WorldWideScience

Sample records for bi photonic microscopy

  1. Multi-photon excitation microscopy

    OpenAIRE

    Faretta Mario; Vicidomini Giuseppe; Bianchini Paolo; Diaspro Alberto; Ramoino Paola; Usai Cesare

    2006-01-01

    Abstract Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engine...

  2. Twin-Photon Confocal Microscopy

    CERN Document Server

    Simon, D S

    2010-01-01

    A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express {\\bf 18}, 9765 (2010)]. Here we move further by introducing a triple-confocal correlated microscope, exploiting the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in microscopy.

  3. Strongly compressed Bi (111) bilayer films on Bi2Se3 studied by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi2Se3. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi

  4. Super-resolution spectroscopic microscopy via photon localization.

    Science.gov (United States)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm-a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  5. Photorejuvenation observation based on two photon microscopy

    Science.gov (United States)

    Wu, Shu-lian; Li, Hui; Xiao, Zheng-ying; Xie, Shu-sen

    2008-12-01

    With low risk of complications and little down-time, the non-ablative photo-rejuvenation is playing an increasing role in the therapy of the photo-damaged skin, but the appraisal standard is different. This paper mainly observed the effect of the mouse skin irradiated by intense pulse light source through two photo microscopy in sub-micrometer. The spectrum and morphological imaging between pre- and post-irradiated by Intense Pulse Light (IPL) were obtained from two photon microscopy respectively. The outcome showed that non-ablative IPL irradiated the aging mouse skin got the better effect, and then have gained the changes of spectrum intensity and corresponding photon numbers in a rectangular area, these probable achieve the mechanism of light irradiated skin. The intention of this was offer the theory basis in clinic.

  6. Two-Photon Fluorescence Microscopy for Biomedical Research

    Science.gov (United States)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  7. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  8. Hyperspectral in vivo two-photon microscopy of intrinsic contrast

    OpenAIRE

    Radosevich, Andrew J.; Bouchard, Matthew B.; Burgess, Sean A.; Chen, Brenda R.; Hillman, Elizabeth M. C.

    2008-01-01

    In vivo two-photon imaging of intrinsic contrast can provide valuable information about structural tissue elements such as collagen and elastin and fluorescent metabolites such as nicotinamide adenine dinucleotide. Yet low signal and overlapping emission spectra can make it difficult to identify and delineate these species in vivo. We present a novel approach that combines excitation scanning with spectrally resolved emission two-photon microscopy, allowing distinct structures to be delineate...

  9. Photon-induced near-field electron microscopy.

    Science.gov (United States)

    Barwick, Brett; Flannigan, David J; Zewail, Ahmed H

    2009-12-17

    In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit, but they cannot provide the atomic-scale imaging capabilities of electron microscopy. Given the nature of interactions between electrons and photons, and considering their connections through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) and time (femtosecond). Here we report the development of photon-induced near-field electron microscopy (PINEM), and the associated phenomena. We show that the precise spatiotemporal overlap of femtosecond single-electron packets with intense optical pulses at a nanostructure (individual carbon nanotube or silver nanowire in this instance) results in the direct absorption of integer multiples of photon quanta (nhomega) by the relativistic electrons accelerated to 200 keV. By energy-filtering only those electrons resulting from this absorption, it is possible to image directly in space the near-field electric field distribution, obtain the temporal behaviour of the field on the femtosecond timescale, and map its spatial polarization dependence. We believe that the observation of the photon-induced near-field effect in ultrafast electron microscopy demonstrates the potential for many applications, including those of direct space-time imaging of localized fields at interfaces and visualization of phenomena related to photonics, plasmonics and nanostructures. PMID:20016598

  10. Photon-induced near-field electron microscopy

    OpenAIRE

    Barwick, Brett; Flannigan, David J.; Zewail, Ahmed H.

    2009-01-01

    In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit, but they cannot provide the atomic-scale imaging capabilities of electron microscopy. Given the nature of interactions between electrons and photons, and considering their connections through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) a...

  11. Reassignment of scattered emission photons in multifocal multiphoton microscopy.

    Science.gov (United States)

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C

    2014-01-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image. PMID:24898470

  12. Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy

    Science.gov (United States)

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T. C.

    2014-06-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

  13. Direct observations of vortices in Bi2212 single crystals by scanning SQUID microscopy

    International Nuclear Information System (INIS)

    In order to investigate the behaviour of vortices in high-Tc superconductors under low magnetic fields, we performed scanning SQUID microscopy (SSM) on the ab surfaces of Bi2.1Sr1.8Ca(Cu0.98Co0.02)2Oy (Bi2212) single crystals at different temperatures and under different magnetic fields up to 0.8 G. The observed magnetic images clearly demonstrated vortex assembly structures for Bi2212. Vortices trapped inside Bi2212 single crystals tended to be arranged in a one-dimensional manner. (author)

  14. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests

    International Nuclear Information System (INIS)

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  15. Confocal Laser Scanning Microscopy and Two Photon Excitation Microscopy as Tools to Study Testate Amoebae

    Czech Academy of Sciences Publication Activity Database

    Burdíková, Zuzana; Čapek, Martin; Ostašov, Pavel; Mitchell, E.A.D.; Machač, Jiří; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 1142-1143. ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA MŠk(CZ) LC06063; GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60050516 Keywords : testate amoeba e * confocal microscopy * two-photon microscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.179, year: 2010

  16. Multi-photon excitation microscopy for advanced biomedical imaging

    OpenAIRE

    Gadella, B.M.; van Haeften, T.W.; Bavel, Kees van; Valentijn, Jack A.

    2003-01-01

    Fluorescence microscopy (FM) is a technique traditionally used for determining biological structures [33]; its basic concept is summarised in Figure 1a. The biological specimen under examination is labelled with one or more fluorescent probes before being placed in the microscope. A single photon from the light source (usually a Hg lamp) has sufficient energy to excite an electron in the fluorescence moiety of the specimen-bound probe, taking it from an un-excited 'ground' state to an excited...

  17. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    Science.gov (United States)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  18. Two-photon microscopy using fiber-based nanosecond excitation.

    Science.gov (United States)

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements. PMID:27446680

  19. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.;

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...... during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure...

  20. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    CERN Document Server

    Minozzi, M; Sergienko, A V; Vallone, G; Villoresi, P

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers.

  1. Subventricular zone cell migration: lessons from quantitative 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Rachel eJames

    2011-03-01

    Full Text Available Neuroblasts born in the adult subventricular zone (SVZ migrate long distances in the rostral migratory stream (RMS to the olfactory bulbs where they integrate into circuitry as functional interneurons. As very little was known about the dynamic parameters of SVZ neuroblast migration, we used two-photon time-lapse microscopy to analyze migration in acute slices. This involved analyzing 3-dimensional stacks of images over time and uncovered several novel aspects of SVZ migration: chains remain stable, cells can be immotile for extensive periods, morphology does not necessarily correlate with motility, neuroblasts exhibit local exploratory motility, dorsoventral migration occurs throughout the striatal SVZ and neuroblasts turn at distinctive angles. We investigated these novel findings in the SVZ and RMS from the population to the single cell level. In this review we also discuss some technical considerations when setting up a two-photon microscopic imaging system. Throughout the review we identify several unsolved questions about SVZ neuroblast migration that might be addressed with current or emerging techniques.

  2. Imaging theory and resolution improvement of two-photon confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG; Zhilie(唐志列); YANG; Chuping(杨初平); PEI; Hongjin(裴红津); LIANG; Ruisheng(梁瑞生); LIU; Songhao(刘颂豪)

    2002-01-01

    The nonlinear effect of two-photon excitation on the imaging property of two-photonconfocal microscopy has been analyzed by the two-photon fluorescence intensity transfer functionderived in this paper. The two-photon fluorescence intensity transfer function in a confocal micros-copy is given. Furthermore the three-dimensional point spread function (3D-PSF) and thethree-dimensional optical transfer function (3D-OTF) of two-photon confocal microscopy are de-rived based on the nonlinear effect of two-photon excitation. The imaging property of two-photonconfocal microscopy is discussed in detail based on 3D-OTF. Finally the spatial resolution limit oftwo-photon confocal microscopy is discussed according to the uncertainty principle.

  3. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  4. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    OpenAIRE

    Minozzi, M.; Bonora, S.; Sergienko, A. V.; G. Vallone; Villoresi, P.

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon co...

  5. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo

    OpenAIRE

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J.; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratiti...

  6. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the Ti:Sapph

  7. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    Science.gov (United States)

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  8. Effects of the photoactivation by synchrotron irradiation on the micro vascularization and on the cerebral tissues of the sane or glioma bearer mouse. Development in bi photonic microscopy and preclinical tests; Effets de la photoactivation par irradiation synchrotron sur la microvascularisation et sur les tissus cerebraux chez la souris saine ou porteuse d'un gliome. Developpements en microscopie biphotonique et essais precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, C

    2008-06-15

    Brain tumors are the third most frequent pathology encountered in neurology following stroke and dementia. Approximately 10 new cases are encountered each year in a population of 100.000. Glioblastoma are the most aggressive among brain tumors and despite medical progress they suffer of a poor prognosis (median survival time is 12 months; five years survival rate is 2%). One of the challenges in neuro-oncology is the development of new curative treatments against glioblastoma. One of them, the photoactivation therapy of platinum with synchrotron X-rays (PAT-Plat) was developed during the last years and has shown curative effects in rats bearing the F98 glioma. In the present study, we have attempted to characterize the effects of the PAT-Plat and its different modalities (chemotherapy with cisplatin and synchrotron radiotherapy) on healthy brain tissue and microvasculature as well as on the F98 glioma. Intra-vital multiphoton microscopy was used as the main imaging tool to investigate the effects of the PAT-Plat and many methodologies were developed (assessment of blood-brain-barrier (BBB) disruption, imaging of tumor microvasculature, staining of astrocytes and elastic fibers). We have shown that a 15 Gy/79 keV synchrotron irradiation does not induce short term side effects (BBB disruption, diminution of the perfusion, gliosis) in the parietal cortex of nude mice. We have also demonstrated that a synergistic effect between cisplatin and irradiation is at the origin of the effects of the PAT-Plat. Finally, we have shown that the action of the PAT-Plat is not restricted to tumor cells; a decrease in the angiogenic vessels perfusion was also observed in the peritumoral area of the F98 glioma. (author)

  9. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  10. In vivo three-photon microscopy of subcortical structures within an intact mouse brain

    Science.gov (United States)

    Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris

    2013-03-01

    Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.

  11. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    OpenAIRE

    Blazquez-Llorca, L; Hummel, E.; Zimmerman, H; Zou, C.; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool fo...

  12. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae

    2010-08-11

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  13. Optimizing single-nanoparticle two-photon microscopy by in situ adaptive control of femtosecond pulses

    Science.gov (United States)

    Li, Donghai; Deng, Yongkai; Chu, Saisai; Jiang, Hongbing; Wang, Shufeng; Gong, Qihuang

    2016-07-01

    Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-oriented optimization of single-nanoparticle two-photon microscopy for its future applications.

  14. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate in a...

  15. Deep insights: intravital imaging with two-photon microscopy.

    Science.gov (United States)

    Schießl, Ina Maria; Castrop, Hayo

    2016-09-01

    Intravital multiphoton microscopy is widely used to assess the structure and function of organs in live animals. Although different tissues vary in their accessibility for intravital multiphoton imaging, considerable progress has been made in the imaging quality of all tissues due to substantial technical improvements in the relevant imaging components, such as optics, excitation laser, detectors, and signal analysis software. In this review, we provide an overview of the technical background of intravital multiphoton microscopy. Then, we note a few seminal findings that were made through the use of multiphoton microscopy. Finally, we address the technical limitations of the method and provide an outlook for how these limitations may be overcome through future technical developments. PMID:27352273

  16. Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy

    CERN Document Server

    Yang, Mu-Han; Saisan, Payam A; Tian, Peifang; Ferri, Christopher G L; AnnaDevor,; Fainman, Yeshaiahu

    2016-01-01

    Non-degenerate 2-photon excitation (ND-2PE) of a fluorophore with two laser beams of different photon energies offers an independent degree of freedom in tuning of the photon flux for each beam. This feature takes advantage of the infrared wavelengths used in 3-photon microscopy to achieve an increased penetration depth, while preserving a relatively high degenerate 2-photon excitation (D-2PE) cross section, exceeding that achievable with 3-photon excitation. Here, using spatially and temporally aligned Ti:Sapphire laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, respectively, we provide a practical demonstration that the emission intensity of a fluorophore excited in the non-degenerate regime in a scattering medium is more efficient than the commonly used D-2PE.

  17. An In-Reflection Strain Sensing Head Based on a Hi-Bi Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2013-06-01

    Full Text Available A photonic crystal fiber-based sensing head is proposed for strain measurements. The sensor comprises a Hi-Bi PCF sensing head to measure interferometric signals in-reflection. An experimental background study of the sensing head is conducted through an optical backscatter reflectometer confirming the theoretical predictions, also included. A cost effective setup is proposed where a laser is used as illumination source, which allows accurate high precision strain measurements. Thus, a sensitivity of ~7.96 dB/me was achieved in a linear region of 1,200 μe.

  18. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points.

    Directory of Open Access Journals (Sweden)

    Matthia A Karreman

    Full Text Available Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.

  19. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate in a...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  20. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging

    Science.gov (United States)

    Yamanaka, Masahito; Saito, Kenta; Smith, Nicholas I.; Arai, Yoshiyuki; Uegaki, Kumiko; Yonemaru, Yasuo; Mochizuki, Kentaro; Kawata, Satoshi; Nagai, Takeharu; Fujita, Katsumasa

    2015-10-01

    The simultaneous observation of multiple fluorescent proteins (FPs) by optical microscopy is revealing mechanisms by which proteins and organelles control a variety of cellular functions. Here we show the use of visible-light based two-photon excitation for simultaneously imaging multiple FPs. We demonstrated that multiple fluorescent targets can be concurrently excited by the absorption of two photons from the visible wavelength range and can be applied in multicolor fluorescence imaging. The technique also allows simultaneous single-photon excitation to offer simultaneous excitation of FPs across the entire range of visible wavelengths from a single excitation source. The calculation of point spread functions shows that the visible-wavelength two-photon excitation provides the fundamental improvement of spatial resolution compared to conventional confocal microscopy.

  1. Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2011-01-01

    Full Text Available Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu3(Fe, Ga/Al5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.

  2. Delamination detection in glass composites using embedded Hi-Bi photonic crystal fiber

    International Nuclear Information System (INIS)

    In this paper, a novel application of a temperature-insensitive highly birefringent photonic crystal fiber (Hi-Bi PCF) is reported, wherein the Hi-Bi PCF used has been embedded in two glass composite specimens and tested to detect the presence of delamination. The polarimetric–interferometric technique was used to obtain the vibration signature present to allow information on the integrity of the structure to be inferred. The first natural frequencies measured from the specimens with and without delamination (i.e. so-called unhealthy and healthy specimens) have been observed using an embedded Hi-Bi PCF sensor. The reduction in the first natural frequency of the delaminated specimen is used to indicate a reduction in the flexural stiffness of the specimen in comparison to the characteristics of the specimen without delamination. Finally, the performance of the embedded optical fiber sensor has also been compared with that of an accelerometer sensor to enable an evaluation of the optical technique used in this work

  3. Axial range of conjugate adaptive optics in two-photon microscopy

    CERN Document Server

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  4. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  5. Monitoring ligand-receptor interactions by photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeney, Sylvia [M E Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056 (Switzerland); Mor, Flavio; Forro, Laszlo [Laboratory of Complex Matter Physics (LPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Koszali, Roland [Institute for Information and Communication Technologies (IICT), University of Applied Sciences of Western Switzerland (HEIG-VD), Rue Galilee 15, CH 1401 Yverdon-les-bains (Switzerland); Moy, Vincent T, E-mail: sylvia.jeney@unibas.ch, E-mail: vmoy@miami.edu [Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136 (United States)

    2010-06-25

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  6. Hybrid Rayleigh, Raman and two-photon excited fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, Vishnu Vardhan; Lenferink, Aufried; Otto, Cees

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging. Thi

  7. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N.; Wientjes, Emilie; Amerongen, van Herbert

    2016-01-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was ac

  8. Two-photon microscopy and spectral detection for ex vivo imaging of individual stem cells

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol describes the use of two-photon microscopy to image the dynamic behavior of hematopoietic stem cells interacting with their niche. To distinguish the eGFP expressing cells from auto-fluorescent background, we use spectral finger-printing. We include image processing steps to visualize the results and extract quantitative information.

  9. Polarization-resolved two-photon luminescence microscopy of V-groove arrays

    DEFF Research Database (Denmark)

    Beermann, J.; Novikov, S. M.; Holmgaard, T.;

    2012-01-01

    Using two-photon luminescence (TPL) microscopy and local reflection spectroscopy we investigate electromagnetic field enhancement effects from a mu m-sized composition of 450-nm-deep V-grooves milled by focused ion beam in a thick gold film and assembled to feature, within the same structure...

  10. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  11. Deep Imaging in Scattering Media with Single Photon Selective Plane Illumination Microscopy (SPIM)

    CERN Document Server

    Pediredla, Adithya Kumar; Avants, Ben; Ye, Fan; Nagayama, Shin; Chen, Ziying; Kemere, Caleb; Robinson, Jacob; Veeraraghavan, Ashok

    2016-01-01

    In most biological tissues, light scattering due to small differences in refractive index limits the depth of optical imaging systems. Two-photon microscopy (2PM), which significantly reduces the scattering of the excitation light, has emerged as the most common method to image deep within scattering biological tissue. This technique, however, requires high-power pulsed lasers that are both expensive and difficult to integrate into compact portable systems. In this paper, using a combination of theoretical and experimental techniques, we show that Selective Plane Illumination Microscopy (SPIM) can image nearly as deep as 2PM without the need for a high-powered pulsed laser. Compared to other single photon imaging techniques like epifluorescence and confocal microscopy, SPIM can image more than twice as deep in scattering media (approximately 10 times the mean scattering length). These results suggest that SPIM has the potential to provide deep imaging in scattering media in situations where 2PM systems would ...

  12. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  13. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  14. Demonstration and experimental evaluation of a bi-directional 10-GHz microwave photonic filter

    Science.gov (United States)

    Zaldívar-Huerta, I. E.; Correa-Mena, A. G.; Hernández-Nava, P.; García-Juárez, A.; Rodríguez-Asomoza, J.; Lee, Min Won

    2016-09-01

    A bi-directional 10-GHz microwave photonic filter is proposed and experimentally evaluated. Its frequency response consists of a series of microwave band-pass windows obtained by the interaction of externally modulated multimode laser diodes emitting around of 1550 nm associated to the chromatic dispersion parameter of an optical fiber, as well as the length of the optical link. Microwave band-pass windows exhibit on average a-3 dB bandwidth of 378 MHz. This electro-optical system shows an efficient configuration and good performance. Potentially, filtered microwave signals can be used as electrical carriers in optical communication systems to transmit and distribute services such as video, voice and data.

  15. Studying the Polarization Switching in Polycrystalline BiFeO3 Films by 2D Piezoresponse Force Microscopy.

    Science.gov (United States)

    Jin, Yaming; Lu, Xiaomei; Zhang, Junting; Kan, Yi; Bo, Huifeng; Huang, Fengzhen; Xu, Tingting; Du, Yingchao; Xiao, Shuyu; Zhu, Jinsong

    2015-01-01

    For rhombohedral multiferroelectrics, non-180° ferroelectric domain switching may induce ferroelastic and/or (anti-)ferromagnetic effect. So the determination and control of ferroelectric domain switching angles is crucial for nonvolatile information storage and exchange-coupled magnetoelectric devices. We try to study the intrinsic characters of polarization switching in BiFeO3 by introducing a special data processing method to determine the switching angle from 2D PFM (Piezoresponse Force Microscopy) images of randomly oriented samples. The response surface of BiFeO3 is first plotted using the piezoelectric tensor got from first principles calculations. Then from the normalized 2D PFM signals before and after switching, the switching angles of randomly oriented BiFeO3 grains can be determined through numerical calculations. In the polycrystalline BiFeO3 films, up to 34% of all switched area is that with original out-of-plane (OP) polarization parallel to the poling field. 71° polarization switching is more favorable, with the area percentages of 71°, 109° and 180° domain switching being about 42%, 29% and 29%, respectively. Our analysis further reveals that IP stress and charge migration have comparable effect on switching, and they are sensitive to the geometric arrangements. This work helps exploring a route to control polarization switching in BiFeO3, so as to realize desirable magnetoelectric coupling. PMID:26192555

  16. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo.

    Science.gov (United States)

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-02-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  17. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo

    Science.gov (United States)

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J.; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  18. Computational modeling of STED microscopy through multiple biological cells under one- and two-photon excitation

    Science.gov (United States)

    Mark, Andrew E.; Davis, Mitchell A.; Starosta, Matthew S.; Dunn, Andrew K.

    2015-03-01

    While superresolution optical microscopy techniques afford enhanced resolution for biological applications, they have largely been used to study structures in isolated cells. We use the FDTD method to simulate the propagation of focused beams for STED microscopy through multiple biological cells. We model depletion beams that provide 2D and 3D confinement of the fluorescence spot and assess the effective PSF of the system as a function of focal depth. We compare the relative size of the STED effective PSF under one- and two-photon excitation. PSF calculations suggest that imaging is possible up to the maximum simulation depth if the fluorescence emission remains detectable.

  19. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy.

    Directory of Open Access Journals (Sweden)

    Henry Pinkard

    Full Text Available Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM, the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems.

  20. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy

    Science.gov (United States)

    Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F.

    2016-01-01

    Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR) generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems. PMID:26938064

  1. In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy

    OpenAIRE

    Kim, Bumju; Lee, Seung Hun; Yoon, Calvin J.; Gho, Yong Song; Ahn, G-One; Kim, Ki Hean

    2015-01-01

    Inflammation is a non-specific immune response to injury intended to protect biological tissue from harmful stimuli such as pathogens, irritants, and damaged cells. In vivo optical tissue imaging has been used to provide spatial and dynamic characteristics of inflammation within the tissue. In this paper, we report in vivo visualization of inflammation in the skin at both cellular and physiological levels by using a combination of label-free two-photon microscopy (TPM) and optical coherence t...

  2. Supercontinuum generation for coherent anti- Stokes Raman scattering microscopy with photonic crystal fibers

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Isomäki, Antti; Hansen, Kim P.;

    2011-01-01

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectru...... analysis, the nonlinear effects responsible for the spectral broadening are explained to be soliton fission processes, dispersive waves, and stimulated Raman scattering....

  3. High-throughput spatial light modulation two-photon microscopy for fast functional imaging

    OpenAIRE

    Pozzi, Paolo; Gandolfi, Daniela; Tognolina, Marialuisa; Chirico, Giuseppe; Mapelli, Jonathan; D’Angelo, Egidio

    2015-01-01

    The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest. We present a simpler and fully digital setup ...

  4. SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators

    Directory of Open Access Journals (Sweden)

    Volodymyr Nikolenko

    2008-12-01

    Full Text Available Laser microscopy has generally poor temporal resolution, because of the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits since neuronal activity is fast. To help surmount this limitation, we have developed a “scanless” microscope that does not contain mechanically moving parts. This microscope uses a diffractive Spatial Light Modulator (SLM to shape an incoming two-photon laser source into any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision. To demonstrate the usefulness of this microscope, we perform two-photon uncaging of glutamate to activate dendritic spines and cortical neurons in brain slices. We also use it to carry out two-photon calcium imaging of action potentials in neuronal populations at 60 Hz. Thus, SLM microscopy appears to be a powerful tool for imaging and optically manipulating neurons and neuronal circuits. Moreover, the use of SLMs generally expands the flexibility of laser microscopy, as it can substitute traditional fixed lenses with any calculated lens function.

  5. Imaging of surgical margin in pancreatic metastasis using two-photon excited fluorescence microscopy

    Science.gov (United States)

    Chen, Jing; Hong, Zhipeng; Chen, Hong; Chen, Youting; Xu, Yahao; Zhu, Xiaoqin; Zhuo, Shuangmu; Shi, Zheng; Chen, Jianxin

    2014-09-01

    Two-photon excited fluorescence (TPEF) microscopy, has become a powerful tool for imaging unstained tissue samples at subcellular level in biomedical research. The purpose of this study was to determine whether TPEF imaging of histological sections without H-E staining can be used to identify the boundary between normal pancreas and pancreatic metastasis from renal cell carcinoma (RCC). The typical features such as the significant increase of cancerous nests, the absence of pancreatic ductal, the appearance of cancer cells were observed to present the boundary between normal pancreas and pancreatic metastasis from RCC. These results correlated well with the corresponding histological outcomes. With the advent of clinically miniaturized TPEF microscopy and integrative endoscopy, TPEF microscopy has the potential application on surgical location of pancreatic metastasis from RCC in the near future.

  6. Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

    Directory of Open Access Journals (Sweden)

    Fredy Mesa

    2012-03-01

    Full Text Available Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.

  7. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    OpenAIRE

    Halevy, A.; Megidish, E.; Dovrat, L.; Eisenberg, H. S.; De Becker, P; Bohatý, L.

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison t...

  8. Correlation of two-photon in vivo imaging and FIB/SEM microscopy.

    Science.gov (United States)

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-08-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer's disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. PMID:25786682

  9. Two-Photon Microscopy Allows Imaging and Characterization of Cochlear Microvasculature In Vivo

    Directory of Open Access Journals (Sweden)

    Friedrich Ihler

    2015-01-01

    Full Text Available Impairment of cochlear blood flow has been discussed as factor in the pathophysiology of various inner ear disorders. However, the microscopic study of cochlear microcirculation is limited due to small scale and anatomical constraints. Here, two-photon fluorescence microscopy is applied to visualize cochlear microvessels. Guinea pigs were injected with Fluorescein isothiocyanate- or Texas red-dextrane as plasma marker. Intravital microscopy was performed in four animals and explanted cochleae from four animals were studied. The vascular architecture of the cochlea was visualized up to a depth of 90.0±22.7 μm. Imaging yielded a mean contrast-to-noise ratio (CNR of 3.3±1.7. Mean diameter in vivo was 16.5±6.0 μm for arterioles and 8.0±2.4 μm for capillaries. In explanted cochleae, the diameter of radiating arterioles and capillaries was measured with 12.2±1.6 μm and 6.6±1.0 μm, respectively. The difference between capillaries and arterioles was statistically significant in both experimental setups (P<0.001 and P=0.022, two-way ANOVA. Measured vessel diameters in vivo and ex vivo were in agreement with published data. We conclude that two-photon fluorescence microscopy allows the investigation of cochlear microvessels and is potentially a valuable tool for inner ear research.

  10. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  11. Deep vascular imaging in wounds by two-photon fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Ciceron O Yanez

    Full Text Available Deep imaging within tissue (over 300 μm at micrometer resolution has become possible with the advent of two-photon fluorescence microscopy (2PFM. The advantages of 2PFM have been used to interrogate endogenous and exogenous fluorophores in the skin. Herein, we employed the integrin (cell-adhesion proteins expressed by invading angiogenic blood vessels targeting characteristics of a two-photon absorbing fluorescent probe to image new vasculature and fibroblasts up to ≈ 1600 μm within wound (neodermis/granulation tissue in lesions made on the skin of mice. Reconstruction revealed three dimensional (3D architecture of the vascular plexus forming at the regenerating wound tissue and the presence of a fibroblast bed surrounding the capillaries. Biologically crucial events, such as angiogenesis for wound healing, may be illustrated and analyzed in 3D on the whole organ level, providing novel tools for biomedical applications.

  12. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  13. Near-field optical microscopy with a nanodiamond-based single photon tip

    CERN Document Server

    Cuche, A; Sonnefraud, Y; Faklaris, O; Treussart, F; Roch, J -F; Huant, S

    2009-01-01

    We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.

  14. Scanning thermoelectric microscopy of local thermoelectric behaviors in (Bi,Sb){sub 2}Te{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kunyu [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Huarong, E-mail: Huarongzeng@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Kunqi; Yu, Huizhu [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 00039 (China); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Song, Junqiang; Shi, Xun; Chen, Lidong [State Key laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-01-15

    In this paper we develop scanning thermoelectric microscopy (STeM) on the basis of commercial atomic force microscope. The nanoscale thermoelectric behaviors of (Bi,Sb){sub 2}Te{sub 3} (BST) thin films were studied. 3ω-technique was used for thermal conductivity imaging and quantitative thermal characterization. By acquiring the unique Seebeck information from 2ω frequency component, nanoscale thermoelectric images were firstly obtained, exhibiting remarkably inhomogeneous distribution of local Seebeck coefficient in the thin films. Positive thermoelectric response is revealed by the modulation of temperature difference between thermal tip and sample, corresponding to p-type conduction within BST sample.

  15. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  16. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria;

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is...... either a highly chirped pulse or a pulse spectrally compressed in a PCF. A region of the Raman spectrum from 800 to 4000 cm(-1) is accessible with two different PCFs. Spectral resolution improvement by 1 order of magnitude over a transform-limited pump pulse utilizing a chirped or spectrally compressed...

  17. Two-photon microscopy by wavelength-swept pulses delivered through single-mode fiber

    OpenAIRE

    Kang, Jeon Woong; Kim, Pilhan; Alonzo, Carlo Amadeo; Park, Hyunsung; Yun, Seok H.

    2010-01-01

    Nonlinear microscopy through flexible fiber-optic catheters has potential in clinical diagnostic applications. Here, we demonstrate a new approach based on wavelength-swept narrowband pulses that permits simple fiber-optic delivery without need of the dispersion management and allows nonmechanical beam scanning. Using 0.86 ps pulses rapidly tuned from 789 nm to 822 nm at a sweep rate of 200 Hz, we demonstrate two-photon fluorescence and second-harmonic generation imaging through a 5-m-long st...

  18. Fully integrated reflection-mode photoacoustic/two-photon microscopy in vivo (Conference Presentation)

    Science.gov (United States)

    Song, Liang; Song, Wei; Zhang, Yang; Zheng, Wei

    2016-03-01

    Using a water-immersion optical objective in conjunction with a miniature 40-MHz ultrasonic transducer, we developed reflection-mode photoacoustic microscopy with a transverse resolution as high as 320 nm. Here, we further integrated two-photon microscopy capability into the system to enable multimodality in vivo biomedical imaging at submicron resolution. As a result, the system is capable of tri-modality label-free imaging of microvasculature, collagen, and cell morphology, based on the contrast of optical absorption, second-harmonic generation, and autofluorescence, respectively. In addition, we demonstrated simultaneous microscopic imaging of neuron and microvasculature in the brain cortex of a living mouse, which may offer new opportunities for studying the mechanisms of neurovascular coupling.

  19. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  20. Simultaneous morphological and functional imaging of the honeybee's brain by two-photon microscopy

    International Nuclear Information System (INIS)

    Thanks to its rather simply structured but highly performing brain, the honeybee (Apis mellifera) is an important model for neurobiological studies. Therefore there is a great need for new functional imaging modalities adapted to this species. Herein we give a detailed report on the development and performance of a platform for in vivo functional and morphological imaging of the honeybee's brain, focusing on its primary olfactory centres, the antennal lobes (ALs). The experimental setup consists of a two-photon microscope combined with a synchronized odour stimulus generator. Our imaging platform allows to simultaneously obtain both morphological measurements of the ALs functional units, the glomeruli, and in vivo calcium recording of their neural activity. We were able to record the characteristic glomerular response maps to odour stimuli applied to the bee's antennae. Our approach offers several advantages over the commonly used conventional fluorescence microscopy. Two-photon microscopy provides substantial enhancement in both spatial and temporal resolutions, while minimizing photo damage. Calcium recordings show a more than fourfold improvement in the functional signal with respect to the techniques available up to now. Finally, the extended penetration depth, thanks to the infrared excitation, allows the functional imaging of profound glomeruli which have not been optically accessible up to now.

  1. Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources

    International Nuclear Information System (INIS)

    We examine the effects of pulse duration tuning on the photodamage inflicted by laser light illumination on the imaged sample and, thereby, explore the optimization of optical pulse parameters for multiphoton microscopy imaging under variable conditions. We discuss the dependence of the nonlinear excitation efficiency and associated photodamage rates on pulse energy and duration, and use the controlled amount of second-order dispersion (linear chirp), introduced by a pulse shaper, to adjust the pulse duration at the imaging plane of the microscope. The pulse energy is varied to maintain a constant two-photon excitation efficiency when switching between short (∼14 fs) and long (∼280 fs) pulses, and the damage is assessed by monitoring the photobleaching rates and sample morphology. We have found that in addition to the well-known photobleaching effects, significant enhancement of the two-photon excited autofluorescence intensity can be observed. Photobleaching rates at the onset of the laser light exposure are shown to be independent of the pulse shape under our experimental conditions, which indicates that the primary damage (bleaching) mechanism stems from the two-photon excitation process. The photoenhancement, however, is found to occur more readily with longer pulses, having higher energies per pulse. Experiments are carried out on human melanoma tissue and on rabbit red blood cells

  2. Multimodal imaging of lung tissue using optical coherence tomography and two photon microscopy

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Geissler, Stefan; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2012-02-01

    In the context of protective artificial ventilation strategies for patients with severe lung diseases, the contribution of ventilator settings to tissue changes on the alveolar level of the lung is still a question under debate. To understand the impact of respiratory settings as well as the dynamic process of respiration, high-resolution monitoring and visualization of the dynamics of lung alveoli are essential. An instrument allowing 3D imaging of lung tissue as well as imaging of functional constituents, such as elastin fibers, in in situ experimental conditions is presented in this study using a combination of Fourier domain optical coherence tomography (FD-OCT) and fiber-guided two photon microscopy. In a comparative study, fixed lung tissue, stained with sulforhodamine B for elastin fibers, was used to illustrate the ability of fiber-guided two photon excitation and single photon excitation for the visualization of elastin fibers within the tissue. Together with the fast 3D imaging capability of OCT, a new tool is given for the monitoring of alveolar lung dynamics in future in vivo experiments.

  3. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    Science.gov (United States)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  4. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Denis Soulet

    Full Text Available In vivo imaging using two-photon microscopy is an essential tool to explore the dynamic of physiological events deep within biological tissues for short or extended periods of time. The new capabilities offered by this technology (e.g. high tissue penetrance, low toxicity have opened a whole new era of investigations in modern biomedical research. However, the potential of using this promising technique in tissues of living animals is greatly limited by the intrinsic irregular movements that are caused by cardiac and respiratory cycles and muscular and vascular tone. Here, we show real-time imaging of the brain, spinal cord, sciatic nerve and myenteric plexus of living mice using a new automated program, named Intravital_Microscopy_Toolbox, that removes frames corrupted with motion artifacts from time-lapse videos. Our approach involves generating a dissimilarity score against precalculated reference frames in a specific reference channel, thus allowing the gating of distorted, out-of-focus or translated frames. Since the algorithm detects the uneven peaks of image distortion caused by irregular animal movements, the macro allows a fast and efficient filtering of the image sequence. In addition, extra features have been implemented in the macro, such as XY registration, channel subtraction, extended field of view with maximum intensity projection, noise reduction with average intensity projections, and automated timestamp and scale bar overlay. Thus, the Intravital_Microscopy_Toolbox macro for ImageJ provides convenient tools for biologists who are performing in vivo two-photon imaging in tissues prone to motion artifacts.

  5. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    Science.gov (United States)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  6. Measurement of laser induced plasma with Bi-mirror interference microscopy

    International Nuclear Information System (INIS)

    X-ray interference microscopic diagnostics for nanosecond pulse pumped aluminum plasmas are presented. A picosecond X-ray laser (13.9 nm) is used as the probe beam and a wavefront division Bi-mirror interferometer is adopted as the diagnosis tools. From the fringes shifts, 2-dimensional plasma density profiles are observed. This knowledge will contribute to the validation of the 1D and 2D hydrodynamic codes as well as better understanding of the physics during the development of laser produced plasma. (author)

  7. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    OpenAIRE

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electr...

  8. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy

    OpenAIRE

    Fontana, Y; Grzela, G.; Bakkers, E. P. A. M.; Gomez Rivas, J.

    2013-01-01

    Controlling the dispersion and directionality of the emission of nanosources is one of the major goals of nanophotonics research. This control will allow the development of highly efficient nanosources even at the single-photon level. One of the ways to achieve this goal is to couple the emission to Bloch modes of periodic structures. Here, we present the first measurements of the directional emission from nanowire photonic crystals by using Fourier microscopy. With this technique, we efficie...

  9. Probing surface recombination velocities in semiconductors using two-photon microscopy

    Science.gov (United States)

    Gaury, Benoit; Haney, Paul M.

    2016-03-01

    The determination of minority-carrier lifetimes and surface recombination velocities is essential for the development of semiconductor technologies such as solar cells. The recent development of two-photon time-resolved microscopy allows for better measurements of bulk and subsurface interfaces properties. Here, we analyze the diffusion problem related to this optical technique. Our three-dimensional treatment enables us to separate lifetime (recombination) from transport effects (diffusion) in the photoluminescence intensity. It also allows us to consider surface recombination occurring at a variety of geometries: a single plane (representing an isolated exposed or buried interface), a two parallel planes (representing two inequivalent interfaces), and a spherical surface (representing the enclosing surface of a grain boundary). We provide fully analytical results and scalings directly amenable to data fitting and apply those to experimental data collected on heteroepitaxial CdTe/ZnTe/Si.

  10. Two-photon microscopy with diffractive optical elements and spatial light modulators

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    2010-09-01

    Full Text Available Two-photon microscopy is often performed at slow frame rates, due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE generates a fixed number of beamlets that are scanned in parallel, resulting in a corresponding increase in speed, or in signal-to-noise ratio, in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM, to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image, such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions, including light path corrections or as adaptive optical devices.

  11. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    Science.gov (United States)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  12. Probing surface recombination velocities in semiconductors using two-photon microscopy

    Science.gov (United States)

    Gaury, Benoit; Haney, Paul M.

    2016-01-01

    The determination of minority-carrier lifetimes and surface recombination velocities is essential for the development of semiconductor technologies such as solar cells. The recent development of two-photon time-resolved microscopy allows for better measurements of bulk and subsurface interfaces properties. Here we analyze the diffusion problem related to this optical technique. Our three-dimensional treatment enables us to separate lifetime (recombination) from transport effects (diffusion) in the photoluminescence intensity. It also allows us to consider surface recombination occurring at a variety of geometries: a single plane (representing an isolated exposed or buried interface), two parallel planes (representing two inequivalent interfaces), and a spherical surface (representing the enclosing surface of a grain boundary). We provide fully analytical results and scalings directly amenable to data fitting, and apply those to experimental data collected on heteroepitaxial CdTe/ZnTe/Si. PMID:27182082

  13. Four-dimensional multiphoton microscopy with time-correlated single-photon counting.

    Science.gov (United States)

    Schönle, A; Glatz, M; Hell, S W

    2000-12-01

    We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at each pixel or in arbitrarily defined regions of interest. When employing an avalanche photodiode the width of the temporal response function is 420 ps. Although this response confines the temporal resolution to values greater than several hundreds of picoseconds, the lifetime precision is determined by the signal-to-noise ratio and can be in the range of tens of picosconds. Lifetime changes are visualized in pulsed-laser-deposited fluorescent layers as well as in cyan fluorescent proteins that transfer energy to yellow fluorescent proteins in live mammalian cells. PMID:18354639

  14. Polarization-Sensitive Two-Photon Microscopy Study of the Organization of Liquid-Crystalline DNA

    Science.gov (United States)

    Mojzisova, Halina; Olesiak, Joanna; Zielinski, Marcin; Matczyszyn, Katarzyna; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Abstract Highly concentrated DNA solutions exhibit self-ordering properties such as the generation of liquid-crystalline phases. Such organized domains may play an important role in the global chromatin topology but can also be used as a simple model for the study of more complex 3D DNA structures. In this work, using polarized two-photon fluorescence microscopy, we report on the orientation of DNA molecules in liquid-crystalline phases. For this purpose, we analyze the signal emitted by fluorophores that are noncovalently bound to DNA strands. In nonlinear processes, excitation occurs exclusively in the focal volume, which offers advantages such as the reduction of photobleaching of out-of-focus molecules and intrinsic 3D sectioning capability. Propidium iodide and Hoechst, two fluorophores with different DNA binding modes, have been considered. Polarimetric measurements show that the dyes follow the alignment with respect to the DNA strands and allow the determination of the angles between the emission dipoles and the longitudinal axis of the DNA double strand. These results provide a useful starting point toward the application of two-photon polarimetry techniques to determine the local orientation of condensed DNA in physiological conditions. PMID:19843467

  15. Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy.

    Science.gov (United States)

    Broser, Philip J; Schulte, R; Lang, S; Roth, A; Helmchen, Fritjof; Waters, J; Sakmann, Bert; Wittum, G

    2004-01-01

    Two-photon microscopy in combination with novel fluorescent labeling techniques enables imaging of three-dimensional neuronal morphologies in intact brain tissue. In principle it is now possible to automatically reconstruct the dendritic branching patterns of neurons from 3-D fluorescence image stacks. In practice however, the signal-to-noise ratio can be low, in particular in the case of thin dendrites or axons imaged relatively deep in the tissue. Here we present a nonlinear anisotropic diffusion filter that enhances the signal-to-noise ratio while preserving the original dimensions of the structural elements. The key idea is to use structural information in the raw data-the local moments of inertia-to locally control the strength and direction of diffusion filtering. A cylindrical dendrite, for example, is effectively smoothed only parallel to its longitudinal axis, not perpendicular to it. This is demonstrated for artificial data as well as for in vivo two-photon microscopic data from pyramidal neurons of rat neocortex. In both cases noise is averaged out along the dendrites, leading to bridging of apparent gaps, while dendritic diameters are not affected. The filter is a valuable general tool for smoothing cellular processes and is well suited for preparing data for subsequent image segmentation and neuron reconstruction. PMID:15574067

  16. Development of a low cost, high resolution position detection system for photonic force microscopy

    CERN Document Server

    Pal, Sambit Bikas; Roy, Basudev; Banerjee, Ayan

    2011-01-01

    A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. In this paper, we report the use of the optical pick-up head of a compact disc player as an extremely low cost yet accurate position sensor for photonic force microscopy. The size of the quadrant photo-IC in the pick-up head makes it ideal to work with a 1:1 image of a micron-sized probe in the microscope back-focal plane after the standard magnification by the trapping objective lens. This is an advantage over most commercial quadrant photodiodes or position sensitive detectors where it is difficult to image only the probe since such detectors require larger beams. This warrants external magnification optics leading to losses that may be significant in back-focal plane detection where the signal level directly off the probe is already very weak. Using a commercially available spare pick-up head, we demonstrate that the detector could measure absolute displacements with a...

  17. Analyzing blinking effects in super resolution localization microscopy with single-photon SPAD imagers

    Science.gov (United States)

    Antolovic, Ivan Michel; Burri, Samuel; Bruschini, Claudio; Hoebe, Ron; Charbon, Edoardo

    2016-02-01

    For many scientific applications, electron multiplying charge coupled devices (EMCCDs) have been the sensor of choice because of their high quantum efficiency and built-in electron amplification. Lately, many researchers introduced scientific complementary metal-oxide semiconductor (sCMOS) imagers in their instrumentation, so as to take advantage of faster readout and the absence of excess noise. Alternatively, single-photon avalanche diode (SPAD) imagers can provide even faster frame rates and zero readout noise. SwissSPAD is a 1-bit 512×128 SPAD imager, one of the largest of its kind, featuring a frame duration of 6.4 μs. Additionally, a gating mechanism enables photosensitive windows as short as 5 ns with a skew better than 150 ps across the entire array. The SwissSPAD photon detection efficiency (PDE) uniformity is very high, thanks on one side to a photon-to-digital conversion and on the other to a reduced fraction of "hot pixels" or "screamers", which would pollute the image with noise. A low native fill factor was recovered to a large extent using a microlens array, leading to a maximum PDE increase of 12×. This enabled us to detect single fluorophores, as required by ground state depletion followed by individual molecule return imaging microscopy (GSDIM). We show the first super resolution results obtained with a SPAD imager, with an estimated localization uncertainty of 30 nm and resolution of 100 nm. The high time resolution of 6.4 μs can be utilized to explore the dye's photophysics or for dye optimization. We also present the methodology for the blinking analysis on experimental data.

  18. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    CERN Document Server

    Halevy, A; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by more than three times. Such an improvement is currently required for the generation of multiphoton entangled states.

  19. The biaxial nonlinear crystal BiB₃O₆ as a polarization entangled photon source using non-collinear type-II parametric down-conversion.

    Science.gov (United States)

    Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-10-10

    We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states. PMID:21997051

  20. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy

    CERN Document Server

    Fontana, Yannik; Bakkers, Erik P A M; Rivas, Jaime Gómez

    2013-01-01

    Controlling the dispersion and directionality of the emission of nanosources is one of the major goals of nanophotonics research. This control will allow the development of highly efficient nanosources even at the single photon level. One of the ways to achieve this goal is to couple the emission to Bloch modes of periodic structures. Here, we present the first measurements of the directional emission from nanowire photonic crystals by using Fourier microscopy. With this technique we efficiently collect and resolve the directional emission of nanowires within the numerical aperture of a microscope objective. The light emission from a heterostructure grown in each nanowire is governed by the photonic (Bloch) modes of the photonic crystal. We also demonstrate that the directionality of the emission can be easily controlled by infiltrating the photonic crystal with a high refractive index liquid. This work opens new possibilities for the control of the emission of sources in nanowires.

  1. Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy

    OpenAIRE

    Baldacchini, Tommaso; Zimmerley, Maxwell; Kuo, Chun-Hung; Potma, Eric O.; Zadoyan, Ruben

    2009-01-01

    We demonstrate the possibility to image microstructures fabricated by two-photon polymerization (TPP) using coherent anti-Stokes Raman scattering (CARS) microscopy. The imaging contrast based on chemical selectivity attained by CARS microscopy is used to gather qualitative information on TPP. Upon the basis of detailed knowledge of the characteristic signatures of the photoresist Raman spectrum, quantitative relationships between laser writing conditions and polymer cross-linking are demonstr...

  2. Bi-photon generation with optimized wavefront by means of adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Minozzi, Mattia; Vallone, Giuseppe; Villoresi, Paolo [Department of Information Engineering, University of Padova, Padova (Italy); Bonora, Stefano [Institute for Photonics and Nanotechnology, Nat. Res. Council, Padova (Italy); Sergienko, Alexander V. [Department of Electrical and Computer Engineering, Department of Physics, University of Boston, Boston (United States)

    2014-12-04

    The generation of entangled photon pairs using an optimal pump wavefront was realized in order to achieve a desirable free-space propagation. This optimization exploits a closed loop whis is based on a deformable mirror, a nonlinear crystal for spontaneous parametric down-conversion, the free-space propagation line and the single-photon coincidence electronics.

  3. Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy

    International Nuclear Information System (INIS)

    We demonstrate the capability of using immunotargeted gold nanoshells as contrast agents for in vitro two-photon microscopy. The two-photon luminescence properties of different-sized gold nanoshells are first validated using near-infrared excitation at 780 nm. The utility of two-photon microscopy as a tool for imaging live HER2-overexpressing breast cancer cells labeled with anti-HER2-conjugated nanoshells is then explored and imaging results are compared to normal breast cells. Five different imaging channels are simultaneously examined within the emission wavelength range of 451-644 nm. Our results indicate that under near-infrared excitation, superior contrast of SK-BR-3 cancer cells labeled with immunotargeted nanoshells occurs at an emission wavelength ranging from 590 to 644 nm. Luminescence from labeled normal breast cells and autofluorescence from unlabeled cancer and normal cells remain imperceptible under the same conditions

  4. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  5. Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films.

    Science.gov (United States)

    Fang, Mingqing; Jia, Huimin; He, Weiwei; Lei, Yan; Zhang, Lizhi; Zheng, Zhi

    2015-05-28

    Ordered 2D nanostructural BiOI nanoflake arrays decorated with Bi2S3 nanospheres have been designed and in situ fabricated for the first time, to form BiOI/Bi2S3 bulk heterojunctions through a soft chemical route. A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate BiOI nanoflake arrays on flexible ITO/PET substrates at room temperature. The degree of transformation of BiOI to Bi2S3 was controlled through the adjustment of exposure time of the BiOI/ITO substrate to thioacetamide (TAA) aqueous solution. The morphologies of BiOI, BiOI/Bi2S3 heterojunctions and Bi2S3 films were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) patterns, and high resolution transmission electron microscopy (HRTEM). The presence of Bi2S3 was further validated through Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Especially, photoelectrochemical measurements demonstrated that such a Bi2S3 decorated BiOI photoanode based cell exhibits significant augments of short-circuit current density (Jsc) and incident photon-to-current conversion efficiency (IPCE, 3 times higher than the pure BiOI photoanode), attributable to the stronger photo-absorption and better photogenerated charge carrier separation and transport efficiency. The surface photovoltage (SPV) measurements further confirmed the importance of BiOI/Bi2S3 heterojunctions in such PEC cells. This solution-based process directly on flexible ITO offers the promise for low-cost, large-area, roll-to-roll application of the manufacturing of the third generation thin-film photovoltaic devices. PMID:25941684

  6. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert

    2016-09-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. PMID:27239747

  7. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.

    Science.gov (United States)

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi

    2016-04-01

    In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180  μm, and scanning resolution (minimum step size) of ∼270  nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution. PMID:27192259

  8. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

    Science.gov (United States)

    Miller, Mark J.; Wei, Sindy H.; Cahalan, Michael D.; Parker, Ian

    2003-03-01

    The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of 11 μm·min1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm·min1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.

  9. Adsorption of cobalt phthalocyanine on a Si(1 0 0) surface with Bi-line structures as evaluated by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    We report the reaction dynamics of cobalt phthalocyanine (CoPc) molecules with Bi-line structures (BLSs) on a Si(1 0 0) surface, investigated using scanning tunneling microscopy (STM). When CoPc molecules were deposited on a Si(1 0 0) surface with BLSs at room temperature, single-spot protrusions were observed in the STM image instead of four-spot images corresponding to CoPcs flat molecular structure. Moreover, domains with a c(4 x 4) periodicity appeared on the terraces of the Si(1 0 0) surface. This indicates that CoPc molecules may have decomposed on the surface by catalytic reaction with Bi atoms.

  10. Nanopatterning using a simple bi-layer lift-off process for the fabrication of a photonic crystal nanostructure

    International Nuclear Information System (INIS)

    A simple and versatile method for fabricating nanopatterns by a lift-off procedure is demonstrated. The technique involves the use of molecular transfer lithography based on water-soluble templates to form a nanopatterned UV-curable material on a PMGI layer, which serves as an underlying resin suitable for lift-off processes. This bi-layer procedure is used for the fabrication of nickel patterns, which are subsequently used as a hard mask for plasma etch processing. Using this procedure, a two-dimensional TiO2 photonic crystal layer with a 450 nm lattice constant is fabricated on Y3Al5O12:Ce3+ (YAG:Ce) yellow ceramic plate phosphor to enhance its forward emission. The yellow emission in the forward direction is improved by a factor of 3.5 compared to that of a conventional non-scattering YAG:Ce phosphor plate excited by a blue LED. (paper)

  11. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence

    Science.gov (United States)

    Ingaramo, Maria; York, Andrew G.; Andrade, Eric J.; Rainey, Kristin; Patterson, George H.

    2015-09-01

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.

  12. Fabrication of nanoscale Bi Hall sensors by lift-off techniques for applications in scanning probe microscopy

    International Nuclear Information System (INIS)

    Bismuth Hall effect sensors with active sizes in the range of 0.1–2 μm have been fabricated by electron beam lithography and lift-off techniques for applications in scanning Hall probe microscopy. The Hall coefficients, offset resistances and minimum detectable fields of the sensors have been systematically characterised as a function of device size. The minimum detectable field of 100 nm probes at 300 K and dc currents of 5 μA was found to be Bmin = 0.9 mT Hz−0.5 with scope for up to a factor of ten reduction by using higher Hall probe currents. This is significantly lower than in similar samples fabricated by focused ion beam (FIB) milling of continuous Bi films, suggesting that the elimination of FIB damage and Ga+ ion incorporation through the use of lift-off techniques leads to superior figures of merit. A number of ways in which the room temperature performance of our sensors could be further improved are discussed. (paper)

  13. Measurement of thermal conductivity of Bi2Te3 nanowire using high-vacuum scanning thermal wave microscopy

    Science.gov (United States)

    Park, Kyungbae; Hwang, Gwangseok; Kim, Hayeong; Kim, Jungwon; Kim, Woochul; Kim, Sungjin; Kwon, Ohmyoung

    2016-02-01

    With the increasing application of nanomaterials in the development of high-efficiency thermoelectric energy conversion materials and electronic devices, the measurement of the intrinsic thermal conductivity of nanomaterials in the form of nanowires and nanofilms has become very important. However, the current widely used methods for measuring thermal conductivity have difficulties in eliminating the influence of interfacial thermal resistance (ITR) during the measurement. In this study, by using high-vacuum scanning thermal wave microscopy (HV-STWM), we propose a quantitative method for measuring the thermal conductivity of nanomaterials. By measuring the local phase lag of high-frequency (>10 kHz) thermal waves passing through a nanomaterial in a high-vacuum environment, HV-STWM eliminates the measurement errors due to ITR and the distortion due to heat transfer through air. By using HV-STWM, we measure the thermal conductivity of a Bi2Te3 nanowire. Because HV-STWM is quantitatively accurate and its specimen preparation is easier than in the thermal bridge method, we believe that HV-STWM will be widely used for measuring the thermal properties of various types of nanomaterials.

  14. Effects of Ox-LDL on Macrophages NAD(P)H Autofluorescence Changes by Two-photon Microscopy

    CERN Document Server

    Lin, Ching-Ting; Lee, Szu-Yuan; Lu, Long-Sheng; Wu, Chau-Chung; Dong, Chen-Yuan; Lin, Chii-Wann

    2007-01-01

    Ox-LDL uptakes by macrophage play a critical role in the happening of atherosclerosis. Because of its low damage on observed cells and better signal-to- background ratio, two-photon excitation fluorescence microscopy is used to observe NAD(P)H autofluorescence of macrophage under difference cultured conditions- bare cover glass, coated with fibronectin or poly-D-lysine. The results show that the optimal condition is fibronectin coated surface, on which, macrophages profile can be clearly identified on NAD(P)H autofluorescence images collected by two-photon microscopy. Moreover, different morphology and intensities of autofluorescence under different conditions were observed as well. In the future, effects of ox-LDL on macrophages will be investigated by purposed system to research etiology of atherosclerosis.

  15. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  16. In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy

    OpenAIRE

    Bok, Seoyeon; Wang, Taejun; Lee, Chan-Ju; Jeon, Seong-Uk; Kim, Young-eun; Kim, Jeongwoo; Hong, Beom-Ju; Yoon, Calvin Jinse; Kim, Sungjee; Lee, Seung-Hoon; KIM, HAK JAE; Kim, Il Han; Kim, Ki Hean; Ahn, G-One

    2015-01-01

    Microglia are brain resident macrophages rapidly responding to various stimuli to exert appropriate inflammatory responses. Although they have recently been exploited as an attractive candidate for imaging neuroinflammation, it is still difficult to visualize them at the cellular and molecular levels. Here we imaged activated microglia by establishing intracranial window chamber (ICW) in a mouse model of focal cerebral ischemia by using two-photon microscopy (TPM), in vivo. Intravenous inject...

  17. Intravital two-photon microscopy for studying the uptake and trafficking of fluorescently conjugated molecules in live rodents

    OpenAIRE

    Masedunskas, Andrius; Weigert, Roberto

    2008-01-01

    Here we describe an experimental system based on intravital two-photon microscopy for studying endocytosis in live animals. The rodent submandibular glands were chosen as model organs since they can be exposed easily, imaged without compromising their function and, furthermore, they are amenable to pharmacological and genetic manipulations. We show that the fibroblasts within the stroma of the glands readily internalize systemically injected molecules such as fluorescently conjugated dextran ...

  18. X-ray microscopy in Ziarnik phase contrast mode at 4 keV photon energy with 60 nm resolution

    International Nuclear Information System (INIS)

    We report on x-ray microscopy of advanced microelectronic devices imaged in Zernike-type phase contrast mode at 4 keV photon energy. Fresnel zone plates were used as high resolution x-ray objectives providing 60 nm spatial resolution. Integrated circuit copper interconnect structures were imaged in positive as well as negative phase contrast. In both cases the phase contrast in the x-ray images is about five times higher than the pure absorption contrast

  19. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  20. A beamline for 1 endash 4 keV microscopy and coherence experiments at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The third-generation Advanced Photon Source will open up dramatic new opportunities for experiments requiring coherent x-rays, such as scanning x-ray microscopy, interferometry, and coherent scattering. We are building a beamline at the Advanced Photon Source to exploit the potential of coherent x-ray applications in the 1 endash 4 keV energy region. A high brightness 5.5-cm-period undulator supplies the coherent x-rays. The beamline uses horizontally deflecting grazing-incidence optical elements to preserve the coherence of the undulator beam. The optics have multilayer coatings for operation at energies above 1.5 keV. This paper discusses the beamline design and its expected performance. copyright 1996 American Institute of Physics

  1. Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy.

    Directory of Open Access Journals (Sweden)

    Lauren E Grosberg

    Full Text Available BACKGROUND: Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue's composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition. CONCLUSIONS/SIGNIFICANCE: These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative 'instant histology' of fresh tissue

  2. Time-resolved two-photon excitation fluorescence spectroscopy and microscopy using a high repetition rate streak camera

    Institute of Scientific and Technical Information of China (English)

    LIU Li-xin; QU Ju-le; LIN Zi-yang; WANG Lei; FU Zhe; GUO Bao-ping; NIU Han-ben

    2007-01-01

    We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrumresolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures.Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.

  3. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser

    Science.gov (United States)

    Perillo, Evan P.; McCracken, Justin E.; Fernée, Daniel C.; Goldak, John R.; Medina, Flor A.; Miller, David R.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2016-01-01

    Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth. PMID:26977343

  4. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  5. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    OpenAIRE

    Hyun Woo Nho; Yogesh Kalegowda; Hyun-Joon Shin; Tae Hyun Yoon

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC ...

  6. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Science.gov (United States)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Tsai, Tsung-Hua; Chen, Yang-Fang; Dong, Chen-Yuan

    2014-10-01

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  7. Inverse dynamical photon scattering (IDPS): an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy.

    Science.gov (United States)

    Jiang, Xiaoming; Van den Broek, Wouter; Koch, Christoph T

    2016-04-01

    Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen. PMID:27136994

  8. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo. PMID:27446677

  9. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    Science.gov (United States)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J. E.; Weiss, S.

    2006-10-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and highspatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions.

  10. Fissility of Bi, Pb, Au, Pt, W, Ta, V, and Ti nuclei measured with 100 MeV compton back-scattered photons

    International Nuclear Information System (INIS)

    Photofission cross sections of 209 Bi, nat Pb, 197 Au, nat Pt, nat W, 181 Ta, 51 V, and nat Ti nuclei have been measured at an incident photon energy of 100 MeV using monochromatic photons produced by Compton backscattering at the ROKK-1M facility (BINP, Novosibirsk). Detection of fission fragments has been performed by means of Makrofol track-etch detectors in close contact with metallic foils of the target elements. The values of fissility at 100 MeV deduced for the targets under investigation are found to range between 10-4 and 10-2. The present results show consistency with the fissility trends calculated for 69- and 600-MeV monoenergetic photons using a formalism based on the current two-step model for intermediate-energy photofission reactions. (author). 39 refs., 4 figs., 3 tabs

  11. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  12. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  13. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  14. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration...

  15. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy.

    Science.gov (United States)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-12-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems. PMID:27356565

  16. Photoluminescence microscopy on air-suspended carbon nanotubes coupled to photonic crystal nanobeam cavities

    Science.gov (United States)

    Miura, R.; Imamura, S.; Shimada, T.; Ohta, R.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.

    2014-03-01

    Because carbon nanotubes are room-temperature telecom-band emitters and can be grown on silicon substrates, they are ideal for coupling to silicon photonic cavities.[2,3 In particular, as-grown air-suspended carbon nanotubes show excellent optical properties, but cavity modes with large fields in the air are needed in order to achieve efficient coupling. Here we investigate individual air-suspended nanotubes coupled to photonic crystal nanobeam cavities. We utilize cavities that confine air-band modes which have large fields in the air. Dielectric mode cavities are also prepared for comparison. We fabricate the devices from silicon-on-insulator substrates by using electron beam lithography and dry etching to form the nanobeam structure. The buried oxide layer is removed by wet etching, and carbon nanotubes are grown onto the cavities by chemical vapor deposition. We perform photoluminescence imaging and excitation spectroscopy to find the positions of the nanotubes and identify their chiralities. For both types of devices, cavity modes with quality factors of ~3000 are observed within the nanotube emission peak. Work supported by SCOPE, KAKENHI, The Telecommunications Advancement Foundation, The Toyota Physical and Chemical Research Institute, Project for Developing Innovation Systems of MEXT, Japan and the Photon Frontier Network Program of MEXT, Japan.

  17. High-magnification observation of seminiferous tubules through the tunica albuginea by two-photon laser scanning microscopy

    Institute of Scientific and Technical Information of China (English)

    Vincent Achard; Pascal Weber; Georges Mercier; Marie-Pierre Blanchard

    2011-01-01

    @@ Testicular sperm extraction is widely used in the treatment of male infertility in cases of non-obstructive azoospermia.Identifying spermatogenetic foci within the testes is critical for testicular sperm extraction.下wo-photon laser scanning microscopy (TPLSM) is an autofluorescence-based microscopy technique that allows observation at a cellular level in the depth of fresh living tissues and does not require any histological processing (fixation or staining).The wavelengths previously used have shown no phototoxicity on sperm.We used TPLSM to detect spermatogenetic foci in fresh mouse testicular parenchyma without disrupting the tunica albuginea.Fresh surgically retrieved testes were observed using TPLSM within 1 h after extraction.Contralateral testes for each animal were observed using standard histology.Using TPLSM we were able to observe and measure the diameter of seminiferous tubules through the tunica albuginea,similar to the histological control.Structures within epithelial tubules were also observed,although their nature has yet to be identified.TPLSM is a real-time microscopy technique that could detect spermatogenetic foci.

  18. Spectral Measurement of Photon Emission from Individual Gold Nanoparticles Using Scanning Tunneling Microscopy

    Directory of Open Access Journals (Sweden)

    S.A. Nepijko

    2016-06-01

    Full Text Available The light emission spectra of individual Au nanoparticles induced by a scanning tunneling microscope (STM have been investigated. Two-dimensional ensembles of tunnel-coupled Au particles were prepared by thermal evaporation onto a native oxide silicon wafer in ultrahigh vacuum (10 – 9 mbar. Our STM measurements show a single peak at photon energy 1.6 eV in the tunneling mode and two peaks at 2.2 eV (connected with the Mie plasmon and 1.45 eV (a new peak which was not discussed in literature before in the field emission mode.

  19. Model-Based Estimation of Three-Dimensional Stiffness Parameters in Photonic-Force Microscopy

    OpenAIRE

    Thévenaz, P; Singh, A.S.G.; Bertseva, E.; Lekki, J.; Kulik, A. J.; Unser, M

    2010-01-01

    We propose a system to characterize the 3-D diffusion properties of the probing bead trapped by a photonic-force microscope. We follow a model-based approach, where the model of the dynamics of the bead is given by the Langevin equation. Our procedure combines software and analog hardware to measure the corresponding stiffness matrix. We are able to estimate all its elements in real time, including off-diagonal terms. To achieve our goal, we have built a simple analog computer that performs a...

  20. Model-Based Estimation of 3-D Stiffness Parameters in Photonic-Force Microscopy

    OpenAIRE

    Thévenaz, P; Singh, A.S.G.; Bertseva, E.; Lekki, J.; Kulik, A. J.; Unser, M

    2010-01-01

    We propose a system to characterize the 3-D diffusion properties of the probing bead trapped by a photonic-force microscope. We follow a model-based approach, where the model of the dynamics of the bead is given by the Langevin equation. Our procedure combines software and analog hardware to measure the corresponding stiffness matrix. We are able to estimate all its elements in real time, including off-diagonal terms. To achieve our goal, we have built a simple analog computer that performs a...

  1. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    Science.gov (United States)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.

  2. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue

    OpenAIRE

    Ingaramo, Maria; York, Andrew G.; Wawrzusin, Peter; Milberg, Oleg; Hong, Amy; Weigert, Roberto; Shroff, Hari; Patterson, George H.

    2014-01-01

    Superresolution microscopy has made much progress in improving resolution and imaging speed over the past several years, but the ability to image below the diffraction limit in thick scattering specimens has not kept pace. In many interesting samples, such as Caenorhabditis elegans, Drosophila melanogaster, mouse, or human tissues, resolution is limited primarily by scattering rather than diffraction. In this paper, we show that the combination of multiphoton excitation with multifocal struct...

  3. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy.

    Science.gov (United States)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source. PMID:26836298

  4. Two-Photon Excitation STED Microscopy with Time-Gated Detection

    Science.gov (United States)

    Coto Hernández, Iván; Castello, Marco; Lanzanò, Luca; D'Amora, Marta; Bianchini, Paolo; Diaspro, Alberto; Vicidomini, Giuseppe

    2016-01-01

    We report on a novel two-photon excitation stimulated emission depletion (2PE-STED) microscope based on time-gated detection. The time-gated detection allows for the effective silencing of the fluorophores using moderate stimulated emission beam intensity. This opens the possibility of implementing an efficient 2PE-STED microscope with a stimulated emission beam running in a continuous-wave. The continuous-wave stimulated emission beam tempers the laser architecture’s complexity and cost, but the time-gated detection degrades the signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) of the image. We recover the SNR and the SBR through a multi-image deconvolution algorithm. Indeed, the algorithm simultaneously reassigns early-photons (normally discarded by the time-gated detection) to their original positions and removes the background induced by the stimulated emission beam. We exemplify the benefits of this implementation by imaging sub-cellular structures. Finally, we discuss of the extension of this algorithm to future all-pulsed 2PE-STED implementationd based on time-gated detection and a nanosecond laser source.

  5. Two-Photon Excitation STED Microscopy with Time-Gated Detection

    Science.gov (United States)

    Coto Hernández, Iván; Castello, Marco; Lanzanò, Luca; d’Amora, Marta; Bianchini, Paolo; Diaspro, Alberto; Vicidomini, Giuseppe

    2016-01-01

    We report on a novel two-photon excitation stimulated emission depletion (2PE-STED) microscope based on time-gated detection. The time-gated detection allows for the effective silencing of the fluorophores using moderate stimulated emission beam intensity. This opens the possibility of implementing an efficient 2PE-STED microscope with a stimulated emission beam running in a continuous-wave. The continuous-wave stimulated emission beam tempers the laser architecture’s complexity and cost, but the time-gated detection degrades the signal-to-noise ratio (SNR) and signal-to-background ratio (SBR) of the image. We recover the SNR and the SBR through a multi-image deconvolution algorithm. Indeed, the algorithm simultaneously reassigns early-photons (normally discarded by the time-gated detection) to their original positions and removes the background induced by the stimulated emission beam. We exemplify the benefits of this implementation by imaging sub-cellular structures. Finally, we discuss of the extension of this algorithm to future all-pulsed 2PE-STED implementationd based on time-gated detection and a nanosecond laser source. PMID:26757892

  6. In situ imaging of the mouse cochlea using two-photon microscopy

    Science.gov (United States)

    Yang, Xin; Pu, Ye; Psaltis, Demetri; Stankovic, Konstantina M.

    2013-04-01

    Intracochlear imaging is of great interest clinically because cochlea is the central organ of hearing. However, intracochlear imaging is technologically challenging due to the cochlea's small size and encasement in bone. The state-of- the-art imaging techniques are not adequate for high resolution cellular imaging to establish diagnosis without destroying the cochlea. We report in situ imaging of intact mouse cochlea using endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. TPEF eliminates the need for exogenous labeling and eradicating the staining-induced artifacts. We used a natural, membranous opening into the cochlea, the round window, as the optical access to reach the organ of Corti, requiring no additional slicing or opening. Our approach provides the maximum non-invasiveness in the imaging process. TPEF exhibits strong contrast allowing deep imaging of mouse cochlea with cellular and even subcellular resolution. Inner hair cell, outer hair cell and supporting cell are clearly identifiable in TPEF images. Distinct morphological differences are observed between healthy and noise-exposed cochleae, allowing detection of specific, noise-induced pathologic changes. The TPEF images taken through the round window are correlated with the whole mount sections, verifying their reliability. Compared with one-photon excitation fluorescence (OPEF) confocal microscope and wide-field transmission microscope images taken under the same magnification and resolution, TPEF images demonstrate clear advantages in terms of sharpness, signal to noise ratio and contrast. These capabilities provide a working foundation for microendoscopy-based clinical diagnostics of sensorineural hearing loss.

  7. Influence of the atmospheric humidity on the behaviour of silicon AFM probes in photon scanning tunneling microscopy

    Science.gov (United States)

    Benfedda, M.; Lahimer, S.; Bonnafe, J.

    1998-11-01

    The photon scanning tunneling microscopy (PSTM) allows to characterize the surface topography with high resolution. This microscopy exploits the exponential decay of the evanescent field achieved by the total internal reflection under the surface sample. When the distance between the sensor and the surface becomes small (sim 100 nm), the non propagating photons of the evanescent field can be converted into guided propagating mode of polaritons. A bulk Silicon probe is used in the AFM experiment as a sensor of van der Waals forces. The aim of this paper is to discuss the influence of the atmospheric humidity on the PSTM measurements. We have showed that the theoretical predictions of the dielectrical capture model (DCM) are very different from the experimental results when the humidity level is higher than a threshold value (30%). We present the results obtained with TE polarization, but the same behaviour is found with TM polarization. Although, in this paper we do not propose a theoretical model explaining the deviations between DCM values and experimental, however we found a validity threshold for our experimental results and we have emited the assumption that under high humidity level the pollution film presents on the sample surface slide during the displacement of the probe. La microscopie optique à effet tunnel (PSTM) est un outil de caractérisation de surface à haute résolution. Ce microscope exploite la décroissance du champ évanescent créé sur la surface de l'échantillon. Quand la distance entre le capteur et la surface est de quelques dizaines de nanomètres, les ondes évanescentes créées sur la surface sont converties en ondes propagatives et détectées en champ lointain. Le capteur est une sonde en silicium utilisée en microscopie à force atomique. Cet article montre l'influence des conditions atmosphériques sur les mesures PSTM. Il montre qu'au-delà d'un certain taux d'humidité (30%), les mesures ne sont plus valables et ne suivent

  8. In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy.

    Science.gov (United States)

    Bok, Seoyeon; Wang, Taejun; Lee, Chan-Ju; Jeon, Seong-Uk; Kim, Young-Eun; Kim, Jeongwoo; Hong, Beom-Ju; Yoon, Calvin Jinse; Kim, Sungjee; Lee, Seung-Hoon; Kim, Hak Jae; Kim, Il Han; Kim, Ki Hean; Ahn, G-One

    2015-09-01

    Microglia are brain resident macrophages rapidly responding to various stimuli to exert appropriate inflammatory responses. Although they have recently been exploited as an attractive candidate for imaging neuroinflammation, it is still difficult to visualize them at the cellular and molecular levels. Here we imaged activated microglia by establishing intracranial window chamber (ICW) in a mouse model of focal cerebral ischemia by using two-photon microscopy (TPM), in vivo. Intravenous injection of fluorescent antibodies allowed us to detect significantly elevated levels of Iba-1 and CD68 positive activated microglia in the ipsilateral compared to the contralateral side of the infarct. We further observed that indomethacin, a non-steroidal anti-inflammatory drug significantly attenuated CD68-positive microglial activation in ICW, which was further confirmed by qRT-PCR biochemical analyses. In conclusion, we believe that in vivo TPM imaging of ICW would be a useful tool to screen for therapeutic interventions lowering microglial activation hence neuroinflammation. PMID:26417502

  9. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  10. The use of two-photon microscopy to study the biological effects of focused ultrasound on the brain

    Science.gov (United States)

    Burgess, Alison; Cho, Eunice E.; Shaffaf, Leila; Nhan, Tam; Poon, Charissa; Hynynen, Kullervo

    2012-03-01

    Focused ultrasound (FUS) has been used to successfully disrupt the blood-brain barrier (BBB), aiding in the delivery of therapeutic agents to the brain and leading to improvements in disease pathology. Although significant progress has been made in the development of FUS technology, there is still a lack of understanding of the biophysical mechanisms of the BBB disruption and the microscopic effects of this disruption on brain cells. In this study, we combine a custom built ultrasound transducer with two-photon microscopy to conduct real time monitoring of BBB disruption in vivo. We have manufactured and tested a single element piezoelectric transducer with frequencies ranging from 1.15 to 1.30 MHz. Sonications were performed using 0.07-0.25 MPa estimated in situ pressure, 10 ms pulses, 1 Hz pulse repetition frequency for a total duration of 120 s in the presence of microbubbles. BBB disruption was observed through a cranial window created in the rat skull after intravenous injection of dextran conjugated- Texas Red (MW: 10,000 - 70,000 Da). Using this experimental setup, we have observed and characterized 3 different leakage patterns following BBB disruption. Our results indicate that varying the acoustic power leading to in situ pressure changes, may allow us to control the mechanism of BBB disruption. Furthermore, we have labelled astrocytes in vivo in order to visualize the effects of FUS on this cell population. Combination of our custom transducers with two-photon microscopy will allow significant advancement in allow significant advancement in the understanding of the mechanisms and cellular effects of FUS-induced BBB disruption.

  11. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    DEFF Research Database (Denmark)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian;

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with...... large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source....

  12. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    Science.gov (United States)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  13. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  14. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    International Nuclear Information System (INIS)

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  15. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  16. In Vivo Two-Photon Microscopy of Single Nerve Endings in Skin

    Science.gov (United States)

    Yuryev, Mikhail; Molotkov, Dmitry

    2014-01-01

    Nerve endings in skin are involved in physiological processes such as sensing1 as well as in pathological processes such as neuropathic pain2. Their close-to-surface positioning facilitates microscopic imaging of skin nerve endings in living intact animal. Using multiphoton microscopy, it is possible to obtain fine images overcoming the problem of strong light scattering of the skin tissue. Reporter transgenic mice that express EYFP under the control of Thy-1 promoter in neurons (including periphery sensory neurons) are well suited for the longitudinal studies of individual nerve endings over extended periods of time up to several months or even life-long. Furthermore, using the same femtosecond laser as for the imaging, it is possible to produce highly selective lesions of nerve fibers for the studies of the nerve fiber restructuring. Here, we present a simple and reliable protocol for longitudinal multiphoton in vivo imaging and laser-based microsurgery on mouse skin nerve endings. PMID:25178088

  17. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Directory of Open Access Journals (Sweden)

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  18. Two-Photon Excitation of a Plasmonic Nanoswitch Monitored by Single-Molecule Fluorescence Microscopy.

    Science.gov (United States)

    Impellizzeri, Stefania; Simoncelli, Sabrina; Hodgson, Gregory K; Lanterna, Anabel E; McTiernan, Christopher D; Raymo, Françisco M; Aramendia, Pedro F; Scaiano, Juan C

    2016-05-17

    Visible-light excitation of the surface plasmon band of silver nanoplates can effectively localize and concentrate the incident electromagnetic field enhancing the photochemical performance of organic molecules. Herein, the first single-molecule study of the plasmon-assisted isomerization of a photochrome-fluorophore dyad, designed to switch between a nonfluorescent and a fluorescent state in response to the photochromic transformation, is reported. The photochemistry of the switchable assembly, consisting of a photochromic benzooxazine chemically conjugated to a coumarin moiety, is examined in real time with total internal reflection fluorescence microscopy in the presence of silver nanoplates excited with a 633 nm laser. The metallic nanostructures significantly enhance the visible light-induced performance of the photoconversion, which normally requires ultraviolet excitation. The resulting ring-open isomer is strongly fluorescent and can also be excited at 633 nm. These stochastic emission events are used to monitor photochromic activation and show quadratic dependence on incident power. The utilization of a single laser wavelength for both photochromic activation and excitation effectively mimics a pseudo two-colours system. PMID:27060994

  19. Structural and magnetic properties of inverse opal photonic crystals studied by x-ray diffraction, scanning electron microscopy, and small-angle neutron scattering

    NARCIS (Netherlands)

    Grigoriev, S.V.; Napolskii, K.S.; Grigoryeva, N.A.; Vasilieva, A.V.; Mistonov, A.A.; Chernyshov, D.Y.; Petukhov, A.V.; Belov, D.V.; Eliseev, A.A.; Lukashin, A.V.; Tretyakov, Y.D.; Sinitskii, A.S.; Eckerlebe, H.

    2009-01-01

    The structural and magnetic properties of nickel inverse opal photonic crystal have been studied by complementary experimental techniques, including scanning electron microscopy, wide-angle and small-angle diffraction of synchrotron radiation, and polarized neutrons. The sample was fabricated by ele

  20. Intravital imaging of the effects of 5-fluorouracil on the murine liver microenvironment using 2-photon laser scanning microscopy

    Science.gov (United States)

    OKIGAMI, MASATO; TANAKA, KOJI; INOUE, YASUHIRO; SAIGUSA, SUSUMU; OKUGAWA, YOSHINAGA; TOIYAMA, YUJI; MOHRI, YASUHIKO; KUSUNOKI, MASATO

    2016-01-01

    5-fluorouracil (5FU) is often used in the treatment of colorectal cancer. 5FU improves the median overall and disease-free survival rates and reduces recurrence rates in patients who have undergone curative surgical resection. However, in the adjuvant setting, whether 5FU eradicates clinically undetectable micrometastases in target organs such as the liver, or whether 5-FU inhibits the adhesion of circulating tumor cells has not yet been established. In the present study, 5FU was administered following the inoculation of red fluorescent protein-expressing HT29 cells into green fluorescent protein (GFP)-transgenic nude mice to examine its inhibitory effect. 2-photon laser scanning microscopy was performed at selected time points for time-series imaging of liver metastasis of GFP-transgenic mice. The cell number in vessels was quantified to evaluate the response of the tumor microenvironment to chemotherapy. HT29 cells were visualized in hepatic sinusoids at the single-cell level. A total of 2 hours after the injection (early stage), time-series imaging revealed that the number of caught tumor cells gradually reduced over time. In the 5FU treatment group, no significant difference was observed in the cell number in the early stage. One week after the injection (late stage), a difference in morphology was observed. The results of the present study indicated that 5FU eradicated clinically undetectable micrometastases in liver tissues by acting as a cytotoxic agent opposed to preventing adhesion. The present study indicated that time-series intravital 2-photon laser scanning microscopic imaging of metastatic tumor xenografts may facilitate the screening and evaluation of novel chemotherapeutic agents with less interindividual variability. PMID:27073493

  1. Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?

    CERN Document Server

    Drezet, A; Huant, S

    2014-01-01

    We discuss theoretically the concept of spatial resolution in near-field scanning optical microscopy (NSOM) in light of a recent work [Opt. Express 17 (2009) 19969] which reported on the achievement of active tips made of a single ultrasmall fluorescent nanodiamond grafted onto the apex of a substrate tip and on their validation in NSOM imaging. Since fluorescent nanodiamonds tend to decrease steadily in size, we assimilate a nanodiamond-based tip to a point-like single photon source and compare its ultimate resolution with that offered by standard metal-coated aperture NSOM tips. We demonstrate both classically and quantum mechanically that NSOM based on a point-like tip has a resolving power that is only limited by the scan height over the imaged system whereas the aperture-tip resolution depends critically on both the scan height and aperture diameter. This is a consequence of the complex distribution of the electromagnetic field around the aperture that tends to artificially duplicate the imaged objects. ...

  2. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy.

    Science.gov (United States)

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  3. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    Science.gov (United States)

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  4. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    Science.gov (United States)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  5. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy

    Science.gov (United States)

    Megens, Remco T. A.; Reitsma, Sietze; Prinzen, Lenneke; Oude Egbrink, Mirjam G. A.; Engels, Wim; Leenders, Peter J. A.; Brunenberg, Ellen J. L.; Reesink, Koen D.; Janssen, Ben J. A.; Ter Haar Romeny, Bart M.; Slaaf, Dick W.; van Zandvoort, Marc A. M. J.

    2010-01-01

    In vivo (molecular) imaging of the vessel wall of large arteries at subcellular resolution is crucial for unraveling vascular pathophysiology. We previously showed the applicability of two-photon laser scanning microscopy (TPLSM) in mounted arteries ex vivo. However, in vivo TPLSM has thus far suffered from in-frame and between-frame motion artifacts due to arterial movement with cardiac and respiratory activity. Now, motion artifacts are suppressed by accelerated image acquisition triggered on cardiac and respiratory activity. In vivo TPLSM is performed on rat renal and mouse carotid arteries, both surgically exposed and labeled fluorescently (cell nuclei, elastin, and collagen). The use of short acquisition times consistently limit in-frame motion artifacts. Additionally, triggered imaging reduces between-frame artifacts. Indeed, structures in the vessel wall (cell nuclei, elastic laminae) can be imaged at subcellular resolution. In mechanically damaged carotid arteries, even the subendothelial collagen sheet (~1 μm) is visualized using collagen-targeted quantum dots. We demonstrate stable in vivo imaging of large arteries at subcellular resolution using TPLSM triggered on cardiac and respiratory cycles. This creates great opportunities for studying (diseased) arteries in vivo or immediate validation of in vivo molecular imaging techniques such as magnetic resonance imaging (MRI), ultrasound, and positron emission tomography (PET).

  6. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    Energy Technology Data Exchange (ETDEWEB)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ≤SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (≤SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  7. In-situ transmission x-ray microscopy study of photon-induced oxidation of silver nanowires

    Science.gov (United States)

    Yu, Le; Sun, Yugang; Wang, Yuxin; Cai, Zhonghou; Han, Ping; Cheng, X. M.

    Oxidation of metal nanoparticles usually follows a Kirkendall process to transform solid nanoparticles to hollow metal oxide nanoshells. However the morphological trajectory of nanoparticles and the mass diffusion kinetics involved in the nanoscale Kirkendall process are complex. In this presentation we report the use of in-situ transmission x-ray microscopy (TXM) to directly image individual silver nanowires under oxidation atmosphere, which are created from radiolysis of air under illumination of the focused synchrotron x-ray beam. The in-situ results clearly show the morphological transformation from solid silver nanowires to hollow nanotubes in the course of oxidation reaction of silver. Quantitative analysis of the time-resolved TXM images provides unprecedented details on reaction kinetics and mass diffusion kinetics associated with the oxidation process. Work at Bryn Mawr College is supported by NSF Grant #1207085. Use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  8. Channel-spacing and wavelength switchable multiwavelength erbium-doped fiber laser using sampled Hi-Bi fiber grating and photonic crystal fiber loop mirror

    International Nuclear Information System (INIS)

    We propose and demonstrate a stable room-temperature channel-spacing and wavelength switchable multiwavelength erbium-doped fiber (EDF) laser using a sampled Hi-Bi fiber grating and a photonic crystal fiber (PCF) loop mirror. The PCF loop mirror induces the intensity-dependent cavity loss to suppress the wavelength competition of the EDF. By adjusting the polarization controller, we can achieve 0.4 nm and 0.8 nm channel-spacing of the multiwavelength EDF laser. The measured power fluctuation of each wavelength is less than 0.2 dB and the peak power differences among the main oscillation wavelengths are less than 1.0 dB. Another desirable characteristic is that it needs a relatively low pump power of 100 mW

  9. Simultaneous multi-parameter observation of Harring-tonine-treating HL-60 cells with both two-photon and confo-cal laser scanning microscopy

    Institute of Scientific and Technical Information of China (English)

    张春阳; 李艳平; 马辉; 李素文; 薛绍白; 陈瓞延

    2001-01-01

    Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.

  10. Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe.

    Directory of Open Access Journals (Sweden)

    Mitrajit Ghosh

    Full Text Available To study the role and (sub cellular nitric oxide (NO constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu 2FL2E and two-photon laser scanning microscopy (TPLSM. Cu 2FL2E demonstrated high sensitivity and specificity for NO synthesis, combined with low cytotoxicity. Furthermore, Cu 2FL2E showed superior sensitivity over the conventionally used Griess assay. NO specificity of Cu 2FL2E was confirmed in vitro in human coronary arterial endothelial cells and porcine aortic endothelial cells using various triggers for NO production. Using TPLSM on ex vivo mounted murine carotid artery and aorta, the applicability of the probe to image NO production in both endothelial cells and smooth muscle cells was shown. NO-production and time course was detected for multiple stimuli such as flow, acetylcholine and hydrogen peroxide and its correlation with vasodilation was demonstrated. NO-specific fluorescence and vasodilation was abrogated in the presence of NO-synthesis blocker L-NAME. Finally, the influence of carotid precontraction and vasorelaxation validated the functional properties of vessels. Specific visualization of NO production in vessels with Cu 2FL2E-TPLSM provides a valid method for studying spatial-temporal synthesis of NO in vascular biology at an unprecedented level. This approach enables investigation of the pathways involved in the complex interplay between NO and vascular (dys function.

  11. Cell Signaling and Trafficking of Human Melanocortin Receptors in Real Time Using Two-photon Fluorescence and Confocal Laser Microscopy: Differentiation of Agonists and Antagonists

    OpenAIRE

    Cai, Minying; Varga, Eva V.; Stankova, Magda; Mayorov, Alexander; Perry, Joseph W.; Yamamura, Henry I.; Trivedi, Dev; Victor J. Hruby

    2006-01-01

    Melanocortin hormones and neurotransmitters regulate a vast array of physiologic processes by interacting with five G-protein-coupled melanocortin receptor types. In the present study, we have systematically studied the regulation of individual human melanocortin receptor wild subtypes using a synthetic rhodamine-labeled human melanotropin agonist and antagonist, arrestins fused to green fluorescent protein in conjunction with two-photon fluorescence laser scanning microscopy and confocal mic...

  12. Observation of a low-symmetry phase in Na0.5Bi0.5TiO3 crystals by optical birefringence microscopy

    International Nuclear Information System (INIS)

    Single crystals of sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) (pure and Mn-doped) have been investigated by means of optical birefringence microscopy. For both crystals, it was found that, above ∝573 K, the optical axis is perfectly aligned with one of the pseudocubic left angle 001 right angle PC directions, while the domain walls appearing in the images are parallel to the pseudocubic left angle 011 right angle PC directions. These observations are consistent with a tetragonal symmetry. Below ∝573 K, the observed optical orientation of both crystals shows a broad angular distribution, with no clearly visible crystallographically oriented domain walls. These results are consistent with monoclinic symmetry. Most importantly, the direct observation of the temperature-driven rotation of the optical axis within the monoclinic plane is reported for the first time in a perovskite oxide material, in the present case for Mn-doped NBT. This has consequences for the understanding of phase transitions in technologically relevant compounds, such as PbZr1-xTixO3, which are considered to have monoclinic structure in some parts of the phase diagram. (orig.)

  13. The cavity resonance mode of Bi2Sr2CaCu2O8 mesa terahertz sources as probed by scanning laser thermal microscopy

    Science.gov (United States)

    Benseman, Timothy; Koshelev, Alexei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Hao, Yang; Gross, Boris; Lange, Matthias; Koelle, Dieter; Kleiner, Reinhold; Kadowaki, Kazuo

    Stacked Intrinsic Josephson Junctions (IJJs) in the extremely anisotropic high-Tc superconductor Bi2Sr2CaCu2O8 are a promising solid-state source of coherent terahertz radiation in the so-called ``THz gap'' range. In these devices, a geometric resonant mode of a stack of IJJs of typical dimensions 300 x 60 x 1 microns3 acts to synchronize the individual junctions, resulting in coherent far-field THz emission. This resonance can be probed by scanning thermal laser microscopy, in which a modulated optical laser beam is rastered across the top surface of a stack. The resulting thermal perturbation to the stack's cavity mode can thus be mapped via the resulting xy-dependent modulation of the stack's electrical resistance. Here we discuss the experimentally measured scanning laser pattern of such a THz cavity mode, and the implications of its symmetry for the mechanism of IJJ synchronization in these devices. This research was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. De-AC02-06CH11357.

  14. Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy

    International Nuclear Information System (INIS)

    BiFeO3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R3c and antipolar Pbam phases was detected by conventional X-ray diffraction (XRD); the non-polar Pnma or Pbnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems

  15. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    Science.gov (United States)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with

  16. Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As{sub 1−x}Bi{sub x})/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A. W.; Babcock, S. E. [Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Guan, Y.; Forghani, K.; Anand, A.; Kuech, T. F. [Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-03-01

    A set of GaAs{sub 1−x}Bi{sub x}/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs{sub 1−x}Bi{sub x} well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast”) scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs{sub 1−x}Bi{sub x} alloys as they currently are grown.

  17. 4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

    Science.gov (United States)

    Lavagnino, Zeno; Sancataldo, Giuseppe; D’Amora, Marta; Follert, Philipp; de Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca

    2016-04-01

    In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces.

  18. Label-free NIR reflectance imaging as a complimentary tool for two-photon fluorescence microscopy: multimodal investigation of stroke (Conference Presentation)

    Science.gov (United States)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2016-03-01

    Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.

  19. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    Directory of Open Access Journals (Sweden)

    David G Rosenegger

    Full Text Available Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  20. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    International Nuclear Information System (INIS)

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible

  1. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy.

    Science.gov (United States)

    Ricard, Clément; Lamasse, Lisa; Jaouen, Alexandre; Rougon, Geneviève; Debarbieux, Franck

    2016-06-01

    Simultaneous imaging of different cell types and structures in the mouse central nervous system (CNS) by intravital two-photon microscopy requires the characterization of fluorophores and advances in approaches to visualize them. We describe the use of a two-photon infrared illumination generated by an optical parametric oscillator (OPO) on quantum-dots 655 (QD655) nanocrystals to improve resolution of the vasculature deeper in the mouse brain both in healthy and pathological conditions. Moreover, QD655 signal can be unmixed from the DsRed2, CFP, EGFP and EYFP fluorescent proteins, which enhances the panel of multi-parametric correlative investigations both in the cortex and the spinal cord. PMID:27375951

  2. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    Directory of Open Access Journals (Sweden)

    Bernardo Sabatini

    2014-05-01

    Full Text Available The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synapse potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated.

  3. Widefield two-photon excitation without scanning: live cell microscopy with high time resolution and low photo-bleaching

    CERN Document Server

    Amor, Rumelo; Robb, Gillian; Wilson, Louise; Rahman, Nor Zaihana Abdul; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail

    2015-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca$^{2+}$ events in primary rat neurone cultures loaded with the fluorescent Ca$^{2+}$ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.

  4. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching

    Science.gov (United States)

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J.; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required. PMID:26824845

  5. Carrier and photon dynamics in a topological insulator Bi2Te3/GaN type II staggered heterostructure

    International Nuclear Information System (INIS)

    We have demonstrated a type-II band-aligned heterostructure between pulsed laser deposited topological insulator bismuth telluride and metal organic-chemical-vapour deposited GaN on a sapphire substrate. The heterostructure shows a large valence band-offset of 3.27 eV as determined from x-ray photoelectron spectroscopy, which is close to the bandgap of GaN (3.4 eV). Further investigation using x-ray diffraction, Raman spectroscopy, and energy-dispersive x-ray spectrum reveals the stoichiometric and material properties of bismuth telluride on GaN. Steady state photon emission from GaN is found to be modulated by the charge transfer process due to diffusion across the junction. The time constant involved with the charge transfer process is found to be 0.6 ns by transient absorption spectroscopy. The heterostructure can be used for designing devices with different functionalities and improving the performance of the existing devices on GaN

  6. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy

    NARCIS (Netherlands)

    Fontana, Y.; Grzela, G.; Bakkers, E.P.A.M.; Gomez Rivas, J.

    2012-01-01

    Controlling the dispersion and directionality of the emission of nanosources is one of the major goals of nanophotonics research. This control will allow the development of highly efficient nanosources even at the single-photon level. One of the ways to achieve this goal is to couple the emission to

  7. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution.

    Science.gov (United States)

    Hirvonen, Liisa M; Festy, Frederic; Suhling, Klaus

    2014-10-01

    A 1 MHz frame rate complementary metal-oxide semiconductor (CMOS) camera was used in combination with an image intensifier for wide-field time-correlated single-photon counting (TCSPC) imaging. The system combines an ultrafast frame rate with single-photon sensitivity and was employed on a fluorescence microscope to image decays of ruthenium compound Ru(dpp) with lifetimes from around 1 to 5 μs. A submicrowatt excitation power over the whole field of view is sufficient for this approach, and compatibility with live-cell imaging was demonstrated by imaging europium-containing beads with a lifetime of 570 μs in living HeLa cells. A standard two-photon excitation scanning fluorescence lifetime imaging (FLIM) system was used to independently verify the lifetime for the europium beads. This approach brings together advantageous features for time-resolved live-cell imaging such as low excitation intensity, single-photon sensitivity, ultrafast camera frame rates, and short acquisition times. PMID:25360938

  8. 双光子显微镜在免疫学研究中的应用%The application of two-photon microscopy in immunology researches

    Institute of Scientific and Technical Information of China (English)

    陈罗泉; 王青青

    2012-01-01

    Two-photon microscopy is a new technology for fluorescence imaging of living tissues.Because it produses less damage to cells and deeper imaging degree.It can be used to observe living cells for longer time.For these reasons,it has been gradually applied to cell biology,neurobiology,immunology and other research fields.This paper reviews the application of two-photon microscopy in immunology,especially in the study of the development,differentiation,migration and function of immune cells.%双光子显微镜是一种对活体组织进行荧光成像的新技术.它由于具有对细胞损伤小、成像深度大和可用于活细胞长时间观察等优点而逐渐被应用于细胞生物学、神经生物学、免疫学等研究领域.近些年来双光子显微镜在免疫学研究中的应用很广,主要是用于免疫细胞发育、分化、迁移和功能研究等方面.

  9. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation

    Science.gov (United States)

    Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon

    2015-11-01

    Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.

  10. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.;

    2012-01-01

    latter probe has utility for prolonged live-cell imaging of sterol transport. Results: We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements...... are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D similar to 1.3 mu m(2)/s. Number and brightness (N...... slow directed transport with an average velocity of v similar to 6 x 10(-3) mu m/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the...

  11. Targeted nanosensor aided three-dimensional pH mapping in tumor spheroids using two-photon microscopy

    Science.gov (United States)

    Ray, Aniruddha; Lee, Yong-Eun Koo; Elbez, Remy; Kopelman, Raoul

    2012-03-01

    Tumors are generally characterized by a pH lower than the surrounding tissues. The mapping of tumor pH is of great importance as it plays a critical role in drug delivery and its effectiveness. Here we present a pH mapping technique in tumor spheroids, using targeted, ratiometric, fluorescent, pH nano-sensor that is based on two-photon excitation. Spheroids are micro-tumors that are widely used as an in-vitro three dimensional tumor model to study the different properties of the tumor for the purpose of drug delivery, therapy etc. The nanosensor consists of 8-Hydroxypyrene- 1,3,6-trisulfonic acid (HPTS), a pH sensitive dye, encapsulated in polyacrylamide hydrogel nanoparticle matrix and F3 peptide, conjugated to the nanoparticle's surface. The nanosensor has an average size of 68nm and contains approximately 0.5% dye by weight. The fluorescence intensity ratio, at the two-photon excitation wavelengths of 900nm and 750nm, increases linearly in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. Our study reveals the pH distribution inside human cervix cancer spheroids (of different sizes) during the various stages of their formation. This information can be used to develop more efficient drug delivery mechanisms. The two-photon excitation used for this purpose is especially useful as it drastically minimizes both photobleaching and autofluorescence, thus leading to an increase in the signal-to-noise ratio. It also enables deep tissue imaging due to higher photon penetration depth.

  12. Multi-Dimensional Time-Correlated Single Photon Counting (TCSPC) Fluorescence Lifetime Imaging Microscopy (FLIM) to Detect FRET in Cells

    OpenAIRE

    Duncan, R. R.; Bergmann, A; Cousin, M. A.; Apps, D. K.; Shipston, M. J.

    2004-01-01

    We present a novel, multi-dimensional, time-correlated single photon counting (TCSPC) technique to perform fluorescence lifetime imaging with a laser-scanning microscope operated at a pixel dwell-time in the microsecond range. The unsurpassed temporal accuracy of this approach combined with a high detection efficiency was applied to measure the fluorescent lifetimes of enhanced cyan fluorescent protein (ECFP) in isolation and in tandem with EYFP (enhanced yellow fluorescent protein). This tec...

  13. The effect of polyunsaturated fatty acids on the homeostasis of yolk lipoprotein in C. elegans examined by CARS and two-photon excitation fluorescence (TPE-F) microscopy

    Science.gov (United States)

    Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Lin, Yi-Chun; Ma, Tian-Hsiang; Lo, Szecheng J.; Chang, Ta-Chau

    2016-03-01

    Yolk lipoprotein constitutes the major source of energy and the materials for synthesizing signaling factors for the development of oocytes and embryos in C. elegans. Polyunsaturated fatty acids (PUFAs) packed in yolk lipoprotein have been recently recognized as critical molecules for fertilization and reproduction.1 However, the relation between PUFAs and the homeostasis of yolk lipoprotein is not clear. Here we use coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excitation fluorescence (TPE-F) microscopy to examine the transportation of yolk lipoprotein. We demonstrate that CARS microscopy is a more sensitive method than the traditional Nile Red staining method in probing the abnormal accumulation of yolk lipoprotein in the body cavity of C. elegans. It is found that the accumulation of yolk lipoprotein is a time-dependent process. In addition, a negative correlation (r = -0.955) between reproductive aging and abnormal accumulation of yolk lipoprotein is established. We further examine wild-type, fat-1, and fat-2 worms with or without the expression of GFP-tagged yolk lipoprotein (VIT-2-GFP). Our data reveal that PUFAs have a positive effect on the synthesis and endocytosis of yolk lipoprotein, confirming the model proposed by Edmonds et al.2

  14. Optical characterization of lesions and identification of surgical margins in pancreatic metastasis from renal cell carcinoma by using two-photon excited fluorescence microscopy

    International Nuclear Information System (INIS)

    Two-photon excited fluorescence (TPEF) microscopy has become a powerful instrument for imaging unstained tissue samples in biomedical research. The purpose of this study was to determine whether TPEF imaging of histological sections without hematoxylin-eosin (H-E) stain can be used to characterize lesions and identify surgical margins in pancreatic metastasis from renal cell carcinoma (RCC). The specimens of a pancreatic metastasis from RCC, as well as a primary RCC from a patient, were examined by TPEF microscopy and compared with their corresponding H-E stained histopathological results. The results showed that high-resolution TPEF imaging of unstained histological sections of pancreatic metastasis from RCC can reveal that the typical morphology of the tissue and cells in cancer tissues is different from the normal pancreas. It also clearly presented histopathological features of the collagenous capsule, which is an important boundary symbol to identify normal and cancerous tissue and to instruct surgical operation. It indicated the feasibility of using TPEF microscopy to make an optical diagnosis of lesions and identify the surgical margins in pancreatic metastasis from RCC. (paper)

  15. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  16. Steady-state and time-resolved two-photon fluorescence microscopy: a versatile tool for probing cellular environment and function

    International Nuclear Information System (INIS)

    In the last decade, the two-photon fluorescence laser-scanning microscopy (TPLSM) has become an indispensable tool for the bioscientific and biomedical research. TPLSM techniques as well as their applications are currently experiencing a dramatic evolution and represent the focus of many biophysical research projects. In this work, we compare in detail two steady-state TPLSM techniques, i.e. single-beam scanning microscopy combined with point-detection (SB-PMT) and multi-beam scanning microscopy combined with synchronous detection (MB-CCD), as far as their technical characteristics relevant for the bioscientific research are concerned, i.e. optical performance and imaging speed. We demonstrate that the SB-PMT technique is more adequate for deep-tissue imaging (few 100 μm depth) than the MB-CCD technique, whereas only the MB-CCD technique enables high-speed imaging for characterizing the dynamics of fast biological phenomena. Novel applications of these techniques are additionally discussed. Moreover, we employ a time-resolved TPLSM technique, i.e. biexponential fluorescence lifetime imaging based on the cellular fluorescence of the nicotinamide pyridine dinucleotides NADH and NADPH, which allows us to probe for the first time the redox cellular metabolism of MIN6 cells (mutated insulin producing pancreatic β-cells) as well as to show the potential of this method for the specific and dynamic investigation of NADH- and NADPH-dependent cellular processes

  17. Steady-state and time-resolved two-photon fluorescence microscopy: a versatile tool for probing cellular environment and function

    Science.gov (United States)

    Denicke, Stefan; Ehlers, Jan-Eric; Niesner, Raluca; Quentmeier, Stefan; Gericke, Karl-Heinz

    2007-09-01

    In the last decade, the two-photon fluorescence laser-scanning microscopy (TPLSM) has become an indispensable tool for the bioscientific and biomedical research. TPLSM techniques as well as their applications are currently experiencing a dramatic evolution and represent the focus of many biophysical research projects. In this work, we compare in detail two steady-state TPLSM techniques, i.e. single-beam scanning microscopy combined with point-detection (SB-PMT) and multi-beam scanning microscopy combined with synchronous detection (MB-CCD), as far as their technical characteristics relevant for the bioscientific research are concerned, i.e. optical performance and imaging speed. We demonstrate that the SB-PMT technique is more adequate for deep-tissue imaging (few 100 μm depth) than the MB-CCD technique, whereas only the MB-CCD technique enables high-speed imaging for characterizing the dynamics of fast biological phenomena. Novel applications of these techniques are additionally discussed. Moreover, we employ a time-resolved TPLSM technique, i.e. biexponential fluorescence lifetime imaging based on the cellular fluorescence of the nicotinamide pyridine dinucleotides NADH and NADPH, which allows us to probe for the first time the redox cellular metabolism of MIN6 cells (mutated insulin producing pancreatic β-cells) as well as to show the potential of this method for the specific and dynamic investigation of NADH- and NADPH-dependent cellular processes.

  18. Optical characterization of lesions and identification of surgical margins in pancreatic metastasis from renal cell carcinoma by using two-photon excited fluorescence microscopy

    Science.gov (United States)

    Chen, Jing; Hong, Zhipeng; Chen, Hong; Chen, Youting; Xu, Yahao; Zhu, Xiaoqin; Zhuo, Shuangmu; Shi, Zheng; Chen, Jianxin

    2014-11-01

    Two-photon excited fluorescence (TPEF) microscopy has become a powerful instrument for imaging unstained tissue samples in biomedical research. The purpose of this study was to determine whether TPEF imaging of histological sections without hematoxylin-eosin (H-E) stain can be used to characterize lesions and identify surgical margins in pancreatic metastasis from renal cell carcinoma (RCC). The specimens of a pancreatic metastasis from RCC, as well as a primary RCC from a patient, were examined by TPEF microscopy and compared with their corresponding H-E stained histopathological results. The results showed that high-resolution TPEF imaging of unstained histological sections of pancreatic metastasis from RCC can reveal that the typical morphology of the tissue and cells in cancer tissues is different from the normal pancreas. It also clearly presented histopathological features of the collagenous capsule, which is an important boundary symbol to identify normal and cancerous tissue and to instruct surgical operation. It indicated the feasibility of using TPEF microscopy to make an optical diagnosis of lesions and identify the surgical margins in pancreatic metastasis from RCC.

  19. One, two and three photon excitation in laser scanning fluorescence microscopy: Live cell measurements of phospholipase hydrolysis, serotonin release and calcium sparks

    Science.gov (United States)

    Williams, Rebecca Marie

    1997-10-01

    This work consists primarily of an examination of three live cell processes as measured by Multiphoton Excitation Laser Scanning Microscopy (MPE-LSM). One of the factors that can severely limit both the speed of acquisition and the total amount of information derived from a live cell fluorescence imaging experiment is illumination induced fluorophore photobleaching. Here a new technique is described for the measurement of fluorophore photobleaching under laser scanning conditions. Photobleaching quantum yields for fluorescein under both one- and two-photon illumination are reported. Two of the live cell measurements are carried out using RBL-2H3 cells, a well-characterized mucosal mast cell line, which secrete histamine, serotonin and other inflammatory mediators in response to allergenic stimulation. Exogenous phospholipase A2 (PLA2) hydrolysis of RBL-2H3 cell plasma membranes is measured using both linear and nonlinear imaging of reporter doubly acyl-labeled phospholipid probes. The RBL-2H3 cells, normally resistant to exogenous PLA2 hydrolysis, experience a 3-5 fold enhancement of enzymatic activity upon allergenic stimulation. Previously it has been shown that serotonin (5- hydroxytryptamine, 5-HT) distributions can be imaged in RBL-2H3 cells using a three-photon process to excite native 5-HT fluorescence (Maiti, 1997). Here three-photon excitation imaging measurements of the secretion process are reported. The third live cell study is a characterization of spontaneous calcium 'sparking' activity found in developing skeletal muscle cell cultures using MPE-LSM and confocal microscopy in conjunction with the calcium indicator dyes Indo-1 and Fluo-3. Double stain imaging experiments reveal that spark activity is most likely to occur in perinuclear regions. Because of their magnitudes of release (105-106 ions) and mitigation by ryanodine, the sparks are proposed to be the result of calcium conduction through T-type calcium channels in early excitation

  20. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector

    OpenAIRE

    Pal, Sambit Bikas; Haldar, Arijit; Roy, Basudev; Banerjee, Ayan

    2011-01-01

    A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe - however, this mode has problems of low S/N due to the small back-scattering cross-sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors,...

  1. Reduction of the pulse duration of the ultrafast laser pulses of the Two-Photon Laser Scanning Microscopy (2PLSM

    Directory of Open Access Journals (Sweden)

    Reshak Ali

    2008-07-01

    Full Text Available Abstract Background We provide an update of our two-photon laser scanning microscope by compressing or reducing the broadening of the pulse width of ultrafast laser pulses for dispersion precompensation, to enable the pulses to penetrate deeply inside the sample. Findings The broadening comes as the pulses pass through the optical elements. We enhanced and modified the quality and the sharpness of images by enhancing the resolution using special polarizer namely Glan Laser polarizer GL10. This polarizer consists of two prisms separated by air space. This air separation between the two prisms uses to delay the red wavelength when the light leaves the first prism to the air then to second prism. We note a considerable enhancing with using the GL polarizer, and we can see the details of the leaf structure in early stages when we trying to get focus through z-stacks of images in comparison to exactly the same measurements without using GL polarizer. Hence, with this modification we able to reduce the time of exposure the sample to the laser radiation thereby we will reduce the probability of photobleaching and phototoxicity. When the pulse width reduced, the average power of the laser pulses maintained at a constant level. Significant enhancement is found between the two kinds of images of the Two-Photon Excitation Fluorescence (TPEF. Conclusion In summary reduction the laser pulse width allowed to collect more diffraction orders which will used to form the images. The more diffraction orders the higher resolution images.

  2. Effect of detergents on the physico-chemical properties of skin stratum corneum: A two-photon excitation fluorescence microscopy study

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Pashkovski, Eugene;

    2014-01-01

    conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). METHOD: Experiments were......OBJECTIVE: Understanding the structural and dynamical features of skin is critical for advancing innovation in personal care and drug discovery. Synthetic detergent mixtures used in commercially available body wash products are thought to be less aggressive towards the skin barrier when compared to...... performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in presence and absence of SCM and SDS detergents. RESULTS: Hydration of the intercellular lipid matrix to a...

  3. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Lund Frederik W

    2012-10-01

    Full Text Available Abstract Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE, an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s, a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle

  4. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    Full Text Available Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype.With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity of dendritic cells (DCs, and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions.

  5. Calcium imaging of inner ear hair cells within the cochlear epithelium of mice using two-photon microscopy

    Science.gov (United States)

    Yuan, Tao; Gao, Simon S.; Saggau, Peter; Oghalai, John S.

    2010-01-01

    Mice are an excellent model for studying mammalian hearing and transgenic mouse models of human hearing, loss are commonly available. However, the mouse cochlea is substantially smaller than other animal models routinely used to study cochlear physiology. This makes study of their hair cells difficult. We develop a novel methodology to optically image calcium within living hair cells left undisturbed within the excised mouse cochlea. Fresh cochleae are harvested, left intact within their otic capsule bone, and fixed in a recording chamber. The bone overlying the cochlear epithelium is opened and Reissner's membrane is incised. A fluorescent calcium indicator is applied to the preparation. A custom-built upright two-photon microscope was used to image the preparation using 3-D scanning. We are able to image about one third of a cochlear turn simultaneously, in either the apical or basal regions. Within one hour of animal sacrifice, we find that outer hair cells demonstrate increased fluorescence compared with surrounding supporting cells. This methodology is then used to visualize hair cell calcium changes during mechanotransduction over a region of the epithelium. Because the epithelium is left within the cochlea, dissection trauma is minimized and artifactual changes in hair cell physiology are expected to be reduced.

  6. X-ray Zernike apodized photon sieves for phase-contrast microscopy%X射线相衬成像光子筛

    Institute of Scientific and Technical Information of China (English)

    程冠晓; 胡超

    2011-01-01

    基于Zernike相衬成像原理和光瞳切趾原理,提出一种将相位板和切趾光子筛集成为一个相衬显微物镜的X射线相衬成像光子筛的设计方法.这种X射线相衬成像物镜可以实现生物体组织或者其他弱吸收材料的高分辨率和高衬度成像.通过优化光子筛透镜的衍射结构,可以抑制成像系统的点扩展函数的旁瓣和消除高阶衍射焦点,从而提高成像分辨率;另外,将光子筛透镜和变相板合为一体,克服了成像透镜和变相板难以对准的缺陷.以高斯切趾光子筛为例,实验验证了设计方法的可行性.%We present a kind of diffractive lens Zernike apodized photon sieves (ZAPS) whose structure is based on the combination of two concepts:apodized photon sieves and Zernike phase-contrast.Combined with the synchrotron light source,the ZAPS can be used as an objective for high-resolution phase-contrast X-ray microscopy in physical and life sciences.The ZAPS is a single optic unit that integrates the appropriate ±π/2 radians phase shift through selective zone placement shifts in an apodized photon sieve.The focusing properties of the ZAPS can be easily controlled by apodizing its pupil function.An apodized photon sieve with Gaussian pupil is fabricated by lithographic technique and shows that the side-lobes are significantly suppressed at the expense of slightly widening the width of the main lobe.

  7. Strategies for mapping synaptic inputs on dendrites in vivo by combining two-photon microscopy, sharp intracellular recording and pharmacology

    Directory of Open Access Journals (Sweden)

    Manuel eLevy

    2012-12-01

    Full Text Available Uncovering the functional properties of individual synaptic inputs on single neurons is critical for understanding the computational role of synapses and dendrites. Previous studies combined whole-cell patch recording to load neurons with a fluorescent calcium indicator and two-photon imaging to map subcellular changes in fluorescence upon sensory stimulation. By hyperpolarizing the neuron below spike threshold, the patch electrode ensured that changes in fluorescence associated with synaptic events were isolated from those caused by back-propagating action potentials. This technique holds promise for determining whether the existence of unique cortical feature maps across different species may be associated with distinct wiring diagrams. However, the use of whole-cell patch for mapping inputs on dendrites is challenging in large mammals, due to brain pulsations and the accumulation of fluorescent dye in the extracellular milieu. Alternatively, sharp intracellular electrodes have been used to label neurons with fluorescent dyes, but the current passing capabilities of these high impedance electrodes may be insufficient to prevent spiking. In this study, we tested whether sharp electrode recording is suitable for mapping functional inputs on dendrites in the cat visual cortex. We compared three different strategies for suppressing visually evoked spikes: (1 hyperpolarization by intracellular current injection, (2 pharmacological blockade of voltage-gated sodium channels by intracellular QX-314, and (3 GABA iontophoresis from a perisomatic electrode glued to the intracellular electrode. We found that functional inputs on dendrites could be successfully imaged using all three strategies. However, the best method for preventing spikes was GABA iontophoresis with low currents (5 to 10 nA, which minimally affected the local circuit. Our methods advance the possibility of determining functional connectivity in preparations where whole-cell patch may be

  8. A novel technique for the in vivo imaging of autoimmune diabetes development in the pancreas by two-photon microscopy.

    Directory of Open Access Journals (Sweden)

    Ken Coppieters

    Full Text Available Type 1 diabetes (T1D is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.

  9. In Vivo Evaluation of Cervical Stiffness Evolution during Induced Ripening Using Shear Wave Elastography, Histology and 2 Photon Excitation Microscopy: Insight from an Animal Model.

    Directory of Open Access Journals (Sweden)

    Laura Peralta

    metabolite PGEM. Histological analyses and two-photon excitation microscopy, combining both Second Harmonic Generation (SHG and Two-photon Fluorescence microscopy (2PF contrasts, were used to investigate, at the microscopic scale, the structure of cervical tissue. Results show that both collagen and 2PF-active fibrillar structures could be closely related to the mechanical properties of cervical tissue that are perceptible in elastography. In conclusion, SWE may be a valuable method to objectively quantify the cervical stiffness and as a complementary diagnostic tool for preterm birth and for labour induction success.

  10. In vivo imaging flow cytometry based on laser scanning two-photon microscopy at kHz cross-sectional frame rate

    Science.gov (United States)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    In vivo flow cytometry has found numerous applications in biology and pharmacology. However, conventional cytometry does not provide the detailed morphological information that is needed to fully determine the phenotype of individual circulating cells. Imaging cytometry, capable of visualizing the morphology and dynamics of the circulating cells at high spatiotemporal resolution, is highly desired. Current wide-field based image cytometers are limited in the imaging depth and provide only two-dimensional resolution. For deep tissue imaging, laser scanning two-photon fluorescence microscopy (TPM) is widely adopted. However, for applications in flow cytometry, the axial scanning speed of current TPMs is inadequate to provide high-speed cross-sectional imaging of vasculature. We have integrated an optical phase-locked ultrasound lens into a standard TPM and achieved microsecond-scale axial scanning. With a galvo scanner for transverse scanning, we achieved kHz cross-sectional frame rate. Here we report its applications for in vivo deformability cytometry and in vivo imaging flow cytometry, and demonstrate the capability of imaging dynamical morphologies of flowing cells, distinguishing cells and cellular clusters, and simultaneously quantifying different cell populations based on their fluorescent labels.

  11. Multi-actuator adaptive lens for wavefront correction in optical coherence tomography and two-photon excitation fluorescence microscopy (Conference Presentation)

    Science.gov (United States)

    Bonora, Stefano; Lee, Sujin; Jian, Yifan; Cua, Michelle; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a new type of adaptive lens with 18 actuators that can correct up the 4th order of aberration. The Multi-actuator Adaptive Lens (M-AL) can guarantee a good level of aberration correction for many applications and, with respect to deformable mirror, it allows the realization of more compact and simple optical systems. The adaptive lens is based on the use of piezoelectric actuators and, without any obstruction or electrodes in the clear aperture, can guarantee a fast response time, in the order of about 10ms. The clear aperture of the M-AL allows its use in "classical" Adaptive Optics configuration together with a wavefront sensor. To introduce a further simplification to the optical system design we show that the adaptive lens can be also driven with a wavefront sensorless control algorithm during in vivo optical coherence tomography of the human retina and for two-photon excitation fluorescence microscopy. In the experimental setup we used two aberration correcting devices a commercial adaptive lens (AL) with a high dynamic range to correct for defocus and the Multi-actuator Adaptive Lens (M-AL) to correct for the Zernike aberrations up to the 4th order. Experimental results show that the ocular aberrations of human eyes can be successfully corrected with our M-AL for pupils of 5mm and that retinal cones can be readily imaged.

  12. Construction and application of femtosecond laser two-photon fluorescence microscopy system%飞秒激光双光子荧光显微系统的构建与应用

    Institute of Scientific and Technical Information of China (English)

    秦一凡; 李茜; 夏元钦; 刘斌; 张盛

    2015-01-01

    为进行双光子荧光显微成像研究,搭建了一套飞秒激光光源双光子荧光显微成像系统.对超短脉冲锁模激光器的成像优势、双光子激励饱和功率及系统分辨率进行了理论推导,利用飞秒激光器、显微镜、数据采集设备与控制装置及扫描控制软件搭建了显微成像系统,并对Rhodamine B样品进行双光子荧光显微成像实验.结果表明:相同条件下,超短脉冲锁模激光器的双光子荧光产率为连续光输出激光器的105 倍;采用UPLSAPO60XO型物镜时,双光子激励饱和功率为50 mW,理论横向和轴向分辨率为303 nm与727 nm;该系统具有显微成像能力,且实际横向分辨率小于3 μm.%By using a femtosecond laser as the excitation source,a two-photon fluorescence microscopy system was constructed to conduct some researches on two-photon microcsopy.Firstly,the advantage of introducing an ultrashort pulse mode-locked laser was verified,the definite expression of saturation power was calculated,and the resolution of two-photon fluorescence microscopy was deduced.Then based on the femtosecond laser,microscope,data acquisition device,control equipment and the software that we wrote,a two-photon fluorescence microscopy system was built.At last,the two-photon fluorescence microscopy system is applied into the microscopy study of Rhodamine B specimen.The results show that in the same condition,two-photon excitation productivity is as much as 105 times with an ultrashort pulse mode-locked laser compared with a CW laser.By using the UPLSAPO60XO objective,the saturation power is 50 mW while the radial and the axial resolution reach 303 nm and 727 nm.The image ability of the system is proved by the results,and the actual radial resolution is less than 3 μm.

  13. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    Science.gov (United States)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  14. Observation of a low-symmetry phase in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} crystals by optical birefringence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gorfman, S.; Thomas, P.A. [Warwick Univ. (United Kingdom). Dept. of Physics; Glazer, A.M. [Oxford Univ. (United Kingdom). Clarendon Lab.; Noguchi, Y.; Miyayama, M. [Tokyo Univ. (Japan); Luo, H. [Shanghai Institute of Ceramics, Shanghai (China)

    2012-06-15

    Single crystals of sodium bismuth titanate (Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}, NBT) (pure and Mn-doped) have been investigated by means of optical birefringence microscopy. For both crystals, it was found that, above {proportional_to}573 K, the optical axis is perfectly aligned with one of the pseudocubic left angle 001 right angle {sub PC} directions, while the domain walls appearing in the images are parallel to the pseudocubic left angle 011 right angle {sub PC} directions. These observations are consistent with a tetragonal symmetry. Below {proportional_to}573 K, the observed optical orientation of both crystals shows a broad angular distribution, with no clearly visible crystallographically oriented domain walls. These results are consistent with monoclinic symmetry. Most importantly, the direct observation of the temperature-driven rotation of the optical axis within the monoclinic plane is reported for the first time in a perovskite oxide material, in the present case for Mn-doped NBT. This has consequences for the understanding of phase transitions in technologically relevant compounds, such as PbZr{sub 1-x}Ti{sub x}O{sub 3}, which are considered to have monoclinic structure in some parts of the phase diagram. (orig.)

  15. Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in Bi(Zn1/2Ti1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Piezoelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    LIU Li-Ming; ZENG Hua-Bong; CAO Zhen-Zhu; LENG Xue; ZHAO Kun-Yu; LI Guo-Rong; YIN Qing-Rui

    2011-01-01

    @@ Bismuth zinc titanate dopied lead magnesium niobate-lead titanate[Bi(Zn1/2Ti1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (BZT-PMN-PT)]piezoelectric ceramics are synthesized by the conventional solid state reaction method.Ferroelectric domain structures and the evolutionary behavior of BZT-PMN-PT ceramics under an external in-plane electric field are investigated by piezoresponse force microscopy(PFM).It is found that the BZT doping has a significant effect on the domain configurations and the domain kinetic behavior of the piezoelectric BZT-PMN-PT solid solution ceramics.Microdomains embedded in the macrodomains, induced by the BZT dopant in the solid solution ceramics, are clearly observed by PFM and their volume increases with increasing amounts of BZT doping.The microdomains of BZT-PMN-PT piezoelectric ceramics exhibit better domain dynamic behavior stability than macrodomains under an external in-plane electric held.

  16. 半金属表面上酞菁锰分子的转动态研究%Scanning tunneling microscopy study of single rotational MnPc on Bi(111) surface

    Institute of Scientific and Technical Information of China (English)

    王纯杰; 罗吉勇; 孙凯; 王俊忠

    2014-01-01

    The rotational state of single manganese phthalocyanine (MnPc) molecule on Bi(111) surface was investigated using low temperature scanning tunneling microscopy ( LT⁃STM ) . Single MnPc molecule exhibits as a hexagon at 77 K. By means of STM manipulation technique, single molecular rotor has been blocked successfully. The height profile lines of molecules and molecular configurations on Bi ( 111 ) suface results show that single flat molecule rotates discontinuously with central axis, and it takes the rotational way that the molecule hops between three different molecular adsorption configurations. Combining the I⁃t spectrum, three distinct current levels has been clearly revealed due to three inequivalent configurations of molecule with respect to the tip, which further verifies the existence of three kinds of molecular adsorption configurations. Moreover, we obtained the occupation probabilities of different configurations and their related energies by approximate statistical analysis technique.%利用低温STM研究了半金属Bi(111)表面上单个酞菁锰分子的转动态。通过高分辨STM图发现,在液氮温度(77K)下单个酞菁锰分子呈六角形。利用STM操纵技术实现了对单个酞菁锰分子的制动,并通过对单分子的高低起伏和吸附构型分析,确定分子在Bi(111)表面做非连续的中心转动。这种单分子转动是三种相对稳定的吸附构型交替变化的结果。结合I⁃t谱技术,进一步验证了这三种分子吸附构型的存在;并利用近似统计分析方法得到三种吸附构型各自出现的概率以及其相对能量。

  17. 超连续谱进行多色双光子成像%Supercontinuum for Multicolor Two­photon Microscopy

    Institute of Scientific and Technical Information of China (English)

    崔权; 梁小宝; 黄顺; 付玲

    2015-01-01

    suppress incompress- ible nonlinear effects for linear compressible continuum generation in optical fiber.The characteristics of supercontinuum will play a great role in biomedical photonics,especially in microscopy.

  18. High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red

    International Nuclear Information System (INIS)

    Graphical abstract: When BiOI/Bi2WO6 catalyst was exposed to UV or visible light, the electrons in the valence band of Bi2WO6 would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi2WO6 and transferred across the interface between BiOI and Bi2WO6 to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi2WO6. In this way, the photoinduced electron–hole pairs were effectively separated. Highlights: ► BiOI sensitized Bi2WO6 catalysts were successfully prepared by a facile method. ► The 13.2% BiOI/Bi2WO6 catalyst exhibits higher photoactivities than P25. ► A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi2WO6 photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV–vis diffuse reflection spectroscopy (UV–vis DRS) and Brunauer–Emmett–Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi2WO6 was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi2WO6 catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi2WO6 phases. With increasing BiOI content, the absorption intensity of BiOI/Bi2WO6 catalysts increases in the 380–600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi2WO6. The 13.2% BiOI/Bi2WO6 catalyst exhibits obviously higher UV and visible light photocatalytic activities than commercial P25, pure Bi2WO6 and BiOI, for the photodegradation of toluene and X-3B. The remarkably enhanced photocatalytic activities can be attributed to the

  19. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang [Research Institute for New Material Technology, Department of Research Center for Materials Interdisciplinary Science, Chongqing University of Arts and Science, Chongqing 402160 (China); Liu, Bitao, E-mail: liubitao007@163.com [Research Institute for New Material Technology, Department of Research Center for Materials Interdisciplinary Science, Chongqing University of Arts and Science, Chongqing 402160 (China); Wang, Zhaofeng, E-mail: zhaofeng.wang@uconn.edu [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2015-10-15

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed.

  20. Multiphoton microscopy in neuroscience

    Science.gov (United States)

    Denk, Winfried

    2002-06-01

    The study of the nervous system requires to an exceptional extent observation of and experimentation on intact tissue. There, in particular, high-resolution optical microscopy benefits from the inherent advantages of multi-photon fluorescence excitation. Several cases will be presented from a number of different tissues and organisms, where multi-photon excited laser scanning fluorescence microscopy has been an essential experimental tool. Those examples include the discovery of biochemical coincidence detection in synaptic spines and the clarification of the underlying mechanism; the observation of sensory evoked dendritic signaling in intact animals and the observation of light induced calcium signals in the intact retina. Recently a fiber coupled two-photon microscopy has been developed that allows the imaging in moving animal.

  1. 可用于双色双光子显微成像的新的荧光蛋白对%A Novel Fluorescent Protein Pair for Dual-color Two-photon Laser Scanning Microscopy

    Institute of Scientific and Technical Information of China (English)

    杨松; 滕岩; 徐平勇

    2012-01-01

    双色双光子激光扫描显微技术可以用来研究生物组织内两种不同蛋白质的表达、定位和示踪.由于大多数双光子显微镜一次只能提供一种波长的激发光,双色同时成像较难实现.mAmetrine和mKate2作为新发现的荧光蛋白对可以用于双光子双色同时成像,这得益于它们各自的优势:mAmetrine的斯托克斯位移和mKate2的高亮度.在765nm的波长激发时,它们的双光子吸收效率都很高.mAmetrine和mKate2能够很好地用于双色双光子活细胞成像实验.%Dual-color two-photon laser scanning microscopy is a useful method for simultaneously studying the expression,localization and trafficking of two different proteins in tissues.Because most two-photon microscopes only use a single wavelength excitation laser,simultaneously exciting multiple fluorescent proteins remains a challenge.Here,we present mAmetrine and mKate2,which can be used as a novel fluorescent protein pair in dual-color two-photon imaging by taking advantage of the large Stokes shift of mAmetrine and high brightness of mKate2.Both proteins have high two-photon absorption efficiencies and can be simultaneously excited at an optical wavelength of 765 nm.Dual-color two-photon imaging using this protein pair is highly effective in living cells.

  2. Observation of superconductivity in single crystalline Bi nanowires

    International Nuclear Information System (INIS)

    Bi nanowires have been fabricated by electrochemical deposition into the pores of ion track etched polycarbonate membranes. Transmission electron microscopy and selected area electron diffraction measurements reveal that these Bi nanowires are single crystalline with the rhombohedral lattice structure of bulk Bi at ambient pressure. We have measured the temperature dependence of the resistance and I-V characteristics at various magnetic fields on these Bi nanowires. These measurements show clear evidence for superconductivity below 0.64 K

  3. Phase modulated multiphoton microscopy

    CERN Document Server

    Karki, Khadga Jung; Pullerits, Tonu

    2015-01-01

    We show that the modulation of the phases of the laser beams of ultra-short pulses leads to modulation of the two photon fluorescence intensity. The phase modulation technique when used in multi-photon microscopy can improve the signal to noise ratio. The technique can also be used in multiplexing the signals in the frequency domain in multi-focal raster scanning microscopy. As the technique avoids the use of array detectors as well as elaborate spatiotemporal multiplexing schemes it provides a convenient means to multi-focal scanning in axial direction. We show examples of such uses. Similar methodology can be used in other non-linear scanning microscopies, such as second or third harmonic generation microscopy.

  4. Random-access Two-photon Microscopy for Neural Activity Observation%用于神经活动观测的随机扫描双光子显微成像

    Institute of Scientific and Technical Information of China (English)

    姜润华; 吕晓华; 李德荣; 全廷伟; 刘秀丽; 骆清铭; 曾绍群

    2012-01-01

    Two-photon microscope has become an important instrument in neuroscience research. However, the current commercial instruments can hardly meet the need for the detection of neural signal in millisecond scale due to their low imaging rates. Fast random-access two-photon microscopy based on acousto-optic deflector (AOD) has the potential for increasing the observation speed while maintaining adequate signal to noise ratio (SNR). We summarize the latest related research progress. It is demonstrated from four parts, including the spatio-temporal evolution theory of the femtosecond laser after passing the angular dispersion devices, dispersion compensation method for AOD, random-access two-photon microscopy instrument, and calcium signal identification method in the instrument applications. In the end, the future development trends for random-access two-photon microscopy are discussed. The systematic and in-deep research on this technology will provide a new tool for the neural activity observation and boost the development of brain science.%双光子荧光显微镜是神经科学研究中的重要观测仪器,但是现有的商品化仪器受限于较低的成像速度,难以满足脑功能研究中毫秒量级神经信号检测的需要.基于声光偏转器的快速随机扫描双光子显微成像技术,有望在保持信噪比的同时提高观测速度.本文综述了这一研究的最新进展,从飞秒激光经过角色散器件后的时空演化理论、声光偏转器的色散补偿方法、随机扫描成像仪器及仪器应用到神经成像时钙信号的识别方法四个方面分别进行介绍,最后分析了随机扫描双光子显微成像技术的发展趋势.这项技术的系统深入研究将为神经活动观测提供一种全新的方法,推动脑科学研究的发展.

  5. Carrier and photon dynamics in a topological insulator Bi{sub 2}Te{sub 3}/GaN type II staggered heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, P.; Chouksey, S.; Banerjee, D.; Ganguly, S.; Saha, D., E-mail: dipankarsaha@iitb.ac.in [Applied Quantum Mechanics Laboratory, Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2015-11-09

    We have demonstrated a type-II band-aligned heterostructure between pulsed laser deposited topological insulator bismuth telluride and metal organic-chemical-vapour deposited GaN on a sapphire substrate. The heterostructure shows a large valence band-offset of 3.27 eV as determined from x-ray photoelectron spectroscopy, which is close to the bandgap of GaN (3.4 eV). Further investigation using x-ray diffraction, Raman spectroscopy, and energy-dispersive x-ray spectrum reveals the stoichiometric and material properties of bismuth telluride on GaN. Steady state photon emission from GaN is found to be modulated by the charge transfer process due to diffusion across the junction. The time constant involved with the charge transfer process is found to be 0.6 ns by transient absorption spectroscopy. The heterostructure can be used for designing devices with different functionalities and improving the performance of the existing devices on GaN.

  6. Enhanced photocatalytic bacteriostatic activity towards Escherichia coli using 3D hierarchical microsphere BiOI/BiOBr under visible light irradiation.

    Science.gov (United States)

    Wang, Ya; Lin, Li; Li, Fang; Chen, Liang; Chen, Donghui; Yang, Chongyang; Huang, Manhong

    2016-05-11

    A BiOI/BiOBr composite was successfully fabricated by a simple hydrothermal method. The composite was characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The BiOI/BiOBr composite exhibited enhanced photocatalytic bacteriostatic activity towards E. coli compared to the pure BiOI or BiOBr under visible light irradiation. The enhanced photocatalytic performance can be attributed to the improved separation efficiency of the photogenerated holes because of its heterojunction structure. In addition, the possible bacteriostatic mechanism of the BiOI/BiOBr composite under visible light irradiation is discussed. The hierarchical microsphere BiOI/BiOBr showed enhanced photocatalytic bacteriostasis towards Escherichia coli under visible light. PMID:27105324

  7. Laser diffraction microscopy

    OpenAIRE

    Schall, P.

    2009-01-01

    Crystals composed of micrometer size colloidal particles diffract light and are both of fundamental interest as well as having important applications as filters, sensors and photonic devices. Laser light is used to diffract from these crystals in close analogy to x-ray or electron diffraction used for atomic crystals. Laser diffraction microscopy explores optical diffraction contrast to image crystals and crystal defects in analogy to the transmission electron microscopy technique used to ima...

  8. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    International Nuclear Information System (INIS)

    Highlights: • BiOI/TiO2 photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO2 (PVP) showed a 13-fold increase in photocurrent density compared to TiO2. • Charge transport kinetics within the BiOI/TiO2 heterojunctions are discussed. - Abstract: A series of BiOI/TiO2-nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO2 nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO2 (PVP) as photoanode can reach a short current density (Jsc) of 0.13 mA/cm2 and open circuit voltage (Voc) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO2, the IPCE of BiOI/TiO2 (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed

  9. Preparation of efficient visible-light-driven BiOBr/Bi2O3 heterojunction composite with enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Highly efficient novel photocatalysts BiOBr/Bi2O3 with various proportion of BiOBr were synthesized via accommodating the pH value of solution and were applied to decontaminate methyl orange (MO) and methylene blue (MB). The samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), Scanning electron microscopy (SEM), UV–vis diffuse reflectance spectra, and N2 physisorption. Though both the individual BiOBr and Bi2O3 showed very low photocatalytic efficiency under visible light irradiation, the BiOBr/Bi2O3 composites exhibited superior activity for MO and MB under visible light, and 75% BiOBr/Bi2O3 (pH = 6) composite showed the highest degradation rate, which was 1.4 times than that of pure BiOBr. The photocatalytic activity investigating on MB also showed a same result. In addition, the catalyst can be separated easily for reuse and no obvious loss of photocatalytic activity were observed after three consecutive runs. - Highlights: • Highly efficient novel photocatalysts BiOBr/Bi2O3 with various proportions of BiOBr were synthesized via a facile hydrolysis. • Investigating the influence of photocatalysts on the degradation of MO by accommodating pH values. • The mechanism was proposed based on the synergistic effect between BiOBr and Bi2O3

  10. 利用双光子显微镜检测活体动物脑内Ca2+动态变化%In vivo Imaging of Ca2 +Signaling Using Two-photon Laser Scanning Fluorescent Microscopy

    Institute of Scientific and Technical Information of China (English)

    刘双双; 廖美华; 尹伟; 林赵肖楠; 肖桂凤

    2014-01-01

    利用正置双光子显微镜系统和荧光探针标记技术,观察脑内Ca2+分布,建立测量活体动物脑内Ca2+动态变化的实验方法。制作活体动物颅骨开窗样本,脑内负载Ca2+标记物Oregon Green 488 BAPTA-1和星型胶质细胞标记物Sulforhodamine 101,利用双光子显微镜分别检测神经元和星型胶质细胞内Ca2+分布和动作电位引起的Ca2+瞬变。结果显示双光子显微镜可探测到脑内250μm处荧光信号,图像清晰且信噪比高,并能实时检测神经元和星型胶质细胞内Ca2+信号的动态变化。活体脑内Ca2+检测技术平台的建立为基础研究和医药应用提供了在体实验依据。%Using two-photon laser scanning microscopy and fluorescent probe labeling technique,we established a new method for observing the distribution and variation of Ca2+signaling in the mouse brain in vivo.Cranial window surgery of anesthesia mouse was made,Ca2+marker Oregon Green 488 BAPTA-1 and astrocyte marker Sulforhodamine 101 were loaded into the brain,and then Ca2+distribution and Ca2+transients were detected via two-photon microscopy.The re-sults showed that fluorescent signals were able to be detected clearly in the brain at a depth of up to 250 μm with high signal to noise ratio.Ca2+transients was observed in both neurons and as astrocytes.It indicates that the platform for de-tecting Ca2+signaling in vivo by two-photon microscopy has been successfully established,and this platform may provide valuable information for basic research and medical applications.

  11. Magnetic interactions in BiFe₀.₅Mn₀.₅O₃ films and BiFeO₃/BiMnO₃ superlattices.

    Science.gov (United States)

    Xu, Qingyu; Sheng, Yan; Khalid, M; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y B; Du, Jun

    2015-01-01

    The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces. PMID:25766744

  12. Synthesis of AgBr@Bi{sub 2}O{sub 3} composite with enhanced photocatalytic performance under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Wenyou; Wu, Ping; Jiang, Dongmei, E-mail: dmjiang@phy.ecnu.edu.cn; Ma, Xueming

    2015-10-15

    AgBr@Bi{sub 2}O{sub 3} heterojunction photocatalysts were fabricated by a facile deposition–precipitation method using novel hierarchical α-Bi{sub 2}O{sub 3} microrods as substrate, whose particular morphology is conducive to photocatalysis. X-ray powder diffraction (XRD) reveals that no other phase can be found in the as-synthesized composites except the monoclinic phase of Bi{sub 2}O{sub 3} and the face-centered cubic phase of AgBr. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrates that AgBr nanoparticles were uniformly deposited on the surface of hierarchical Bi{sub 2}O{sub 3} and the heterojunctions were formed between these two compounds. UV–vis diffuse reflectance spectroscopy (DRS) indicates that the light absorbance of photocatalyst was improved by AgBr for its photosensitization in visible light region. Elemental composition and the chemical state were identified by X-ray photoelectron spectroscopy (XPS). In particular, the photocatalytic activity of AgBr@Bi{sub 2}O{sub 3} heterojunction is superior to that of the single visible-light active components (AgBr, Bi{sub 2}O{sub 3}) and the mechanical mixture of them, indicating the presence of a synergic effect between two active components in AgBr@Bi{sub 2}O{sub 3} heterojunction. Among all the catalysts prepared, the AgBr@Bi{sub 2}O{sub 3}-0.5 exhibits the highest visible-light-responsive photoactivity, which can decolorize about 90% Rhodamine B (RhB) after 60 min visible-light irradiation. Trapping and photoluminescence experiments show that active h{sup +}, Br{sup 0} and • O{sub 2}{sup −} played a major role in Rhodamine B degradation while • OH was confirmed to be insignificant. A possible mechanism of transportation for photon-generated carriers was proposed. - Highlights: • Novel hierarchical α-Bi{sub 2}O{sub 3} nanostructure was synthesized. • The AgBr@Bi{sub 2}O{sub 3} composite photocatalysts exhibited enhanced activity for the degradation of

  13. Bi atoms mobility-driven circular domains at the Bi/InAs(111) interface

    Science.gov (United States)

    Richter, M. C.; Mariot, J.-M.; Gafoor, M. A.; Nicolaï, L.; Heckmann, O.; Djukic, U.; Ndiaye, W.; Vobornik, I.; Fujii, J.; Barrett, N.; Feyer, V.; Schneider, C. M.; Hricovini, K.

    2016-09-01

    Bi films deposited on InAs(111) A and B sides have been studied by photoemission electron microscopy. A series of snapshots acquired during sequential annealing of the interfaces at temperatures below and above the melting temperature of Bi allowed obtaining a comprehensive image of the topographic and chemical evolutions of the Bi films that are found to be InAs side dependent. On the A side, a morphology of circular patterns controlled by Bi atoms mobility is observed. The patterns are formed on the pristine In-terminated InAs(111) surface covered by a weakly bonded Bi bilayer. On the B side, no particular morphology is observed due to a stronger chemical interaction between Bi and As atoms as evidenced by the spatially-resolved core-level photoelectron spectra.

  14. Two photon excitation microscopy and SHG imaging as a tool for visualization of type I and type II collagen, and their use in tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Burdíková, Zuzana; Filová, Eva; Rampichová, Michala; Bianchini, P.; Čapek, Martin; Amler, Evžen; Kubínová, Lucie

    Vol.3. Berlin : Springer, 2008 - (Aretz, A.; Hermanns-Sachweh, B.; Mayer, J.), s. 199-200 ISBN 978-3-540-85227-8. [European Microscopy Congress EMC 2008 /14./. Aachen (DE), 01.09.2008-05.09.2008] R&D Projects: GA MŠk(CZ) LC06063; GA ČR(CZ) GA102/08/0691 Grant ostatní: GA AV ČR(CZ) IAA500390702; GA MŠk(CZ) 2B06130 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : SHG imaging * collagen * tissue engineering Subject RIV: EA - Cell Biology

  15. Twisted bi-layer graphene: microscopic rainbows

    OpenAIRE

    Campos-Delgado, J.; Algara-Siller, G.; Santos, C. N.; Kaiser, U.; Raskin, J.-P.

    2013-01-01

    Twisted bi-layer graphene (tBLG) has recently attracted interest due to the peculiar electrical properties that arise from its random rotational configurations. Our experiments on CVD-grown graphene from Cu foil and transferred onto Si substrates, with an oxide layer of 100 nm, reveal naturally-produced bi-layer graphene patches which present different colorations when shined with white light. In particular yellow-, pink- and blue- colored areas are evidenced. Combining optical microscopy, Ra...

  16. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Multiferroic Bismuth Ferrite (BiFeO3) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO3 and Fe2O3 to pure BiFeO3 phase and, subsequently, to a mixture of BiFeO3 and Bi2O3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe2O3). Deterioration in ferroic properties of BiFeO3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO3 thin films exhibiting the improved multiferroic properties.

  17. Two-Photon Laser Scanning Microscopy of the Transverse-Axial Tubule System in Ventricular Cardiomyocytes from Failing and Non-Failing Human Hearts

    Directory of Open Access Journals (Sweden)

    Andreas Ohler

    2009-01-01

    Full Text Available Objective. The transverse-axial tubule system (TATS of cardiomyocytes allows a spatially coordinated conversion of electrical excitation into an intracellular Ca2+ signal and consequently contraction. Previous reports have indicated alterations of structure and/or volume of the TATS in cardiac hypertrophy and failure, suggesting a contribution to the impairment of excitation contraction coupling. To test whether structural alterations are present in human heart failure, the TATS was visualized in myocytes from failing and non-failing human hearts. Methods and Results. In freshly isolated myocytes, the plasmalemmal membranes were labeled with Di-8-ANEPPS and imaged using two-photon excitation at 780 nm. Optical sections were taken every 300 nm through the cells. After deconvolution, the TATS was determined within the 3D data sets, revealing no significant difference in normalized surface area or volume. To rule out possible inhomogeneity in the arrangement of the TATS, Euclidian distance maps were plotted for every section, allowing to measure the closest distance between any cytosolic and any membrane point. There was a trend towards greater spacing in cells from failing hearts, without statistical significance. Conclusion. Only small changes, but no significant changes in the geometrical dimensions of the TATS were observed in cardiomyocytes from failing compared to non-failing human myocardium.

  18. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    International Nuclear Information System (INIS)

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 μm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles

  19. Agile BI – The Future of BI

    Directory of Open Access Journals (Sweden)

    Mihaela MUNTEAN

    2013-01-01

    Full Text Available In a rapidly changing economy, Business Intelligence solutions have to become more agile. This paper attempts to discuss some questions which help in creating an agile BI solution such as: What is Agile? Why agile is so well suited for BI? Which are the key elements that promote an agile BI solution? Also, this paper briefly looks at technologies that can be used for enabling an agile BI solution.

  20. PHOTON-PHOTON COLLISIONS

    OpenAIRE

    Burke, D.

    1982-01-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic eγ scattering. Considerable work has now been accumulated on resonance production by γγ collisions. Preliminary high statistics studies of the photon structure function Fγ2(x,Q2) are given and comments are made on the problems that remain to be solved.

  1. 多色双光子激发荧光显微技术实验研究∗%Exp erimental study on multicolor two-photon excited fluorescence microscopy

    Institute of Scientific and Technical Information of China (English)

    邱骏鹏; 梁闰富; 彭晓; 李亚晖; 刘立新; 尹君; 屈军乐; 牛憨笨

    2015-01-01

    Two-photon excited fluorescence (TPEF) microscopy is a nonlinear optical microscopy technique. The advantages of TPEF microscopy include high temporal and spatial resolutions, high signal-to-noise ratio and inherent three-dimensional sectioning. In traditional TPEF microscopy, a wavelength tunable ultrashort pulsed laser is used as an excitation source. In practical applications, sample usually contains various fluorophores or unknown components. Therefore the excitation wavelength of the ultrafast laser has to be tuned to achieve optimal excitation efficiencies of various fluorophores. In order to acquire the fluorescent signals of different fluorophores simultaneously, we develop a multicolor TPEF microscope system based on a supercontinuum laser source. In experiments, TPEF images of Lily rhizome sample slide stained by two fluorescent dyes with different excitation and emission wavelengths are obtained without tuning the wavelength. Experimental results show that the high-contrast TPEF images of the sample with various fluorophores can be obtained simultaneously by using the multicolor TPEF microscope compared with by using traditional TPEF microscopy. The system is simple in structure, easy in operation, and can provide rich information about the sample, which allows it to be widely used in life and material sciences.%双光子激发荧光(two-photon excited fluorescence, TPEF)显微是一种非线性光学显微技术,具有高的时间分辨率和空间分辨率、高的信噪比和固有的三维层析分辨能力等优点。传统的TPEF显微一般采用波长可调谐的超短脉冲激光器作为光源。在实际应用中,利用TPEF显微技术研究含有多种荧光团或未知成分的待测样品,往往需要多次改变激发光的波长以获得对各种荧光团的最佳激发。为了同时获取不同荧光团的荧光信号,利用超连续谱激光光源实现了多色TPEF显微成像,实验中无需调节波长,能够同时获得具有两

  2. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  3. Photon-photon colliders

    International Nuclear Information System (INIS)

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  4. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    Directory of Open Access Journals (Sweden)

    Sean C Warren

    Full Text Available Fluorescence lifetime imaging (FLIM is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset. This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis

  5. 应用双光子显微镜观察自体成纤维细胞填充效果%Filling effect of autologous skin fibroblasts: a study of two-photon fluorescence microscopy

    Institute of Scientific and Technical Information of China (English)

    熊舒原; 曹宁; 察鹏飞; 卓双木; 陈建新

    2008-01-01

    Objective To investigate the survival profile of the intradermally injected mouse autologous skin fibroblasts and the changes of the collagen fibers by using green fluorescent protein labeling and two-photon fluorescence microscopy. Methods The cultured cells were transfected by EGFP lentivirus, and then the cells were injected into the corresponding mouse skin. Biopsy was taken from the animals after 1 and 2 months. The specimens made serial frozen sections, the survival profile of the injected cells and the changes of the collagen fibers were observed by two-photon fluorescence microscopy. The collagenic area and dermal thickness were measured with image analysis software, and statistical analysis was also carried out. Results Two-photon fluorescence microscopy showed clear images of the injected cells and collagen fibers. Both the area of collagen fibers and the dermal thickness were significantly increased in injected cells after 2 months (P0.05). Conclusions Autologous cultured fibroblasts could survive in a long time after transplantating into the skin, and collagen could be newly produced, the depth of dermis increases, which provides a possibility to treat mini-defects of the tissue.%目的 通过双光子显微镜观察体外培养的小鼠皮肤成纤维细胞皮内注射移植后的长期存活情况,了解胶原纤维等基质成分的变化.方法 将增强型绿色荧光蛋白(EGFP)慢病毒液转染成功的成纤维细胞注射到小鼠皮内,分别于注射1、2个月后取材,行连续冰冻切片,双光子显微镜观察,对胶原的分布面积和真皮厚度做图像分析,并对所得数据进行统计学处理.结果 双光子显微镜对注射移植细胞及胶原清晰成像,注射1个月时,胶原分布面积及真皮厚度与对照组比较差异无统计学意义(P>0.05);2个月后胶原分布面积及真皮厚度与对照组比较差异有统计学意义(P<0.01).结论 成纤维细胞注射移植到小鼠皮内可以长期存活,能够

  6. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  7. Photon-photon collisions

    International Nuclear Information System (INIS)

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of γγ physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive γγ reactions at high momentum transfer. 73 refs., 12 figs

  8. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  9. 双光子显微成像系统群延迟色散的测量和补偿%Measurement and Compensation of Group Delay Dispersion for Two-Photon Microscopy Imaging Systems

    Institute of Scientific and Technical Information of China (English)

    娄艳阳; 郑贤良; 刘云; 金鑫; 李辉; 熊大曦

    2015-01-01

    For the purpose of correcting the group delay dispersion(GDD),improving the two-photon excitation efficien-cy of two-photon microscopy imaging system (TPMIS),in method of the autocorrelator mesurement,the pulse width of femtosecond laser is measured from four positions of optical path of the self-built TPMIS and also optimal GDD compensa-tion value of five wavelengths is measured from the sample’position,thus fitted to obtain the full-band GDD compensa-tion curve.Experimental results show the pulse width of sample position is Octreased averagely 95 fs after dispersion compensation,and that fluorescence intensity of biological sample is increased respectively by 42.7% and 76.8% in two typical excitation wavelengths (700 nm and 900 nm).In conlusion,two-photon excitation efficiency and the pulse width of femtosecond laser is the linear inverse relationship.%为了对双光子显微成像系统的群延迟色散进行校正,提高双光子激发效率的目的,采用自相关仪测量的方法在自行搭建的双光子系统光路的四个位置测量飞秒激光的脉冲展宽情况,测量样品位置5个波长下最优的群延迟色散补偿值,由此拟合得到自搭建双光子系统的全波段群延迟色散补偿曲线。实验结果表明在应用此群延迟色散补偿曲线后样品位置的脉冲宽度平均减小95 fs,在两个典型激发波长(750 nm 和900 nm)生物样品的荧光强度分别提高了42.7%和76.8%。结论为双光子激发效率与飞秒激光的脉冲宽度成线性反比关系。

  10. Temperature-dependent structure, elasticity, and entropic stability of Bi phases on Cu(111)

    NARCIS (Netherlands)

    Gastel, van R.; Kaminski, D.; Vlieg, E.; Poelsema, B.

    2014-01-01

    We have used low energy electron microscopy (LEEM) to characterize the structure and stability of Bi phases on Cu{111}. As a function of temperature we find that the Cu{111}(3√×3√)R30∘-Bi surface alloy phase gradually dealloys and is fully depleted from Bi at a temperature of 803 K. The dealloying l

  11. A novel method for the synthesis of BiOCl/Bi2Sn2O7 heterojunction photocatalysts with enhanced visible light photocatalytic properties

    Science.gov (United States)

    Lv, Dongdong; Zhang, Dafeng; Sun, Qinzhao; Wu, Jiandong; Zhang, Li; Pu, Xipeng; Ma, Huiyan; Dou, Jianmin

    2016-09-01

    A novel simple method was proposed to synthesize BiOCl/Bi2Sn2O7 heterojunction photocatalysts through the treatment of Bi2Sn2O7 with HCl solution of different concentrations. The as-synthesized photocatalysts were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence, x-ray photoelectron spectroscopy and ultraviolet–visible diffuse reflectance spectroscopy. The experimental results show that sheet-like BiOCl particles were obtained after the HCl treatment. Bi2Sn2O7 nanoparticles were distributed on the BiOCl sheets, resulting in the low aggregation of the Bi2Sn2O7 nanoparticles. As compared to BiOCl and Bi2Sn2O7, BiOCl/Bi2Sn2O7 showed enhanced photocatalytic activity under visible light irradiation, which can be attributed to the effective separation of photogenerated electrons and holes due to the formation of a BiOCl/Bi2Sn2O7 heterojunction. In addition, the dominant active species and the photocatalytic mechanism were discussed in detail.

  12. Bi-induced band gap reduction in epitaxial InSbBi alloys

    International Nuclear Information System (INIS)

    The properties of molecular beam epitaxy-grown InSb1−xBix alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb0.976Bi0.024, a reduction of ∼35 meV/%Bi

  13. A novel Bi-based oxybromide SrBiO{sub 2}Br: Synthesis, optical property and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Ying; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Zhang, Yihe, E-mail: zyh@cugb.edu.cn; Li, Xiaowei; Tian, Na; Guo, Yuxi; Luo, Yi

    2015-04-15

    Highlights: • SrBiO{sub 2}Br was first explored as a novel photocatalyst. • SrBiO{sub 2}Br has been successfully synthesized by a solid state reaction. • We systematically synthesized SrBiO{sub 2}Br in different temperature. • SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity. - Abstract: A novel Bi-based photocatalyst SrBiO{sub 2}Br with layered structure was successfully synthesized via a solid state reaction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectra (DRS). SrBiO{sub 2}Br has an indirect-transition optical band-gap of 2.58 eV. Density functional calculations revealed that conduction band (CB) were composed of the Bi 6p and Br 4s orbitals, and valence band (VB) were occupied by Br 4p and O 2p. The photodecomposition of rhodamine-B (RhB) experiments demonstrated SrBiO{sub 2}Br can be used as photocatalysts under ultraviolet (UV) light and visible light irradiation (λ > 400 nm). The results revealed that SrBiO{sub 2}Br calcinated at 700 °C exhibited the highest photocatalytic activity among the obtained SrBiO{sub 2}Br samples.

  14. Bi 2Te 3-Te nanocomposite formed by epitaxial growth of Bi 2Te 3 sheets on Te rod

    Science.gov (United States)

    Deng, Yuan; Cui, Chang-Wei; Zhang, Ni-La; Ji, Tian-Hao; Yang, Qing-Lin; Guo, Lin

    2006-05-01

    Single-crystal Bi 2Te 3-Te nanocomposites with heterostructure were synthesized using a two-step solvothermal process in the presence of ethylenediaminetetraacetic acid disodium salt. The first step is the formation of the Te nanorods and the second step is to grow the Bi 2Te 3 sheets off the Te rods surface to form the Bi 2Te 3-Te nanocomposites. The products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. We demonstrate a method of an epitaxial growth of Bi 2Te 3 nanosheets perpendicular to the axis of the central Te rod and a formation process of Bi 2Te 3-Te nanocomposites is also proposed.

  15. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  16. Photon-photon collisions

    International Nuclear Information System (INIS)

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e+e- storage rings. After a complete presentation of the helicity amplitude formalism for the general process e+e- → Xe+e-, various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  17. Controllable topological transformation from BiOCl hierarchical microspheres to Bi{sub 2}WO{sub 6} superstructures in the Bi–W–Cl–O system

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiao [National Engineering Research Center for Manufacturing Equipment Digitization, Department of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Shi, Songxin, E-mail: shisx@hust.edu.cn [National Engineering Research Center for Manufacturing Equipment Digitization, Department of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074 (China); Tang, Tengteng [State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Tian, Shouqin [State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Yang, Wenjuan [State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Zeng, Dawen [Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China)

    2015-09-15

    Graphical abstract: The three-dimensional (3D) Bi{sub 2}WO{sub 6} superstructures assembled by nanosheets were directly transformed topologically from BiOCl hierarchical microspheres via a facile one-pot solvothermal method. Furthermore, the crystal growth of Bi{sub 2}WO{sub 6} superstructure was confirmed to occur at the exposed plane (0 0 1) of BiOCl nanosheets with WO{sub 6}{sup 6−} units replacing the interlaminar Cl atoms. Their similar layered structures favored the controllable transformation of BiOCl to Bi{sub 2}WO{sub 6} through the substitution process. And this topological transformation may provide a new prospective to the synthesis of other 3D compounds. - Highlights: • Bi{sub 2}WO{sub 6} superstructures were prepared by topological transformation of BiOCl assembly. • Transformation process experienced three stages of BiOCl, BiOCl/Bi{sub 2}WO{sub 6} and Bi{sub 2}WO{sub 6}. • Bi{sub 2}WO{sub 6} superstructures grew at the exposed (0 0 1) facets of BiOCl nanosheets. • The growth mechanism was revealed from thermodynamic and kinetic dynamic aspects. - Abstract: In this work, three-dimensional (3D) Bi{sub 2}WO{sub 6} superstructures assembled by nanosheets were prepared using the topological transformation of BiOCl hierarchical microspheres via a facile one-pot solvothermal method. Interestingly, it was found that the transformation process experienced three stages including BiOCl, BiOCl/Bi{sub 2}WO{sub 6} composites and Bi{sub 2}WO{sub 6} with increasing solvothermal time at 150 °C, which was confirmed by X-Ray Diffraction (XRD), Raman spectrometer and Transmission Electron Microscopy (TEM) results. Importantly, the crystal growth of Bi{sub 2}WO{sub 6} superstructures occurred at the exposed (0 0 1) facets of BiOCl nanosheets with WO{sub 6}{sup 6−} units replacing the interlaminar Cl atoms. Also, the growth mechanism was revealed and discussed in the thermodynamic and kinetic dynamic aspects. Compared with BiOCl superstructures, the BiOCl/Bi

  18. Facile synthesis of Bi2WO6/Bi2O3-loaded polyurethane sponge with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Zhang, Fengjun; Wang, Zhi; Wang, Tianye; Jia, Liwei; Wang, Chao; Zhang, Shengyu

    2016-03-01

    In this study, Bi2WO6/Bi2O3-loaded polyurethane sponge composite photocatalyst was successfully synthesized via a facile two-step approach. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance, and scanning electron microscopy. The Bi2WO6/Bi2O3 photocatalyst was successfully loaded on polyurethane sponge and the composite displayed enhanced absorption in the ultraviolet-to-visible light region. Furthermore, the composite exhibited enhanced photocatalytic activity and reusability towards the degradation of rhodamine B (RhB) under visible light. This work demonstrates a facile method for synthesizing Bi2WO6/Bi2O3-loaded polyurethane sponge with enhanced photocatalytic activity and easy immobilization of the photocatalyst for application in environmental purification.

  19. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  20. Single Photon Ignition of Two-photon Super-fluorescence through the Vacuum of Electromagnetic Field

    OpenAIRE

    Enaki, Nicolae A.

    2010-01-01

    The ignition of two-quantum collective emission of inverted sub-ensemble of radiators due to mutual interaction of this sub-ensemble with other two dipole active atomic subsystems in process of two-photon exchanges between the atoms through the vacuum field is proposed. The three particle resonances between two-photon and single quantum transitions of inverted radiators from the ensemble are proposed for acceleration of collective decay rate of bi-photons, obtained relatively dipole-forbidden...

  1. Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions

    International Nuclear Information System (INIS)

    Particle size modality in bi-modal iron oxide suspensions was resolved by exploiting complex ac-susceptibility (ACS), small angle X-ray scattering (SAXS) and photon cross-correlation spectroscopy. To explain dynamic magnetic response of bi-modal suspensions, the Debye model was expanded to a linear superposition form allowing for the contribution of both particle fractions. This modified and adopted model is able to resolve the bi-modal particle size distributions. The SAXS curves of mono- and bi-modal suspensions were fitted well using a Monte Carlo simulation scheme, allowing the detection of bi-modal particle size distributions with high precision

  2. Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+

    Science.gov (United States)

    Barros, A.; Deloncle, R.; Deschamp, J.; Boutinaud, P.; Chadeyron, G.; Mahiou, R.; Cavalli, E.; Brik, M. G.

    2014-08-01

    The luminescence properties of the yellow pigment BiMg2VO6 are revisited and those of BiMg2PO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+ are described. It is shown that the undoped systems exhibit broad band emission in the green or orange spectral regions, but only upon UV or near UV excitation. In contradiction with a previous report, we found that the blue, host absorbed, photons are lost non-radiatively and do not contribute to the luminescence processes in BiMg2VO6. To understand these experimental results, the optical properties of BiMg2VO6 and BiMg2PO6 are theoretically analysed on the basis of electronic structure diagrams calculated by the DFT method. It is found that the optical transitions are mostly localised within [VO4]3- units or non-regular Bi3+ ions and occur in the UV or near UV regions. The luminescence of the trivalent lanthanide dopants is weak (Eu3+) or unobserved (Pr3+) in BiMg2VO6 which is explained by inefficient energy migration in the host lattice to the impurity sites.

  3. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  4. Intravital microscopy

    OpenAIRE

    Masedunskas, Andrius; Milberg, Oleg; Porat-Shliom, Natalie; Sramkova, Monika; Wigand, Tim; Amornphimoltham, Panomwat; Weigert, Roberto

    2012-01-01

    Intravital microscopy is an extremely powerful tool that enables imaging several biological processes in live animals. Recently, the ability to image subcellular structures in several organs combined with the development of sophisticated genetic tools has made possible extending this approach to investigate several aspects of cell biology. Here we provide a general overview of intravital microscopy with the goal of highlighting its potential and challenges. Specifically, this review is geared...

  5. Superconductive percolation in Bi-based superconductor/Bi-based insulator composites: case of Bi-2223/Bi-2310 and Bi-2212/BiFeO3

    International Nuclear Information System (INIS)

    Preparation of Bi-2223/Bi-2310 and Bi-2212/BiFeO3 composites has been performed so as to obtain some active composites where the superconductive properties of Bi-2223 or Bi-2212 can be modified using a property of the insulating phase. In both cases superconductive percolation was obtained, but only in the case of a Bi-2223 (or Bi-2212)/Bi-2310 composite was no (or very weak) chemical reaction observed during sintering. Since the superconductive percolation threshold was obtained in this case for a concentration of Bi-2223 or Bi-2212 lower than 20%, a special composite model had to be considered. The Bi-2212/BiFeO3 system is very interesting due to the ferroic properties of BiFeO3. Superconductive percolation was achieved with this mixture too, but with more difficulties because of a chemical reaction occurring between the two compounds during sintering. A study of the properties of these composites has been performed and will be briefly described in what follows. The good quality of the Bi-2223 (or Bi-2212)/Bi-2310 composite enables us to expect some future applications. (author)

  6. Correlative microscopy.

    Science.gov (United States)

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  7. Improved photon counting efficiency calibration using superconducting single photon detectors

    Science.gov (United States)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  8. Quantum communication with photons

    International Nuclear Information System (INIS)

    Full text: The discovery that transmission of information encoded into single quantum systems enables new forms of communication let to the emergence of the domain of quantum communication. During the last ten years, various key experiments based on photons as carrier of the quantum information have been realized. Today, quantum cryptography systems based on faint laser pulses can be purchased commercially, bi-partite entanglement has been distributed over long distances and has been used for quantum key distribution, and quantum purification, teleportation and entanglement swapping have been demonstrated. I will give a general introduction into this fascinating field and will review experimental achievements in the domain of quantum communication with discrete two-level quantum systems (qubits) encoded into photons. (author)

  9. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  10. Microwave Photonics

    OpenAIRE

    A J Seeds; Liu, C. P.; Ismail, T; Fice, M. J.; Pozzi, F.; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  11. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based on the...... positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted in a...

  12. Preparation and characterization of Bi2S3 compound semiconductor

    Indian Academy of Sciences (India)

    M P Deshpande; Pallavi N Sakariya; Sandip V Bhatt; Nikita H Patel; Kamakshi Patel; S H Chaki

    2015-02-01

    Bi2S3 single crystals were grown by the chemical vapour transport technique using ammonium chloride (NH4Cl) as a transporting agent. The stoichiometry of Bi2S3 single crystal was confirmed by energy-dispersive analysis of X-rays (EDAX). The powder X-ray diffraction (XRD) pattern showed that Bi2S3 crystals belong to the orthorhombic phase with calculated lattice constant = 11.14 Å, = 11.30 Å and = 3.96 Å. Scanning electron microscopy (SEM) pictures indicate the presence of layer lines on the surface of crystals thereby proving that these crystals are grown by layer by layer mechanism.We studied the transport properties viz. Hall effect, resistivity, thermoelectric power and thermal conductivity on Bi2S3 pellets. Raman spectroscopy and thermal gravimetric analysis (TGA) were carried out on Bi2S3 single crystal for studying their optical and thermal behaviours.

  13. Photon Structure

    OpenAIRE

    Grindhammer, Guenter

    2001-01-01

    Large pT processes at HERA, initiated by almost real and by virtual photons, provide information on the structure of the photon. We report on the latest measurements of dijets and large pT particle production with the H1 detector. This includes a leading order determination of an effective virtual photon parton density, of the gluon density of the photon, and comparisons with models.

  14. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  15. Role of Ti out-diffusion from a Pt/Ti bi-layer on the crystalline growth of (Ba,Sr)TiO3: A transmission electron microscopy investigation

    International Nuclear Information System (INIS)

    We investigated the influence of the Ti out-diffusion in Pt/TiO x/SiO2/Si substrates (0 ≤ x ≤ 2), having different thicknesses of Pt and TiO x layers, on the crystalline growth of (Ba,Sr)TiO3 (BST) deposited by pulsed laser deposition. By means of X-ray diffraction and transmission electron microscopy, we show that the orientation of BST clearly depends on the presence and quantity of Ti having migrated up to the Pt surface, and on its possible oxidation prior to BST deposition, which was controlled by the atmosphere (vacuum or oxygen) of the pre-heating stage of the BST deposition process. Whereas BST has no preferential orientation if grown on a bare Pt surface, a strong (111) orientation of BST is obtained for a limited diffusion of titanium oxides on the Pt surface just before BST deposition. However, the (111) orientation is lost if this seeding titanium oxide layer on Pt is too thick just before BST deposition. Also, the formation of protrusions was evidenced at the BST/Pt interface and associated with the oxidation of Ti within the Pt layer

  16. Two-Photon Imaging

    OpenAIRE

    Ricard, Clément; Coles, Jonathan,; Serduc, Raphaël; Van Der Sanden, Boudewijn; Verant, Pascale; Vial, Jean-Claude

    2009-01-01

    During the past two decades, two-photon microscopy has become a powerful tool in neuroscience. Unlike other imaging methods like MRI, its spatial resolution is micrometric and enables the observation of structures at the subcellular scale. In this chapter, the physical principles and the way to study phenomenon occurring in the living animal are summarized. Then, we describe the methods to observe the different components of the nervous system like neurons, glia and brain microvasculature. Fi...

  17. Quantum superresolution in fluorescence microscopy

    CERN Document Server

    Schwartz, O; Tenne, R; Itzhakov, S; Deutsch, Z; Oron, D

    2012-01-01

    The optical diffraction limit, formulated by Abbe 150 years ago, decades before the dawn of quantum mechanics, imposes a bound on imaging resolution in classical optics. Over the last twenty years, many theoretical schemes have been presented for overcoming the diffraction barrier in optical imaging using quantum properties of light. An experimental realization of sub-diffraction limited quantum imaging has, however, remained elusive. Here, we take advantage of non-classical light naturally produced in fluorescence microscopy due to photon antibunching, a fundamentally quantum phenomenon ensuring that fluorophores emit photons one at a time. Using a photon counting digital camera, we detect antibunching-induced second and third order intensity correlations and perform sub-diffraction limited quantum imaging in a standard wide-field fluorescence microscope.

  18. Size dependent structural, vibrational and magnetic properties of BiFeO3 and core-shell structured BiFeO3@SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Bulk BiFeO3, BiFeO3 nanoparticles and core-shell structured BiFeO3@SiO2 nanoparticles were synthesized by solid state reaction method, sol-gel and Stöber process (SiO2 shell) respectively. Transmission electron microscopy image confirmed the core-shell structure of BiFeO3@SiO2 nanoparticles with BiFeO3 core ∼50-90 nm and SiO2 shell ∼16 nm. X-ray diffraction and FTIR spectroscopy results showed the presence of distorted rhombohedral structure with R3c space group in all three samples. The magnetic measurement indicated the existence of room-temperature weak ferromagnetism in core-shell BiFeO3@SiO2 nanoparticles and BiFeO3 nanoparticles, whereas bulk BiFeO3 showed antiferromagnteic nature. Electron Spin Resonance results confirmed the enhancement in magnetic properties of coreshell structured BiFeO3@SiO2 nanoparticles in comparison with BiFeO3 nanoparticles and bulk BiFeO3

  19. Preparation in Acidic and Alkaline Conditions and Characterization of α-Bi2Mo3O12 and γ-Bi2MoO6 Powders

    Science.gov (United States)

    Chen, Tao; Wang, Mao-Hua; Ma, Xiao-Yu

    2016-08-01

    α-Bi2Mo3O12 and γ-Bi2MoO6 powders have been successfully fabricated via a sol-gel method starting from bismuth nitrate and ammonium molybdate. The as-synthesized samples were characterized by x-ray powder diffraction analysis, thermogravimetry and differential thermogravimetry, scanning electron microscopy, and ultraviolet-visible (UV-Vis) absorption spectroscopy. The results indicated the formation of α-Bi2Mo3O12 and γ-Bi2MoO6 powders in acidic (pH 5) and alkaline (pH 9) conditions, respectively. α-Bi2Mo3O12 exhibited irregular shape, while γ-Bi2MoO6 showed approximately flake-like morphology. The bandgap of pure α-Bi2Mo3O12 and γ-Bi2MoO6 was estimated to be about 2.83 eV and 2.85 eV, respectively, according to UV-Vis studies. The slight shift of the absorption edge towards longer wavelength for α-Bi2Mo3O12 indicated a decrease of the optical bandgap. Photocatalytic experiments showed that γ-Bi2MoO6 exhibited higher photodegradation activity of methylene blue compared with α-Bi2Mo3O12.

  20. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  1. Preparation of efficient visible-light-driven BiOBr/Bi{sub 2}O{sub 3} heterojunction composite with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qizhao, E-mail: qizhaosjtu@gmail.com [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou, 730070 (China); Jiao, Danhua; Lian, Juhong; Ma, Qiong; Yu, Jie [College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, Lanzhou, 730070 (China); Huang, Haohao, E-mail: scuthhh@hotmail.com [College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Zhong, Junbo; Li, Jianzhang [Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, 643000 (China)

    2015-11-15

    Highly efficient novel photocatalysts BiOBr/Bi{sub 2}O{sub 3} with various proportion of BiOBr were synthesized via accommodating the pH value of solution and were applied to decontaminate methyl orange (MO) and methylene blue (MB). The samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), Scanning electron microscopy (SEM), UV–vis diffuse reflectance spectra, and N{sub 2} physisorption. Though both the individual BiOBr and Bi{sub 2}O{sub 3} showed very low photocatalytic efficiency under visible light irradiation, the BiOBr/Bi{sub 2}O{sub 3} composites exhibited superior activity for MO and MB under visible light, and 75% BiOBr/Bi{sub 2}O{sub 3} (pH = 6) composite showed the highest degradation rate, which was 1.4 times than that of pure BiOBr. The photocatalytic activity investigating on MB also showed a same result. In addition, the catalyst can be separated easily for reuse and no obvious loss of photocatalytic activity were observed after three consecutive runs. - Highlights: • Highly efficient novel photocatalysts BiOBr/Bi{sub 2}O{sub 3} with various proportions of BiOBr were synthesized via a facile hydrolysis. • Investigating the influence of photocatalysts on the degradation of MO by accommodating pH values. • The mechanism was proposed based on the synergistic effect between BiOBr and Bi{sub 2}O{sub 3}.

  2. Exploratory Bi-Factor Analysis

    Science.gov (United States)

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  3. Photonic Lantern

    CERN Document Server

    Leon-Saval, Sergio; Bland-Hawthorn, Joss

    2015-01-01

    Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus, enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail.

  4. Exploratory Bi-factor Analysis

    OpenAIRE

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this paper is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific bi-factor model a priori. The result of an exploratory bi-factor analysis, however, can be used as an aid in defining a specific bi-factor model. Our ...

  5. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  6. Photonic glasses

    CERN Document Server

    Gan, Fuxi

    2006-01-01

    This book introduces the fundamental mechanism of photonic glasses - the linear and nonlinear optical effects in glass under intense light irradiation: phot-induced absorption, refraction, polarization, frequency, coherence and monochromaticity changes. Emphasis is placed on new developments in the structure, spectroscopy and physics of new glassy materials for photonics applications, such as optical communication, optical data storage, new lasers and new photonic components and devices. The book presents the research results of the authors in new glasses for photonics over the last decade. Sa

  7. What is superresolution microscopy?

    CERN Document Server

    Bechhoefer, John

    2014-01-01

    I explain what is, is not, and is only sort of superresolution microscopy. I discuss optical resolution, first in terms of diffraction theory, then in terms of linear systems theory, and finally in terms of techniques that use prior information, nonlinearity, and other tricks to improve performance. The discussion reveals two classes of superresolution: Pseudo superresolution techniques improve images up to the diffraction limit but not much beyond. True superresolution techniques allow substantial, useful improvements beyond the diffraction limit. The two classes are distinguished by their scaling of resolution with photon counts. Understanding the limits to imaging resolution involves concepts that pertain to almost any measurement problem, implying that the framework given here has broad application beyond optics.

  8. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  9. Large pyramid shaped single crystals of BiFeO3 by solvothermal synthesis method

    International Nuclear Information System (INIS)

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO3. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  10. Dissolution kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminum

    DEFF Research Database (Denmark)

    Prokofjev, S.I.; Johnson, Erik; Zhilin, V.M.; Dahmen, U.

    2008-01-01

    In situ transmission electron microscopy is used to study dissolution of liquid single-phase Pb/Bi inclusions attached to a grain boundary in an alloy of Al99.29Pb0.65Bi0.06 at temperatures of 343, 370, and 389 degrees C, respectively. The initial size of the inclusions was smaller than 60 nm. Di...

  11. Identical mechanism of isochronal and isothermal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain-boundary segregation of Bi

    International Nuclear Information System (INIS)

    Highlights: • Both isochronal and isothermal plasticity of Ni(Bi) alloy show minima. • Existing interpretations for isochronal and isothermal embrittlement are inadequate. • Both embrittlement is caused by thermo-induced non-equilibrium grain-boundary segregation of Bi. - Abstract: Isochronal and isothermal plasticity after thermal pre-treatments are obtained by tensile tests to characterize the embrittling behaviors of Ni(Bi) alloy. Both isochronal and isothermal plasticity show evident minima. Fractography observed by scanning electron microscopy displays intergranular fracture for samples of low plasticity. The microstructure is found to be free of precipitates within grains and at grain boundaries by focused ion beam and transmission electron microscopy. Atom probe analysis indicates a strong tendency of Bi segregation to grain boundaries. By these results, the existing interpretations are discussed to be inadequate and both embrittlement are confirmed to be identical in mechanism, i.e. thermo-induced non-equilibrium grain-boundary segregation of Bi

  12. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard;

    2014-01-01

    The explosion of the biological data has dramatically reformed today's biological research. The need to integrate and analyze high-dimensional biological data on a large scale is driving the development of novel bioinformatics approaches. Biclustering, also known as 'simultaneous clustering' or 'co......-clustering', has been successfully utilized to discover local patterns in gene expression data and similar biomedical data types. Here, we contribute a new heuristic: 'Bi-Force'. It is based on the weighted bicluster editing model, to perform biclustering on arbitrary sets of biological entities, given any kind of...... pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...

  13. Processes related to photon-photon collisions

    International Nuclear Information System (INIS)

    Two types of processes, related to photon-photon collisions, are considered: deep inelastic Compton scattering, and photon pair production. The relevant theoretical and experimental literature is reviewed

  14. Electronic structures and origin of intrinsic luminescence in Bi-containing oxide crystals BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4

    International Nuclear Information System (INIS)

    Highlights: • Main PL components of BiPO4, K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) are bismuth-related. • Main PL components of K2Bi(PO4)(MoO4) and K5Bi(MoO4)4 are molybdate-related. • The red PL component of K2Bi(PO4)(WO4) originates from the molybdenum impurities. - Abstract: The origin of intrinsic photoluminescence (PL) in the set of Bi-containing phosphate, molybdate and tungstate crystals is analyzed in complex experimental and computational studies. The PL properties of polycrystalline powder samples of BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4 crystals synthesized by spontaneous crystallization method are studied under excitations in the VUV and UV region of photon energies (3.5–14 eV) at T = 8–300 K. The electronic band structures of the crystals are calculated by the Full-Potential Linear Augmented Plane Wave Method. The values of band gaps Eg of studied compounds are estimated from diffuse reflectance and PL excitation spectra. Calculations indicate that all studied crystals except K5Bi(MoO4)4 are indirect-gap materials. It is found that the Bi 6s and Bi 6p states contribute respectively at the tops of the Valence bands and the bottoms of the Conduction bands of all studied compounds. Each studied compound reveals several (at least two) PL emission components which undergo complete quenching below room temperature. Under nitrogen laser excitation with λex = 337.1 nm, all studied crystals reveal single-exponential decay of PL signal with decay constants τ in 3–35 μs range. It is assumed that the high-energy PL components of BiPO4, K3Bi5(PO4)6 and K2Bi(PO4)(MoO4) (peaking in the blue and violet regions) originate from 3P1 → 1S0 radiative transitions in Bi3+ ions. The red PL components of K2Bi(PO4)(MoO4) and K5Bi(MoO4)4 have the MoO42−-related origin. The red PL component of K2Bi(PO4)(WO4) presumably originates from the molybdenum impurities which form MoO42− emission centers in the phosphate–tungstate host

  15. Quantification of Bi distribution in MOVPE-grown Ga(AsBi) via HAADF STEM

    Science.gov (United States)

    Knaub, Nikolai; Beyer, Andreas; Wegele, Tatjana; Ludewig, Peter; Volz, Kerstin

    2016-01-01

    The importance of dilute bismide III/V semiconductors increases and their physical properties open up a wide range for applications. Therefore, high quality layers are required, what is difficult to achieve, as these alloys are highly metastable and phase separation can occur. We use HAADF (high angle annular dark field) imaging in aberration-corrected STEM (scanning transmission electron microscopy) to quantify the Bi distribution in MOVPE (metal organic vapor phase epitaxy) grown material at large length scales as well as down to the nanoscale. This is done for different Bi fractions in the solid, which are achieved by changing the MOVPE growth conditions. The composition of the Ga(AsBi) was determined by comparing frozen lattice annular dark field simulations of different Ga(AsBi) supercells with the experimental HAADF STEM images. The derived compositions are in quantitative agreement with results of HR-XRD (high resolution X-ray diffraction) and SIMS (secondary ion mass spectroscopy) of the same samples. We furthermore show a homogeneous Bi distribution for the investigated samples, which contain up to 5% Bi. By separating the group III intensities from the group V intensities in high resolution HAADF STEM images, we can investigate the group V intensity distribution only. Moreover from the statistical evaluation, we conclude that the Bi is distributed homogeneously across the group V lattice positions, confirming the excellent structural quality of the layers. This result is also important for device applications of dilute bismide alloys, as homogeneous layers are a prerequisite for optimizing optoelectronic applications.

  16. Structural, mechanical and electrical properties of alloys in ternary Ag-Bi-Zn system

    Energy Technology Data Exchange (ETDEWEB)

    Minic, D. M.; Premovic, M. M.; Zivkovic, D. T.; Manasijevic, D. M.; Dimie, M. Z.; Petrovic, Z. R.; Markovic, S. M.

    2015-07-01

    Structural, mechanical and electrical properties of selected alloys in ternary Ag-Bi-Zn system are presented in this paper. Chosen alloys were investigated using X-Ray Diffraction (XRD), light optical microscopy, Scanning Electron Microscopy combined with Energy Dispersive Spectrometry (SEM-EDS), as well as by electrical conductivity and Brinell hardness measurements. Isolines of electrical conductivity and hardness for the entire Ag-Bi-Zn system were calculated using regression models. (Author)

  17. Growth of Bi2O3 rods using a trimethylbismuth and oxygen mixture

    Science.gov (United States)

    Kim, H. W.; Myung, J. H.; Shim, S. H.; Lee, C.

    2006-07-01

    We have successfully grown the rod-like structures of bismuth oxide (Bi2O3) on silicon substrate by a reaction of a trimethylbismuth (TMBi) and oxygen (O2) mixture without using any catalyst. We have characterized the samples by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The products consisted of bundles of rod-like structures. The Bi2O3 rods were of monoclinic structure.

  18. Effects of co-sintering in self-standing CGO/YSZ and CGO/ ScYSZ dense bi-layers

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Brodersen, Karen; Foghmoes, Søren Preben Vagn; Ramousse, Severine; Esposito, Vincenzo

    2014-01-01

    -standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi...

  19. Nuclear photonics

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  20. Unparticle effects in photon-photon scattering

    OpenAIRE

    Chang, Chun-Fu; Cheung, Kingman; Yuan, Tzu-Chiang

    2008-01-01

    Elastic photon-photon scattering can only occur via loop diagrams in the standard model and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator F_{\\mu\

  1. Combined effects of Bi deficiency and Mn substitution on the structural transformation and functionality of BiFeO3 films

    International Nuclear Information System (INIS)

    Mn-doped BiFeO3 films with Mn contents of 5 and 10 mol. % were prepared via a chemical route. A carefully controlled amount of Bi deficiency was introduced to further tune the lattice structure and the functionality of multiferroic BiFeO3. The crystal structure of Bi1−δFe1−xMnxO3 films was investigated by X-ray diffraction and Raman spectra; a rhombohedral-to-orthorhombic phase transition was revealed. The observed double hysteresis loops and two capacitance maxima from polarization vs electric field and capacitance-voltage measurements indicate an antiferroelectric-like behavior. Additionally, the coexistence of ferroelectric (FE) and antiferroelectric (AFE) phases in Bi1−δFe1−xMnxO3 films was revealed from the domain structures obtained by piezoelectric force microscopy. The effects of Mn substitution in conjunction with Bi deficiency on the FE-AFE phase transition and electrical behavior of BiFeO3 films are discussed in detail. Meanwhile, magnetic and photoluminescence measurements on the films illustrate that Mn substitution gives rise to the net magnetic moment and the defects induced by both Bi deficiency and Mn substitution influence the electronic structure of BiFeO3 films. This study thus shows a simple and effective way to control the functionalities of BiFeO3 films

  2. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  3. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts

    International Nuclear Information System (INIS)

    The BiVO4-based photocatalysts loaded with rare earth (RE=Ho, Sm, Yb, Eu, Gd, Nd, Ce and La) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), nitrogen adsorption for the BET specific surface area and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by decolorization of methylene blue (MB) under visible light irradiation. The results of XRD, SEM and XPS analysis deduced that the rare earth ions were present as RE2O3 in the samples. The DRS analysis showed the shift in the absorbption edge from the UV to the visible range: Ho3+-BiVO4 3+-BiVO4 3+-BiVO4 3+-BiVO4 3+-BiVO4 3+-BiVO4 3+-BiVO4 3+-BiVO4 4. Gd3+-BiVO4 had the highest photocatalytic activity among all the RE3+-BiVO4 catalysts. The optimal Gd content was 8 at% under visible light irradiation. This beneficial effect was attributed to the specific electron structure characteristics of gadolinium and the increasing in the separation efficiency of the electron-hole pairs. On the contrast, the other rare earth ions had the detrimental effect on the photocatalytic decolorization of MB.

  4. Properties of ZnO:Bi thin films prepared by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Highlights: •Transparent and conductive Bi doped ZnO films deposited by spray pyrolysis technique. •The incorporation of Bi in ZnO film was studied by X-ray photoelectron microscopy. •Effect of Bi doping on the structural, optical and electrical properties of the films. •Bi doped ZnO films can be used as transparent conductors. -- Abstract: Undoped and Bi doped zinc oxide thin films were deposited on glass substrate at 450 °C using spray pyrolysis technique. The X-ray diffraction studies shows that Bi doped ZnO films are polycrystalline hexagonal structure with a preferred orientation along (1 0 1) direction. Crystallites size of the films decreases with increasing doping concentration. Scanning electron microscope image shows change in the surface morphology. The composition of Zn, O and Bi elements in the undoped and Bi doped ZnO films were investigated by X-ray photoelectron spectroscopy. Bi doped ZnO thin films show a transparency nearly 75% in the visible region. The optical band gap of ZnO thin films reduces from 3.25 eV to 3.12 eV with an increase in Bi concentration from 0 to 5 at.% respectively. Electrical conductivity of ZnO thin films increased from 0.156 to 6.02 S/cm with increasing Bi dopant concentration from 0% to 5% respectively

  5. Enhanced electrochemical properties of manganese dioxde doped with Ag3BiOx

    Directory of Open Access Journals (Sweden)

    Yang Wenjian, Li Juan, Zhang Xiaogang

    2006-08-01

    Full Text Available In this work, Ag3BiOx was prepared and characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD. The electrochemical properties of electrolytic manganese dioxide (EMD cathodes doped with Ag3BiOx were studied by galvanostatic charge/discharge and cyclic voltammetry. The results indicated that the electrochemical performance of EMD electrode was effectively improved by doping of Ag3BiOx. EMD electrode doped with Ag3BiOx possessed remarkably higher discharge voltage, larger capacity and better reversibility than that of pure EMD electrode.

  6. Photoreactive mesoporous carbon/Bi2WO6 composites: Synthesis and reactivity

    International Nuclear Information System (INIS)

    Highlights: ► We described the preparation and characterization of the mesoprous carbon/Bi2WO6 composites. ► The photocatalytic activities of the composites were also investigated. ► With the combination of photocatalysts and mesoporous carbon, increased separation efficiency of photoinduced electron–hole pairs and larger specific surface areas can be achieved. ► And to our knowledge, this is the first report concerning Bi2WO6 nanoparticles loaded on a mesoprous carbon. - Abstract: In order to develop highly efficient visible-light induced photocatalysts, Bi2WO6 powders and mesoporous carbon (MC)-modified Bi2WO6 (MC/Bi2WO6) photocatalysts were synthesized via a simple hydrothermal process in this paper. The samples of Bi2WO6 and MC/Bi2WO6 were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, scanning electron microscopy (SEM) and BET surface area analysis, and their photocatalytic activity were evaluated by photocatalytic decoloration of rhodamine B (RhB) aqueous solution under visible light. It was found that the presence of MC could significantly improve the crystallization of Bi2WO6 species and photoabsorption property of Bi2WO6 in the visible region. The results also showed that the BET surface areas of MC/Bi2WO6 composites were larger than that of the pure Bi2WO6 and the photocatalytic activity of the MC/Bi2WO6 is much higher than that of Bi2WO6 with the optimum effect occurring at RMC = 0.10 (the weight ratio of MC to Bi2WO6). Close investigation revealed that the surface area, grain size and charge transfer of the as-prepared MC/Bi2WO6 composites could improve the photocatalytic activities.

  7. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    Science.gov (United States)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  8. Preparation and photocatalytic property of perovskite Bi4Ti3O12 films

    International Nuclear Information System (INIS)

    Bi4Ti3O12 thin films with bismuth-layered perovskite structure have been successfully fabricated by means of chemical solution decomposition (CSD) and characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV-vis spectrophotometry in this study. The photocatalytic activity of Bi4Ti3O12 thin films has been evaluated by photodegrading methyl orange solution, and the optimum processing parameters for the photocatalytic activity have been found. Moreover, it has been found that La-doping can improve the photocatalytic activity of Bi4Ti3O12 thin films and hinder the increase of crystallite sizes during calcination

  9. Photon Stars

    OpenAIRE

    Schmidt, H. -J.; Homann, F.

    1999-01-01

    We discuss numerical solutions of Einstein's field equation describing static, spherically symmetric conglomerations of a photon gas. These equations imply a back reaction of the metric on the energy density of the photon gas according to Tolman's equation. The 3-fold of solutions corresponds to a class of physically different solutions which is parameterized by only two quantities, e.g. mass and surface temperature. The energy density is typically concentrated on a shell because the center c...

  10. Photonic Nanojets

    OpenAIRE

    Heifetz, Alexander; Kong, Soon-Cheol; Alan V. Sahakian; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for m...

  11. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  12. Bi209 alpha activity

    International Nuclear Information System (INIS)

    The study for measuring Bi209 alpha activity is presented. Ilford L4 nuclear emulsion pellicles loaded with bismuth citrate to obtain a load of 100 mg/cm3 of dry emulsion, were prepared. Other pellicles were prepared with the same. Ilford L4 gel to estimate the background radiation. To observe 'fading' effect, pellicles loaded with bismuth were submitted to neutrons of high energy, aiming to record recoil proton tracks. The pellicles were confined in nitrogen atmosphere at temperature lower than -100C. The Bi209 experimental half-life was obtained and compared with the estimated theoretical data. (M.C.K.)

  13. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances

    International Nuclear Information System (INIS)

    Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O2− and h+, especially ·O2−, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement

  14. Two-photon probes for biomedical applications

    Directory of Open Access Journals (Sweden)

    Chang Su Lim

    2013-04-01

    Full Text Available Two-photon microscopy (TPM, which uses two photons oflower energy as the excitation source, is a vital tool in biologyand clinical science, due to its capacity to image deep insideintact tissues for a long period of time. To make TPM a moreversatile tool in biomedical research, we have developed avariety of two-photon probes for specific applications. In thismini review, we will briefly discuss two-photon probes forlipid rafts, lysosomes, mitochondria, and pH, and theirbiomedical applications. [BMB Reports 2013; 46(4: 188-194

  15. Synthesis and characterization of BiOI/montmorillonite composites with high visible light photocatalytic activity

    Science.gov (United States)

    Liu, Chao; Wang, Jizhong; Wang, Xiaojing; Li, Fatang; Zhang, Lei; Chen, Yue

    2015-12-01

    BiOI/montmorillonite composite photocatalysts are synthesized by a facile room temperature method using Bi(NO3)3, KI and montmorillonite (MMT) clay as precursors, and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and nitrogen adsorption-desorption measurements. The facile synthesis method avoids high temperature treatment, and is based on cheap precursors. The prepared Bi-M-x composites possess a hierarchically nanoplates structure and are composed of BiOI and MMT phases. The degradation rate of the methylene blue reached up to about 95% after 45 min whereas that for the pure BiOI was only 75%. The high photocatalytic Bi-M-x composites would have a potential application in environmental purification owing to its low cost and easy synthesis.

  16. Intrinsic defect-mediated conduction and resistive switching in multiferroic BiFeO3 thin films epitaxially grown on SrRuO3 bottom electrodes

    Science.gov (United States)

    Lee, Ji Hye; Jeon, Ji Hoon; Yoon, Chansoo; Lee, Sangik; Kim, Yeon Soo; Oh, Tae Joon; Kim, Young Heon; Park, Jinsu; Song, Tae Kwon; Park, Bae Ho

    2016-03-01

    We report the impact of intrinsic defects in epitaxial BiFeO3 films on charge conduction and resistive switching of Pt/BiFeO3/SrRuO3 capacitors, although the BiFeO3 films show very similar ferroelectric domain types probed by piezoresponse force microscopy. Capacitors with p-type Bi-deficient and n-type Bi-rich BiFeO3 films exhibit switchable diode and conventional bipolar resistive switching behaviors, respectively. Both the capacitors show good retention properties with a high ON/OFF ratio of >100 in Bi-deficient films and that of >1000 in Bi-rich films. The present investigation advances considerably understanding of interface control through defect engineering of BiFeO3 thin films for non-volatile memory application.

  17. BI Project Success

    Science.gov (United States)

    Tracey, Graham; Riha, James

    2009-01-01

    Managing business intelligence (BI) projects in higher education is a formidable responsibility that challenges even the most experienced technical project managers. Data source dependencies, uncertain data quality, changing information requirements, and urgency for actionable information are but a few examples among the multitude of challenges.…

  18. Multi-photon quantum interference in a multi-port integrated photonic device

    CERN Document Server

    Metcalf, Benjamin J; Spring, Justin B; Kundys, Dmytro; Broome, Matthew A; Humphreys, Peter; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Gates, James C; Smith, Brian J; Langford, Nathan K; Smith, Peter G R; Walmsley, Ian A

    2012-01-01

    Increasing the complexity of quantum photonic devices is essential for many optical information processing applications to reach a regime beyond what can be classically simulated, and integrated photonics has emerged as a leading platform for achieving this. Here, we demonstrate three-photon quantum operation of an integrated device containing three coupled interferometers, eight spatial modes and many classical and nonclassical interferences. This represents a critical advance over previous complexities and the first on-chip nonclassical interference with more than two photonic inputs. We introduce a new scheme to verify quantum behaviour, using classically characterised device elements and hierarchies of photon correlation functions. We accurately predict the device's quantum behaviour and show operation inconsistent with both classical and bi-separable quantum models. Such methods for verifying multiphoton quantum behaviour are vital for achieving increased circuit complexity. Our experiment paves the way ...

  19. Memristive Switching in Bi1-xSbx Nanowires.

    Science.gov (United States)

    Han, Nalae; Park, Myung Uk; Yoo, Kyung-Hwa

    2016-04-13

    We investigated the memristive switching behavior in bismuth-antimony alloy (Bi1-xSbx) single nanowire devices at 0.1 ≤ x ≤ 0.42. At 0.15 ≤ x ≤ 0.42, most Bi1-xSbx single nanowire devices exhibited bipolar resistive switching (RS) behavior with on/off ratios of approximately 10(4) and narrow variations in switching parameters. Moreover, the resistance values in the low-resistance state (LRS) were insensitive to x. On the other hand, at 0.1 ≤ x ≤ 0.15, some Bi1-xSbx single nanowire devices showed complementary RS-like behavior, which was ascribed to asymmetric contact properties. Transmission electron microscopy and elemental mapping images of Bi, Sb, and O obtained from the cross sections of the Bi1-xSbx single nanowire devices, which were cut before and after RS, revealed that the mobile species was Sb ions, and the migration of the Sb ions to the nanowire surface brought the switch to LRS. In addition, we demonstrated that two types of synaptic plasticity, namely, short-term plasticity and long-term potentiation, could be implemented in Bi1-xSbx nanowires by applying a sequence of voltage pulses with different repetition intervals. PMID:27042861

  20. 小鼠卵母细胞染色体三维双光子荧光图像的轴向衰减%Intensity Loss of Two-Photon Excitation Fluorescence Microscopy Images of Mouse Oocyte Chromosomes

    Institute of Scientific and Technical Information of China (English)

    赵凤英; 吴宏新; 陈瓞延; 马万云

    2014-01-01

    双光子荧光显微镜作为一种高分辨光学仪器,已经被广泛应用于生物样品的非侵入式三维光学成像中。相比共聚焦显微镜,双光子荧光显微镜拥有更深的探测深度。然而,即便如此,在对较厚的生物样品进行非侵入式光学三维成像时,样品的成像质量也往往会随着探测深度的增加而下降。在临床和生物学领域对研究母性遗传起重要作用的小鼠卵母细胞拥有较大的直径(80~100μm ),吸收和散射效应较为明显。本文研究小鼠卵母细胞染色体的三维双光子荧光图像随探测深度增加图像质量的衰减程度。通过对所得图像进行轴向衰减矫正,利用体积作为参数,将矫正前后小鼠卵母细胞内染色体三维双光子荧光图像进行对比。结果表明,由于吸收和散射效应,卵母细胞存在较严重的光学轴向衰减问题,因此,对用双光子荧光三维成像手段获得的小鼠卵母细胞图像进行衰减矫正是有必要的。这为进一步精确定量的研究卵母细胞内染色体的三维构像打下良好的基础。%As an optical microscope with high resolution ,two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples .Compared with confocal laser scanning microscope ,TPE fluorescence mi-croscope provides a deeper detecting depth .In spite of that ,the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed .Mouse oocytes with a large diameter ,which play an important role in clinical and biological fields ,have obvious absorption and scattering effects .In the present paper ,we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes .Using volume as a parameter ,the attenuation degree of these chromosomes was also studied .The result of our data suggested that there exists a

  1. Testing QCD in Photon-Photon Interactions

    OpenAIRE

    Soldner-Rembold, Stefan

    1998-01-01

    At high energies photon-photon interactions are dominated by quantum fluctuations of the photons into fermion-antifermion pairs and into vector mesons. This is called photon structure. Electron-positron collisions at LEP are an ideal laboratory for studying photon structure and for testing QCD.

  2. Electronic structure of the ingredient planes of the cuprate superconductor Bi2Sr2CuO6 +δ : A comparison study with Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Lv, Yan-Feng; Wang, Wen-Lin; Ding, Hao; Wang, Yang; Ding, Ying; Zhong, Ruidan; Schneeloch, John; Gu, G. D.; Wang, Lili; He, Ke; Ji, Shuai-Hua; Zhao, Lin; Zhou, Xing-Jiang; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-01

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi2Sr2CuO6 +δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi2Sr2CaCu2O8 +δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose the interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.

  3. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  4. Vesicle Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  5. Bi deficiency-tuned functionality in multiferroic Bi1-δFe0.95Mn0.05O3 films

    Science.gov (United States)

    Chen, Jingyi; Wang, Yao; Wang, Hui; Zhang, Shuangmei; Deng, Yuan

    2016-01-01

    Structural evolution and ferroelectric (FE)-to-antiferroelectric (AFE) transition behaviors were observed in Bi1-δFe0.95Mn0.05O3 (100)-textured films with a carefully controlled Bi deficiency concentration δ. Raman spectra revealed an orthorhombic structural transition induced by Mn substitution. The polarization-electric field hysteresis loops and capacitance-voltage loops of Bi1-δFe0.95Mn0.05O3 films clearly demonstrated antiferroelectric behavior with increasing δ. The responses of the domain structure of the Bi1-δFe0.95Mn0.05O3 film under positive and negative applied voltages directly suggested the coexistence of FE and AFE phases. The existence of (100) superstructure reflections and antiparallel displacements of the Bi atoms along the [100] direction observed by transmission electron microscopy unambiguously reveal the AFE phase. The chemical substitution-induced orthorhombic structural transition in BiFe0.95Mn0.05O3 film implies that as the δ concentration increases, the changes in Bi-O bonding and the stereochemical activity of Bi 6s lone pair affect both the ferroelectric distortion and the antiferrodistortive rotation and therefore drive the Bi1-δFe0.95Mn0.05O3 crystal lattice to form a PbZrO3-type orthorhombic phase with an AFE order. A continuing increase in Bi deficiency creates defect dipole complexes which produce an internal field leading to a preferred direction of the ferroelectric domain. The Bi deficiency in multiferroic BiFeO3 provides a new route by which to tune functionality.

  6. Visible-light photocatalytic activity of graphene oxide-wrapped Bi{sub 2}WO{sub 6} hierarchical microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jiali; Yu, Hongwen, E-mail: yuhw@iga.ac.cn; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-30

    Graphical abstract: - Highlights: • GO/Bi{sub 2}WO{sub 6} are readily fabricated by facile bubbling pretreatment and freeze drying. • GO/Bi{sub 2}WO{sub 6} possess excellent photocatalytic activity under visible light irradiation. • The visible light activity of GO/Bi{sub 2}WO{sub 6} is affected by the amount of GO. • The photostablity of GO is due to the photo-generated electrons transfer to Bi{sub 2}WO{sub 6}. - Abstract: A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi{sub 2}WO{sub 6} microspheres (GO/Bi{sub 2}WO{sub 6}) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi{sub 2}WO{sub 6}. The UV–vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi{sub 2}WO{sub 6} composites own more intensive absorption in the visible light range compared with pure Bi{sub 2}WO{sub 6}. These characteristic structural and optical properties endow GO/Bi{sub 2}WO{sub 6} composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi{sub 2}WO{sub 6} is attributed predominantly to the synergetic effect between GO and Bi{sub 2}WO{sub 6}, causing rapid generation and separation of photo-generated charge carriers.

  7. Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO2 to CH4

    International Nuclear Information System (INIS)

    BiOI can be used for photocatalytic reduction of CO2 into hydrocarbon fuels under sunlight. - Highlights: • Room temperature synthesis of BiOI flowerlike hierarchical structures. • BiOI can be used for photocatalytic reduction of CO2 into hydrocarbon fuels under sunlight. • The photocatalytic activity of BiOI is higher than that of P25 TiO2. - Abstract: BiOI flowerlike hierarchical structure was synthesized by the direct hydrolysis method – hydrolysis at room temperature in the presence of polyvinyl pyrrolidone. As-synthesized BiOI was characterized by powder X-ray diffraction, UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. It is a facile way to obtain BiOI flowerlike hierarchical structure photocatalyst for photocatalytic reduction of CO2 into hydrocarbon fuels under simulated sunlight irradiation without cocatalyst. And the photocatalytic activity of as-synthesized BiOI is higher than that of P25 TiO2 and bulk BiOI

  8. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  9. Photon Structure in Photon Proton Interactions

    OpenAIRE

    Vossebeld, J. H.

    1998-01-01

    Photoproduction of jets at HERA provides information on the partonic structure of the photon. We report on the latest dijet photoproduction results, for real photons and for photons at low virtualities, measured with the ZEUS detector.

  10. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Highlights: • This is the first report on a series of BiOxCly/BiOmIn heterojunctions. • The BiOxCly/BiOmIn composition was controlled by adjusting the growth parameters. • The BiOxCly/BiOmIn were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO2. • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiOxCly/BiOmIn composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiOxCly/BiOmIn composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O2·− played a major role, and OH· or h+ played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  11. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation of...

  12. Photon differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Revall Frisvad, Jeppe; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation of...

  13. Structure of film compositions C60-Bi

    International Nuclear Information System (INIS)

    The structure of film compositions C60-Bi on fluorineflogopite substrates were investigated at the relation of density of fluxes of Bi atoms and C60 moleculas from 0 to 1 over the temperature range 400 - 500 K. The quality model of bismuth segregation in the composite films is studied. In our study fullerite and composite C60-Bi are considered as a model object (for the data on possible practical application of fullerite see, e.g. [1]). The special consideration in the study is given to the investigation of deposition conditions of perfect fullerite films on orienting substrates and to the processes of metal-fulleren composition formation in the absence of a chemical bond among the elements of the starting components. High-resolution electron microscopy (direct resolution of crystallographic planes, microdifraction) and X-ray diffractometry method (0 - 20) of scanning in Cu-Kα1 radiation) were used in the study to examine the structure of pure fullerite and fulleren-bismuth composite. The composite was formed at the thermal evaporation of the components from two Knudsen cells. The density of the flux of Bi atoms varied from 0 to 1 with respect to a cluster C60 flux. The quantity of the substance being evaporated was controlled with a quartz microbalance. The plane (001) of artificial mice - fluorineflogopite (ff) was chosen as substrates. The applying process was performed in the substrate holder temperature range Tn = 400 - 500 K in vacuum approx. 10-3 Pa condensed to be examined with electronic microscope PEM-U; X-ray study of the films approx. 500 nm thick was made with the help of a diffractometer DRON-3M. The microscope resolution was 0.2 nm and this was confirmed by direct resolution of (200) planes of atoms of thin monocrystalline films of gold. In the study we used the substrate holders with either constant temperature or temperature gradient held in the plane

  14. Two-Photon Processes and Photon Structure

    OpenAIRE

    Schienbein, I.

    2002-01-01

    In this article aspects of photon-photon physics related to the structure of real and virtual photons are reviewed. A re-calculation of the virtual photon-photon box is performed and some discrepancies in the literature are clarified. A useful compilation of various relevant limits derived from the most general expressions is provided. Furthermore, structure functions of spin-averaged, transverse and longitudinal virtual target photons are defined and discussed. Finally, the factorization of ...

  15. Enhanced two-photon absorption using true thermal light

    CERN Document Server

    Jechow, Andreas; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-01-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.

  16. Photon-Photon Interaction in a Photon Gas

    OpenAIRE

    Thoma, Markus H.

    2000-01-01

    Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.

  17. Photon-Photon Scattering at the Photon Linear Collider

    OpenAIRE

    Jikia, G.; Tkabladze, A.

    1993-01-01

    Photon-photon scattering at the Photon Linear Collider is considered. Explicit formulas for helicity amplitudes due to $W$ boson loops are presented. It is shown that photon-photon scattering should be easily observable at PLC and separation of the $W$ loop contribution (which dominates at high energies) will be possible at $e^+e^-$ c.m. energy of 500~GeV or higher.

  18. Structural study of yttrium substituted BiFeO3

    Science.gov (United States)

    Mejía Gómez, J. A.; Canaria, C.; Ochoa Burgos, R.; Ortiz, C. A.; Supelano, G. I.; Parra Vargas, C. A.

    2016-02-01

    Yttrium-substituted Bi1-xYxFeO3 (x=0, 0.03, 0.07, 0.15, 0.2 and 0.5) samples were prepared by solid state reaction technique. Morphological analysis was obtained by Scanning Electron Microscopy (SEM) technique indicating mainly granular behaviour. In addition, the substitution of yttrium promotes smaller particle size of BiFeO3. The obtained samples were also studied by X-ray diffraction (XRD). The crystal structure and the lattice parameters were confirmed by XRD. Rietveld refinement of experimental X-ray diffraction patterns showed that substituted BiFeO3 compounds crystallize in a R3c type structure and the lattice parameters decrease as Y concentration increases.

  19. Regular nanodomain vertex arrays in BiFeO3 single crystals

    OpenAIRE

    Berger, A; Hesse, D.; Hähnel, A.; Arredondo-Arechavala, Miryam; Alexe, M.

    2012-01-01

    Domain patterns consisting of triangular nanodomains of less than 50 nm size, arranged into long regular vertex arrays separated by stripe domains, were observed by (scanning and high-resolution) transmission electron microscopy and piezoresponse force microscopy in BiFeO3 single crystals grown from solution flux. Piezoresponse force microscopy analysis together with crystallographic analysis by selected area and nanobeam electron diffraction indicate that these patterns consist of ferroelect...

  20. Preparation and structure characteristics of nano-Bi2O3 powders with mixed crystal structure

    Institute of Scientific and Technical Information of China (English)

    LI Wei

    2005-01-01

    The nano-Bi2 O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, H NO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300 g/L Bi(NO3)3 reacts at 90 ℃ for 2 h, the Bi2O3 powders with 60 nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2 O3 powders contain a mixed crystal structure of monoclinic and triclinic in stead of traditional structure of monoclinic α-Bi2 O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi3+ to O2- changes easily during the formation of nano-Bi2 O3 particles by a chemical precipitation method.

  1. Effects of the homogeneous Bi{sup 3+} doping process on photoluminescence properties of YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Satoru [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.j [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Sawayama, Tomohiro; Niikura, Seiji [SINLOIHI Co. Ltd., 2-19-12 Dai, Kamakura 247-8550 (Japan)

    2009-09-15

    YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanophosphors at a high Bi{sup 3+} concentration of 15 at% are synthesized from a Bi{sup 3+} source, nitrates of yttrium and europium(III), and sodium orthovanadate(V) by a low-temperature aqueous precipitation in the presence of citrate ions. When an ethylene glycol solution of bismuth(III) nitrate is used as a Bi{sup 3+} source, YVO{sub 4}:Bi{sup 3+},Eu{sup 3+} nanophosphors of approx20 nm in size crystallize during aging at 85 deg. C without any by-products where the contents of Bi{sup 3+} and Eu{sup 3+} incorporated into crystalline YVO{sub 4} are close to the respective nominal contents, as confirmed by transmission electron microscopy, X-ray diffractometry and X-ray fluorescent analysis. These nanophosphors show red emission corresponding to the f-f transition of Eu{sup 3+} under the excitation of Bi{sup 3+}-V{sup 5+} charge transfer. When aging is continued after the completion of the crystallization, the photoluminescence intensity of nanophosphors reaches the constant value. This is the improved behavior in comparison to our previous work, where the photoluminescence intensity decreases after the prolonged aging because of the inhomogeneous doping of Bi{sup 3+} ions, and hence the concentration quenching.

  2. Fabrication of hierarchical BiOI/Bi{sub 2}MoO{sub 6} heterojunction for degradation of bisphenol A and dye under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Tao [School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); School of Resources and Environment, University of Jinan, Jinan 250022 (China); Sun, Meng [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Liu, Hongye [School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Wu, Tingting; Liu, Xiaojie; Yan, Qing [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Xu, Wenguo, E-mail: xuwgujn@163.com [School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environment, University of Jinan, Jinan 250022 (China)

    2015-06-15

    Highlights: • The hierarchical BiOI/Bi{sub 2}MoO{sub 6} composite prepared by precipitation–deposition method. • The composites showed enhanced visible light activity towards MB and BPA degradation. • The BiOI/Bi{sub 2}MoO{sub 6} heterojunction facilitated the separation of electron–hole pairs. • The probable mechanism was proposed to explain the enhanced photocatalytic activity. - Abstract: A novel hierarchical BiOI/Bi{sub 2}MoO{sub 6} composites are prepared by a facile precipitation–deposition method. The prepared photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectrometer (XPS). The resulting BiOI/Bi{sub 2}MoO{sub 6} composites exhibit excellent photocatalytic activity and stability towards the degradation of methylene blue (MB) and bisphenol A (BPA) in aqueous solution under visible light irradiation. The optimal composite with 25% BiOI content shows the highest photocatalytic activity for MB degradation. The enhanced photocatalytic activity is mainly attributed to the formation of BiOI/Bi{sub 2}MoO{sub 6} heterojunction that can facilitate the separation and transfer of the photo-generated charge carriers. The roles of active species in the photocatalytic process are discussed by using different types of active species scavengers. Meanwhile, combined with the photoluminescence (PL) and electrochemical impedance spectroscopy (EIS), the degradation mechanism of the photocatalysts is proposed. It is hoped that the work could provide valuable information on the design of specific structure materials with more excellent properties and set the foundation for the further industrial application.

  3. Fabrication of hierarchical BiOI/Bi2MoO6 heterojunction for degradation of bisphenol A and dye under visible light irradiation

    International Nuclear Information System (INIS)

    Highlights: • The hierarchical BiOI/Bi2MoO6 composite prepared by precipitation–deposition method. • The composites showed enhanced visible light activity towards MB and BPA degradation. • The BiOI/Bi2MoO6 heterojunction facilitated the separation of electron–hole pairs. • The probable mechanism was proposed to explain the enhanced photocatalytic activity. - Abstract: A novel hierarchical BiOI/Bi2MoO6 composites are prepared by a facile precipitation–deposition method. The prepared photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectrometer (XPS). The resulting BiOI/Bi2MoO6 composites exhibit excellent photocatalytic activity and stability towards the degradation of methylene blue (MB) and bisphenol A (BPA) in aqueous solution under visible light irradiation. The optimal composite with 25% BiOI content shows the highest photocatalytic activity for MB degradation. The enhanced photocatalytic activity is mainly attributed to the formation of BiOI/Bi2MoO6 heterojunction that can facilitate the separation and transfer of the photo-generated charge carriers. The roles of active species in the photocatalytic process are discussed by using different types of active species scavengers. Meanwhile, combined with the photoluminescence (PL) and electrochemical impedance spectroscopy (EIS), the degradation mechanism of the photocatalysts is proposed. It is hoped that the work could provide valuable information on the design of specific structure materials with more excellent properties and set the foundation for the further industrial application

  4. Photon detectors

    International Nuclear Information System (INIS)

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  5. Photon locking

    OpenAIRE

    Sleva, E. T.; Xavier, I. M., Jr.; Zewail, A.H.

    1986-01-01

    A novel observation of photon locking—the optical analog of spin locking—is reported, demonstrating the applicability of phase-coherent pulse sequences. The experiments are reported for the optical transition of iodine gas at 589.7 nm using the pulse sequence XYX-XYX̄. Locking decay rates are presented as a function of pressure and compared with optical dephasing (echo-decay) rates.

  6. Photon findings

    OpenAIRE

    Urbina, Victor M.

    2000-01-01

    Two experiments were made using a microwave generator, which sent a narrow beam, through a metallic plate with horizontal movement. At the other end a horn antenna coupled to a field-strength detector. In linear polarization double cycloids paths were found and in circular polarization spiral paths were found. These experiments suggested that the photon is composed by two particles in dynamic equilibrium. The description of this model is given later as well as its parameters.

  7. Photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  8. Nanowire photonics

    OpenAIRE

    Peter J. Pauzauskie; Peidong Yang

    2006-01-01

    The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. Howev...

  9. Topological photonics

    OpenAIRE

    Lu, Ling; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-space topologies allows the creation of interfaces that support new states of light with useful and interesting prop...

  10. Size dependent structural, vibrational and magnetic properties of BiFeO{sub 3} and core-shell structured BiFeO{sub 3}@SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj, E-mail: sunilchauhanjiit@gmail.com; Chhoker, Sandeep, E-mail: sunilchauhanjiit@gmail.com; Katyal, S. C., E-mail: sunilchauhanjiit@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida- 201307 (India)

    2014-04-24

    Bulk BiFeO{sub 3}, BiFeO{sub 3} nanoparticles and core-shell structured BiFeO{sub 3}@SiO{sub 2} nanoparticles were synthesized by solid state reaction method, sol-gel and Stöber process (SiO{sub 2} shell) respectively. Transmission electron microscopy image confirmed the core-shell structure of BiFeO{sub 3}@SiO{sub 2} nanoparticles with BiFeO3 core ∼50-90 nm and SiO{sub 2} shell ∼16 nm. X-ray diffraction and FTIR spectroscopy results showed the presence of distorted rhombohedral structure with R3c space group in all three samples. The magnetic measurement indicated the existence of room-temperature weak ferromagnetism in core-shell BiFeO{sub 3}@SiO{sub 2} nanoparticles and BiFeO3 nanoparticles, whereas bulk BiFeO{sub 3} showed antiferromagnteic nature. Electron Spin Resonance results confirmed the enhancement in magnetic properties of coreshell structured BiFeO{sub 3}@SiO{sub 2} nanoparticles in comparison with BiFeO{sub 3} nanoparticles and bulk BiFeO{sub 3}.

  11. Electronic structures and origin of intrinsic luminescence in Bi-containing oxide crystals BiPO{sub 4}, K{sub 3}Bi{sub 5}(PO{sub 4}){sub 6}, K{sub 2}Bi(PO{sub 4})(MoO{sub 4}), K{sub 2}Bi(PO{sub 4})(WO{sub 4}) and K{sub 5}Bi(MoO{sub 4}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyi, Yu A., E-mail: hizhnyi@univ.kiev.ua; Nedilko, S.G.; Chornii, V.P.; Slobodyanik, M.S.; Zatovsky, I.V.; Terebilenko, K.V.

    2014-11-25

    Highlights: • Main PL components of BiPO{sub 4}, K{sub 3}Bi{sub 5}(PO{sub 4}){sub 6} and K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) are bismuth-related. • Main PL components of K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) and K{sub 5}Bi(MoO{sub 4}){sub 4} are molybdate-related. • The red PL component of K{sub 2}Bi(PO{sub 4})(WO{sub 4}) originates from the molybdenum impurities. - Abstract: The origin of intrinsic photoluminescence (PL) in the set of Bi-containing phosphate, molybdate and tungstate crystals is analyzed in complex experimental and computational studies. The PL properties of polycrystalline powder samples of BiPO{sub 4}, K{sub 3}Bi{sub 5}(PO{sub 4}){sub 6}, K{sub 2}Bi(PO{sub 4})(MoO{sub 4}), K{sub 2}Bi(PO{sub 4})(WO{sub 4}) and K{sub 5}Bi(MoO{sub 4}){sub 4} crystals synthesized by spontaneous crystallization method are studied under excitations in the VUV and UV region of photon energies (3.5–14 eV) at T = 8–300 K. The electronic band structures of the crystals are calculated by the Full-Potential Linear Augmented Plane Wave Method. The values of band gaps E{sub g} of studied compounds are estimated from diffuse reflectance and PL excitation spectra. Calculations indicate that all studied crystals except K{sub 5}Bi(MoO{sub 4}){sub 4} are indirect-gap materials. It is found that the Bi 6s and Bi 6p states contribute respectively at the tops of the Valence bands and the bottoms of the Conduction bands of all studied compounds. Each studied compound reveals several (at least two) PL emission components which undergo complete quenching below room temperature. Under nitrogen laser excitation with λ{sub ex} = 337.1 nm, all studied crystals reveal single-exponential decay of PL signal with decay constants τ in 3–35 μs range. It is assumed that the high-energy PL components of BiPO{sub 4}, K{sub 3}Bi{sub 5}(PO{sub 4}){sub 6} and K{sub 2}Bi(PO{sub 4})(MoO{sub 4}) (peaking in the blue and violet regions) originate from {sup 3}P{sub 1} → {sup 1}S{sub 0} radiative

  12. Digital resolution enhancement in surface plasmon microscopy

    CERN Document Server

    Smolyaninov, I I; Elliott, J; Wurtz, G; Zayats, A V

    2005-01-01

    The use of photonic crystal and negative refractive index materials is known to improve resolution of optical microscopy and lithography devices down to 80 nm level. Here we demonstrate that utilization of well-known digital image recovery techniques allows us to further improve resolution of optical microscope down to 30 nm level. Our microscope is based on a flat dielectric mirror deposited onto an array of nanoholes in thin gold film. This two-dimensional photonic crystal mirror may have either positive or negative effective refractive index as perceived by surface plasmon polartions in the visible frequency range. The optical images formed by the mirror are enhanced using simple digital filters.

  13. Calibration processes for photon-photon colliders

    OpenAIRE

    Bartos, E.; Dubnickova, A. -Z.; Galynskii, M. V.; Kuraev, E. A.

    2003-01-01

    Processes with creation of a pair charged particles with emission of hard photon and two pairs of charged particles are considered for colliding partially polarized photon photon beams. The effects of circular and linear polarization of the initial photons are discussed in more details.

  14. Calibration processes for photon-photon colliders

    CERN Document Server

    Bartos, E; Galynsky, M V; Kuraev, E A

    2004-01-01

    Processes with creation of a pair charged particles with emission of hard photon and two pairs of charged particles are considered for colliding partially polarized photon photon beams. The effects of circular and linear polarization of the initial photons are discussed in more detail.

  15. Slow evaporation method and enhancement in photoluminescence properties of YPO$_4$ : Eu$^{3+}$ co-doped with Bi$_{3+}$ ions

    Indian Academy of Sciences (India)

    K A KOPARKAR; S K OMANWAR

    2016-08-01

    The series of Bi$^{3+}$ co-doped YPO$_{4}:Eu$^{3+}$ nanophosphors were successfully synthesized by the slow evaporation method. Bi$^{3+}$-doped and un-doped YPO$_4$:Eu$^{3+}$ phosphors were characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Photoluminescence (PL) properties and decay time of phosphors were studied at room temperature. The YPO$_4$:Eu$^{3+}$ and Bi$^{3+}$ exhibit enhancement in PL intensity and quenched at 0.5 mol% of Bi$^{3+}$ ions.

  16. Electrodeposition and characterization of Bi/Tl multilayer nanowires

    Science.gov (United States)

    Jaleh, Babak; Nasri, Atefeh; Kakuee, Omidreza

    2015-09-01

    Bi/Tl multilayer nanowires have been successfully fabricated using template-based electordeposition by polycarbonate nanoporous template with 100 nm diameter. The growth Bi/Tl multilayer nanowires was performed using dual-bath system containing Bi and Tl salt, respectively. The electrochemical reduction of ions was explored by cyclic voltammetry (CV). The deposition process was controlled with current-time profiles. X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed for characterization of crystalline structure and morphology of nanowires. The XRD spectra showed that the lattice structure of Bi segment is rhombohedral and thallium segment has hexagonal lattice structure. The average nanowires diameter was determined from TEM images. Elemental analysis of nanowires was carried out using energy dispersive X-ray (EDX), Rutherford backscattering spectrometry (RBS), and proton induced X-ray emission (PIXE). The length of nanowires was determined by RBS technique. Elemental concentration and weight percent of sample were measured by PIXE analysis.

  17. Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, K., E-mail: vigneshtc@rediffmail.com [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Suganthi, A. [Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu (India); Min, Bong-Ki [Center for Research Facilities, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kang, Misook, E-mail: mskang@ynu.ac.kr [Department of Chemistry, College of Science, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2015-01-01

    Graphical abstract: The proposed schematic diagram of electron transfer in BiOI-ZrO{sub 2} under simulated solar light irradiation. - Highlights: • BiOI-ZrO{sub 2} hetero-junction was synthesized by precipitation–deposition method. • BiOI-ZrO{sub 2} had meso-porous surface with strong visible light absorption. • Photodegradation of methyl violet was studied under simulated solar light irradiation. • BiOI sensitization with ZrO{sub 2} improved the photocatalytic activity to 98%. • A probable electron transfer mechanism was proposed. - Abstract: In this present work, BiOI sensitized zirconia (BiOI-ZrO{sub 2}) nanoparticles were fabricated using a precipitation–deposition method. The physicochemical characteristics of BiOI/ZrO{sub 2} were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO{sub 2} was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO{sub 2} for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO{sub 2} exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO{sub 2} and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO{sub 2} is ascribed to the sensitization effect of BiOI, suppression of electron–hole recombination and the formation of p-n hetero-junction.

  18. Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation

    International Nuclear Information System (INIS)

    Graphical abstract: The proposed schematic diagram of electron transfer in BiOI-ZrO2 under simulated solar light irradiation. - Highlights: • BiOI-ZrO2 hetero-junction was synthesized by precipitation–deposition method. • BiOI-ZrO2 had meso-porous surface with strong visible light absorption. • Photodegradation of methyl violet was studied under simulated solar light irradiation. • BiOI sensitization with ZrO2 improved the photocatalytic activity to 98%. • A probable electron transfer mechanism was proposed. - Abstract: In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation–deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron–hole recombination and the formation of p-n hetero-junction

  19. Growth and surface potential characterization of Bi2Te3 nanoplates

    Directory of Open Access Journals (Sweden)

    Guolin Hao

    2012-03-01

    Full Text Available Topological insulator Bi2Te3 nanoplates with hexagonal, triangular and truncated triangular nanostructures have been fabricated with thickness of ∼10 nm by vacuum vapor phase deposition method. The possible formation mechanism of Bi2Te3 nanoplates with different nanostructures has been proposed. We have examined the surface potentials of Bi2Te3 nanoplates using Kelvin probe force microscopy. The surface potential of Bi2Te3 nanoplates is determined to be about 482 mV on the SiO2/Si substrate, 88 mV and -112 mV on the n-doped and p-doped Si (111 substrates, respectively. The surface potential information provides insight into understanding electronic properties of Bi2Te3 nanoplates, which may open a new door to the exploration of the topological insulators.

  20. Multiphoton microscopy: An introduction to gastroenterologists

    Institute of Scientific and Technical Information of China (English)

    Hye Jin Cho; Hoon Jai Chun; Eun Sun Kim; Bong Rae Cho

    2011-01-01

    Multiphoton microscopy, relying on the simultaneous absorption of two or more photons by a fluorophore, has come to occupy a prominent place in modern biomedical research with its ability to allow real-time observation of a single cell and molecules in intact tissues. Multiphoton microscopy exhibits nonlinear optical contrast properties, which can make it possible to provide an exceptionally large depth penetration with less phototoxicity. This system becomes more and more an inspiring tool for a non-invasive imaging system to realize "optical biopsy" and to examine the functions of living cells. In this review, we briefly present the physical principles and properties of multiphoton microscopy as well as the current applications in biological fields. In addition, we address what we see as the future potential of multiphoton microscopy for gastroenterologic research.

  1. Photon induced L3 vacancy alignment at tuned photon energies

    Science.gov (United States)

    Bansal, Himani; Kaur, Gurpreet; Tiwari, Manoj K.; Mittal, Raj

    2016-04-01

    Photon induced L3 X-ray measurements for Lα/Lℓ cross-section ratios in elements, 66 ⩽ Z ⩽ 83, at tuned photon energies on synchrotron Beamline-16 at Indus-2, India have been used to study the effect of Coster-Kronig (CK) transitions and photon energies on alignment of L3 vacancies. Certainty and reliability of the measurements were checked from comparison of measured Lα and Lℓ fluorescence cross-sections at E1 excitation with available theoretical/empirical/experimental values that required additional measurements for source, geometry and efficiency factor S0GɛLα/ℓ in the used set-up. Fall/rise trend of the ratios with energy for different Z's was found to resemble the off/on-set pattern of CK transitions as pointed out by Bambynek et al. and Campbell. Evaluated alignment parameter A2 values are very much within the limits, 0.05 Bi resembles our previously reported theoretical patterns that lends mutual support for both current measurements and earlier theoretical results.

  2. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet

    International Nuclear Information System (INIS)

    Bi2O2CO3 nanosheet with a thickness of less than 20 nm was synthesized via hydrothermal and solvothermal process. The properties of the as-prepared nanosheet were characterized by X-ray diffraction, scanning electron microscopy, and diffuse reflectance spectra. The electronic structure was investigated using first-principle calculations. Application of the as-prepared Bi2O2CO3 nanosheet in photocatalysis was also studied.

  3. Dissolution of kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminium

    DEFF Research Database (Denmark)

    Prokofjev, Sergei I.; Johnson, Erik; Zhilin, Victor M.;

    2008-01-01

    In situ transmission selctron microscopy is used to study dissolution of liquid single-phase Pb/Bi inclusions attached to grain boundary in an alloy of Al99.29Pb0.65Bi0.06 at temperatures of 343, 370, and 389 °C, respectively.  The initial size of the inclusions was smaller than 60 nm.  Dissoluti...

  4. Virtual photon-photon scattering

    OpenAIRE

    Hoferichter, Martin; Colangelo, Gilberto; Procura, Massimiliano; Stoffer, Peter(Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, Bern, CH-3012, Switzerland)

    2014-01-01

    Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e+e− → hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of the pr...

  5. Virtual photon-photon scattering

    OpenAIRE

    Hoferichter, Martin; Colangelo, Gilberto; Procura, Massimiliano; Stoffer, Peter(Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, Bern, CH-3012, Switzerland)

    2013-01-01

    Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e^+e^- --> hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of th...

  6. Bi-paracontact structures and Legendre foliations

    OpenAIRE

    Montano, Beniamino Cappelletti

    2010-01-01

    We study almost bi-paracontact structures on contact manifolds. We prove that if an almost bi-paracontact structure is defined on a contact manifold $(M,\\eta)$, then under some natural assumptions of integrability, $M$ carries two transverse bi-Legendrian structures. Conversely, if two transverse bi-Legendrian structures are defined on a contact manifold, then $M$ admits an almost bi-paracontact structure. We define a canonical connection on an almost bi-paracontact manifold and we study its ...

  7. Atomic Structure of Highly Strained BiFeO3 Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Rossell, M.D. [Lawrence Berkeley National Laboratory (LBNL); Erni, R. [Lawrence Berkeley National Laboratory (LBNL); Prange, Micah P [ORNL; Idrobo Tapia, Juan C [ORNL; Luo, Weidong [ORNL; Zeches, R J [University of California, Berkeley; Pantelides, Sokrates T [ORNL; Ramesh, R [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    We determine the atomic structure of the pseudotetragonal T phase and the pseudorhombohedral R phase in highly strained multiferroic BiFeO3 thin films by using a combination of atomic-resolution scanning transmission electron microscopy and electron energy-loss spectroscopy. The coordination of the Fe atoms and their displacement relative to the O and Bi positions are assessed by direct imaging. These observations allow us to interpret the electronic structure data derived from electron energy-loss spectroscopy and provide evidence for the giant spontaneous polarization in strained BiFeO3 thin films.

  8. One-dimensional structures of Bi 2O 3 synthesized via metalorganic chemical vapor deposition process

    Science.gov (United States)

    Kim, Hyoun Woo; Myung, Ju Hyun; Shim, Seung Hyun

    2006-01-01

    We have demonstrated the synthesis of one-dimensional (1D) structures of bismuth oxide (Bi 2O 3) by a reaction of a trimethylbismuth (TMBi) and oxygen (O 2) mixture at 450 °C. Scanning electron microscopy showed that the product consisted of 1D materials with width or diameters less than 1 μm and lengths up to several tens of micrometers. The X-ray energy dispersive spectroscopy revealed that the materials contained elements of Bi and O. The results of X-ray diffraction and selected area electron diffraction pattern indicated that the obtained Bi 2O 3 were crystalline with monoclinic structure.

  9. MOVPE growth of Ga(AsBi)/GaAs multi quantum well structures

    Science.gov (United States)

    Ludewig, P.; Knaub, N.; Stolz, W.; Volz, K.

    2013-05-01

    This paper summarizes results of the epitaxial growth of Ga(AsBi) by metal organic vapor phase epitaxy (MOVPE) using all-liquid group V precursors. Ga(AsBi)/GaAs multi quantum well (MQW) samples are grown on GaAs (001) substrates at temperatures as low as 375 °C and 400 °C using triethylgallium (TEGa), tertiarybutylarsine (TBAs) and trimethylbismuth (TMBi) as precursors. High resolution x-ray diffraction (HR-XRD), transmission electron microscopy (TEM) as well as atomic force microscopy (AFM) measurements show that MQW structures with good crystalline quality are realized. Under specific growth conditions, the Bi droplet formation can be avoided completely. The incorporated Bi-content is limited depending on the growth temperature used. Surplus Bi segregates at the surface and incorporates into the subsequent GaAs barrier when the Bi supply is stopped. The MQW samples show room temperature photoluminescence (PL) already after growth. A redshift and a decreasing PL signal intensity with increasing Bi fraction is observed.

  10. Nanowire photonics

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  11. Synthesis of diluted magnetic semiconductor Bi2−xMnxTe3 nanocrystals in a host glass matrix

    International Nuclear Information System (INIS)

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi2−xMnxTe3 NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d015-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi2Te3 bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi2−xMnxTe3 nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn2+ ions are substitutional defects occupying Bi sites (MnBi). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn2+ ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi2Te3 nanocrystals confirmed the presence of the Mn2+ state. - Highlights: • Bi2−xMnxTe3 NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi2−xMnxTe3 NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn2+ ions are located in two distinct Bi2Te3 NCs sites

  12. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO4/Bi2MoO6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO4/Bi2MoO6 composites were synthesized by a one-step hydrothermal method. • The BiIO4/Bi2MoO6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h+) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO4/Bi2MoO6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO4 and Bi2MoO6, the BiIO4/Bi2MoO6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO4/Bi2MoO6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h+) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  13. Two-photon Imaging of the Immune System

    OpenAIRE

    Dzhagalov, Ivan L; Melichar, Heather J.; Ross, Jenny O.; Herzmark, Paul; Robey, Ellen A.

    2012-01-01

    Two-photon microscopy is a powerful method for visualizing biological processes as they occur in their native environment in real time. The immune system uniquely benefits from this technology as most of its constituent cells are highly motile and interact extensively with each other and with the environment. Two-photon microscopy has provided many novel insights into the dynamics of the development and function of the immune system that could not have been deduced by other methods and has be...

  14. Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance

    International Nuclear Information System (INIS)

    Highlights: • Ni(OH)2/GS and Bi2O3/GS composite were synthesized respectively by simple methods. • A novel Ni/Bi battery is assembled using Ni(OH)2/GS and Bi2O3/GS as electrode materials. • The Ni/Bi battery exhibits a high capacity of 98 mA h g−1 at 1 C and energy density of 82.6 W h kg−1. - Abstract: Two kinds of graphene-based composite materials of Ni(OH)2 nanoparticles/graphene sheets (Ni(OH)2/GS) and Bi2O3 rods/graphene sheets (Bi2O3/GS) were respectively synthesized by chemical bath deposition. Morphological and structural analysis by field-emission scanning electron microscopy, transmission electron microscope, X-ray diffraction and X-ray photoelectron spectroscopy confirmed the successful composite of GS with the metal compounds. Then, a high performance Ni/Bi battery was designed and fabricated using the Bi2O3/GS hybrid material as negative electrode and Ni(OH)2/GS as positive electrode. As a result, this Ni/Bi battery delivers a high discharge capacity of 102 mA h g−1 at 1 C and good rate capability. A high energy density of 83.2 W h kg−1 is also achieved at a power density of 143 W kg−1 and can still maintain a high level of 60.1 W h kg−1 at 2609 W kg−1, illustrating that this Ni/Bi battery is a promising candidate as energy storage devices

  15. Synthesis and characterization of BiFeO3 nanotube arrays and Y-junction BiFeO3 nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI ChunYang; LIU Bing; ZHAO JianPo; WANG JiangFeng; HU BinBin; DU ZuLiang

    2009-01-01

    Multiferroic BiFeO3(BFO) nanotube arrays (-100 nm in diameter and-50 μm in length) were synthesized by the sol-gel method utilizing the anodic aluminum oxide (AAO) membrane technique. The micro-structure and chemical components of the BFO nanotubes were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The BFO nanotubes exhibited polycrystalline microstructures. The novel Y-junction BFO nano-tubes were simultaneously fabricated.

  16. Bi-2201, Bi-2212 and (Bi,Pb)-2223 fibers have been grown using the micro-pulling down (μ-PD) technique

    International Nuclear Information System (INIS)

    Many studies on various methods for growing crystals by methods including flux, self-flux, Bridgman, and floating zone growth have been carried out. Recently the micro-pulling down (μ-PD) method has been used to grow high-quality oxide fibers with minimal residual stresses, even incongruently melting compounds or high melting temperature materials. Thus, we thought to extend this technique to superconducting materials. In this work, the (Bi,Pb)2Sr2Can-1CunOz superconductors fibers were successfully grown by the micro-pulling-down using a seeding technique and were of reasonable quality, as was proved by X-ray diffraction, scanning electron microscopy and SQUID measurements. The grown fibers had a regular shape with uniform diameter and different length which was limited only by the crucible size and quantities of starting materials. The fibers were composed of plate-like crystals, oriented along the pulling direction and were superconducting. Nearly pure-phase (more than 90%) Bi-2201 and Bi-2212 fibers could be obtained at pulling rates 0.08 mm/min, exhibit superconducting behaviour with critical temperature Tc = 21 K and 90 K respectively with transition width (10-90% level) between 5 and 10 K. For (Bi,Pb)-2223 fiber obtained displays two superconducting transitions around 107 and 85 K, corresponding to 2223 and 2212 phases, respectively. Therefore the 2212 phase is the dominant phase in fiber grown

  17. 双光子显微镜技术在脑功能研究中的应用:脑片、整体脑结构样品和活体脑%Application of two-photon microscopy technology in research of brain function:slices,whole isolated preparations and brains in living animals

    Institute of Scientific and Technical Information of China (English)

    张静思; 孙长凯; 朴花

    2010-01-01

    双光子显微镜(two-photon microscopy,TPLSM)具有三维成像功能,在分辨率和成像深度方面均具有明显优势.同时,它对样本的损伤程度也明显低于传统成像方法,这使双光子显微镜技术在神经科学研究中的地位日益提升.此外,TPLSM在光化学,尤其是光解释放笼状分子方面具有无可比拟的优势,该优势为进一步深入研究组织乃至细胞的细微结构、分子成分及细胞功能提供了一种可靠的方法.本文综述TPLSM的上述优点在脑片、整体脑结构样品和活体脑功能中的研究应用,期待双光子显微镜技术在神经科学研究中发挥更大的作用.

  18. Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy

    International Nuclear Information System (INIS)

    Highlights: • Aqueous solution route is used to produce Bi, Sn and Bi–Sn nanoparticles. • HRTEM revealed core–shell and Janus type structures of Bi–Sn nanoparticles. • Melting temperature depression of Bi and Bi–Sn nanoparticles were measured by DSC. • DSC data on Bi melting temperature depression agrees with theoretical values. - Abstract: Lead-free solders based on Bi–Sn bimetallic nanoclusters with eutectic composition (Bi43Sn57) were synthesized at low temperature by simultaneous reduction reaction from aqueous solution containing bismuth and tin chlorides, using potassium borohydride as a reducing agent. By the same processing route, pure bismuth and tin nanoparticles have also been prepared. Microstructure, morphology and composition of the samples were characterized by X-ray powder diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). TEM images of Bi–Sn nanoparticles show average size ranging from 30 to 100 nm. Thermal behaviour of Bi–Sn nanopowders was studied by DSC (differential scanning calorimetry) and a melting temperature (135 °C) lower than that of the corresponding microcrystalline sample (139 °C) was observed. SEM micrographs of the thermally treated sample up to 400 °C show fine spherical grains in the micrometer range with finer powder particles on the surface. XRD powder diffraction analysis indicates the formation of bismuth and tin nanophases with an average particle size of 85 and 126 nm, respectively. The oxidation behaviour of the samples was also investigated. The results obtained have been analyzed in view of theoretical models describing the melting temperature depression of nanoparticles

  19. Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frongia, F.; Pilloni, M.; Scano, A.; Ardu, A.; Cannas, C.; Musinu, A. [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy); Borzone, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, Genoa University and Genoa Research Unit of the National Consortium of Materials Science and Technology (INSTM), Via Dodecaneso 31, I-16146 Genoa (Italy); Novakovic, R. [National Research Council (CNR), Institute for Energetics and Interphases (IENI), Via De Marini 6, 16149 Genoa (Italy); Ennas, G., E-mail: ennas@unica.it [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy)

    2015-02-25

    Highlights: • Aqueous solution route is used to produce Bi, Sn and Bi–Sn nanoparticles. • HRTEM revealed core–shell and Janus type structures of Bi–Sn nanoparticles. • Melting temperature depression of Bi and Bi–Sn nanoparticles were measured by DSC. • DSC data on Bi melting temperature depression agrees with theoretical values. - Abstract: Lead-free solders based on Bi–Sn bimetallic nanoclusters with eutectic composition (Bi{sub 43}Sn{sub 57}) were synthesized at low temperature by simultaneous reduction reaction from aqueous solution containing bismuth and tin chlorides, using potassium borohydride as a reducing agent. By the same processing route, pure bismuth and tin nanoparticles have also been prepared. Microstructure, morphology and composition of the samples were characterized by X-ray powder diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). TEM images of Bi–Sn nanoparticles show average size ranging from 30 to 100 nm. Thermal behaviour of Bi–Sn nanopowders was studied by DSC (differential scanning calorimetry) and a melting temperature (135 °C) lower than that of the corresponding microcrystalline sample (139 °C) was observed. SEM micrographs of the thermally treated sample up to 400 °C show fine spherical grains in the micrometer range with finer powder particles on the surface. XRD powder diffraction analysis indicates the formation of bismuth and tin nanophases with an average particle size of 85 and 126 nm, respectively. The oxidation behaviour of the samples was also investigated. The results obtained have been analyzed in view of theoretical models describing the melting temperature depression of nanoparticles.

  20. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO₄ photocatalysts.

    Science.gov (United States)

    Bian, Zhao-Yong; Zhu, Ya-Qi; Zhang, Jun-Xiao; Ding, Ai-Zhong; Wang, Hui

    2014-12-01

    An efficient method for the degradation of ibuprofen as an aqueous contaminant was developed under visible-light irradiation with as-prepared bismuth vanadate (BiVO4) catalysts. The metal-loaded catalysts Cu-BiVO4 and Ag-BiVO4 were synthesized using a hydrothermal process and then a wet-impregnation method. All of the materials were fully characterized by X-ray diffraction, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and BET surface area. The results indicated that all of the prepared samples had monoclinic scheelite structures. In the metal-loaded catalysts, silver existed as a mixture of Ag and Ag2O on the surface of the catalysts. However, copper existed as Cu2O and CuO. Additionally, the band gap values of BiVO4, Ag-BiVO4, and Cu-BiVO4 were 2.38, 2.31, and 2.30eV, respectively. Compared to the BiVO4 catalyst, the metal-loaded BiVO4 catalysts showed superior photocatalytic properties for the degradation of ibuprofen. PMID:25268078

  1. Fabrication of Two-Dimensional Organic Photonic Crystal Microcavity

    Institute of Scientific and Technical Information of China (English)

    JIANG Ping; HU Xiao-Yong; YANG Hong; GONG Qi-Huang

    2006-01-01

    @@ A two-dimensional polystyrene photonic crystal microcavity is fabricated by the method of focused ion beam etching. The scanning electron microscopy and the transmittance spectrum are used to characterize the properties of the photonic crystal microcavity. The quality factor and the transmittance of the photonic crystal microcavity is more than 530 and 90%, respectively. The measured results are in agreement with the theoretical predictions.

  2. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    Science.gov (United States)

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems. PMID:25766013

  3. Effect of lanthanum addition on microstructure and corrosion behavior of AI-Sn-Bi anodes

    Institute of Scientific and Technical Information of China (English)

    HOU Delong; LI Defu; HAN Li; JI Lianqin

    2011-01-01

    Novel Al-Sn-Bi anodes with and without lanthanum (La) were prepared. To evaluate the corrosion properties of the anodes, constant current and dynamic loop tests were carried out to determine its efficiency and corrosion rote. Optical microscopy (OM), transmission electron microscopy (TEM) and energy spectrum analysis techniques were used to examine and analyze microstructure and corrosion behavior of the specimens. The result showed that the Al-Sn-Bi anodes with La additions revealed higher current efficiency and anticorrosion in artificial environment. Segregation phase of anodes with La additions got more homogenous than that without La additions. Its grains were fined and the amount of segregation Fe-phase was reduced.

  4. Epitaxial crystals of Bi2Pt2O7 pyrochlore through the transformation of δ–Bi2O3 fluorite

    International Nuclear Information System (INIS)

    Bi2Pt2O7 pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of Bi2Pt2O7 has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt4+. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial δ–Bi2O3 and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of Bi2Pt2O7. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the δ–Bi2O3 and Bi2Pt2O7 structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial Bi2Pt2O7

  5. Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-x Bi x /GaAs quantum wells.

    Science.gov (United States)

    Luna, E; Wu, M; Hanke, M; Puustinen, J; Guina, M; Trampert, A

    2016-08-12

    In this work, we report on the spontaneous formation of ordered arrays of nanometer-sized Bi-rich structures due to lateral composition modulations in Ga(As,Bi)/GaAs quantum wells grown by molecular beam epitaxy. The overall microstructure and chemical distribution is investigated using transmission electron microscopy. The information is complemented by synchrotron x-ray grazing incidence diffraction, which provides insight into the in-plane arrangement. Due to the vertical inheritance of the lateral modulation, the Bi-rich nanostructures eventually shape into a three-dimensional assembly. Whereas the Bi-rich nanostructures are created via two-dimensional phase separation at the growing surface, our results suggest that the process is assisted by Bi segregation which is demonstrated to be strong and more complex than expected, implying both lateral and vertical (surface segregation) mass transport. As demonstrated here, the inherent thermodynamic miscibility gap of Ga(As,Bi) alloys can be exploited to create highly uniform Bi-rich units embedded in a quantum confinement structure. PMID:27364086

  6. Annealing studies of Bi and Kr inclusions in Al

    International Nuclear Information System (INIS)

    This report contains the results of experimental investigations of melting, solidification and growth of Bi and Kr inclusions made by ion implantation into aluminium. The experimental techniques used of for this study were x-ray diffraction, transmission electron microscopy, Rutherford backscattering, ion channeling, and grazing-incidence small-angle x-ray scattering. The x-ray diffraction signal from crystalline Bi inclusions in Al has been recorded as a function of temperature during heating to temperatures above the bulk melting point and cooling to room temperature. Data from these measurements have been fitted using models (developed by Pawlow and Wronski) for the size-dependent melting temperature of small particles, and size distributions for the inclusions have been determined in this way. Transmission electron microscopy has confirmed the melting and solidification of the Bi inclusions in the temperature ranges, in which these processes were observed by x-ray diffraction, establishing the facts that the inclusions melt below the bulk melting point and that a large supercooling is seen. Information about the amount and depth distribution of the Bi confined in the Al matrix has been derived from Rutherford backscattering measurements. Melting and solidification of Bi inclusions have been observed by means of ion channeling. The results of the investigations of bismuth inclusions in aluminium are compared to previous, similar results for lead inclusions in aluminium. Finally, preliminary experiments have confirmed that growth of Kr inclusions in Al can be observed using grazing-incidence small-angle scattering. (au) (13 tabs., 46 ills., 77 refs.)

  7. Photon mapping

    OpenAIRE

    Nečas, Ondřej

    2009-01-01

    V rámci této práce byla provedena praktická implementace algoritmu photon mapping. Pro dosažení kvalitnějšího výstupu byly zkoumány některé základní a pokročilejší metody globálního osvětlení. Tyto náročné algoritmy jsou často prakticky nepoužitelné a je nutná jejich optimalizace. Základem praktické implementace je optimalizace raytraceru. Vzorky nepřímého difuzního osvětlení počítané metodou Monte Carlo je možné mezi sebou interpolovat s použitím vhodné techniky....

  8. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  9. Photon Aided and Inhibited Tunneling of Photons

    CERN Document Server

    liu, xuele

    2013-01-01

    In the light of the interest in the transport of single photons in arrays of waveguides, fiber couplers, photonic crystals, etc., we consider the quantum mechanical process of the tunneling of photons through evanescently or otherwise coupled structures. We specifically examine the issue of tunneling between two structures when one structure already contains few photons. We demonstrate the possibility of both photon aided and inhibited tunneling of photons. The Bosonic nature of photons enhances the tunneling probability. We also show how the multiphoton tunneling probability can be either enhanced or inhibited due to the presence of photons. We find similar results for the higher order tunneling. Finally, we show that the presence of a squeezed field changes the nature of tunneling considerably.

  10. Physics at High Energy Photon Photon Colliders

    OpenAIRE

    Chanowitz, Michael S.

    1994-01-01

    I review the physics prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  11. Multinucleon photonuclear reactions on {sup 209}Bi: Experiment and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S.S.; Kurilik, A.S. [Lomonosov Moscow State University, Department of Physics, Moscow (Russian Federation); Filipescu, D.M.; Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics/Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Gheoghe, I. [Extreme Light Infrastructure - Nuclear Physics/Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering, Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Department of Physics, Moscow (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Khankin, V.V.; Kuznetsov, A.A.; Orlin, V.N.; Peskov, N.N.; Stopani, K.A.; Varlamov, V.V. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-06-15

    Photon activation technique using bremsstrahlug with end-point energy 55.6 MeV is used to induce photonuclear reactions in a {sup 209}Bi target. Absolute yields and integrated cross sections of multiparticle reactions (γ, 2n-6n), (γ, 4n1p), and (γ, 5n1p) are obtained. The results are compared to predictions of statistical models using systematical and microscopic description of photoabsorption and to the result of evaluation of the partial photoneutron reaction cross sections. Based on a comparison with existing experimental photoneutron cross sections and model calculations, we make a conclusion that neutron multiplicity assignment in available photoneutron cross sections on {sup 209}Bi can be corrected and evaluated cross sections of (γ, 1n) and (γ, 2n) are obtained that are in an agreement with the obtained experimental results. (orig.)

  12. High Energy Photon-Photon Collisions -

    OpenAIRE

    Brodsky, Stanley J.; SLAC; Zerwas, Peter M.; DESY

    1994-01-01

    The collisions of high energy photons produced at an electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions, and extensions of the Standard Model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary $e^+e^-$ collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly $\\gamma\\gamma \\rightarrow W^+...

  13. Polarization precession in photon-photon encounters

    OpenAIRE

    Sawyer, R. F.

    2004-01-01

    We calculate the rate of precession of the direction of polarization of a photon traversing a sea of plane-polarized photons moving in the opposed direction, where the interaction is the one-loop "vacuum" Heisenberg-Euler coupling of four fields. Substantial precession can take place in a distance many orders of magnitude shorter than the free path for photon-photon scattering, mediated by the same interaction. We consider briefly the possibility of some interesting collective effects in the ...

  14. Jets in Photon-Photon Collisions

    OpenAIRE

    Fontannaz, M.

    1994-01-01

    We study jet production in photon-photon reactions at the next-to-leading logarithm accuracy. The discussion of the theoretical uncertainties and the role of the quark and gluon distributions in the photon is emphasized. The phenomenology at TRISTAN energies is discussed and predictions are made for LEP 200.

  15. Preparation of grape-like Bi2O3/Ti photoanode and its visible light activity

    International Nuclear Information System (INIS)

    Graphical abstract: Compact and grape-like bismuth oxide (Bi2O3) coated titania (Ti) anode was prepared by oxalic acid (H2C2O4) etching, electrodeposition and calcination in order to explore its photoelectrocatalytic activities. The Bi2O3 coating was demonstrated to be full of pores, and a good combination between Bi2O3 layer and honeycomb-like Ti substrate was observed by scanning electron microscopy. A synergy was found between electrolysis and photocatalysis using the prepared Bi2O3/Ti anode for photoelectrocatalytic oxidation of azo dye Acid Orange 7 under visible light irradiation (420 nm). Research highlights: → Bi2O3/Ti anode was prepared by H2C2O4 etching, electrodeposition and calcination. → A compact and grape-like Bi2O3 coated Ti anode was obtained. → Bi2O3 coating was full of pores, and have a good combination with Ti substrate. → A synergy was observed in photoelectrocatalytic oxidation under visible light. -- Abstract: Compact and grape-like bismuth oxide (Bi2O3) coated titania (Ti) anode was prepared by oxalic acid (H2C2O4) etching, electrodeposition and calcination in order to explore its photoelectrocatalytic activities. The Bi2O3 coating was demonstrated to be full of pores, and a good combination between Bi2O3 layer and honeycomb-like Ti substrate was observed by scanning electron microscopy. The characteristic morphology of Bi2O3 coating indicated that the electrode is stable during degradation. The Bi2O3/Ti electrode was used in oxidative degradation of Acid Orange 7 by electrolysis, photocatalytic oxidation and photoelectrocatalytic oxidation processes. The pseudo-first order kinetics parameter (Kapp) of photoelectrocatalytic process was 1.15 times of the sum of electrolysis and photocatalytic oxidation under visible light irradiation at 420 nm. The results indicated that the synergy of electrolysis and photocatalysis lead to an excellent photoelectrocatalytic property of the Bi2O3/Ti electrode.

  16. Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    The rutile TiO2/BiOCl composites were successfully fabricated by a facile one-step hydrolysis method at low temperature (50 °C). The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, and X-ray photoelectron spectroscopy measurements were employed to characterize the phase structures, morphologies, optical properties, surface areas, and electronic state of the samples. The rutile TiO2/BiOCl composites exhibited higher photocatalytic activity than pure BiOCl and rutile TiO2 for the degradation of phenol under artificial solar light irradiation. In addition, the photocatalytic mechanism has also been investigated and discussed. The enhanced photocatalytic performance of rutile TiO2/BiOCl composites is closely related to the heterojunctions between BiOCl and rutile TiO2, which can not only broaden the light adsorption range of BiOCl but also improve the electron–hole separation efficiency under artificial solar light irradiation. - Highlights: • Rutile TiO2/BiOCl was prepared by a low temperature one-step hydrolysis method. • The synthetic method is quite convenient and energy-saving. • The composites exhibit enhanced photocatalytic activity on phenol degradation. • The high photocatalytic activity relates to the heterojunctions of BiOCl and TiO2

  17. Nonlinear microscopy of collagen fibers

    Science.gov (United States)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  18. RR photons

    CERN Document Server

    Camara, Pablo G; Marchesano, Fernando

    2011-01-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  19. Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals

    Science.gov (United States)

    Wagener, M. C.; Botha, J. R.; Leitch, A. W. R.

    2000-05-01

    Secondary phases, formed during the growth of InSbBi, a III-V compound with potential for infrared applications in the 8-12 μm range, are reported. Layers were prepared by atmospheric pressure metal-organic vapour-phase epitaxy at 455°C in a horizontal quartz reactor. The source materials used were trimethylindium (TMIn), trimethylantimony (TMSb), and trimethylbismuth (TMBi). Scanning electron microscopy and X-ray diffraction spectra showed the formation of extra phases on the surfaces of the layers. The compositions of these condensed phases were influenced by the V/III ratio at the growth interface. Bi precipitates were observed by cross-sectional transmission electron microscopy for layers grown on InSb substrates. Attempts to grow InSbBi on GaAs substrates produced InAsSb layers. The As composition showed a dependence on the availability of Bi, increasing from 7.5 to 26 mol% InAs when increasing the Bi/V ratio from 0.04 to 2%. The incorporation of As has been related to the formation of Bi-Ga inclusions at the GaAs interface.

  20. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    Science.gov (United States)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  1. Optomechanical photon shuttling between photonic cavities

    CERN Document Server

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  2. Photon-hadron and photon-photon collisions in ALICE

    OpenAIRE

    Schicker, R.

    2015-01-01

    A review is given on photon-hadron and photon-photon collisions in the ALICE experiment. The physics motivation for studying such reactions is outlined, and the results obtained in proton-lead and lead-lead collisions in Run 1 of the LHC are discussed. The improvement in detector rapidity coverage due to a newly added detector system is presented. The ALICE perspectives for data taking in LHC Run II are summarised.

  3. Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.

  4. Balanced homodyne detection in second-harmonic generation microscopy

    CERN Document Server

    Le Xuan, L; Brasselet, S; Perruchas, S; Tard, C; Gacoin, T; Xuan, Loc Le; Chauvat, Dominique; Brasselet, Sophie; Perruchas, Sandrine; Gacoin, Thierry

    2006-01-01

    We demonstrate the association of two-photon nonlinear microscopy with balanced homodyne detection for investigating second harmonic radiation properties at nanoscale dimensions. Variation of the relative phase between second-harmonic and fundamental beams is retrieved, as a function of the absolute orientation of the nonlinear emitters. Sensitivity down to approximately 3.2 photon/s in the spatio-temporal mode of the local oscillator is obtained. This value is high enough to efficiently detect the coherent second-harmonic emission from a single KTiOPO4 crystal of sub-wavelength size.

  5. Synthesis, characterization and photocatalytic activity of new photocatalyst CdBiYO4

    Science.gov (United States)

    Du, Huiyang; Luan, Jingfei

    2012-09-01

    CdBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of CdBiYO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. CdBiYO4 crystallized with a tetragonal spinel structure by space group I41/amd. The lattice parameters for CdBiYO4 were a = b = 14.519 Å and c = 9.442 Å. The band gap of CdBiYO4 was estimated to be 2.41 eV. The photocatalytic degradation of methylene blue (MB) was realized under visible light irradiation with CdBiYO4 as catalyst. The results showed that CdBiYO4 owned higher photocatalytic activity compared with pure TiO2 or N-doped TiO2 for photocatalytic degradation of MB under visible light irradiation. The photocatalytic degradation of MB with CdBiYO4 or N-doped TiO2 as catalyst followed the first-order reaction kinetics, and the first-order rate constant was 0.0137 or 0.0033 min-1. After visible light irradiation for 225 min with CdBiYO4 as catalyst, complete removal and mineralization of MB were observed. The reduction of the total organic carbon, the formation of inorganic products, SO42- and NO3-, and the evolution of CO2 revealed the continuous mineralization of MB during the photocatalytic process. The possible photocatalytic degradation pathway of MB was obtained under visible light irradiation. CdBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be utilized to resolve other environmental chemical pollution problems.

  6. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  7. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  8. Bilinguismes ou bi- appartenances

    Directory of Open Access Journals (Sweden)

    Jean-Charles Vegliante

    2012-10-01

    Full Text Available Dans cet essai, l’auteur évoque son sentiment de bi-appartenance lorsqu’il séjourne à Sienne, une de ses villes de prédilection. A l’occasion d’un congrès sur le thème : « Repenser la Méditerranée », ou de la projection d’un film évoquant les lendemains de massacres, il soulève des questions existentielles, en particulier la nécessité de « se parler ». Le bilinguisme se définit selon l’auteur comme une nécessité, une volonté de mieux entendre l’autre. Il évoque les exemples des poètes italiens Giuseppe Ungaretti (parfaitement francophone et Gabriele D’Annunzio, de l’allemand Franz Kafka et de l’anglais Milton. L’auteur passe du français à l’italien : « Lost in translation ?», comme il le dit plaisamment en conclusion.

  9. Two-photon polarization microscopy reveals protein structure and function

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Bondar, Alexey; Timr, S.; Firestein, S. J.

    2011-01-01

    Roč. 8, č. 8 (2011), s. 684-U120. ISSN 1548-7091 Institutional research plan: CEZ:AV0Z60870520 Keywords : green fluorescent protein s * living cells * in-vivo * indicators * anisotropy * activacion * dissociation * orientation * calmodulin * membranes Subject RIV: CE - Biochemistry Impact factor: 19.276, year: 2011

  10. X-ray microscopy utilizing world largest photon counting detector

    Czech Academy of Sciences Publication Activity Database

    Rudolf, Jiří; Kumpová, Ivana; Vavřík, Daniel; Jakůbek, Jan

    Brno : Central European Institute of Technology, 2015. s. 143-143 ISBN N. [Creating life in 3D. Conference on frontiers in materials and life sciences. 02.09.2015-04.09.2015, Brno] R&D Projects: GA MŠk(CZ) LO1219 Keywords : X-ray imaging techniques * dual-source tomography scanner * WidePIX Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.ceitec.eu/a5-abstracts-book-3d/f33102

  11. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  12. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  13. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-01-01

    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213

  14. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-07-01

    Herein we investigate a (001)-oriented GaAs1‑xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys.

  15. Multifocal multiphoton microscopy based on multianode photomultiplier tubes

    OpenAIRE

    Kim, Ki Hean; Buehler, Christof; Bahlmann, Karsten; Ragan, Timothy; Lee, Wei-Chung A.; Nedivi, Elly; Heffer, Erica L.; Fantini, Sergio; So, Peter T. C.

    2007-01-01

    Multifocal multiphoton microscopy (MMM) enhances imaging speed by parallelization. It is not well understood why the imaging depth of MMM is significantly shorter than conventional single-focus multiphoton microscopy (SMM). In this report, we show that the need for spatially resolved detectors in MMM results in a system that is more sensitive to the scattering of emission photons with reduced imaging depth. For imaging depths down to twice the scattering mean free path length of emission phot...

  16. Alpha-particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation.

    Directory of Open Access Journals (Sweden)

    Christian Wulbrand

    Full Text Available Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting (213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with (213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM. Survival and viability of CAL33 cells decreased both after incubation with increasing (213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml-1.48 MBq/ml and irradiation with increasing doses of photons (0.5-12 Gy. Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by (213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting (213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, (213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors.

  17. Resolved Photon Processes

    OpenAIRE

    Drees, Manuel; Godbole, Rohini M.(Centre for High Energy Physics, Indian Institute of Science, 560012, Bangalore, India)

    1995-01-01

    We review the present level of knowledge of the hadronic structure of the photon, as revealed in interactions involving quarks and gluons ``in" the photon. The concept of photon structure functions is introduced in the description of deep--inelastic $e \\gamma$ scattering, and existing parametrizations of the parton densities in the photon are reviewed. We then turn to hard \\gamp\\ and \\gaga\\ collisions, where we treat the production of jets, heavy quarks, hard (direct) photons, \\jpsi\\ mesons, ...

  18. Resolved Photon Processes

    OpenAIRE

    Godbole, RM

    1998-01-01

    After giving a very brief introduction to the resolved photon processes, I will summarise the latest experimental information from HERA, on resolved photon contribution to large pt jet production as well as to direct photon production. I will point out the interesting role that resolved photon processes can play in increasing our understanding of the dynamics of the Quarkonium production. I will then discuss the newer information on the parton content of virtual photons as well as the kt dist...

  19. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst

    International Nuclear Information System (INIS)

    Highlights: • Fe-loaded BiVO4 particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO4 samples showed higher photocatalytic activity than pure BiVO4. • The Fe3+ ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO4 and nominal 0.5–5.0 mol% Fe-loaded BiVO4 samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO4 shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO4. Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO4 sample exhibited remarkably higher activity than pure BiVO4

  20. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Sinaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Highlights: • Fe-loaded BiVO{sub 4} particles were prepared by hydrothermal method. • Physicochemical properties played a significant role in photocatalytic process. • All Fe-loaded BiVO{sub 4} samples showed higher photocatalytic activity than pure BiVO{sub 4}. • The Fe{sup 3+} ions may improve the separation of photogenerated electrons and holes. - Abstract: Pure BiVO{sub 4} and nominal 0.5–5.0 mol% Fe-loaded BiVO{sub 4} samples were synthesized by hydrothermal method. All samples were characterized in order to obtain the correlation between structure and photocatalytic properties by X-ray diffraction, Brunauer, Emmett and Teller, UV–vis diffuse reflectance spectrophotometry, photoluminescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-optical emission spectroscopy. The structure of all samples was single-phase monoclinic scheelite. The absorption spectrum of 5.0 mol% Fe-loaded BiVO{sub 4} shifted to the visible region, suggesting the potential application of this material as a superior visible-light driven photocatalyst in comparison with pure BiVO{sub 4}. Photocatalytic activities of all photocatalyst samples were examined by studying the degradation of methylene blue under visible light irradiation. The results clearly showed that Fe-loaded BiVO{sub 4} sample exhibited remarkably higher activity than pure BiVO{sub 4}.

  1. Preparation of Bi2S3 thin films with a nanoleaf structure by electrodeposition method

    International Nuclear Information System (INIS)

    Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.

  2. Formation and growth of intermetallic phases in diffusion soldered Cu/In-Bi/Cu interconnections

    International Nuclear Information System (INIS)

    The paper presents microscopy observations of Cu/Bi-22 at.%In/Cu interconnections obtained as a result of diffusion soldering process. The choice of the material as well as technological process allowed getting thermally stable joints dedicated to the electronic equipment thanks to controllable growth of intermetallic phase(s). The θ[Cu11In9] phase was present in the Cu/In-22Bi/Cu joint manufactured in the temperature range of 85-200 deg. C. Two sublayers of θ were identified; the first one, adjacent to copper substrate, contained (except for In and Cu) up to 6 at.% Bi, the second one appeared as the so-called scallops growing into liquid solder. The θ phase enriched in Bi transformed into η[Cu2In] phase. The η showed also two morphologies. The homogeneous layer of η grew at the Cu/In-Bi solder interface at 300-325 deg. C. On the other hand, islands surrounded by unreacted solder were present after soldering at 350 deg. C. The third intermetallic phase δ[Cu7In3] coexisted with η at 350 deg. C. Moreover, the solid solution of In and Bi in Cu is formed at the δ/copper substrate. All the three phases belong to the binary Cu-In equilibrium phase diagram, while Bi appears in the form of separated areas within the θ or η phase.

  3. BiVO{sub 4}-graphene catalyst and its high photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yongsheng [Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Sun Xiaoqiang, E-mail: xqsun@cczu.edu.cn [Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Wang Xin, E-mail: wxin@public1.ptt.js.cn [Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A facile strategy is designed to deposit leaf-like BiVO{sub 4} lamellas on graphene sheet. Black-Right-Pointing-Pointer Graphene oxide is reduced to graphene in the hydrothermal reaction process. Black-Right-Pointing-Pointer BiVO{sub 4}-graphene system shows high catalytic effects under visible light irradiation. - Abstract: A BiVO{sub 4}-graphene photocatalyst was prepared by a facile one-step hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM) techniques. The results show that the graphene sheets in this catalyst are exfoliated and decorated by leaf-like BiVO{sub 4} lamellas. In comparison with the pure BiVO{sub 4} catalyst, the BiVO{sub 4}-graphene system reveals much higher photocatalytic activity for degradation of methyl orange (MO), methylene blue (MB), Rhodamine B (RhB) and active black BL-G in water under visible light irradiation due to the concerted effects of BiVO{sub 4} and graphene sheets or their integrated properties.

  4. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  5. Template synthesis and photoelectrochemical properties of Bi{sub 2}S{sub 3} microflowers

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Feng; Wang, Jianmin; Tu, Wanhong; Lv, Xin; Li, Song; Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn

    2015-08-15

    Highlights: • Bi{sub 2}S{sub 3} microflowers were fabricated by using a sacrificial-template method. • The effect of the specific experimental parameters was examined. • Photoelectrochemical measurements were characterized. - Abstract: Uniform hierarchical Bi{sub 2}S{sub 3} nanostructures were fabricated by using Bi{sub 2}O{sub 2}CO{sub 3} nanoflowers as a sacrificial template through a hydrothermal reaction with an aqueous L-cysteine solution. Multiple techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Mott–Schottky (M–S) plot and electrochemical impedance spectroscopy (EIS) were applied to investigate the structure, morphology and photoelectrochemical properties of the as-prepared samples. This work demonstrated a simple and cost-effective strategy for the design and fabrication of well-defined complex hierarchical nanomaterials, which can be potentially used in energy storage and conversion devices.

  6. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    International Nuclear Information System (INIS)

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni45Ti50Cu5, Ni50.8Ti49.2 and Ni50.8Ti49.2/Ni45Ti50Cu5 (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni50.8Ti49.2 and martensitic structure of the Ni45Ti50Cu5 thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni45Ti50Cu5 layer was detected after 15 min annealing while the Ni50.8Ti49.2 layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced hysteresis at the same time similar to the austenitic and martensitic thin films, respectively. - Highlights: • NiTi bi

  7. Preparation and characterization of Bi2Se3(0001) and of epitaxial FeSe nanocrystals on Bi2Se3(0001)

    Science.gov (United States)

    Cavallin, Alberto; Sevriuk, Vasilii; Fischer, Kenia Novakoski; Manna, Sujit; Ouazi, Safia; Ellguth, Martin; Tusche, Christian; Meyerheim, Holger L.; Sander, Dirk; Kirschner, Jürgen

    2016-04-01

    Procedures to prepare clean Bi2Se3(0001) surfaces from bulk samples and epitaxial FeSe nanocrystals on Bi2Se3(0001) are reported. Bi2Se3(0001) substrates are prepared by in vacuo cleavage of bulk samples, followed by ion bombardment and annealing cycles. FeSe is prepared by Fe deposition onto Bi2Se3 at 303 K, followed by annealing at T ≈ 623 K. We use low-energy electron diffraction, surface X-ray diffraction, photoemission spectroscopy, scanning tunneling microscopy and spectroscopy, and stress measurements to elucidate the correlation between structural and electronic properties of the pristine Bi2Se3(0001) and FeSe covered surfaces. Our analysis reveals the formation of epitaxial FeSe nanocrystals with a thickness of three unit cells (1.5 nm). Electron diffraction experiments indicate an anisotropic epitaxial strain in FeSe. A negligible strain close to 0.0% and a tensile strain of + 2.1% are observed along the in-plane [ 01 1 bar 0 ] and [ 2 11 bar 0 ] Bi2Se3 directions, respectively. The out-of-plane strain is + 4.2%. The role of this strain state for the reported high-TC superconductivity in bulk FeSe is discussed.

  8. Electrochemical behaviors of Bi (Ⅲ) in dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Cyclic voltammetry, chronoamperometry and chronopotentiometry were used to investigate the electrochemicalbehaviors of Bi(Ⅲ) in Bi(NO3)3-LiClO4-DMSO (dimethylsulfoxide) system on Pt and Cu electrodes. Experimental resultsindicated that the electroreducation of Bi(Ⅲ) to Bi(0) was irreversible on Pt and Cu electrodes. The diffusion coefficient andelectron transfer coefficient of Bi(Ⅲ) in 0.01 mol@ L-1 Bi(NO3)3-0.1 mol@L-1 LiClO4-DMSO system at 303 K were 1.75×10-6cm2@s-1 and 0.147 respectively.

  9. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  10. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  11. Atomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films

    Science.gov (United States)

    Ghasemi, A.; Kepaptsoglou, D.; Collins-McIntyre, L. J.; Ramasse, Q.; Hesjedal, T.; Lazarov, V. K.

    2016-05-01

    We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple layer stacking of the Bi2Se3 film is found, with the exception of the first several atomic layers in the initial growth. The spectroscopy data gives direct evidence that Cr is preferentially substituting for Bi in the Bi2Se3 host. We also show that Cr has a tendency to segregate at internal grain boundaries of the Bi2Se3 film.

  12. Photon-photon scattering: a tutorial

    OpenAIRE

    Liang, Yi; Czarnecki, Andrzej

    2011-01-01

    Long-established results for the low-energy photon-photon scattering, gamma gamma --> gamma gamma, have recently been questioned. We analyze that claim and demonstrate that it is inconsistent with experience. We demonstrate that the mistake originates from an erroneous manipulation of divergent integrals and discuss the connection with another recent claim about the Higgs decay into two photons. We show a simple way of correctly computing the low-energy gamma gamma scattering.

  13. Azimuthal Correlations in Photon-Photon Collisions

    OpenAIRE

    Arteaga, N.; Carimalo, C.; Kessler, P.; Ong, S.; Panella, O.

    1995-01-01

    Using the general helicity formula for $\\gamma^* \\gamma^*$ collisions, we are showing that it should be possible to determine a number of independent ``structure functions'', i.e. linear combinations of elements of the two-photon helicity tensor, through azimuthal correlations in two-body or quasi two-body reactions induced by the photon-photon interaction, provided certain experimental conditions are satisfied. Numerical results of our computations are presented for some particular processes...

  14. Aspherical Photon and Anti-Photon Surfaces

    CERN Document Server

    Gibbons, G W

    2016-01-01

    In this note we identify photon surfaces and anti-photon surfaces in some physically interesting spacetimes, which are not spherically symmetric. All of our examples solve physically reasonable field equations, including for some cases the vacuum Einstein equations, albeit they are not asymptotically flat. Our examples include the vacuum C-metric, the Melvin solution of Einstein-Maxwell theory and generalisations including dilaton fields. The (anti-)photon surfaces are not round spheres, and the lapse function is not always constant.

  15. Photonic Eigenmodes in a Photonic Crystal Membrane

    OpenAIRE

    E. Ya. Glushko; O. E. Glushko; L. A. Karachevtseva

    2012-01-01

    Photonic membranes are the most widely used kind of 2D photonic crystals in signal processing. Nevertheless, some important aspects of electromagnetic field behavior in membrane like photonic crystals (MPCs) need detail investigation. We develop the approach close to resonant coupling modes method which unites both external and intrinsic problems, in-plane and out-of-plane geometries, and resonator properties of MPC. The resonator standing modes are excited by an external source through the s...

  16. Photon-Photon Interactions via Rydberg Blockade

    OpenAIRE

    Fleischhauer, Michael; Pohl, Thomas; Gorshkov, Alexey Vyacheslavovich; Otterbach, Johannes; Lukin, Mikhail D.

    2011-01-01

    We develop the theory of light propagation under the conditions of electromagnetically induced transparency (EIT) in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We demonstrate that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-phot...

  17. Growth dynamics and thickness-dependent electronic structure of topological insulator Bi2Te3 thin films on Si

    OpenAIRE

    Li, Yao-Yi; Wang, Guang; Zhu, Xie-Gang; Liu, Min-Hao; Ye, Cun; Chen, Xi; Wang, Ya-Yu; He, Ke; Wang, Li-Li; Ma, Xu-Cun; Zhang, Hai-Jun; Dai, Xi; Fang, Zhong; Xie, Xin-Cheng; Liu, Ying

    2009-01-01

    We use real-time reflection high energy electron diffraction intensity oscillation to establish the Te-rich growth dynamics of topological insulator thin films of Bi2Te3 on Si(111) substrate by molecular beam epitaxy. In situ angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy and ex situ transport measurements reveal that the as-grown Bi2Te3 films without any doping are an intrinsic topological insulator with its Fermi level intersecting only the metallic surface...

  18. Controlled hydrothermal synthesis of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites exhibiting visible-light photocatalytic degradation of crystal violet

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu-Rou; Lin, Ho-Pan [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Chung, Wen-Hsin [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Dai, Yong-Ming [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China); Lin, Wan-Yu [Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Chen, Chiing-Chang, E-mail: ccchen@ms3.ntcu.edu.tw [Department of Science Application and Dissemination, National Taichung University of Education, Taichung 403, Taiwan, ROC (China)

    2015-02-11

    Highlights: • This is the first report on a series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} heterojunctions. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composition was controlled by adjusting the growth parameters. • The BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO{sub 2}. • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO{sub x}Cl{sub y}/BiO{sub m}I{sub n} composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O{sub 2}·{sup −} played a major role, and OH· or h{sup +} played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism.

  19. Photon statistics of intense entangled photon pulses

    OpenAIRE

    Schlawin, F.; Mukamel, S

    2013-01-01

    Time- and frequency-gated two-photon counting is given by a four-time correlation function of the electric field. This reduces to two times with purely time gating. We calculate this function for entangled photon pulses generated by parametric down-conversion. At low intensity, the pulses consist of well-separated photon pairs, and crossover to squeezed light as the intensity is increased. This is illustrated by the two-photon absorption signal of a three-level model, which scales linearly fo...

  20. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  1. 57Fe Moessbauer spectroscopy of (Bi, Pb)-2223 and (Tl, Bi)-1223 superconductors

    International Nuclear Information System (INIS)

    (Bi0.93Pb0.17)2Sr1.9Ca2.05(Cu1.0257Fe0.01)3Oy and (Tl0.74Bi0.25)(Ba0.2Sr0.8)2Ca2(Cu0.9957Fe0.01)3Oy superconductors were synthesized and investigated by Moessbauer spectroscopy. The samples were carefully characterized by x-ray diffraction, by scanning electron microscopy in combination with energy dispersive x-ray fluorescence (EDX) and by electrical resistivity measurements. Introduction of small quantities of Fe led to a modest decrease in the critical temperatures but the samples remained superconductors. EDX analysis confirmed that iron entered the superconducting phase. The 57Fe Moessbauer spectra of these compounds could be evaluated based on two doublets. The two doublets were assigned to Fe located in the square planar fourfold oxygen coordinated Cu sites and to Fe in the square pyramidal fivefold oxygen coordinated Cu sites in the 2223 and 1223 lattices. The Moessbauer parameters derived in this study were compared with the results obtained for (Tl, Pb)-1223 and (Hg, Pb)-1223 compounds measured earlier. Based on the combined set of data, information on the different chemical bonding of the apical and basal oxygen in the square pyramids and on the layered electronic structure of these superconductors was derived. (author)

  2. The III-Bi binary compounds

    Science.gov (United States)

    Keen, Benjamin

    Bismuth containing III-V alloys such as GaAsBi, GaSbBi, InSbBi and InAsBi have recently become of great interest in the development of optical devices in the infrared spectrum. Difficulties in fabricating these materials stems, in part, from the lack of experimental data on the characteristics of the III-Bi family of compounds: AlBi, GaBi, and InBi. This thesis outlines the growth conditions and characteristics of the MBE deposition of InBi. To date, InBi remains the only one of the three compounds that has been experimentally reported, and the difficulties associated with the growth of AlBi and GaBi are also described herein. InBi thin films were grown on GaAs substrates at temperatures ranging from 50 °C to 100 °C. Unlike other III-V materials, which require a group V overpressure during deposition, to achieve stoichiometric quantities of indium and bismuth an In:Bi BEP ratio of 4:3 was found to be necessary. InBi samples were studied by a variety of measurement techniques, including SEM, EDX, XRD, HAXPES, and HRTEM. Films were found to grow in a 3-D Volmer-Weber mode, forming hemispherical droplets on the substrate surface. These droplets indicated clear signs of Ostwald ripening during growth, but maintained their distribution after deposition. InBi samples are believed to be semi-metallic, confirming some of the properties predicted by density functional theory (DFT) calculations. However, analysis of the crystal structure at the substrate/droplet interface indicates the epitaxial growth of InBi is in the zinc-blende configuration, instead of the PbO configuration, in direct opposition to predictions by DFT and experimental data reported from bulk crystal studies. Attempts to grow the other III-Bi materials, GaBi and AlBi, by MBE also resulted in 3-D droplet formation, but both gallium and aluminum failed to incorporate with bismuth to form a compound. Instead, the materials formed segregated regions in the droplets, clearly visible to SEM and EDX

  3. The preparation process and feature of the topological insulator Bi2Te3

    Institute of Scientific and Technical Information of China (English)

    Peng Chen; Dajin Zhou; Pingyuan Li; Yajing Cui; Yongliang Chen

    2014-01-01

    Topological insulators are insulating in the bulk but have metallic surface states. Its unique physicochemi-cal properties can find numerous applications in electron-ics, spintronics, photonics, the energy sciences, and the signal control of transportation. We report an experimental approach to synthesize the high-quality single crystal of topological insulator Bi2Te3 by using self-flux method. We obtained the optimal preparation conditions by adjusting the parameters of heat treatment, and successfully prepared the single-crystal Bi2Te3 sample. The as-grown samples have a surface with bright metallic luster and are soft and fragile. Furthermore, Bi2Te3 has the obvious layer structure from SEM results. The data of X-ray diffraction and scanning electron microscope show that Bi2Te3 single crystal grows along the c-axis with the order of Te(1)-Bi-Te(2)-Bi-Te(1) and crystallizes in the hexagonal system with space group of R/3 m. The q-T curve shows that q decreases with temperature, showing metallic behavior over the whole temperature range.

  4. Improved solar-driven photocatalytic performance of BiOI decorated TiO2 benefiting from the separation properties of photo-induced charge carriers

    Science.gov (United States)

    Li, Jianzhang; Zhong, Junbo; Si, Yujun; Huang, Shengtian; Dou, Lin; Li, Minjiao; Liu, Yinping; Ding, Jie

    2016-02-01

    In this work, BiOI decorated TiO2 photocatalysts were prepared in-situ by a facile hydrothermal method and characterized by X-ray diffraction (XRD), UV/Vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and surface photovoltage (SPV) spectroscopy. The reactive radicals during the photocatalytic reaction were detected by scavenger experiments. BiOI/TiO2 composites exhibit higher performance than the pure TiO2 towards photocatalytic decolorization of methyl orange (MO) aqueous solution, when the molar ratio of Bi/Ti is 2%, the sample has the highest photocatalytic activity. The enhanced photocatalytic performance of BiOI/TiO2 could be ascribed to the separation properties of photo-induced charge carriers and strong interaction between BiOI and TiO2. Based on the observations, a Z-scheme charge separation mechanism was proposed.

  5. Quantum Computing using Photons

    Science.gov (United States)

    Elhalawany, Ahmed; Leuenberger, Michael

    2013-03-01

    In this work, we propose a theoretical model of two-quantum bit gates for quantum computation using the polarization states of two photons in a microcavity. By letting the two photons interact non-resonantly with four quantum dots inside the cavity, we obtain an effective photon-photon interaction which we exploit for the implementation of an universal XOR gate. The two-photon Hamiltonian is written in terms of the photons' total angular momentum operators and their states are written using the Schwinger representation of the total angular momentum.

  6. Raman Spectroscopy of Two-Dimensional Bi2TexSe3 − x Platelets Produced by Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-08-01

    Full Text Available In this paper, we report a facile solvothermal method to produce both binary and ternary compounds of bismuth chalcogenides in the form of Bi2TexSe3 − x. The crystal morphology in terms of geometry and thickness as well as the stoichiometric ratio can be well controlled, which offers the opportunities to systematically investigate the relationship between microstructure and phonon scattering by Raman spectroscopy. Raman spectra of four compounds, i.e., Bi2Se3, Bi2Se2Te, Bi2SeTe2 and Bi2Te3, were collected at four different excitation photon energies (2.54, 2.41, 1.96, and 1.58 eV. It is found that the vibrational modes are shifted to higher frequency with more Se incorporation towards the replacement of Te. The dependence of Raman vibrational modes on excitation photon energy was investigated. As the excitation photon energy increases, three Raman vibrational modes (A1g1, Eg2 and A1g2 of the as-produced compounds move to low frequency. Three Infrared-active (IR-active modes were observed in thin topological insulators (TIs crystals.

  7. Effect of annealing on the structural and optical properties of (3 1 1)B GaAsBi layers

    International Nuclear Information System (INIS)

    The influence of post-growth annealing on the microstructure and photoluminescence (PL) of GaAsBi alloys grown on (3 1 1)B GaAs is analyzed. Conventional transmission electron microscopy (TEM) performed on as-grown samples evidence the presence of structural defects and a mosaic structure in the GaAsBi layer. A sequence of stacking faults at regions close to the GaAs/GaAsBi interface are observed in high resolution TEM images. After annealing at 473 K during 3 h the mosaic structure disappears, the presence of defects is reduced and the PL peak intensely enhances.

  8. Preparation of magnetically separable Fe3O4/BiOI nanocomposites and its visible photocatalytic activity

    International Nuclear Information System (INIS)

    Novel magnetic Fe3O4/BiOI nanocomposites with visible light response were successfully fabricated through a facile and economical method at low temperature and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), respectively. The Fe3O4/BiOI nanocomposites were further employed in photodegrading rhodamine B (RhB). After 40 min, RhB removal rate reached to 90.1%, which was superior to the pure BiOI (50.3%). The enhanced photocatalytic performance of Fe3O4/BiOI nanocomposites may be attributed to the separation efficiency of the carriers. After five recycles for the photodegradation of RhB, the Fe3O4/BiOI nanocomposites did not exhibit any significant loss of activity, confirming the photocatalyst was essentially stable. Moreover, direct hole transfers and ·O2− are proved to be the dominant reactive species in the photodegradation of RhB over Fe3O4/BiOI nanocomposites.

  9. Investigation on the electrodeposition of Pt-(Bi,Sb)2Te3 nanocomposite as film and wires

    International Nuclear Information System (INIS)

    In this work we have investigated the electrochemical processes by which Pt nanoparticles were included in (Bi,Sb)2Te3 films and submicrometer wires. Solutions containing ions of Bi3+, HTeO2+ and Sb3+ as well as Pt nanoparticles or [PtCl6]2− ions were used for this study. For comparison, a solution with the same composition in Bi3+, HTeO2+ and Sb3+ ions was used to study the electrodeposition process of (Bi,Sb)2Te3 films and submicrometer wires. Linear and cyclic voltammetry was employed in experiments to find the influences of addition to electrodeposition bath of Pt nanoparticles or [PtCl6]2− ions on deposition process of (Bi,Sb)2Te3 film. Pt-(Bi,Sb)2Te3 nanocomposites has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectrometry (EDX) to determine structural, morphological and compositional properties. Two mechanisms for Pt nanoparticles embedding in (Bi,Sb)2Te3 films and wires have been proposed

  10. Interfacial magnetism and exchange coupling in BiFeO3–CuO nanocomposite

    International Nuclear Information System (INIS)

    Ferromagnetic BiFeO3 nanocrystals of average size 9 nm were used to form a composite with antiferromagnetic CuO nanosheets, with the composition (x)BiFeO3/(100−x)CuO, x = 0, 20, 40, 50, 60, 80 and 100. The dispersion of BiFeO3 nanocrystals into the CuO matrix was confirmed by x-ray diffraction and transmission electron microscopy. The ferromagnetic ordering as observed in pure BiFeO3 occurs mainly due to the reduction in the particle size as compared to the wavelength (62 nm) of the spiral modulated spin structure of the bulk BiFeO3. Surface spin disorder of BiFeO3 nanocrystals gives rise to an exponential behavior of magnetization with temperature. Strong magnetic exchange coupling between the BiFeO3 nanocrystal and the CuO matrix induces an interfacial superparamagnetic phase with a blocking temperature of about 80 K. Zero field and field cooled magnetizations are analyzed by a ferromagnetic core and disordered spin shell model. The temperature dependence of the calculated saturation magnetization exhibits three magnetic contributions in three temperature regimes. The BiFeO3/CuO nanocomposites reveal an exchange bias effect below 170 K. The maximum exchange bias field HEB is 1841 Oe for x = 50 at 5 K under field cooling of 50 kOe. The exchange bias coupling results in an increase of coercivity of 1934 Oe at 5 K. Blocked spins within an interfacial region give rise to a remarkable exchange bias effect in the nanocomposite due to strong magnetic exchange coupling between the BiFeO3 nanocrystals and the CuO nanosheets. (paper)

  11. Polarization rotator-splitters in standard active silicon photonics platforms.

    Science.gov (United States)

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters. PMID:24663698

  12. Mecanosíntese do composto BiFeO3 Mechanosynthesis of the BiFeO3 compound

    Directory of Open Access Journals (Sweden)

    V. F. Freitas

    2008-09-01

    Full Text Available Os compostos cerâmicos BiFeO3 puro e modificado (Bi0,95R0,05FeO3, com terras raras R = Gd ou Eu, foram sintetizados por moagem em altas energias. As amostras foram analisadas por difração de raios X, microscopia eletrônica de varredura e espectroscopia por energia dispersiva de raios X. A difração de raios X indicou que as amostras modificadas com Eu são monofásicas, enquanto que as amostras puras e modificadas com Gd apresentaram majoritariamente a fase BiFeO3, com uma pequena quantidade de outras fases. A espectroscopia por energia dispersiva de raios X revelou a presença dos átomos modificantes na amostra e o mapeamento destes átomos indicou uma distribuição homogênea deles em toda a amostra. A microscopia eletrônica de varredura mostrou uma significante diminuição no tamanho das partículas, estando estas com dimensões sub-micrométricas e com diâmetro médio em torno de 500 nm. Estudos de densificação dos corpos cerâmicos indicaram compostos altamente densos, com densidades relativas acima de 0,9 sendo que o composto modificado com Eu alcançou a densidade relativa ρ/ρ0 = 0,98.The, pure and rare earth modified (Bi0.95R0.05FeO3 / R = Gd or Eu BiFeO3 compounds were synthesized by high-energy ball milling. The samples were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The X-ray diffraction results indicated single phase Eu modified samples, while the pure and Gd modified ones presented the BiFeO3 as majority phase, and small amount of the spurious phase. The energy dispersive spectroscopy revealed the presence of the modifiers atoms in the sample and the mapping of these atoms indicated the homogeneous distribution of them in the whole samples. The scanning electron microscopy showed a decrease significant on the particle size, with medium diameter around 500 nm. Densification studies indicated high-dense ceramics body, with relative density above of 0.9, were Eu

  13. Coxeter-biCatalan combinatorics

    OpenAIRE

    Barnard, Emily; Reading, Nathan

    2016-01-01

    We pose counting problems related to the various settings for Coxeter-Catalan combinatorics (noncrossing, nonnesting, clusters, Cambrian). Each problem is to count "twin" pairs of objects from a corresponding problem in Coxeter-Catalan combinatorics. We show that the problems all have the same answer, and, for a given finite Coxeter group W, we call the common solution to these problems the W-biCatalan number. We compute the W-biCatalan number for all W and take the first steps in the study o...

  14. Controllable photon source

    Science.gov (United States)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  15. Synthesis of diluted magnetic semiconductor Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals in a host glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.S. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Mikhail, H.D., E-mail: ricardosilva@fisica.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas (ICTE), Departamento de Engenharia Mecânica, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, Minas Gerais (Brazil); Pavani, R. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Cano, N.F. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11030-400 Santos, São Paulo (Brazil); Silva, A.C.A.; Dantas, N.O. [Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil)

    2015-11-05

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d{sub 015}-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi{sub 2}Te{sub 3} bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn{sup 2+} ions are substitutional defects occupying Bi sites (Mn{sub Bi}). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn{sup 2+} ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi{sub 2}Te{sub 3} nanocrystals confirmed the presence of the Mn{sup 2+} state. - Highlights: • Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn{sup 2+} ions are located in two distinct Bi{sub 2}Te{sub 3} NCs sites.

  16. Control of quantum transverse correlations on a four-photon system

    CERN Document Server

    de Assis, P -L; Berruezo, L P; Ferraz, J; Santos, I F; Sciarrino, F; Pádua, S; 10.1364/OE.19.003715

    2011-01-01

    Control of spatial quantum correlations in bi-photons is one of the fundamental principles of Quantum Imaging. Up to now, experiments have been restricted to controlling the state of a single bi-photon, by using linear optical elements. In this work we demonstrate experimental control of quantum correlations in a four-photon state comprised of two pairs of photons. Our scheme is based on a high-efficiency parametric downconversion source coupled to a double slit by a variable linear optical setup, in order to obtain spatially encoded qubits. Both entangled and separable pairs have been obtained, by altering experimental parameters. We show how the correlations influence both the interference and diffraction on the double slit.

  17. Clinical specular microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, L.W.; Laing, R.A.

    1987-01-01

    This book provides the general ophthalmologist with a guide to the clinical applications of specular microscopy. Important material is included on laser injury, cataract surgery, corneal transplants, glaucoma, uveitis, and trauma.

  18. Magnetic microscopy guide

    Directory of Open Access Journals (Sweden)

    Harald Brune

    2005-05-01

    Full Text Available Magnetic Microscopy of Nanostructures is an excellent introduction for newcomers and, for those working in the field, can be used as a guide before seeking more up-to-date literature, saysHarald Brune.

  19. Magnetic microscopy guide

    OpenAIRE

    Harald Brune

    2005-01-01

    Magnetic Microscopy of Nanostructures is an excellent introduction for newcomers and, for those working in the field, can be used as a guide before seeking more up-to-date literature, saysHarald Brune.

  20. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  1. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  2. Polychromatic photon absorptiometry

    International Nuclear Information System (INIS)

    Photon absorptiometry is a popular method for determining the mineral contents of body components, such as bone. The single photon absorptiometry introduced by Cameron and Sorenson (1963) has become widely accepted. Dichromatic absorptiometry using two monochromatic photon beams was recently introduced by Witt and Mazess (1978). The photon absorptiometry described here involves as unlimited number of monochromatic photon beams and component materials. Formulation for this polychromatic photon absorptiometry (PCPA) can be described as the linear algebraic expression using the least square method, by measuring photon intensities for each photon beam attenuated by the sample. For example, the lead content of lead-containing acrylic resin sheets was measured by PCPA using fluorescent X-ray from appropriate secondary targets which had been excited by white X-rays. The values obtained were in good agreement with the real contents and proved accurate to within 1%. (author)

  3. Anisotropic progressive photon mapping

    Science.gov (United States)

    Liu, XiaoDan; Zheng, ChangWen

    2014-01-01

    Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.

  4. Pulse front adaptive optics in multiphoton microscopy

    Science.gov (United States)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  5. Nanometrology Interferometric System for Local Probe Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrabina, Jan; Lazar, Josef; Číp, Ondřej; Klapetek, P.

    Aachen : Shaker Verlag, 2011, s. 17-20. ISBN 978-3-8440-0058-0. [IMEKO TC2 Symposium on Photonics in Measurement /20./. Linz (AT), 16.05.2011-18.05.2011] R&D Projects: GA MŠk(CZ) LC06007; GA AV ČR KAN311610701; GA ČR GA102/09/1276; GA ČR GPP102/11/P820 Institutional research plan: CEZ:AV0Z20650511 Keywords : atomic force microscopy (AFM) * nanometrology * nanopositioning interferometry * nanoscale * iodine cells * spectroscopy Subject RIV: BH - Optics, Masers, Lasers

  6. Interferometric synthetic aperture microscopy

    OpenAIRE

    Ralston, Tyler S.; Marks, Daniel L.; Carney, P. Scott; Boppart, Stephen A.

    2007-01-01

    State-of-the-art methods in high-resolution three-dimensional optical microscopy require that the focus be scanned through the entire region of interest. However, an analysis of the physics of the light–sample interaction reveals that the Fourier-space coverage is independent of depth. Here we show that, by solving the inverse scattering problem for interference microscopy, computed reconstruction yields volumes with a resolution in all planes that is equivalent to the resolution achieved onl...

  7. Quantitative dispersion microscopy

    OpenAIRE

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live...

  8. Jet and hadron production in photon-photon collisions

    OpenAIRE

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  9. Photon Physics at LHC

    OpenAIRE

    VANDER DONCKT, Marie; 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008)

    2008-01-01

    Experimental prospects for studying high-energy photon-photon and photon-proton interactions at the LHC are discussed. Assuming a typical LHC multipurpose detector, various signals and their irreducible backgrounds are presented after applying acceptance cuts. Selection strategies based on photon interaction tagging techniques are presented. Prospects are discussed for the Higgs boson search, detection of SUSY particles and of anomalous quartic gauge couplings, as well as fo...

  10. Nonlinear Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Eggleton, Benjamin J.

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, inclu...

  11. Photonics. Present and future

    OpenAIRE

    K. I. Silakov; T. T. Silakova

    2011-01-01

    Short review of the literature in the field of photonics, which reflects the new technology of ultra-compact optical communications components, the use of generators to transmission light instead of wires is represented. This is - silicon photonics - finding ways to use semiconductor components and of standard semiconductor technology to create optical devices, silicon photonics - the creation of a silicon photonic waveguide. All of these components can be used in the construction of computer...

  12. Switching to Photonics

    OpenAIRE

    Hinton, Harvard S.

    1992-01-01

    The use of hardware that exploits the interplay of photons and electrons to switch voice, data, and video is discussed. The two directions being taken by current research-guided-wave and free-space photonics-are examined. Photonic time-slot interchanges are described. Multidivisional fabrics, based on a combination of space-division and time-division multiplexing, are considered, as is the wavelength-division-based photonic packet switch, another kind of multidimensional fabric. The use of se...

  13. Planar photonic crystal

    OpenAIRE

    Nedeljkovic, Dusan; Pearsall, T. P.; Kuchinsky, S. A.; Mikhailov, M. D.; Lončar, Marko; Scherer, Axel

    2001-01-01

    We present results of guiding light in a single-line-defect planar photonic crystal (PPC) waveguide with 90° and 60° bends. The wave guiding is obtained by total internal reflection perpendicular to the plane of propagation and by the photonic band gap for the 2D photonic crystal in the plane. The results for photonic waveguiding are shown and demonstrated at 1.5 µm wavelength.

  14. Enhanced photocatalytic activity of Bi2O3–Ag2O hybrid photocatalysts

    International Nuclear Information System (INIS)

    Graphical abstract: Bi2O3–Ag2O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi2O3–Ag2O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi2O3–Ag2O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi2O3–Ag2O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi2O3 (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag2O

  15. Magneto chemical properties of Gd5Bi3-Tm5Bi3 alloys

    International Nuclear Information System (INIS)

    The abstract comprises the results of investigation of magnetic properties of solid solutions which have been formed in the Gd5Bi3-Tm5Bi3 system. Crystallochemical investigations have shown, that solid solutions of the Gd5Bi3-Tm5Bi3 system crystallizes in rhombic Y5Bi3 structural type. Values of Curie temperatures and magnetic moment of Gd3+, Tm3+ ions was defined.

  16. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  17. Measuring photon-photon interactions via photon detection

    OpenAIRE

    Macovei, Mihai A.

    2010-01-01

    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found tha...

  18. Fundamentals of fluorescence and fluorescence microscopy.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope. PMID:23931503

  19. Photon track evolution

    International Nuclear Information System (INIS)

    Given the time scale of biological, biochemical, biophysical and physical effects in a radiation exposure of living tissue, the first physical stage can be considered to be independent of time. All the physical interactions caused by the incident photons happen at the same starting time. From this point of view it would seem that the evolution of photon tracks is not a relevant topic for analysis; however, if the photon track is considered as a sequence of several interactions, there are several steps until the total degradation of the energy of the primary photon. We can characterise the photon track structure by the probability p(E,j), that is, the probability that a photon with energy E suffers j secondary interactions. The aim of this work is to analyse the photon track structure by considering j as a step of the photon track evolution towards the total degradation of the photon energy. Low energy photons (<150 keV) are considered, with water phantoms and half-extended geometry. The photon track evolution concept is presented and compared with the energy deposition along the track and also with the spatial distribution of the several steps in the photon track. (authors)

  20. Silicon nanostructures for photonics

    International Nuclear Information System (INIS)

    Nanostructuring silicon is an effective way to turn silicon into a photonic material. In fact, low-dimensional silicon shows light amplification characteristics, non-linear optical effects, photon confinement in both one and two dimensions, photon trapping with evidence of light localization, and gas-sensing properties. (author)

  1. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination...... features, while eliminating noise. We call our method diffusion based photon mapping....

  2. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  3. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination...... features, while eliminating noise. We call our method diffusion based photon mapping....

  4. Superconducting photonic crystals

    OpenAIRE

    Berman, Oleg L.; Lozovik, Yurii E.; Eiderman, Sergey L.; Coalson, Rob D.

    2006-01-01

    The band structure of a novel type of photonic crystal with superconducting constituent elements is calculated numerically via a plane wave expansion. The density of states and the dependence of the width of the photonic gap on the filling factor is analyzed for a two-dimensional photonic crystal consisting of an infinite array of parallel superconducting cylinders.

  5. Direct photon interferometry

    OpenAIRE

    Peressounko, D.

    2005-01-01

    We consider recent developments in the theory of the two-photon interferometry in ultrarelativistic heavy ion collisions with emphasis on the difference between photon and hadron interferometry. We review the available experimental results and discuss possibilities of measurement of the photon Bose-Einstein correlations in ongoing and future experiments.

  6. Bi-connected Gravity Fields

    CERN Document Server

    Bel, Lluís

    2016-01-01

    I describe a bi-connection formalism of General relativity based on the dual role of the Weitzenb\\"{o}ck connection defining the parallelism at a distance and the concomitant Levi-Civita connection derived from the Riemannian metric. A more explicit tensor writing of the geodesic and loxodromic equations clarifies their joint meaning.

  7. Towards Next Generation BI Systems

    DEFF Research Database (Denmark)

    Varga, Jovan; Romero, Oscar; Pedersen, Torben Bach;

    2014-01-01

    Next generation Business Intelligence (BI) systems require integration of heterogeneous data sources and a strong user-centric orientation. Both needs entail machine-processable metadata to enable automation and allow end users to gain access to relevant data for their decision making processes. ...

  8. Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery

    International Nuclear Information System (INIS)

    Bi-doped Zn-Al layered double hydroxides (Zn-Al-Bi LDH) are prepared by the constant pH hydrothermal method and proposed as a novel anodic material in Zn/Ni secondary cells. The Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) images reveal that the as-prepared samples are well-crystallized and hexagon layer structure. The electrochemical performances of the Zn-Al-Bi LDH were analyzed by cyclic voltammetry, tafel plot, electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge tests. Compared with Zn-Al LDH, Zn-Al-Bi LDH with different Zn/Al/Bi molar rations, especially the sample of Zn/Al/Bi = 3:0.8:0.2 (molar ration) have higher discharge capacity and more stable cycling performances. Cyclic voltammograms clearly illuminated that the Zn-Al-Bi LDHs could decrease polarization, maintain the electrochemical activity, and enhance the discharge capacity of Zn-Al LDH. This battery can undergo at least 800 charge-discharge cycles at constant current of 1C without dendrite and short circuits. The discharge capacity of Zn-Al-Bi LDH after the 800th cycle remains about 380 mAh g−1 and the hexagonal crystal structure have no much changed after cycles

  9. Synthesis, Characterization and Photocatalytic Activity of New Photocatalyst ZnBiSbO4 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2014-05-01

    Full Text Available In this paper, ZnBiSbO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiSbO4 had been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscope and UV-visible spectrometer. ZnBiSbO4 crystallized with a pyrochlore-type structure and a tetragonal crystal system. The band gap of ZnBiSbO4 was estimated to be 2.49 eV. The photocatalytic degradation of indigo carmine was realized under visible light irradiation with ZnBiSbO4 as a catalyst compared with nitrogen-doped TiO2 (N-TiO2 and CdBiYO4. The results showed that ZnBiSbO4 owned higher photocatalytic activity compared with N-TiO2 or CdBiYO4 for the photocatalytic degradation of indigo carmine under visible light irradiation. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of indigo carmine during the photocatalytic process. One possible photocatalytic degradation pathway of indigo carmine was obtained. The phytotoxicity of the photocatalytic-treated indigo carmine (IC wastewater was detected by examining its effect on seed germination and growth.

  10. A new 2212-type stair like structure: Bi14Sr21Fe12O61, m=5 member of the generic [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] family

    International Nuclear Information System (INIS)

    A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) A, b=5.496(1) A, c=35.27(2) A and β=90.62 deg. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along a→, shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family

  11. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Science.gov (United States)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  12. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Taoufyq, A. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Ezahri, M.; Benlhachemi, A.; Bakiz, B. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106 Cité Dakhla, Agadir (Morocco); Villain, S.; Guinneton, F. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France); Gavarri, J.-R., E-mail: gavarri.jr@univ-tln.fr [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex (France)

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  13. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  14. Study of the circular photo-galvanic effect in electrically gated (Bi,Sb)2Te3 thin films

    Science.gov (United States)

    Pan, Yu; Pillsbury, Timothy; Richardella, Anthony; Flanagan, Thomas; Samarth, Nitin

    Illumination with circularly polarized light is known to produce a helicity dependent photocurrent in topological insulators such as Bi2Se3 [Nature Nanotech. 7, 96 (2012)]. Symmetry considerations suggest that this ``circular photo-galvanic effect'' (CPGE) arises purely from the surface. However, whether or not the CPGE is directly related to optical excitations from the helical surface states is still under debate. To clarify the origin of the CPGE, we first compare the helicity dependent photocurrent in intrinsic (Bi,Sb)2Te3 to Cr doped (Bi,Sb)2Te3 thin films in which the Dirac surface states are perturbed by magnetic coupling. Secondly, we discuss the tunable CPGE in electrically gated (Bi,Sb)2Te3 thin films excited by optical excitations at different wavelengths. The dependence on the chemical potential and the photon energy of the excitation unveils the origin of the CPGE. Funded by ONR.

  15. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Science.gov (United States)

    Kfir, Ofer; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Fleischer, Avner; Cohen, Oren

    2016-05-01

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  16. (s, t, d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    SI JunRu

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called (s, t, d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An (s, t, d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an (s, t, d)-bi-Koszul algebra is discussed. Based on it, the notion of strongly (s, t, d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  17. (s,t,d)-bi-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called(s,t,d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An(s,t,d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an(s,t,d)-bi-Koszul algebra is discussed. Based on it,the notion of strongly(s,t,d)-bi-Koszul algebras is raised and their homological properties are further discussed.

  18. Characterization of High Tc Materials and Devices by Electron Microscopy

    Science.gov (United States)

    Browning, Nigel D.; Pennycook, Stephen J.

    2006-11-01

    List of contributors; Preface; 1. High-resolution transmission electron microscopy S. Horiuchi and L. He; 2. Holography in the transmission electron microscope A. Tonomura; 3. Microanalysis by scanning transmission electron microscopy L. M. Brown and J. Yuan; 4. Specimen preparation for transmission electron microscopy J. G. Wen; 5. Low-temperature scanning electron microscopy R. P. Huebener; 6. Scanning tunneling microscopy M. E. Hawley; 7. Identification of new superconducting compounds by electron microscopy G. Van Tendeloo and T. Krekels; 8. Valence band electron energy loss spectroscopy (EELS) of oxide superconductors Y. Y. Wang and V. P. Dravid; 9. Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7 Y. Zhu; 10. Grain boundaries in high Tc materials: transport properties and structure K. L. Merkle, Y. Gao and B. V. Vuchic; 11. The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7-d N. D. Browning, M. F. Chisholm and S. J. Pennycook; 12. Microstructures in superconducting YBa2Cu3O7 thin films A. F. Marshall; 13. Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron microscopy C. L. Jia and K. Urban; 14. Controlling the structure and properties of high Tc thin-film devices E. Olsson.

  19. High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van V.; Poudyal, Narayan; Liu, Xubo; Liu, J. Ping; Sun, Kewei; Kramer, Matthew J.; Cui, Jun

    2014-12-01

    The profiled heat treatment (PHT) method has been used to synthesize MnBi alloys with high-purity low-temperature phase (LTP). In the PHT method, the arc-melted MnBi alloy was remelted then slowly cooled by a pseudo-equilibrium solidification process to promote the formation of LTP phase. The PHT-treated MnBi alloys had an LTP phase up to 94 wt.% and a magnetization of 73 emu/g under a field of 9 T. Scanning electron microscopy showed that there exist some micrometer-sized Mn-rich inclusions in the LTP matrix of the PHT MnBi alloy. The PHT MnBi alloys were crushed into powders with an average size of ~3 μm by low-energy ball milling. These MnBi powders were aligned in an 18 kOe field and warm compacted into a bulk magnet at 300 °C for 30 min. The magnet had a density of 8.2 g/cm3 and magnetic properties of Ms = 6.7 kG, Mr = 5.3 kGs, i Hc = 5 kOe, and (BH)max = 6.1 MGOe

  20. Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots

    Science.gov (United States)

    Ramanery, Fábio P.; Mansur, Alexandra A. P.; Mansur, Herman S.; Carvalho, Sandhra M.; Fonseca, Matheus C.

    2016-04-01

    Bismuth sulfide (Bi2S3) is a narrow-bandgap semiconductor that is an interesting candidate for fluorescent biomarkers, thermoelectrics, photocatalysts, and photovoltaics. This study reports the synthesis and characterization of novel Bi2S3 quantum dots (QDs) functionalized using chitosan (CHI) as the capping ligands via aqueous "green" route at room temperature and ambient pressure. Transmission electron microscopy (TEM), UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP) analysis were used to characterize the hybrids made of biopolymer-functionalized Bi2S3 semiconductor nanocrystals. The results demonstrated that the CHI ligand was effective at nucleating and controlling the growth of water-soluble colloidal Bi2S3 nanoparticles. The average sizes of the Bi2S3 nanoparticles were significantly affected by the molar ratio of the precursors but less dependent on the pH of the aqueous media, leading to the formation of nanocrystals with average diameters varying from 4.2 to 6.7 nm. These surface-modified Bi2S3 nanocrystals with CHI exhibited photoluminescence in the visible spectral region. Moreover, the results of in vitro MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay with human osteosarcoma cells (SAOS) cell line demonstrated no cytotoxic response of the nanoconjugates.