poland); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Schulman, L.S. [Physics Department, Clarkson University, Potsdam, NY 13699-5820 (United States); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85072 Bydgoszcz (Poland); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Zhydachevskii, Ya. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Lviv Polytechnic National University, Bandera 12, 79646 Lviv (Ukraine)

    2015-11-15

    Photoluminescence of Y{sub 2}O{sub 3}:Bi nanopowder synthesized by the modified sol–gel method is studied using time-resolved luminescence spectroscopy in the 4.2–300 K temperature range. Bi{sup 3+} ions are substituted for Y{sup 3+} ions in two different crystal lattice sites, one having S{sub 6} symmetry (Bi(S{sub 6})) and the other C{sub 2} symmetry (Bi(C{sub 2})). The luminescence characteristics of these two centers are found to have strongly different electron–phonon interactions. The luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers peak at 3.04 eV and 2.41 eV, respectively, and arise from the radiative decay of the triplet relaxed excited state (RES) of Bi{sup 3+} ions. The model and structure of the RES, responsible for the luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers in Y{sub 2}O{sub 3}:Bi, as well as radiative and nonradiative processes, taking place in the excited states of these centers, are investigated. The parameters of the triplet RES (the separation between the metastable and radiative levels and probabilities of radiative and nonradiative transitions from these levels) are determined. Low-temperature quenching of the triplet luminescence of these centers is explained by nonradiative quantum tunneling transitions from the metastable minima of their triplet RES to closely located defect- or exciton-related levels. - Highlights: • Photoluminescence of Bi{sup 3+} centers of two types in Y{sub 2}O{sub 3}:Bi is investigated. • Bi(S{sub 6}) and Bi(C{sub 2}) centers reveal strongly different electron–phonon interaction. • Radiative and nonradiative processes in their triplet excited states are clarified. • Low-temperature luminescence quenching in Bi(S{sub 6}) and Bi(C{sub 2}) centers is studied. • New fast weak ≈2.9 eV emission is suggested to arise from Bi(C{sub 2}) centers.

  5. Estudio dieléctrico de cerámicas de textura y microestructura controladas con composiciones (SrBi2Nb2O91-x(Bi3TiNbO9x

    Directory of Open Access Journals (Sweden)

    Pardo, L.

    2002-02-01

    Full Text Available Ceramics of composition (SrBi2Nb2O91-x(Bi3TiNbO9x with x = 0.35, 0.65 and 1.00 and Aurivillius type structure have been prepared by natural sintering and hot pressing. Amorphous precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides and carbonates, which allows using moderate processing temperatures. These materials are interesting for their use as high temperature piezoelectrics. Dielectric characterisation allows to know the temperature at what takes place the ferro-paraelectric transition, which limits the working temperature of the material. It also gives information on how the electric properties, especially the d. c. conductivity, affect the polarizability of the ceramics. The properties relation with the microstructure and the texture is studied. In this work, dielectric studies of these materials have been made, in the frequency interval from 100 Hz to 5 MHz and in the temperature range from 200 ºC up to the ferroparaelectric transition temperatures (>900 ºC for Bi3TiNbO9.Se han preparado cerámicas de la solución sólida (SrBi2Nb2O91-x(Bi3TiNbO9x con x = 0.35, 0.65 y 1.00 y estructura tipo Aurivillius obtenidas por sinterización natural y por prensado en caliente. Se parte de precursores amorfos obtenidos por activación mecanoquímica de una mezcla estequiométrica de óxidos y carbonatos, lo que permite utilizar temperaturas moderadas de procesado. Estos materiales son interesantes por su posible uso como piezoeléctricos de alta temperatura. La caracterización dieléctrica permite establecer a qué temperatura se encuentra la transición ferro-paraeléctrica que limita la temperatura de uso del material y como afectan las propiedades eléctricas, especialmente la conductividad d. c., a la polarizabilidad de las cerámicas, así como su relación con su microestructura y textura. En este trabajo se ha realizado el estudio dieléctrico de estos materiales en el intervalo de frecuencias de 100

  6. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3}/paraffin composites at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.

  7. Facile synthesis of Sm-doped BiFeO{sub 3} nanoparticles for enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zijun; Chen, Da, E-mail: dchen_80@hotmail.com; Wang, Sen; Zhang, Ning; Qin, Laishun, E-mail: qinlaishun@cjlu.edu.cn; Huang, Yuexiang

    2017-06-15

    Highlights: • Effective Sm doping into BiFeO{sub 3} nanoparticles was obtained by a facile sol-gel route. • Band gap of Sm-doped BiFeO{sub 3} nanoparticles was regulated by the dopant concentration. • Sm-doped BiFeO{sub 3} nanoparticles exhibited superior photocatalytic activities. • The possible photocatalytic mechanism of Sm-doped BiFeO{sub 3} nanospheres was discussed. - Abstract: In this work, the effect of Sm doping on the structural and photocatalytic properties of BiFeO{sub 3} (BFO) was investigated. A series of Sm doped BFO nanoparticles containing different Sm dopant contents (Bi{sub (1−x)}Sm{sub x}FeO{sub 3}, x = 0.00, 0.01, 0.03, 0.05, 0.07, 0.10) were synthesized via a simple sol-gel route. It was revealed that Sm{sup 3+} ions were successfully doped into BFO nanoparticles, and the band gap value was gradually decreased when increasing Sm dopant concentration. The photocatalytic activity of Sm-doped BFO photocatalyst was significantly affected by the Sm doping content. Compared to pure BFO, the Sm-doped BFO samples exhibited much higher photocatalytic activity. The improved photocatalytic activity of Sm-doped BFO could be attributed to the enhanced visible light absorption and the efficient separation of photogenerated electrons and holes derived from Sm dopant trapping level in the Sm-doped BFO samples. In addition, the possible photocatalytic mechanism of Sm-doped BFO photocatalyst was also proposed.

  8. Democracia Online e o Problema da Exclusão Digital

    Directory of Open Access Journals (Sweden)

    Francisco Paulo Jamil Almeida Marques

    2014-07-01

    Full Text Available O trabalho examina alguns dos argumentos fundamentais que envolvem o tema “exclusão digital” com o objetivo de avaliar os limites que tal dificuldade impõe aos projetos de democracia online. Primeiramente, a partir da revisão de literatura que delineia a interface entre internet e democracia, são discutidas as transformações conceituais e interpretativas concernentes à ideia de digital divide. Em seguida, o texto apresenta os diferentes tipos de desigualdade identificados por diversos autores quanto a aspectos técnicos, individuais e geográficos. Reflete-se, então, acerca dos efeitos da exclusão digital sobre as experiências de democracia online. Conclui-se que a questão da digital divide (a precisa mais do que políticas governamentais para ser tratada adequadamente; (b depende de fatores contextuais, a exemplo da disposição pessoal dos usuários; (c e que, do ponto de vista epistemológico, este é um conceito “móvel”, esquadrinhado de acordo com o contexto tecnológico vigente.

  9. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  10. Influence of the collector and heat treatment in the structure of BiFeO_3 electrospun nanofibers

    International Nuclear Information System (INIS)

    Melo, G.H.F.; Santos, J.P.F.; Bretas, R.E.S.

    2016-01-01

    The objective of this work was to analyze the influence of the collector type and heat treatment on the morphology and crystalline phases of BiFeO_3 electrospun nanofibers. A solution containing (Fe(NO_3)_3_._9H_2O and Bi(NO_3)_3_._5H_2O) as precursors together with a polyvinylpyrrolidone solution was electrospun using 2.8KV/cm as electrical field. The collector type was however, changed (aluminum and glass). After the electrospinning, the as-spun nanofibers were submitted to two different heat treatments: one at 550°C and the other at 750°C, both during 2h. The collector type changed the morphology of the nanofibers; while in the glass collector, a non-woven mat of flat and rough nanofibers was obtained, in the aluminum collector, mats of circular and smooth nanofibers were obtained. The thermal treatment also changed the morphology and amount of crystalline phases; at 550°C, the nanofiber morphology was maintained and only one crystalline phase (BiFeO_3) was detected. On the other hand, at 750°C, flakes were obtained of two crystalline phases (BiFeO_3 and Bi_2Fe_4O_9). (author)

  11. Tuning the electronic properties at the surface of BaBiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Guller, F.; Llois, A. M.; Vildosola, V. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Marchini, F.; Williams, F. J. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Lüders, U. [CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4 (France); Albornoz, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Leyva, A. G. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, (1650), San Martín, Buenos Aires (Argentina); and others

    2016-06-15

    The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO{sub 3} appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO{sub 3} thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We find significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.

  12. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    Science.gov (United States)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  13. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    International Nuclear Information System (INIS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, M. S.; Song, J. S.

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi 0.5 (Na 0.425 K 0.075 ) TiO 3 (BNKT) ceramic material with platelike Bi 4 Ti 3 O 12 (BiT) were investigated. The platelike Bi 4 Ti 3 O 12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 .deg. C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  14. Acurácia dos achados ultrassonográficos do câncer de mama: correlação da classificação BI-RADS® e achados histológicos Accuracy of sonographic findings in breast cancer: correlation between BI-RADS® categories and histological findings

    Directory of Open Access Journals (Sweden)

    José Hermes Ribas do Nascimento

    2009-08-01

    Full Text Available OBJETIVO: O objetivo geral do estudo é avaliar a acurácia da ultrassonografia (BI-RADS no diagnóstico do câncer de mama, e os objetivos específicos, descrever a frequência de apresentação dos diferentes achados ultrassonográficos e a avaliação da concordância entre observadores. MATERIAIS E MÉTODOS: Exames de 110 pacientes encaminhados para biópsia, com diagnóstico prévio de nódulos, foram reanalisados independentemente por dois médicos especialistas utilizando a nomenclatura do BI-RADS. Os achados histológicos foram utilizados como padrão-ouro. A acurácia dos achados foi determinada. As diferenças nos grupos de comparação foram analisadas com teste qui-quadrado para variáveis categóricas e a concordância entre os médicos foi calculada por meio da estatística kappa (κ. RESULTADOS: Cento e dez massas mamárias foram avaliadas pelo ultrassom, sendo que 76 (69% foram benignas e 34 (30,9%, malignas. Foram observados, entre os radiologistas, sensibilidade variando entre 70,5% e 82,3%, valor preditivo negativo entre 81,1% e 87,5%, valor preditivo positivo entre 42,1% e 45,1%, especificidade entre 56,58% e 55,2% e acurácia entre 60,9% e 63,6%. Na avaliação entre observadores foi obtida concordância global considerada moderada (κ= 0,50. CONCLUSÃO: O BI-RADS 4ª edição é um acurado sistema para auxiliar os médicos na descrição das lesões mamárias e na tomada de condutas.OBJECTIVE: The main purpose of the present study is to evaluate the accuracy of ultrasonography (BI-RADS in the diagnosis of breast cancer whereas the additional specific objectives are to describe the frequency of different sonographic findings and evaluating interobserver agreement. MATERIALS AND METHODS: Images of 110 patients who had been referred for biopsy with previous diagnosis of breast nodules were independently reviewed by two specialists according to the BI-RADS classification. Histological findings were utilized as a gold

  15. Growth of (100)-highly textured BaBiO{sub 3} thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina); Marchini, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Granell, P. [INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Golmar, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, 1650 San Martín, Buenos Aires (Argentina); Albornoz, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); and others

    2016-08-01

    We report on the growth and characterization of non-epitaxial but (100)-highly textured BaBiO{sub 3} thin films on silicon substrates. We have found the deposition conditions that optimize the texture, and show that the textured growth is favoured by the formation of a BaO layer at the first growth stages. X-ray diffraction Φ-scans, together with the observation that the same textured growth is found on films grown on Pt and SiO{sub 2} buffered Si, demonstrate the absence of epitaxy. Finally, we have shown that our (100)-oriented BaBiO{sub 3} films can be used as suitable buffers for the growth of textured heterostructures on silicon, which could facilitate the integration of potential devices with standard electronics. - Highlights: • BaBiO{sub 3} thin films were grown on Si substrates and characterized. • Films prepared using optimized conditions are highly textured in the (100) direction. • The absence of in-plane texture was demonstrated by X-ray diffraction. • Our films are suitable buffers for the growth of (100)-textured oxide heterostructures.

  16. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B

    Science.gov (United States)

    Wang, Min; Han, Jin; Guo, Pengyao; Sun, Mingzhi; Zhang, Yu; Tong, Zhu; You, Meiyan; Lv, Chunmei

    2018-02-01

    B-doped Bi2MoO6 photocatalysts have been synthesized by a hydrothermal method using HBO3 as the doping source and the effect of B doping content on Bi2MoO6 structure and performance was studied. The samples were characterized with XPS, XRD, SEM, BET, UV-Vis DRS, and PL. The photocatalytic activity was evaluated by photocatalytic degradation of Rhodamine B (RhB) under visible light (λ ≥ 420 nm). The results show that all samples are orthorhombic structure. Doping Bi2MoO6 with B increases the amount of Bi5+ and oxygen vacancies, which led to stronger absorption in visible light region and lower band gap energy of the B-doped Bi2MoO6 but had little impact on morphology. B doping significantly improves the photocatalytic activity of Bi2MoO6 and the highest photocatalytic degradation rate is 89% when the initial molar ratio of B to Bi is 0.01.

  17. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Cericola, Dario; Novak, Petr; Wokaun, Alexander; Koetz, Ruediger

    2011-01-01

    Highlights: → Bi-material electrodes for electrochemical hybrid devices were characterized. → Bi-material electrodes have higher specific charge than capacitor electrodes. → Bi-material electrodes have better rate capability than battery electrodes. → Bi-material systems outperform batteries and capacitors in pulsed applications. - Abstract: The performance of mixed bi-material electrodes composed of the battery material, LiMn 2 O 4 , and the electrochemical capacitor material, activated carbon, for hybrid electrochemical energy storage devices is investigated by galvanostatic charge/discharge and pulsed discharge experiments. Both, a high and a low conductivity lithium-containing electrolyte are used. The specific charge of the bi-material electrode is the linear combination of the specific charges of LiMn 2 O 4 and activated carbon according to the electrode composition at low discharge rates. Thus, the specific charge of the bi-material electrode falls between the specific charge of the activated carbon electrode and the LiMn 2 O 4 battery electrode. The bi-material electrodes have better rate capability than the LiMn 2 O 4 battery electrode. For high current pulsed applications the bi-material electrodes typically outperform both the battery and the capacitor electrode.

  18. Dry etching of ferroelectric Bi4-xEuxTi3O12 (BET) thin films

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    Bi 4-x Eu x Ti 3 O 12 (BET) thin films were etched by using a inductively coupled Cl 2 /Ar plasma. We obtained a maximum etch rate of 69 nm/min at a gas mixing ratio of Cl 2 (20 %)/Ar (80 %). This result suggests that an effective method for BET etching is chemically assisted physical etching. With increasing coil RF power, the plasma density increases so that the increased reactive free radicals and ions enhance the etch rates of BET, Pt, and SiO 2 . As the dc-bias voltage is increased, the increased ion energy leads to an increased etch rate of BET films. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O, and the Ti-O peaks change with increasing Cl 2 concentration. For a pure Ar plasma, the peak associated with the oxygen-metal (O-M: TiO 2 , Bi 2 O 3 , Eu 2 O 3 ) bond seems to disappear while the pure oxygen peak does not appear. After the BET thin films is etched by using a Cl 2 /Ar plasma, the peak associated with the O-M bond increases slowly, but more quickly than the peak associated with pure oxygen atoms, due to a decrease in the Ar-ion bombardment. These results seem to indicate that Bi and Eu react little with Cl atoms and are removed predominantly by argon-ion bombardment. Also, Ti reacts little with Cl radicals and is mainly removed by chemically assisted physical etching.

  19. Determination of the electronic, dielectric, and optical properties of sillenite Bi12TiO20 and perovskite-like Bi4Ti3O12 materials from hybrid first-principle calculations

    KAUST Repository

    Lardhi, Sheikha F.; Noureldine, Dalal; Harb, Moussab; Ziani, Ahmed; Cavallo, Luigi; Takanabe, Kazuhiro

    2016-01-01

    Density functional theory calculation was conducted to determine the optoelectronic properties of bismuthtitanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew–Burke–Ernzerhof functional and screened Coulomb hybrid Heyd–Scuseria–Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.

  20. Determination of the electronic, dielectric, and optical properties of sillenite Bi12TiO20 and perovskite-like Bi4Ti3O12 materials from hybrid first-principle calculations

    KAUST Repository

    Lardhi, Sheikha F.

    2016-04-05

    Density functional theory calculation was conducted to determine the optoelectronic properties of bismuthtitanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew–Burke–Ernzerhof functional and screened Coulomb hybrid Heyd–Scuseria–Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.

  1. Synthesis of BiFeO 3 by carbonate precipitation

    Indian Academy of Sciences (India)

    Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of ...

  2. Synthesis of SrBi{sub 2}Ta{sub 2}O{sub 9} by combustion synthesis; Obtencao do SrBi{sub 2}Ta{sub 2}O{sub 9} utilizando a sintese por combustao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F.F.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais. Lab. de Materiais Ceramicos; Sousa, V.C. [Universidade Federal do Rio Grande do Sul (LABIOMAT/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais. Lab. de Materiais de Biomateriais

    2009-07-01

    The combustion synthesis is a low cost technique for obtaining homogeneous nanostructured compounds with high purity. The ferroelectric memory devices have been widely studied by the electronics industry by presenting high-speed recording, read and rewrite. The PZT, in the form of thin films, is the ceramic materials most used for this purpose, but it presents ferroelectric fatigue. The SrBi{sub 2}Ta{sub 2}O{sub 9} has a high cycle enables the recording which is good applicability in the PZT. Therefore, this work aims to obtain the SrBi{sub 2}Ta{sub 2}O{sub 9} using the combustion synthesis and urea as a reducing agent. The characterization of the powder was realized used the technique of x-ray diffraction (XRD) to determine the phases present and to evaluate surface area by the BET method. The powder obtained after synthesis showed low crystallinity presenting just the BiOCl like the crystalline phase present, but heat treatment at 800 deg C for 2 hours was sufficient for the formation of SrBi{sub 2}Ta{sub 2}O{sub 9} . (author)

  3. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  4. Enhancing visible light photocatalytic and photocharge separation of (BiO){sub 2}CO{sub 3} plate via dramatic I{sup −} ions doping effect

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lei [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Cao, Jing [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Anhui Collaborative Innovation Center of Advanced Functional Composite, Huaibei, 235000, Anhui (China); Lin, Haili, E-mail: linhaili@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Guo, Xiaomin; Zhang, Meiyu [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui (China)

    2016-08-15

    Highlights: • Novel I-(BiO){sub 2}CO{sub 3} was prepared by a facile chemical precipitation method. • I{sup −} ions impurity level located on the top of valence band of (BiO){sub 2}CO{sub 3}. • I{sup −} ions doping largely improved photocatalytic activity of I-(BiO){sub 2}CO{sub 3}. • I-(BiO){sub 2}CO{sub 3} displayed excellent photocharge separation efficiency. - Abstract: Novel I{sup −} ions doped (BiO){sub 2}CO{sub 3} (I-(BiO){sub 2}CO{sub 3}) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO){sub 2}CO{sub 3} displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO){sub 2}CO{sub 3}. The pseudo-first-order rate constant k{sub app} of RhB degradation over 15.0% I-(BiO){sub 2}CO{sub 3} was 0.54 h{sup −1}, which is 11.3 times higher than that of (BiO){sub 2}CO{sub 3}. The doped I{sup −} ions formed an impurity level on the top of valence band of (BiO){sub 2}CO{sub 3} and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO){sub 2}CO{sub 3} system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO){sub 2}CO{sub 3} via intense doping effect of I{sup −} ions.

  5. Facile Br{sup -} assisted hydrothermal synthesis of Bi{sub 2}MoO{sub 6} nanoplates with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin [Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Zhang, Guoqing [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Ding, Shimin [Yangtze Normal University, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Chongqing (China)

    2017-10-15

    Bi{sub 2}MoO{sub 6} nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br{sup -} containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi{sub 2}MoO{sub 6} nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi{sub 2}MoO{sub 6} nanoplates. KBr-templated Bi{sub 2}MoO{sub 6} nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi{sub 2}MoO{sub 6} but inferior to that of CTAB-templated Bi{sub 2}MoO{sub 6} nanoplates. (orig.)

  6. Evaluation of conventional and digital radiography capacities for distinguishing dental materials on radiograms depending on the present radiopacifying agent.

    Science.gov (United States)

    Antonijević, Djordje; Ilić, Dragan; Medić, Vesna; Dodić, Slobodan; Obradović-Djuriĉić, Kosovka; Rakoĉević, Zoran

    2014-11-01

    The radiopacity of an endodontic material can considerably vary as measured on film and a digital sensor. Digital radiography offers numerous advantages over conventional film-based radiography in dental clinical practice regarding both diagnostic capabilities and postintervention procedures. The aim of this study was to investigate the capacity of conventional and charge-conpled device (CCD) based digital radiography to detect material on radiograph depending on the radio-pacifying agent present in the mate- rial. Experimental cements were formulated by mixing Portland cement with the following radiopacifying agents: zinc oxide (ZnO), zirconium oxide (ZrO2), titanium dioxide (TiO2), barium sulphate (BaSO4), iodoform (CHI3), bismuth oxide (Bi2O3) and ytterbium trifluoride (YbF3). In addition, 5 endodontic materials comprising Endometh- asone, Diaket, N2, Roth 801 and Acroseal were investigated to serve as control. Per three specimens of each material were radiographed alongside an aluminum step wedge on film (Eastman Kodak Company, Rochester, NY) and a CCD-based digital sensor (Trophy Radiologie, Cedex, France). Radiopacity values were calculated by converting the radiographic densities of the specimens expressed as a mean optical densities or mean grey scale values into equivalent thickness of aluminum. Two-way ANOVA detected no significant differences with respect to the imaging system (p > 0.05), but the differences were significant with respect to radiopacifier (p < 0.001) and the interaction of the two factors (p < 0.05). Paired t-test revealed significant differences between the methods used for pure Portland cement, all concentrations of BaSO4 and CHI3, 10% and 20% additions of ZrO2 and Bi2O3 and 10% and 30% additions of YbF3 (p < 0.05). The materials which incorporate CHI3 OR BaSO4 as radiopacifying agents are expected to be significantly more radiopaque on a digital sensor than on film. During clinical practice one should concern to the quality of contrast

  7. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  8. Relaxor behaviour and dielectric properties of BiFeO3 doped Ba ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Ba1−Bi(Ti0.9Zr0.1)1−FeO3 ( = 0–0.075) ceramics are prepared using a conventional solid state reaction method. X-ray diffraction shows the presence of a single phase. Addition of Bi3+ and Fe3+ strongly influences the crystal structure and dielectric properties of the ceramics. The evolution from a ...

  9. Evaluation of ring tensile test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Sivaramakrish, K.S.

    1990-01-01

    Ring specimens of 5-mm width cut from Zircaloy-2 cladding of reactor operated fuel elements that had experienced 5000 to 15,000 MWD/T of fuel burnup were subjected to ring tensile testing. The true stress-true strain data points up to the onset of necking from the individual load-elongation curves of these specimens were used as input data in Voce's equation. The results reveal that the uniform elongation (UE) values generated using Voce's equation were within (UE-2)% of the experimental percent uniform elongation (UE%). The corresponding ultimate tensile strength values were within ±1%. The uncertainty inherently associated in the determination of gauge length introduces extraneous deformation in the rings tested. Previous results had shown that a 14% increase in cladding diameter caused the gauge length to increase by 40%. To simulate the contribution of extraneous deformation due to an increase in cladding diameter, an analysis of the variation of the tensile parameters (uniform elongation and ultimate tensile strength) due to increase in the gauge length in the range of 10 to 40% was carried out. The results are discussed

  10. Magnetoelectric properties of Pb free Bi2FeTiO6: A theoretical investigation

    Science.gov (United States)

    Patra, Lokanath; Ravindran, P.

    2018-05-01

    The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3c space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 μB at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 µCcm-2 for Bi2FeTiO6.

  11. Electronic structure and photocatalytic activities of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wenjie; Hu, Jinli; Huang, Jing; Wu, Xin; Lin, Sen, E-mail: slin@fzu.edu.cn; Huang, Caijin; Qiu, Xiaoqing, E-mail: qiuxq@fzu.edu.cn

    2015-12-01

    Highlights: • (Bi{sub 2−δ}Y{sub δ})Sn2O7 solid solutions were synthesized by one-step hydrothermal method. • The contribution of Bi 6s orbitals to electronic structures can be continuously tuned. • The high photocatalytic activity should originate from the good band dispersions. - Abstract: A series of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions were prepared by a one-step hydrothermal method to investigate the correlation between the electronic structures and photocatalytic activity. All the (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} samples were characterized by X-ray diffraction, transmission electron microscopy, infrared and UV–vis absorption spectroscopy, and the Brunauer–Emmett–Teller technique. The effects of Bi 6s orbitals in (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions on the electronic structures and photogradation of colorless 2-naphthol solution were investigated experimentally and theoretically. It is found that the introduction of Y{sup 3+} induces the shrinkage of the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. Consequently, the contribution of Bi 6s orbitals to electronic structures of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions can be continuously tuned by Y{sup 3+} substitution for Bi{sup 3+}. Density function theory calculations reveal that the Bi 6s and O 2p states dominate the top of valence band of Bi{sub 2}Sn{sub 2}O{sub 7}, while the bottom of conduction band mainly consists of the states of Sn 5s, O 2p and Bi 6p. Once the Bi{sup 3+} ions are substituted by Y{sup 3+}, the intensity of Bi 6s states is weakening at the top of valence band while the bottom of conduction band retains the same feature observed for pure Bi{sub 2}Sn{sub 2}O{sub 7}. Moreover, the band dispersions of valence band and conduction band become narrower after Y{sup 3+} introduction into the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. As a result, the

  12. Climate and Streamflow Reconstruction on the São Francisco Basin, Brazil, Using Tree-Ring Data

    Science.gov (United States)

    Pereira, G. D. A.; Barbosa, A. C. M. C.; Granato-Souza, D.; Stahle, D. W.; Torbenson, M.; dos Santos, R. M.; Rodrigues Alves Delfino Barbosa, J. P.

    2017-12-01

    The São Francisco River crosses the most drought-prone region of Brazil and regional economic dynamics are dependent on the water availability in the basin. The seasonally dry forests are widely distributed in the basin, where Cedrela fissilis Vell (cedro) are frequently found. This semi-arid region provides a favorable setting where the deciduous cedro trees form well-defined semi-ring porous annual rings that can be exactly crossdated and used to build climate sensitive chronologies. Therefore, we have developed chronologies of cedro from seasonally dry forest fragments of three sites located in the middle-sector of the São Francisco River basin and south limit of the Brazilian Drought Polygon. The samples were analyzed according to standard procedures: sample preparation, ring count, crossdating and measurement of the tree rings. Dating quality was tested using the computer program COFECHA and ring-width time series where detrended and standardized to produce the final index chronology using the ARSTAN program. The results show that crossdating within and among trees from different sites demonstrate the potential to expand the spatial sampling. The tree-ring chronologies are sensitive with wet season precipitation totals (October - March), and can explain approximately 40% of the variance (1961-2015). Significant correlation was also observed with total annual discharge of the Rio São Francisco River measured at Barra (r=0.48; 1961-2015). However, the correlation disapears after 1993 (r=0.64 for 1961-1993, but r=-0.004 for 1994-2015) and we suspect that the stream gage at Barra has been impacted by human activity. Tree-ring chronologies can provide important information on climate and streamflow variability of São Francisco River, where hydrological records are often short and discontinuous. This chronology is now being extended with 150-yr old trees from the region and may be used to reconstruct climate and streamflow records back to the pre

  13. Structural, dielectric and magnetic properties of Mn modified xBiFeO{sub 3}-(1−x)BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhonghua, E-mail: zhdai@mail.xjtu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Liu, Lu; Ying, Guobing; Yuan, Ming [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ren, Xiaobing [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2017-07-15

    Manganese doped xBiFeO{sub 3}-(1−x)BaTiO{sub 3}(x=0.67–0.82) ceramics were prepared by solid-state method. The structural, dielectric and magnetic properties were investigated after annealing in vacuum at 773 K. X-ray diffraction analysis indicated that all samples crystallized in pure perovskite structure. The ceramics displays a typical ferroelectric loop, with a max remnant polarization P{sub r} of 25.6 µC/cm{sup 2}. The piezoelectric coefficient d{sub 33} of Manganese doped 0.67BiFeO{sub 3}0.33BaTiO{sub 3} is 139 pC/N and its temperature dependence of dielectric constant exhibits a broad anomaly. The Manganese doped 0.75BiFeO{sub 3}0.25BaTiO{sub 3} ceramic shows ferrimagnetism at room temperature, with remnant magnetization M{sub r} of 0.31 emu/g and ferrimagnetic transition temperature T{sub N} of ~420 °C. - Highlights: • In this manuscript, a technique combined Mn doping which is able to fabricate point defects and annealing in vacuum which can stabilize the unstable ion was investigated. We studied the electrical properties of Mn doped BiFeO{sub 3}-BaTiO{sub 3} ceramics after vacuum annealing treatment at appropriate temperature. • Our result is that Mn modification and heat treatment are effective methods to solve the problem of high leakage of BiFeO{sub 3}-BaTiO{sub 3} system ceramic prepared by solid-state method. It exhibited a enhanced field-induced ferromagnetic ordering with promising potential in spintronics and recording media applications.

  14. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  15. Magnetoelectric effect in (BiFeO3x–(BaTiO31-x solid solutions

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available The aim of the present work was to study magnetoelectric effect (ME in (BiFeO3x-(BaTiO31-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9 were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K after initial electrical poling despite that the soaking time was reduced 10 times in this case.

  16. Synthesis and characterization of ceramics BNO (BiNbO4) added to 10% of CuO

    International Nuclear Information System (INIS)

    Sales, A.J.M.; Silva, P.M.O.; Rodrigues Junior, C.A.; Sombra, A.S.B.

    2012-01-01

    The study of the synthesis and structural characterization of ceramic BiNbO4 and behavior of density when added 10% by weight of CuO, with a view to applications in ceramic capacitors, are presented in this work. The BiNbO4 was prepared by conventional ceramic method. The milled powders were calcined for 2 hours at 850 °C for 3 hours and characterized by using a diffractometer Rigaku DMAXB of Co-α radiation. A more detailed characterization by XRD was performed using the program DBWS9807a using the Rietveld refinement of crystal structures, which confirmed the achievement of the α-BNO phase with orthorhombic structure. Were produced buks with the calcined powder, they were sintered at 925 °C. In order to study the grain morphology and distribution of pores in the ceramic body, the surface of the sample by adding 10% of CuO was analyzed by Scanning Electron Microscopy which confirmed a better densification. (author)

  17. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  18. Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with high photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liyun, E-mail: zhengliyun@126.com [Hebei University of Engineering, College of Materials Science and Engineering (China); Wang, Shuling; Zhao, Lixin [Hebei University of Engineering, College of Mechanical and Equipment Engineering (China); Zhao, Shuguo [Handan Polytechnic College, Mechanical and Electrical Department (China)

    2016-11-15

    Core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles with BiOI sheath have been synthesized by a solvothermal reaction method and were characterized by transmission electron microscopy (TEM) with an energy dispersive spectrum (EDS), high-resolution TEM and X-ray diffraction (XRD). Their photocatalytic activities were evaluated by methylene blue (MB) under the simulated solar light. The results indicate that the spherical Fe{sub 3}O{sub 4} particles were coated with BiOI sheath when the sample were synthesized at 160 °C with ethylene glycol and deionized water, forming a core/shell structure. The degradation rate of MB assisted with the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts reached 98 % after 40-min irradiation. The catalytic performance enhancement of the core/shell Fe{sub 3}O{sub 4}/BiOI catalysts mainly attributes to the band structure that can improve the generation efficiency, separation and transfer process of the photo-induced electron–hole pairs and decrease their recombination. The magnetic Fe{sub 3}O{sub 4} core not only contributes to the efficient separation of electron and holes, but also helps catalysts be collected conveniently using a magnet for reuse. After five repeated trials, the degradation rate of MB still maintains over 90 % and the saturated magnetization of the catalysts remains 51.5 emu/g, which indicate that the core/shell Fe{sub 3}O{sub 4}/BiOI nanoparticles have excellent photocatalytic stability and are recyclable for decomposing organic pollutants under visible light irradiation.

  19. Unidirectional THz radiation propagation in BiFeO3

    Science.gov (United States)

    Room, Toomas

    The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.

  20. Preparation and characterization of PtRu/C, PtBi/C, PtRuBi/C electrocatalysts for direct electro-oxidation of ethanol in PEM fuels cells using the method of reduction by sodium borohydride

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2010-01-01

    Pt/C, PtBi/C, PtRu/C and PtRuBi/C electrocatalysts were prepared by a borohydride reduction methodology and tested for ethanol oxidation. This methodology consists in mix a solution with sodium hydroxide and sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. It was studied the addition method of borohydride (drop by drop addition or rapid addition). The obtained electrocatalysts were characterized by energy dispersive X ray spectroscopy (EDX), thermogravimetric analysis (TGA), X ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry. The ethanol electro-oxidation was studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were tested in real conditions of operation by unit cell tests. The stability of PtRuBi/C electrocatalysts was evaluated by cyclic voltammetry, chronoamperometry using the ultra-thin porous coating technique and ring-disk electrode. The PtRuBi/C electro catalyst apparently presented a good performance for ethanol electro-oxidation but experimental evidences showed accentuated bismuth dissolution. (author)

  1. Tree-ring C-H-O isotope variability and sampling

    International Nuclear Information System (INIS)

    Leavitt, Steven W.

    2010-01-01

    In light of the proliferation of tree-ring isotope studies, the magnitude and cause of variability of tree-ring δ 13 C, δ 18 O and δ 2 H within individual trees (circumferential) and among trees at a site is examined in reference to field and laboratory sampling requirements and strategies. Within this framework, this paper provides a state-of-knowledge summary of the influence of 'juvenile' isotope effects, ageing effects, and genetic effects, as well as the interchangeability of species, choice of ring segment to analyze (whole ring, earlywood or latewood), and the option of sample pooling. The range of isotopic composition of the same ring among trees at a site is ca. 1-3 per mille for δ 13 C, 1-4 per mille δ 18 O, and 5-30 per mille for δ 2 H, whereas the circumferential variability within a tree is lower. A standard prescription for sampling and analysis does not exist because of differences in field environmental circumstances and mixed findings represented in relevant published literature. Decisions in this regard will usually be tightly constrained by goals of the study and project resources. Sampling 4-6 trees at a site while avoiding juvenile effects in rings near the pith seems to be the most commonly used methodology, and although there are some reasoned arguments for analyzing only latewood and developing separate isotope records from each tree, the existence of some contradictory findings together with efforts to reduce cost and effort have prompted alternate strategies (e.g., most years pooled with occasional analysis of rings in the sequence separately for each tree) that have produced useful results in many studies.

  2. Oxygen permeability of perovskite-type BaBi1-xLaxO3-δ

    International Nuclear Information System (INIS)

    Yaremchenko, A.A.; Kharton, V.V.; Viskup, A.P.; Naumovich, E.N.; Samokhval, V.V.

    1998-01-01

    Oxygen permeability, electrical conductivity, and thermal expansion of BaBi 1-x La x O 3-δ (x = 0, 0.2, and 0.4) perovskite-like solid solutions have been found to decrease with lanthanum content. Thermal expansion coefficients of the ceramics are (11.9--12.8) x 10 -6 K -1 . Oxygen transport through the BaBi(La)O 3-δ dense ceramic membranes within the membrane thickness range of 0.6 < d < 1.2 mm has been shown to be limited by both bulk ionic conductivity and surface exchange rate

  3. Luminescence and excited state dynamics in Bi{sup 3+}-doped LiLaP{sub 4}O{sub 12} phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St.Petersburg (Russian Federation); Demchenko, P. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Pashuk, I. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Voloshinovskii, A. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-08-15

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP{sub 4}O{sub 12} phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP{sub 4}O{sub 12} phosphate. The broad 2.95 eV emission band of LiLaP{sub 4}O{sub 12}:Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi{sup 3+} ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi{sup 3+} ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi{sup 3+}-related localized exciton in LiLaP{sub 4}O{sub 12}:Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi{sup 3+} centers; LiLaP{sub 4}O{sub 12}:Bi powders.

  4. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    Science.gov (United States)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  5. Microwave plasma CVD of oxide films relating to high Tc Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kosaka, T.; Yoshida, Y.; Yoshimoto, M.; Koinuma, H.

    1989-01-01

    Microwave plasma CVD was applied to the synthesis of Bi, Sr, Ca, and Cu oxide films at relatively low temperatures. Gas source materials used were Bi(C 6 H 5 ) 3 , Sr(PPM) 2 , Ca(PPM) 2 , and Cu(HFA) 2 , where PPM and HFA represent C 2 F 5 COCHCOC(CH 3 ) 3 and CF 3 COCHCOCF 3 , respectively. Films were deposited on MgO (100) substrate at temperatures between 200 C and 400 C under an atmosphere of 1000mTorr Ar-O 2 (50/100) mixture which was partially excited by plasma. From Bi(C 6 H 5 ) 3 , Bi 2 O 3 was formed at 200 C without containing carbon above the detection level by XPS analysis. From Cu(HFA) 2 , CuO was prepared at 400 C by increasing oxygen partial pressure to 0.1Torr. (At lower oxygen partial pressure, CuF 2 or amorphous films were deposited.) From Sr(PPM) 2 and Ca(PPM) 2 , SrF 2 and CaF 2 were obtained at 400 C. The attempt to fabricate superconducting films is also reported

  6. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu; Kumari, Valluri Durga [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India 500607 (India); Subrahmanyam, Machiraju, E-mail: subrahmanyam@iict.res.in [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India 500607 (India)

    2011-11-15

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.

  7. Multiferroic properties of BiFeO3/Bi4Ti3O12 double-layered thin films fabricated by chemical solution deposition

    International Nuclear Information System (INIS)

    Yi, Seung Woo; Kim, Sang Su; Kim, Jin Won; Jo, Hyun Kyung; Do, Dalhyun; Kim, Won-Jeong

    2009-01-01

    Multiferroic BiFeO 3 /Bi 4 Ti 3 O 12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO 2 /Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2P r ) of the double-layered film capacitor was 100 μC/cm 2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2M r ) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 x 10 -7 A/cm 2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.

  8. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  9. Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping

    International Nuclear Information System (INIS)

    Han, Yumin; Mao, Weiwei; Quan, Chuye; Wang, Xingfu; Yang, Jianping; Yang, Tao; Li, Xing’ao

    2014-01-01

    Highlights: • BiFeO 3 , Bi 0.8 Er 0.2 FeO 3 , Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 nanoparticles were prepared by sol–gel method. • The introduction of Er and Mn, Co into BiFeO 3 leads into a phase transition with reduced grain size. • The phase transformation combined with size reduction has significantly increased saturated polarization (Ps), remanent polarization (Pr) and saturated magnetization (Ms), remanent magnetization (Mr) behaviors of the doped samples with the same variation trend. • The formation of dipolar defect complexes (DDCs) in the doped samples may also contribute to the improved ferroelectric property. • Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 exhibits significantly improved ferroelectric and ferromagnetic properties. - Abstract: BiFeO 3 (BFO), Bi 0.8 Er 0.2 FeO 3 (BEFO), Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 (BEFMO) and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 (BEFCO) nanoparticles were prepared by sol–gel method having an average size of 200 nm for BFO, under100 nm for BEFO and under 60 nm for BEFMO and BEFCO. Phase transition from a rhombohedral symmetry (R3c) for BFO to an orthorhombic symmetry (Ibmm) for BEFO, BEFMO and BEFCO has been observed. The phase transformation combined with size reduction has significantly improved both ferroelectric and ferromagnetic behaviors of the doped samples in a similar way. The formation of dipolar defect complexes (DDCs) in the doped samples also contributes to the improved ferroelectric property with saturated polarization (Ps) of 0.375 μC/cm 2 and remanent polarization (Pr) of 0.244 μC/cm 2 for BEFMO. Size effect may also impact the simultaneously developed Pr for BEFMO and BEFCO. Owning to the interactions between the ferromagnetic and antiferromagnetic microdomains, improved saturated magnetization (Ms) and remanent magnetization (Mr) are also observed in BEFMO

  10. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    Science.gov (United States)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  11. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    Science.gov (United States)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  12. Piezoelectric properties enhanced of Sr0.6(BiNa)0.2Bi2Nb2O9 ceramic by (LiCe) modification with charge neutrality

    International Nuclear Information System (INIS)

    Fang, Pinyang; Xi, Zengzhe; Long, Wei; Li, Xiaojuan; Li, Jin

    2013-01-01

    Graphical abstract: The oxygen vacancies were confirmed by the left figure. The role of oxygen vacancy on piezoelectric activities was obtained by comparing to the varieties of oxygen vacancy concentration and piezoelectric coefficient with (LiCe) modification. -- Highlights: • The Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 ceramic by (LiCe) modification with the charge neutrality was synthesized by the solid state reaction method. • The Curie temperature and piezoelectric coefficient were found to be T c ∼590 °C and d 33 ∼32 pC/N, respectively. • The mechanism of piezoelectric activities improved by (LiCe) modification was discussed. -- Abstract: Aurivillius-type ceramics, Sr 0.6−x (LiCe) x/2.5 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr 0.6 (BiNa) 0.2 Bi 2 Nb 2 O 9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d 33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (T c ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed

  13. Structural, magnetic, and dielectric properties of solid solutions between BiMnO{sub 3} and YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belik, Alexei A., E-mail: Alexei.BELIK@nims.go.jp

    2017-02-15

    Bi{sub 1−x}Y{sub x}MnO{sub 3} (0.1≤x≤0.9) solid solutions were prepared by the high-pressure high-temperature method at 6 GPa and 1573 K. They crystallize in the GdFeO{sub 3}-type perovskite structure with the Pnma symmetry. Crystal structures of Bi{sub 0.9}Y{sub 0.1}MnO{sub 3} and Bi{sub 0.5}Y{sub 0.5}MnO{sub 3} are studied by synchrotron X-ray powder diffraction at room temperature. Only one Néel temperature, T{sub N}, is found in samples with 0.1≤x≤0.9 in comparison with two Néel temperatures observed in YMnO{sub 3} (T{sub N}=29 and 39 K). Samples with 0.5≤x≤0.9 have almost constant T{sub N}=44 K, while T{sub N} starts to increase linearly for other compositions: T{sub N}=46 K for x=0.3, T{sub N}=58 K for x=0.2, and T{sub N}=68 K for x=0.1. Field-induced transitions from canted-antiferromagnetic states to antiferromagnetic states are detected at about 30 kOe for x=0.2 and 70 kOe for x=0.1. Dielectric constant increases below T{sub N} in samples with 0.5≤x≤1, while it decreases below T{sub N} in samples with 0.1≤x≤0.3. Our data suggest that a magnetic structure changes near x=0.4. By extrapolation, we could estimate lattice parameters (a=5.9221 Å, b=7.5738 Å, and c=5.4157 Å) and T{sub N}=79 K for a hypothetical Pnma modification of BiMnO{sub 3}. - Graphical abstract: Bi{sub 1−x}Y{sub x}MnO{sub 3} solid solutions were prepared in the whole compositional range by the high-pressure method. Magnetic and dielectric data suggest that a magnetic structure changes near x=0.4. No ferroelectric properties were found. - Highlights: • Orthorhombic Bi{sub 1−x}Y{sub x}MnO{sub 3} solid solutions are prepared by the high-pressure method. • Structural, magnetic, and dielectric properties are studied. • One Néel temperature is found in all the samples. • T{sub N}=44 K for x=0.5–0.9, 46 K for x=0.3, 58 K for x=0.2, and 68 K for x=0.1. • No ferroelectricity is observed.

  14. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    Highlights: • This is the first report on a series of BiO x Cl y /BiO m I n heterojunctions. • The BiO x Cl y /BiO m I n composition was controlled by adjusting the growth parameters. • The BiO x Cl y /BiO m I n were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO 2 . • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO x Cl y /BiO m I n composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO x Cl y /BiO m I n composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O 2 · − played a major role, and OH· or h + played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  16. Pengaruh variasi jarak antar ring berbentuk segi empat pada permukaan silinder terhadap koefisien drag

    Directory of Open Access Journals (Sweden)

    Si Putu Gede Gunawan Tista

    2016-12-01

    Full Text Available Abstrak: Dalam aplikasi engineering banyak ditemukan peralatan yang menggunakan silinder seperti tiang penyangga jembatan,cerobong asap, tiang pancang pengeboran minyak lepas pantai dan sebagainya. Peralatan-peralatan tersebutmengalami hembusan udara setiap saat, yang menyebabkan kekuatan konstruksinya berkurang, akibat adanya drag.Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi jarak antar ring berbentuk segi empat padapermukaan silinder terhadap koefisien drag. Penelitian ini dilakukan pada wind tunnel (lorong udara yang terdiri dariblower (untuk menghembuskan udara, pipa pitot, U tube manometer, inclined manometer, neraca digital, silinderdengan ring segi empat. Pada penelitian ini, dilakukan dengan memvariasikan Jarak antar ring yaitu 30 mm, 40 mm, 50mm, 60 mm dan 70 mm. Silinder diletakkan vertikal dalam wind tunnel dengan diameter D = 60 mm. Gaya dragdiperoleh dengan menggunakan neraca digital yang mencatat besarnya massa, kemudian dikalikan dengan percepatangravitasi. Distribusi tekanan diperoleh dengan mengukur tekanan pada permukaan silinder menggunakan inclinedmanometer pada 36 titik dengan interval 10o. Hasil penelitian menunjukkan semakin besar jarak antar ring koefisiendrag semakin besar. Koefisien Drag terendah terjadi pada jarak antar ring L = 30 mm atau L/D = 0.50, besarnya CD =0,606352. Besarnya penurunan drag dibandingkan tanpa ring adalah 29,3 %.Kata kunci: Silinder, ring segi empat, jarak antar ring, koefisien drag Abstract: In many engineering applications there are many types of equipment that use cylinders, such as smoke chimney, bridgesupport column, etc. The equipment is undergoing drag due to the airflow that flows through it. The existence of the dragwill reduce its lifetime. One of the efforts to reduce drag is to create a rectangular ring on the surface of the cylinder. Thepurpose of this study was to determine the effect of variations in the distance between the ring of a rectangular ring onthe

  17. Dielectric properties of BaBi4Ti4O15 ceramics produced by cost-effective chemical method

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Bera, J.; Sinha, T.P.

    2009-01-01

    BaBi 4 Ti 4 O 15 , an Aurivillius compound, was synthesized by a cost-effective soft chemical route. The precursor was prepared by precipitating Bi- and Ba-oxalates inside a TiO 2 powder suspension. A phase pure orthorhombic BaBi 4 Ti 4 O 15 was synthesized by heating the precursor powder at 1000 deg. C. The phase formation behavior was investigated using TG-DSC and XRD. Densification behavior of the powder and microstructure development in sintered pellet was examined. Temperature dependent dielectric study of the ceramic has been investigated in the temperature range 300-780 K and frequency range of 1 kHz-1 MHz. The broad dielectric constant peaks at temperature T m was frequency dependent. The dielectric relaxation rate follows the Vogel-Fulcher relation with activation energy=0.2639 eV, relaxation frequency=4.95x10 21 Hz, and freezing temperature=620 K. All these parameters indicate that BaBi 4 Ti 4 O 15 is a relaxor ferroelectric.

  18. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  19. Fe(Ⅲ) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate.

    Science.gov (United States)

    Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming

    2017-08-01

    The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences