WorldWideScience

Sample records for bhlh gene involved

  1. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  2. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  3. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis

    Science.gov (United States)

    Tian, Hainan; Guo, Hongyan; Dai, Xuemei; Cheng, Yuxin; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai

    2015-01-01

    Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis. PMID:26625868

  4. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Aftab Ahmad

    Full Text Available An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8 as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'. The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  5. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    OpenAIRE

    Zhengkun Qiu; Xiaoxuan Wang; Jianchang Gao; Yanmei Guo; Zejun Huang; Yongchen Du

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a b...

  6. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.)

    OpenAIRE

    Li-li Xiang; Xiao-fen Liu; Xue Li; Xue-ren Yin; Donald Grierson; Fang Li; Kun-song Chen

    2015-01-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin con...

  7. Diversification and molecular evolution of ATOH8, a gene encoding a bHLH transcription factor.

    Directory of Open Access Journals (Sweden)

    Jingchen Chen

    Full Text Available ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST. Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms.

  8. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis.

    Science.gov (United States)

    Nowak, Katarzyna; Gaj, Małgorzata D

    2016-04-01

    The bHLH109 gene of the bHLH family was identified among the transcription factor encoding genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong activation of bHLH109 expression was found to be associated with somatic embryogenesis (SE) induction. Several pieces of evidence suggested the involvement of bHLH109 in SE, including the high stimulation of the gene expression in SE-induced explants, which contrasts to the drastically lower level of the gene transcripts in the non-embryogenic callus and in tissue that is induced towards shoot regeneration via organogenesis. Moreover, in contrast to the overexpression of bHLH109, which has been indicated to enhance SE induction in a culture, the bhlh109 knock-out mutation was found to impair the embryogenic potential of explants. In order to identify the genes interacting with the bHLH109, the candidate co-expressed genes were identified in a yeast one hybrid assay. The in vitro regulatory interactions that were identified were verified through mutant and expression analysis. The results suggest that in SE bHLH109 acts as an activator of ECP63, a member of the LEA (LATE EMBRYOGENESIS ABUNDANT) family. Among the potential regulators of bHLH109, three candidates (At5g61620, bZIP4 and bZIP43) were indicated to possibly control bHLH109. The functions of all of the genes that are assumed to interact with bHLH109 are annotated to stress responses. Collectively, the results of the study provide new evidence that cell responses to stress that is imposed under in vitro conditions underlies the promotion of SE. bHLH109 may play a central role in the stress-related mechanism of SE induction via an increased accumulation of the LEA protein (ECP63), which results in the enhanced tolerance of the cells to stress. PMID:26973252

  9. [Research progress of the bHLH transcription factors involved in genic male sterility in plants].

    Science.gov (United States)

    Yongming, Liu; Ling, Zhang; Jianyu, Zhou; Moju, Cao

    2015-12-01

    Male sterility exists widely in the spermatophytes. It contributes to the study of plant reproductive development and can be used as an effective tool for hybrid seed production in heterosis utilization. Therefore, the study on male sterility is of great value in both theory and application. As one of the largest transcription factor families in plants, basic helix-loop-helix proteins (bHLHs) play a crucial role in regulating plant growth and development. This paper introduces the mechanism of bHLH regulating stamen development in several important model plants. Furthermore, we discuss the molecular mechanisms of genic male sterility resulting from bHLH dysfunction to provide references for crop breeding and theoretical studies.

  10. Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors

    Science.gov (United States)

    Winbush, Ari; van der Linden, Alexander M.

    2016-01-01

    Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state. PMID:27487365

  11. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes

    OpenAIRE

    Pavel Starkevič; Jurgita Paukštytė; Vaiva Kazanavičiūtė; Erna Denkovskienė; Vidmantas Stanys; Vidmantas Bendokas; Tadeušas Šikšnianas; Aušra Ražanskienė; Raimundas Ražanskas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analy...

  12. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L. MYB10 and bHLH Genes.

    Directory of Open Access Journals (Sweden)

    Pavel Starkevič

    Full Text Available Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  13. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    Science.gov (United States)

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  14. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  15. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis).

    Science.gov (United States)

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-Ii; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-10-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription-PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix-loop-helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed. PMID:21765172

  16. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport

    NARCIS (Netherlands)

    Chiasson, D.M.; Loughlin, P.C.; Mazurkiewicz, D.; Mohammadidehcheshmeh, M.; Fedorova, E.E.; Okamoto, M.; McLean, E.; Glass, A.D.M.; Smith, S.E.; Bisseling, T.; Tyerman, S.D.; Day, D.A.; Kaiser, B.N.

    2014-01-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4+) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix–loop–helix (bHLH) DNA-binding t

  17. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development.

    Science.gov (United States)

    Groszmann, Michael; Paicu, Teodora; Alvarez, John P; Swain, Steve M; Smyth, David R

    2011-12-01

    The Arabidopsis gynoecium is a complex organ that facilitates fertilization, later developing into a dehiscent silique that protects seeds until their dispersal. Identifying genes important for development is often hampered by functional redundancy. We report unequal redundancy between two closely related genes, SPATULA (SPT) and ALCATRAZ (ALC), revealing previously unknown developmental roles for each. SPT is known to support septum, style and stigma development in the flower, whereas ALC is involved in dehiscence zone development in the fruit. ALC diverged from a SPT-like ancestor following gene duplication coinciding with the At-β polyploidy event. Here we show that ALC is also involved in early gynoecium development, and SPT in later valve margin generation in the silique. Evidence includes the increased severity of early gynoecium disruption, and of later valve margin defects, in spt-alc double mutants. In addition, a repressive version of SPT (35S:SPT-SRDX) disrupts both structures. Consistent with redundancy, ALC and SPT expression patterns overlap in these tissues, and the ALC promoter carries two atypical E-box elements identical to one in SPT required for valve margin expression. Further, SPT can heterodimerize with ALC, and 35S:SPT can fully complement dehiscence defects in alc mutants, although 35S:ALC can only partly complement spt gynoecium disruptions, perhaps associated with its sequence simplification. Interactions with FRUITFULL and SHATTERPROOF genes differ somewhat between SPT and ALC, reflecting their different specializations. These two genes are apparently undergoing subfunctionalization, with SPT essential for earlier carpel margin tissues, and ALC specializing in later dehiscence zone development. PMID:21801252

  18. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Wang, Jiaojiao; Huang, Huang; Liu, Bei; Gao, Hua; Liu, Yule; Song, Susheng; Xie, Daoxin

    2015-06-01

    Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plant development, serves as an important endogenous signal to activate senescence-associated gene expression and induce leaf senescence. This study revealed one of the mechanisms underlying JA-induced leaf senescence: antagonistic interactions of the bHLH subgroup IIIe factors MYC2, MYC3, and MYC4 with the bHLH subgroup IIId factors bHLH03, bHLH13, bHLH14, and bHLH17. We showed that MYC2, MYC3, and MYC4 function redundantly to activate JA-induced leaf senescence. MYC2 binds to and activates the promoter of its target gene SAG29 (SENESCENCE-ASSOCIATED GENE29) to activate JA-induced leaf senescence. Interestingly, plants have evolved an elaborate feedback regulation mechanism to modulate JA-induced leaf senescence: The bHLH subgroup IIId factors (bHLH03, bHLH13, bHLH14, and bHLH17) bind to the promoter of SAG29 and repress its expression to attenuate MYC2/MYC3/MYC4-activated JA-induced leaf senescence. The antagonistic regulation by activators and repressors would mediate JA-induced leaf senescence at proper level suitable for plant survival in fluctuating environmental conditions. PMID:26071420

  19. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice.

    Science.gov (United States)

    Ko, Swee-Suak; Li, Min-Jeng; Sun-Ben Ku, Maurice; Ho, Yi-Cheng; Lin, Yi-Jyun; Chuang, Ming-Hsing; Hsing, Hong-Xian; Lien, Yi-Chen; Yang, Hui-Ting; Chang, Hung-Chia; Chan, Ming-Tsair

    2014-06-01

    Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development.

  20. A bHLH code for cardiac morphogenesis.

    Science.gov (United States)

    Conway, Simon J; Firulli, Beth; Firulli, Anthony B

    2010-04-01

    Cell specification and differentiation of cardiomyocytes from mesodermal precursors is orchestrated by epigenetic and transcriptional inputs throughout heart formation. Of the many transcription factor super families that play a role in this process, the basic Helix-loop Helix (bHLH) family of proteins is well represented. The bHLH protein by design allows for dimerization-both as homodimers and heterodimers with other proteins within the family. Although DNA binding is mediated via a short variable cis-element termed an E-box, it is clear that DNA-affinity for these elements as well as the transcriptional input conveyed is dictated largely by the transcriptional partners within the dimer complex. Dimer partner choice has a number of inputs requiring co-expression within a given cell nucleus and dimerization modulation by the level of protein present, and post-translational modifications that can both enhance or reduce protein-protein interactions. Due to these complex interrelationships, it has been difficult to identity bona-fide downstream transcriptional targets and define the molecular pathways regulated of bHLH factors within cardiogenesis, despite the clear roles suggested via loss-of-function animals models. This review focuses on the Hand bHLH proteins-key members of the Twist-family of bHLH factors. Despite over a decade of investigation, questions regarding functional redundancy, downstream targets, and biological role during heart specification and differentiation have still not been fully addressed. Our goal is to review what is currently known and address strategies for gaining further understanding of Hand/Twist gene dosage and functional redundancy relationships within the developing heart that may underlie congenital heart defect pathogenesis. PMID:20033146

  1. Regulation of the genes involved in nitrification.

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.; Sayavedra-Soto, L.A.

    2003-08-14

    OAK-B135 This project focuses on the characterization of the regulation of the genes involved in nitrification in the bacterium Nitrosomonas europaea. The key genes in the nitrification pathway, amo and hao, are present in multiple copies in the genome. The promoters for these genes were identified and characterized. It was shown that there were some differences in the transcriptional regulation of the copies of these genes.

  2. Arabidopsis CAPRICE (MYB and GLABRA3 (bHLH control tomato (Solanum lycopersicum anthocyanin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takuji Wada

    Full Text Available In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC and the bHLH transcription factor GLABRA3 (GL3 are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC and SlGL3 (GL3 into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL, the flavonoid pathway genes chalcone synthase (CHS, dihydroflavonol reductase (DFR, and anthocyanidin synthase (ANS were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  3. Apolipoprotein gene involved in lipid metabolism

    Science.gov (United States)

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  4. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  5. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    Science.gov (United States)

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis. PMID:18088336

  6. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity.

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2014-08-01

    Full Text Available In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH type transcription factor (TF, bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1 and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition.

  7. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    Science.gov (United States)

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  8. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    Science.gov (United States)

    2010-01-01

    Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor. PMID:21073696

  9. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    Directory of Open Access Journals (Sweden)

    Gantet Pascal

    2010-11-01

    Full Text Available Abstract Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS. Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR and NLS4 (EAERQRREK, respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor.

  10. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  11. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  12. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  13. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8 locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.

  14. Prospecting sugarcane genes involved in aluminum tolerance

    Directory of Open Access Journals (Sweden)

    Rodrigo D. Drummond

    2001-12-01

    Full Text Available Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually no reports on the effects of gene regulation on aluminum stress. The objective of the work presented in this paper was to prospect the sugarcane expressed sequence tag (SUCEST data bank for sugarcane genes related to several biochemical pathways known to be involved in the responses to aluminum toxicity in other plant species and yeast. Sugarcane genes similar to most of these genes were found, including those coding for enzymes that alleviate oxidative stress or combat infection by pathogens and those which code for proteins responsible for the release of organic acids and signal transducers. The role of these genes in aluminum tolerance mechanisms is reviewed. Due to the high level of genomic conservation in related grasses such as maize, barley, sorghum and sugarcane, these genes may be valuable tools which will help us to better understand and to manipulate aluminum tolerance in these species.Alumínio (Al é um dos principais fatores que afetam o desenvolvimento de plantas em solos ácidos, reduzindo substancialmente a produtividade agrícola. Na América do Sul, cerca de 66% da superfície do solo apresenta acidez, onde a alta saturação de alumínio é uma das maiores limitações à prática agrícola. Apesar do crescente número de estudos, uma compreensão completa das bases bioquímicas e moleculares da tolerância ao alumínio em plantas está longe de ser alcançada. No caso da cana-de-açúcar, não há nada publicado sobre a regulação g

  15. Genes and translocations involved in POF.

    Science.gov (United States)

    Schlessinger, David; Herrera, Luisa; Crisponi, Laura; Mumm, Steven; Percesepe, Antonio; Pellegrini, Massimo; Pilia, Giuseppe; Forabosco, Antonino

    2002-08-15

    Changes at a single autosomal locus and many X-linked loci have been implicated in women with gonadal dysgenesis [premature ovarian failure (POF) with deficits in ovarian follicles]. For the chromosome 3 locus, a forkhead transcription factor gene (FOXL2) has been identified, in which lesions result in decreased follicles by haploinsufficiency. In contrast, sporadic X; autosomal translocations are distributed at many points on the X, but concentrate in a critical region on Xq. The association of the breakpoints with genes involved in ovarian function is thus far weak (in four analyzed cases) and has not been related to pathology in other POF patients. While many more translocations can be analyzed in detail as the human genome sequence is refined, it remains possible that translocations like X monosomy (Turner syndrome) lead to POF not by interrupting specific genes important in ovarian development, but by causing aberrations in pairing or X-inactivation during folliculogenesis. It is noted that the critical region has unusual features, neighboring the X-inactivation center and including an 18 Mb region of very low recombination. These suggest that chromosome dynamics in the region may be sensitive to structural changes, and when modified by translocations might provoke apoptosis at meiotic checkpoints. Choices among models for the etiology of POF should be feasible based on studies of ovarian follicle development and attrition in mouse models. Studies would prominently include gene expression profiling of developmental-specific pathways in nascent ovaries with controlled levels of Foxl2 and interacting proteins, or with defined changes in the X chromosome.

  16. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.

    Science.gov (United States)

    Tani, Eleni; Tsaballa, Aphrodite; Stedel, Catalina; Kalloniati, Chrissanthi; Papaefthimiou, Dimitra; Polidoros, Alexios; Darzentas, Nikos; Ganopoulos, Ioannis; Flemetakis, Emmanouil; Katinakis, Panagiotis; Tsaftaris, Athanasios

    2011-06-01

    Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be susceptible to split-pit formation under certain genetic as well as environmental factors. This phenomenon delays processing of the clingstone varieties of peach and causes economical losses for the peach fruit canning industry. The fruitfull (FUL) and shatterproof (SHP) genes are key MADS-box transcription protein coding factors that control fruit development and dehiscence in arabidopsis by promoting the expression of basic helix-loop-helix (bHLH) transcription factors like Spatula (SPT) and Alcatraz (ALC). Results from our previous studies on peach suggested that temporal regulation of PPERFUL and PPERSHP gene expression may be involved in the regulation of endocarp margin development. In the present study a PPERSPATULA-like (PPERSPT) gene was cloned and characterized. Comparative analysis of temporal regulation of PPERSPT gene expression during pit hardening in a resistant and a susceptible to split-pit variety, suggests that this gene adds one more component to the genes network that controls endocarp margins development in peach. Taking into consideration that no ALC-like genes have been identified in any dicot plant species outside the Brassicaceae family, where arabidopsis belongs, PPERSPT may have additional role(s) in peach that are fulfilled in arabidopsis by ALC. PMID:21324706

  17. Genes Encoding Enzymes Involved in Ethanol Metabolism

    Science.gov (United States)

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  18. Characterization of genes involved in cancer differentiation

    OpenAIRE

    Ye, Fei

    2010-01-01

    Krebs und Differenzierung sind eng verwandte biologische Phänomene. Um molekulare Abläufe zu erforschen und an Krebsdifferenzierung beteiligte Gene zu entdecken, haben wir ein in vitro Modell entwickelt, dass die Induktion der Differenzierung in Lungenkrebszelllinien ermöglicht. Mit diesem Modell konnten wir Gene charakterisieren, die nach Induktion der Differenzierung hochreguliert werden. Die kleinzellige Lungenkarzinomzelllinie (SCLC) H526 und die nicht-kleinzellige Lungenkarzinomzelllinie...

  19. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.

    Science.gov (United States)

    Raissig, Michael T; Abrash, Emily; Bettadapur, Akhila; Vogel, John P; Bergmann, Dominique C

    2016-07-19

    Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity. PMID:27382177

  20. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity

    Science.gov (United States)

    Raissig, Michael T.; Abrash, Emily; Bettadapur, Akhila; Bergmann, Dominique C.

    2016-01-01

    Stomata, epidermal valves facilitating plant–atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix–loop–helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot’s developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity. PMID:27382177

  1. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  2. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the w

  3. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2 and TcJAMYC4

    Directory of Open Access Journals (Sweden)

    Sangram Keshari Lenka

    2015-02-01

    Full Text Available Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®, a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT and DBTNBT, encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG, similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2 and TcJAMYC4 were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression.

  4. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    Directory of Open Access Journals (Sweden)

    Shu-Jiau Chiou

    2013-06-01

    Full Text Available Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of gene extraction, functional characterization of isolated genes and assessment of expression patterns of genes encoding enzymes in the process of saikosaponin production in Bupleurum species, mainly B. kaoi. We focus on the effects of MeJA on saikosaponin production, transcription patterns of genes involved in biosynthesis and on functional depiction.

  5. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord

    OpenAIRE

    Mueller, T.; Anlag, K.; Wildner, H.; Britsch, S; Treier, M; Birchmeier, C.

    2005-01-01

    Neurons of the dorsal horn integrate and relay sensory information and arise during development in the dorsal spinal cord, the alar plate. Class A and B neurons emerge in the dorsal and ventral alar plate, differ in their dependence on roof plate signals for specification, and settle in the deep and superficial dorsal horn, respectively. We show here that the basic helix-loop-helix (bHLH) gene Olig3 is expressed in progenitor cells that generate class A (dI1-dI3) neurons and that Olig3 is an ...

  6. Discovering Genes Involved in Alcohol Dependence and Other Alcohol Responses

    OpenAIRE

    Buck, Kari J.; Milner, Lauren C.; Denmark, Deaunne L.; Grant, Seth G.N.; Kozell, Laura B.

    2012-01-01

    The genetic determinants of alcoholism still are largely unknown, hindering effective treatment and prevention. Systematic approaches to gene discovery are critical if novel genes and mechanisms involved in alcohol dependence are to be identified. Although no animal model can duplicate all aspects of alcoholism in humans, robust animal models for specific alcohol-related traits, including physiological alcohol dependence and associated withdrawal, have been invaluable resources. Using a varie...

  7. Genes involved in convergent evolution of eusociality in bees.

    Science.gov (United States)

    Woodard, S Hollis; Fischman, Brielle J; Venkat, Aarti; Hudson, Matt E; Varala, Kranthi; Cameron, Sydney A; Clark, Andrew G; Robinson, Gene E

    2011-05-01

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality.

  8. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shibai Li

    2016-01-01

    Full Text Available The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1 and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

  9. Studies of Genes Involved in Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Tushar K. Ghosh

    2014-05-01

    Full Text Available Congenital heart disease (CHD affects the intricate structure and function of the heart and is one of the leading causes of death in newborns. The genetic basis of CHD is beginning to emerge. Our laboratory has been engaged in identifying mutations in genes linked to CHD both in families and in sporadic cases. Over the last two decades, we have employed linkage analysis, targeted gene sequencing and genome wide association studies to identify genes involved in CHDs. Cardiac specific genes that encode transcription factors and sarcomeric proteins have been identified and linked to CHD. Functional analysis of the relevant mutant proteins has established the molecular mechanisms of CHDs in our studies.

  10. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Directory of Open Access Journals (Sweden)

    Hartley Lauren E

    2009-06-01

    Full Text Available Abstract Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.

  11. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  12. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    OpenAIRE

    Shu-Jiau Chiou; Tsai-Yun Lin; Chung-Yi Chiou

    2013-01-01

    Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of ...

  13. Strategies to identify long noncoding RNAs involved in gene regulation

    Directory of Open Access Journals (Sweden)

    Lee Catherine

    2012-11-01

    Full Text Available Abstract Long noncoding RNAs (lncRNAs have been detected in nearly every cell type and found to be fundamentally involved in many biological processes. The characterization of lncRNAs has immense potential to advance our comprehensive understanding of cellular processes and gene regulation, along with implications for the treatment of human disease. The recent ENCODE (Encyclopedia of DNA Elements study reported 9,640 lncRNA loci in the human genome, which corresponds to around half the number of protein-coding genes. Because of this sheer number and their functional diversity, it is crucial to identify a pool of potentially relevant lncRNAs early on in a given study. In this review, we evaluate the methods for isolating lncRNAs by immunoprecipitation and review the advantages, disadvantages, and applications of three widely used approaches – microarray, tiling array, and RNA-seq – for identifying lncRNAs involved in gene regulation. We also look at ways in which data from publicly available databases such as ENCODE can support the study of lncRNAs.

  14. Identification of Phytophthora sojae genes involved in asexual sporogenesis

    Indian Academy of Sciences (India)

    Ziying Wang; Xhaoxia Wang; Jie Shen; Guangyue Wang; Xiaoxi Zhu; Hongxia Lu

    2009-08-01

    To explore the molecular mechanisms involved in asexual spore development in Phytophthora sojae, the zoospores of strain PS26 were treated with ultraviolet (UV) irradiation. After selection, a mutant progeny, termed PS26-U03, was obtained and demonstrated to exhibit no oospore production. A suppression subtractive hybridization (SSH) approach was developed to investigate differences in gene expression between PS26 and PS26-U03 during asexual sporogenesis. Of the 126 sequences chosen for examination, 39 putative unigenes were identified that exhibit high expression in PS26. These sequences are predicted to encode proteins involved in metabolism, cell cycle, protein biosynthesis, cell signalling, cell defence, and transcription regulation. Seven clones were selected for temporal expression analysis using RT-PCR based on the results of the dot-blot screens. Three of the selected genes, developmental protein DG1037 (UB88), glycoside hydrolase (UB149) and a hypothetical protein (UB145), were expressed only in PS26, whereas the transcripts of phosphatidylinositol-4-phosphate 5-kinase (UB36), FAD-dependent pyridine nucleotide-disulphide oxidoreductase (UB226) and sugar transporter (UB256) were expressed at very low levels in PS26-U03 but at high levels in PS26.

  15. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  16. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L..

    Directory of Open Access Journals (Sweden)

    Hairong Wei

    Full Text Available Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.. The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry.In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL, 4-coumarate-CoA ligase (4CL, chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, flavanone 3'-hydroxylase (F3'H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40 that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR.The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights

  17. Regulation of neuronal lineage decisions by the HES-related bHLH protein REF-1.

    Science.gov (United States)

    Lanjuin, Anne; Claggett, Julia; Shibuya, Mayumi; Hunter, Craig P; Sengupta, Piali

    2006-02-01

    Members of the HES subfamily of bHLH proteins play crucial roles in neural patterning via repression of neurogenesis. In C. elegans, loss-of-function mutations in ref-1, a distant nematode-specific member of this subfamily, were previously shown to cause ectopic neurogenesis from postembryonic lineages. However, while the vast majority of the nervous system in C. elegans is generated embryonically, the role of REF-1 in regulating these neural lineage decisions is unknown. Here, we show that mutations in ref-1 result in the generation of multiple ectopic neuron types derived from an embryonic neuroblast. In wild-type animals, neurons derived from this sublineage are present in a left/right symmetrical manner. However, in ref-1 mutants, while the ectopically generated neurons exhibit gene expression profiles characteristic of neurons on the left, they are present only on the right side. REF-1 functions in a Notch-independent manner to regulate this ectopic lineage decision. We also demonstrate that loss of REF-1 function results in defective differentiation of an embryonically generated serotonergic neuron type. These results indicate that REF-1 functions in both Notch-dependent and independent pathways to regulate multiple developmental decisions in different neuronal sublineages.

  18. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears

    Science.gov (United States)

    Feng, Shouqian; Sun, Shasha; Chen, Xiaoliu; Wu, Shujing; Wang, Deyun; Chen, Xuesen

    2015-01-01

    Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan). Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears. PMID:26536358

  19. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears.

    Directory of Open Access Journals (Sweden)

    Shouqian Feng

    Full Text Available Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan. Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears.

  20. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  1. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    International Nuclear Information System (INIS)

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: → Molecular mechanism of Cr uptake and detoxification in plants is not well known. → We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. → 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. → Pathways linked to stress, ion transport, and sulfur assimilation were affected. → This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  2. Identifying and Prioritizing Genes involved in Bovine Mastitis

    DEFF Research Database (Denmark)

    Jiang, Li

    and integrate different layers of biological data, attempting to make a systematic inference of underlying genes to bovine mastitis. Robust and flexible methods have been implemented in data summarization and integration for gene prioritization, which can be applied to study various complex traits in different...

  3. Identification of sugarcane genes involved in the purine synthesis pathway

    Directory of Open Access Journals (Sweden)

    Mario A. Jancso

    2001-12-01

    Full Text Available Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI database and used to search the translated sugarcane expressed sequence tag (SUCEST database using the available basic local alignment search tool (BLAST facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3 of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.A via de síntese de purino nucleotídeos é considerada uma via de central importância para todas as células. Na maioria dos organismos, os purino nucleotídeos são sintetizados ''de novo'' a partir de precursores não-nucleotídicos como amino ácidos, amônia e dióxido de carbono. O conhecimento das enzimas envolvidas na via de síntese de purinas da cana-de-açúcar vai abrir a possibilidade do uso dessas enzimas como alvos no desenho

  4. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.

    Science.gov (United States)

    Ishida, Tetsuya; Hattori, Sayoko; Sano, Ryosuke; Inoue, Kayoko; Shirano, Yumiko; Hayashi, Hiroaki; Shibata, Daisuke; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Okada, Kiyotaka; Wada, Takuji

    2007-08-01

    Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5' regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells.

  5. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance.

    Science.gov (United States)

    Schulz, Yvonne; Wehner, Peter; Opitz, Lennart; Salinas-Riester, Gabriela; Bongers, Ernie M H F; van Ravenswaaij-Arts, Conny M A; Wincent, Josephine; Schoumans, Jacqueline; Kohlhase, Jürgen; Borchers, Annette; Pauli, Silke

    2014-08-01

    Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the

  6. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  7. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    Science.gov (United States)

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  8. Genes involved in bovine milk-fat composition

    NARCIS (Netherlands)

    Schennink, A.

    2009-01-01

    The aim of the research described in this thesis was to identify genes that underlie the genetic variation in bovine milk-fat composition. The fat composition of milk samples from approximately 2,000 Dutch Holstein Friesian cows in their first lactation was measured by gas chromatography. Quantita

  9. Mouse models for genes involved in impaired spermatogenesis.

    Science.gov (United States)

    O'Bryan, M K; de Kretser, D

    2006-02-01

    Since the introduction of molecular biology and gene ablation technologies there have been substantial advances in our understanding of how sperm are made and fertilization occurs. There have been at least 150 different models of specifically altered gene function produced that have resulted in male infertility spanning virtually all aspects of the spermatogenic, sperm maturation and fertilization processes. While each has, or potentially will reveal, novel aspects of these processes, there is still much of which we have little knowledge. The current review is by no means a comprehensive list of these mouse models, rather it gives an overview of the potential for such models which up to this point have generally been 'knockouts'; it presents alternative strategies for the production of new models and emphasizes the importance of thorough phenotypic analysis in order to extract a maximum amount of information from each model.

  10. Genes involved in forebrain development in the zebrafish, Danio rerio.

    Science.gov (United States)

    Heisenberg, C P; Brand, M; Jiang, Y J; Warga, R M; Beuchle, D; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Kane, D A; Kelsh, R N; Mullins, M C; Odenthal, J; Nusslein-Volhard, C

    1996-12-01

    We identified four zebrafish mutants with defects in forebrain induction and patterning during embryogenesis. The four mutants define three genes: masterblind (mbl), silberblick (slb), and knollnase (kas). In mbl embryos, the anterior forebrain acquires posterior forebrain characteristics: anterior structures such as the eyes, olfactory placodes and the telencephalon are missing, whereas the epiphysis located in the posterior forebrain is expanded. In slb embryos, the extension of the embryonic axis is initially delayed and eventually followed by a partial fusion of the eyes. Finally, in kas embryos, separation of the telencephalic primordia is incomplete and dorsal midline cells fail to form a differentiated roof plate. Analysis of the mutant phenotypes indicates that we have identified genes essential for the specification of the anterior forebrain (mbl), positioning of the eyes (slb) and differentiation of the roof plate (kas). In an appendix to this study we list mutants showing alterations in the size of the eyes and abnormal differentiation of the lenses. PMID:9007240

  11. Gene Expression Analysis for the Identification of Genes Involved in Early Tumour Development

    Science.gov (United States)

    Forte, Stefano; Scarpulla, Salvatore; Lagana, Alessandro; Memeo, Lorenzo; Gulisano, Massimo

    Prostatic tissues can undergo to cancer insurgence and prostate cancer is one of the most common types of malignancies affecting adult men in the United States. Primary adenocarcinoma of the seminal vesi-cles (SVCA) is a very rare neoplasm with only 48 histologically confirmed cases reported in the European and United States literature. Prostatic tissues, seminal vesicles and epididymis belongs all to the same microenvironment, shows a very close morphology and share the same embryological origin. Despite these common features the rate of cancer occurrence is very different. The understanding of molecular differences between non neoplastic prostatic tissues and non neoplastic epididymis or seminal vesicles may suggest potential mechanisms of resistance to tumour occurrence. The comparison of expression patterns of non neoplastic prostatic and seminal vesicles tissues to identify differentially expressed genes can help researchers in the identification of biological actors involved in the early stages of the tumour development.

  12. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  13. Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

    Science.gov (United States)

    Asan, Alparsan; Raiders, Stephan A; Priess, James R

    2016-04-01

    Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik's cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells.

  14. Genetic Characterization of the Klebsiella pneumoniae waa Gene Cluster, Involved in Core Lipopolysaccharide Biosynthesis

    OpenAIRE

    Regué, Miguel; Climent, Núria; Abitiu, Nihal; Coderch, Núria; Merino, Susana; Izquierdo, Luis; Altarriba, Maria; Juan M. Tomás

    2001-01-01

    A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that t...

  15. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    OpenAIRE

    Nicolás Lavagnino; François Serra; Leonardo Arbiza; Hernán Dopazo; Esteban Hasson

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent bur...

  16. Involvement of calcitonin gene-related peptide in migraine

    DEFF Research Database (Denmark)

    Lassen, L H; Jacobsen, V B; Haderslev, P A;

    2008-01-01

    Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (halphaCGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of halphaCGRP (2...... mug/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V (mean)) in the middle cerebral artery (MCA), as well as the heart...

  17. Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production—Candidate Gene Mining and Metabolic Pathway Analyses

    OpenAIRE

    Barada Kanta Mishra; Bikram Kumar Parida; Prasanna Kumar Panda; Namrata Misra

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their...

  18. In situ expression of genes involved in carbon concentrating expression of genes involved in carbon concentratingmechanisms in hot spring cyanobacteria

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann; Steunou, Anne-Soisig; Bhaya, Devaki;

    supersaturating levels, and the intense photosynthetic activity of the cyanobacteria causes a pH >9.5 in the euphotic zone of the mat. During the night, the mat rapidly becomes anoxic, and intense respiration, reoxidation of reduced solutes and fermentation acidifies the mat to pH ~7.5. High temperature (55-70 0C...... to develop the capacity to accumulate Ci over the course of the day through the induction of genes associated with the carbon concentrating mechanism (CCM). The genomes of two Synechococcus isolates from the mat have revealed the presence of two CO2 hydration systems, two putative HCO3- transporters and a ß...

  19. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mingxue Cui

    2006-05-01

    Full Text Available In Caenorhabditis elegans, vulval cell-fate specification involves the activities of multiple signal transduction and regulatory pathways that include a receptor tyrosine kinase/Ras/mitogen-activated protein kinase pathway and synthetic multivulva (SynMuv pathways. Many genes in the SynMuv pathways encode transcription factors including the homologs of mammalian Rb, E2F, and components of the nucleosome-remodeling deacetylase complex. To further elucidate the functions of the SynMuv genes, we performed a genome-wide RNA interference (RNAi screen to search for genes that antagonize the SynMuv gene activities. Among those that displayed a varying degree of suppression of the SynMuv phenotype, 32 genes are potentially involved in chromatin remodeling (called SynMuv suppressor genes herein. Genetic mutations of two representative genes (zfp-1 and mes-4 were used to further characterize their positive roles in vulval induction and relationships with Ras function. Our analysis revealed antagonistic roles of the SynMuv suppressor genes and the SynMuv B genes in germline-soma distinction, RNAi, somatic transgene silencing, and tissue specific expression of pgl-1 and the lag-2/Delta genes. The opposite roles of these SynMuv B and SynMuv suppressor genes on transcriptional regulation were confirmed in somatic transgene silencing. We also report the identifications of ten new genes in the RNAi pathway and six new genes in germline silencing. Among the ten new RNAi genes, three encode homologs of proteins involved in both protein degradation and chromatin remodeling. Our findings suggest that multiple chromatin remodeling complexes are involved in regulating the expression of specific genes that play critical roles in developmental decisions.

  20. In silico Analysis of Candidate Genes Involved in Sanfilippo Syndrome

    Directory of Open Access Journals (Sweden)

    Mehreen Zaka

    2015-04-01

    Full Text Available Sanfilippo syndrome is an autosomal recessive lysosomal storage disorder, caused by the deficiency of enzymes that play an important role in degradation of glycosaminoglycans and also called mucopolysaccharidosis III. Mucopolysaccharidosis is genetic disorder. Here, we searched the candidate genes for Sanfilippo syndrome by using BLAST with the query sequence. As no suitable homology was found against the query sequence we moved towards threading approach. The threading approach was carried out by employing online CPH models and LOMETS tools. Through present research, domains of the proteins were predicted by utilizing the Domain Sweep tools, GNS and two domains were reported. Motif search reported the maximum number of motifs for Type D protein as compared to other types. All four proteins were totally soluble proteins and no transmembrane domains were found. In future, these results and predicted 3D structures can be used for the molecular docking studies, binding activities and protein-protein interactions for all the four types of Sanfilippo syndrome.

  1. Genes involved in the pathogenesis of premature ovarian insufficiency.

    Science.gov (United States)

    Orlandini, C; Regini, C; Vellucci, F L; Petraglia, F; Luisi, S

    2015-10-01

    Premature ovarian insufficiency (POI) is defined by the presence of primary or secondary amenorrhea, for at least 4 months, before the age of 40 years associated with follicle stimulating homone levels in menopausal range, exciding 40 UI/L. The diagnosis is confirmed by two blood sample at least 1 month to measure the level of FSH (over 40 UI/L) and level of estradiol (below 50 pmol/L). Ovarian follicular dysfunction and/or depletion of functional primordial follicles characterized this pathology. Abnormal bleeding patterns also include oligomenrrhea and polimenorrhea; because of these irregular menstrual cycles during adolescence, diagnosis could be difficult in young women. Excluding the cases in which an etiopathogenetic agent could be identified, such as in case of chemio- and radiotherapy or extensive surgery, women with autoimmune diseases and/or infections, the etiology of POI remains idiopathic. An important genetic component exists, supported by both a frequent recurring familiar event (20-30%) and the association with other different genetic disorders in particular the X chromosome defects and the implication of some different genes with significant functions in ovarian development. For most of the women the diagnosis of POI is unexpected because of there are no obvious signs or symptoms that precede the cessation of periods with a normal menstrual history, age of menarche and fertility prior to the onset of menopause. The diagnosis of POI has a deleterious psychological impact on the emotional sphere of the women affected: anger, depression, anxiety and sadness are common and the fact that the diagnosis coincides with infertility needs a psychological support. Oral hormonal replacement therapy (HRT) administration is not recommended as first choice of treatment because of the higher hormones concentration with respect to the real hormones necessity of the patients and transdermal HRT may be preferred in women with coagulation disturbances to relief

  2. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    Science.gov (United States)

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  3. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  4. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Dong Fang

    Full Text Available Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1 was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.

  5. Genes involved in systemic and arterial bed dependent atherosclerosis--Tampere Vascular study.

    Directory of Open Access Journals (Sweden)

    Mari Levula

    Full Text Available BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6 using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA. According to the selection criteria used (>3.0 fold change and p-value <0.05, 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25. CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds.

  6. Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Science.gov (United States)

    Airla, Nina; Zeitlin, Rainer; Salenius, Juha-Pekka; Järvinen, Otso; Venermo, Maarit; Partio, Teemu; Saarinen, Jukka; Somppi, Taija; Suominen, VeliPekka; Virkkunen, Jyrki; Hautalahti, Juha; Laaksonen, Reijo; Kähönen, Mika; Mennander, Ari; Kytömäki, Leena; Soini, Juhani T.; Parkkinen, Jyrki; Pelto-Huikko, Markku; Lehtimäki, Terho

    2012-01-01

    Background Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. Methodology/Principal Findings We characterized the genes generally involved in human advanced atherosclerotic (AHA type V–VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). Conclusions This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds. PMID:22509262

  7. Association Between Factor V Leiden Gene Mutation and Systemic Involvement in Behcet's Disease

    Directory of Open Access Journals (Sweden)

    Filiz Cebeci

    2009-03-01

    Full Text Available Background and Design: Behcet’s disease is a chronic, multisystem inflammatory disease of unknown origin characterized mainly by recurrent oral aphthous ulceration, genital ulceration, skin lesions and uveitis. Thrombophilic defects, such as factor V Leiden (FVL gene mutation may play a role in the pathogenesis of thrombosis in Behcet’s disease (BD. Recently, an association of FVL mutation with thrombosis and ocular involvement in BD has been reported. The object of this present study was to investigate an association between systemic involvement and the presence of the FVL gene mutation in BD patients.Material and Method: One-hundred six patients with BD and 70 healthy subjects were included in the study. FVL gene mutation was determined by polymerase chain reaction.Results: The FVL mutation was detected in 20.8% of the BD patients (22/106 compared with 8.5% of the control subjects (6/71. The difference was not statistically significant (p=0.027. Systemic involvement were observed in 45 (42.4% patients. No statistically significant association was found between patients with systemic involvement (26.7% and without systemic involvement (16.4% with respect to FVL gene mutation (p=0.197. All of the patients and controls tested positive were heterozygous for the mutation.Conclusion: Further studies in larger patients series with systemic involvement are needed to determine the prevalence of this mutation in BD with systemic involvement.

  8. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Institute of Scientific and Technical Information of China (English)

    Yonglong Yu; Dong Zhu; Chaoying Ma; Hui Cao; Yaping Wang; Yanhao Xu; Wenying Zhang; Yueming Yan

    2016-01-01

    Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20) during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further informa-tion about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  9. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  10. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Batoux, Martine; Schwessinger, Benjamin;

    2014-01-01

    mechanisms is needed. Here, we identify the basic helix-loop-helix (bHLH) transcription factor homolog of brassinosteroid enhanced expression2 interacting with IBH1 (HBI1) as a negative regulator of PTI signaling in Arabidopsis (Arabidopsis thaliana). HBI1 expression is down-regulated in response...... to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced...

  11. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    Directory of Open Access Journals (Sweden)

    Lehnert Sigrid A

    2010-06-01

    Full Text Available Abstract Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus.

  12. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Directory of Open Access Journals (Sweden)

    Mitchell D’Rozario

    2016-04-01

    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  13. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  14. Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.

    Science.gov (United States)

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil. PMID:23032611

  15. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Adriano R. Lucheta

    2007-01-01

    Full Text Available Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST in Citrus sinensis (L. Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids. A thorough analysis of all related putative genes from the Citrus EST (CitEST database revealed several interesting aspects associated to these pathways and brought novel information with promising usefulness for both basic and biotechnological applications.

  16. Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    OpenAIRE

    Mari Levula; Niku Oksala; Nina Airla; Rainer Zeitlin; Juha-Pekka Salenius; Otso Järvinen; Maarit Venermo; Teemu Partio; Jukka Saarinen; Taija Somppi; VeliPekka Suominen; Jyrki Virkkunen; Juha Hautalahti; Reijo Laaksonen; Mika Kähönen

    2012-01-01

    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arterie...

  17. From the Transcription of Genes Involved in Ectodermal Dysplasias to the Understanding of Associated Dental Anomalies

    OpenAIRE

    Laugel-Haushalter, V.; Langer, A; Marrie, J.; Fraulob, V.; Schuhbaur, B.; Koch-Phillips, M.; Dollé, P; Bloch-Zupan, A.

    2012-01-01

    Orodental anomalies are one aspect of rare diseases and are increasingly identified as diagnostic and predictive traits. To understand the rationale behind gene expression during tooth or other ectodermal derivative development and the disruption of odontogenesis or hair and salivary gland formation in human syndromes we analyzed the expression patterns of a set of genes (Irf6, Nfkbia, Ercc3, Evc2, Map2k1) involved in human ectodermal dysplasias in mouse by in situ hybridization. The expressi...

  18. Assessment of Sugar Components and Genes Involved in the Regulation of Sucrose Accumulation in Peach Fruit.

    Science.gov (United States)

    Vimolmangkang, Sornkanok; Zheng, Hongyu; Peng, Qian; Jiang, Quan; Wang, Huiliang; Fang, Ting; Liao, Liao; Wang, Lu; He, Huaping; Han, Yuepeng

    2016-09-01

    Soluble sugar contents in mature fruits of 45 peach accessions were quantified using gas chromatography analysis. Sucrose is the predominant sugar in mature fruit, followed by glucose and fructose, which have similar concentrations. Overall, sucrose metabolism and accumulation are crucial determinants of sugar content in peach fruit, and there is a wide range of sucrose concentrations among peach genotypes. To understand the mechanisms regulating sucrose accumulation in peach fruit, expression profiles of genes involved in sucrose metabolism and transport were compared among four genotypes. Two sucrose-cleaving enzyme genes (SUS4 and NINV8), one gene involved in sucrose resynthesis (SPS3), and three sugar transporter genes (SUT2, SUT4, and TMT2) were prevalently expressed in peach fruit, and their expression levels are significantly correlated with sucrose accumulation. In contrast, the VAINV genes responsible for sucrose cleavage in the vacuole were weakly expressed in mature fruit, suggesting that the sucrose-cleaving reaction is not active in the vacuole of sink cells of mature peach fruit. This study suggests that sucrose accumulation in peach fruit involves the coordinated interaction of genes related to sucrose cleavage, resynthesis, and transport, which could be helpful for future peach breeding. PMID:27537219

  19. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish

    NARCIS (Netherlands)

    Malki, Karim; Du Rietz, Ebba; Crusio, Wim; Pain, Oliver; Paya-Cano, Jose; Karadaghi, Rezhaw L; Sluyter, Frans; de Boer, Sietse F; Sandnabba, Kenneth; Schalkwyk, Leo C; Asherson, Philip; Tosto, Maria Grazia

    2016-01-01

    Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with Zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cros

  20. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses.

    Science.gov (United States)

    Shao, H H; Chen, S D; Zhang, K; Cao, Q H; Zhou, H; Ma, Q Q; He, B; Yuan, X H; Wang, Y; Chen, Y H; Yong, B

    2014-01-01

    The early response to the dehydration 15 (ERD15) gene is widely involved in the processes of signal transduction, programmed cell death, gene transcription, and stress tolerance in plants. In a previous study, the ERD15 gene was shown to be an important regulator of the abscisic acid response and salicylic acid-dependent defense pathway, acting as an important negative regulator of abscisic acid. The complete IbERD15 gene (accession No. KF723428) was isolated by reverse transcription-polymerase chain reaction. The IbERD15 gene contains an open reading frame of 504 bp, encodes a peptide of 167 amino acids, and has a molecular mass of 18.725 kDa. The transcript levels of the IbERD15 gene in a variety of tissues were examined by digital gene expression profiling. The roots of the sweet potato were treated by 3 degrees of polyethylene glycol, and the results indicate that the IbERD15 gene might play an important role in the defense response to drought stress. Moreover, the IbERD15 gene was successfully transformed into yeast cells for analysis of drought tolerance in transgenic yeast. PMID:25526205

  1. Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Galal, Rami; Krohn, Antje; Weischenfeldt, Joachim; Tsourlakis, Christina; Paustian, Lisa; Ahrary, Ramin; Ahmed, Malik; Scherzai, Sekander; Meyer, Anne; Sirma, Hüseyin; Korbel, Jan; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Minner, Sarah

    2015-04-01

    Prostate cancer is characterized by structural rearrangements, most frequently including translocations between androgen-dependent genes and members of the ETS family of transcription factor like TMPRSS2:ERG. In a recent whole genome sequencing study we identified 140 gene fusions that were unrelated to ETS genes in 11 prostate cancers. The aim of the present study was to estimate the prevalence of non-ETS gene fusions. We randomly selected 27 of these rearrangements and analyzed them by fluorescence in situ hybridization (FISH) in a tissue microarray format containing 500 prostate cancers. Using break-apart FISH probes for one fusion partner each, we found rearrangements of 13 (48%) of the 27 analyzed genes in 300-400 analyzable cancers per gene. Recurrent breakage, often accompanied by partial deletion of the genes, was found for NCKAP5, SH3BGR and TTC3 in 3 (0.8%) tumors each, as well as for ARNTL2 and ENOX1 in 2 (0.5%) cancers each. One rearranged tumor sample was observed for each of VCL, ZNF578, IMMP2L, SLC16A12, PANK1, GPHN, LRP1 and ZHX2. Balanced rearrangements, indicating possible gene fusion, were found for ZNF578, SH3BGR, LPR12 and ZHX2 in individual cancers only. The results of the present study confirm that rearrangements involving non-ETS genes occur in prostate cancer, but demonstrate that they are highly individual and typically non-recurrent.

  2. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  3. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections.

    Science.gov (United States)

    Potter, Amina; Ceotto, Hilana; Giambiagi-Demarval, Marcia; dos Santos, Kátia Regina Netto; Nes, Ingolf F; Bastos, Maria do Carmo de Freire

    2009-06-01

    This study analyzed ten strains of coagulase-negative staphylococci (CNS) involved in nosocomial infections in three Brazilian hospitals. Their antibiotic susceptibility profile showed that most strains exhibited multiple antibiotic resistance and possessed the mecA gene. The ability of these strains to adhere to polystyrene microtiter plates was also tested and nine of them proved to be biofilm producers at least in one of the three conditions tested: growth in TSB, in TSB supplemented with NaCl, or in TSB supplemented with glucose. The presence of the bap gene, which codes for the biofilm-associated protein (Bap), was investigated in all ten strains by PCR. AU strains were bop-positive and DNA sequencing experiments confirmed that the fragments amplified were indeed part of a bap gene. The presence of the icaA gene, one of the genes involved in polysaccharide intercellular adhesin (PIA) formation, was also detected by PCR in eight of the ten strains tested. The two icaA-negative strains were either weak biofilm producer or no biofilm producer, although they were bop-positive. To our knowledge, this is the first report demonstrating the presence of the bap gene in nosocomial isolates of CNS, being also the first report on the presence of this gene in Staphylococcus haemolyticus and S. cohnii.

  4. Investigation of genes involved in nisin production in Enterococcus spp. strains isolated from raw goat milk.

    Science.gov (United States)

    Perin, Luana Martins; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-09-01

    Different strains of Lactococcus lactis are capable of producing the bacteriocin nisin. However, genetic transfer mechanisms allow the natural occurrence of genes involved in nisin production in members of other bacterial genera, such as Enterococcus spp. In a previous study, nisA was identified in eight enterococci capable of producing antimicrobial substances. The aim of this study was to verify the presence of genes involved in nisin production in Enterococcus spp. strains, as well as nisin expression. The nisA genes from eight Enterococcus spp. strains were sequenced and the translated amino acid sequences were compared to nisin amino-acid sequences previously described in databases. Although containing nisin structural and maturation related genes, the enterococci strains tested in the present study did not present the immunity related genes (nisFEG and nisI). The translated sequences of nisA showed some point mutations, identical to those presented by Lactococcus strains isolated from goat milk. All enterococci were inhibited by nisin, indicating the absence of immunity and thus that nisin cannot be expressed. This study demonstrated for the first time the natural occurrence of nisin structural genes in Enterococcus strains and highlights the importance of providing evidence of a link between the presence of bacteriocin genes and their expression.

  5. Investigation of genes involved in nisin production in Enterococcus spp. strains isolated from raw goat milk.

    Science.gov (United States)

    Perin, Luana Martins; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-09-01

    Different strains of Lactococcus lactis are capable of producing the bacteriocin nisin. However, genetic transfer mechanisms allow the natural occurrence of genes involved in nisin production in members of other bacterial genera, such as Enterococcus spp. In a previous study, nisA was identified in eight enterococci capable of producing antimicrobial substances. The aim of this study was to verify the presence of genes involved in nisin production in Enterococcus spp. strains, as well as nisin expression. The nisA genes from eight Enterococcus spp. strains were sequenced and the translated amino acid sequences were compared to nisin amino-acid sequences previously described in databases. Although containing nisin structural and maturation related genes, the enterococci strains tested in the present study did not present the immunity related genes (nisFEG and nisI). The translated sequences of nisA showed some point mutations, identical to those presented by Lactococcus strains isolated from goat milk. All enterococci were inhibited by nisin, indicating the absence of immunity and thus that nisin cannot be expressed. This study demonstrated for the first time the natural occurrence of nisin structural genes in Enterococcus strains and highlights the importance of providing evidence of a link between the presence of bacteriocin genes and their expression. PMID:27255139

  6. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    OpenAIRE

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involv...

  7. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity.

    Science.gov (United States)

    Porto-Neto, Laercio R; Fortes, Marina R S; McWilliam, Sean M; Lehnert, Sigrid A; Reverter, Antonio

    2014-01-01

    We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10(-5)). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r (2) > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes. PMID:24795751

  8. Variation in genes involved in epigenetic processes offers insights into tropically adapted cattle diversity

    Directory of Open Access Journals (Sweden)

    Laercio R Porto-Neto

    2014-04-01

    Full Text Available We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2,112 and Tropical Composite (n = 2,550. We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases and 99 (chromatin remodelling factors genes. A total of 3,091 SNP mapped to positions within 3,000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2,738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10-5. A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r2 > 0.84. To further characterise the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05 enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterise the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes.

  9. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish.

    Science.gov (United States)

    Malki, Karim; Du Rietz, Ebba; Crusio, Wim E; Pain, Oliver; Paya-Cano, Jose; Karadaghi, Rezhaw L; Sluyter, Frans; de Boer, Sietse F; Sandnabba, Kenneth; Schalkwyk, Leonard C; Asherson, Philip; Tosto, Maria Grazia

    2016-09-01

    Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc. PMID:27090961

  10. Isolation of genes (nif/hup cosmids) involved in hydrogenase and nitrogenase activities in Rhizobium japonicum.

    Science.gov (United States)

    Hom, S S; Graham, L A; Maier, R J

    1985-03-01

    Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.

  11. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways

    Directory of Open Access Journals (Sweden)

    Liu Ran

    2013-01-01

    Full Text Available Abstract Background Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis. Results In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7 and colon cancer (HCT-15 cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”. Conclusions These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways.

  12. Screening for genes involved in Klebsiella pneumoniae biofilm formation using a fosmid library

    DEFF Research Database (Denmark)

    Stahlhut, Steen G; Schroll, Casper; Harmsen, Morten;

    2010-01-01

    Klebsiella pneumoniae is a well-known opportunistic pathogen, often causing catheter-associated urinary tract infections. Biofilm formation on the catheter surfaces is an important step in the development of these infections. To identify the genes involved in the ability of K. pneumoniae to form...

  13. Molecular Characterization of Penicillium Griseofulvum Genes Involved in Biosynthesis of the Mycotoxin Patulin

    Science.gov (United States)

    Fungal genes involved in biosynthesis of mycotoxins are frequently arranged in clusters. Fungi with the ability to synthesize the mycotoxin patulin are present throughout nature, predominantly in apples, pears, and products made from them. At least 15 fungal species have been described as capable ...

  14. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes.

    NARCIS (Netherlands)

    Menko, F.H.; Kneepkens, C.M.; Leeuw, N. de; Peeters, E.A.; Maldergem, L Van; Kamsteeg, E.J.; Davidson, R.; Rozendaal, L.; Lasham, C.A.; Peeters-Scholte, C.M.; Jansweijer, M.C.E.; Hilhorst-Hofstee, Y.; Gille, J.J.P.; Heins, Y.M.; Nieuwint, A.W.; Sistermans, E.A.

    2008-01-01

    Infantile juvenile polyposis is a rare disease with severe gastrointestinal symptoms and a grave clinical course. Recently, 10q23 microdeletions involving the PTEN and BMPR1A genes were found in four patients with infantile juvenile polyposis. It was hypothesized that a combined and synergistic effe

  15. Proteomics of Wheat Endosperm: a Tool to Find Genes Involved in Kernel Composition and Quality

    Institute of Scientific and Technical Information of China (English)

    G. Branlard; E. Bancel; I. Nadaud

    2007-01-01

    @@ The composition of the wheat kernel is the result of the expression of thousands of genes translated in enzymes involved in all the biochemical pathways that are needed for endosperm cell functions and also for the accumulation of storage proteins and starch.

  16. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  17. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  18. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Xianen Li

    2012-10-01

    Full Text Available Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis.

  19. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development.

    Science.gov (United States)

    Tsaniklidis, Georgios; Kotsiras, Anastasios; Tsafouros, Athanasios; Roussos, Peter A; Aivalakis, Georgios; Katinakis, Panagiotis; Delis, Costas

    2016-03-01

    Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening. PMID

  20. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  1. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica.

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4'OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4'OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  2. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    Science.gov (United States)

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involved in Drosophila hematopoiesis, we have conducted a P-element-based genetic screen to isolate mutations that affect embryonic crystal cell development. Using a marker of terminally differentiated crystal cells, we screened 1040 P-element-lethal lines located on the second and third chromosomes and identified 44 individual lines that affect crystal cell development. Identifying novel genes and pathways involved in Drosophila hematopoiesis is likely to provide further insights into mammalian hematopoietic development and disorders. PMID:15454546

  3. Identification of new genes involved in human adipogenesis and fat storage.

    Directory of Open Access Journals (Sweden)

    Jörn Söhle

    Full Text Available Since the worldwide increase in obesity represents a growing challenge for health care systems, new approaches are needed to effectively treat obesity and its associated diseases. One prerequisite for advances in this field is the identification of genes involved in adipogenesis and/or lipid storage. To provide a systematic analysis of genes that regulate adipose tissue biology and to establish a target-oriented compound screening, we performed a high throughput siRNA screen with primary (preadipocytes, using a druggable siRNA library targeting 7,784 human genes. The primary screen showed that 459 genes affected adipogenesis and/or lipid accumulation after knock-down. Out of these hits, 333 could be validated in a secondary screen using independent siRNAs and 110 genes were further regulated on the gene expression level during adipogenesis. Assuming that these genes are involved in neutral lipid storage and/or adipocyte differentiation, we performed InCell-Western analysis for the most striking hits to distinguish between the two phenotypes. Beside well known regulators of adipogenesis and neutral lipid storage (i.e. PPARγ, RXR, Perilipin A the screening revealed a large number of genes which have not been previously described in the context of fatty tissue biology such as axonemal dyneins. Five out of ten axonemal dyneins were identified in our screen and quantitative RT-PCR-analysis revealed that these genes are expressed in preadipocytes and/or maturing adipocytes. Finally, to show that the genes identified in our screen are per se druggable we performed a proof of principle experiment using an antagonist for HTR2B. The results showed a very similar phenotype compared to knock-down experiments proofing the "druggability". Thus, we identified new adipogenesis-associated genes and those involved in neutral lipid storage. Moreover, by using a druggable siRNA library the screen data provides a very attractive starting point to identify anti

  4. Expression Analysis of Dihydroflavonol 4-Reductase Genes Involved in Anthocyanin Biosynthesis in Purple Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    Mao-Sen LIU; Fang WANG; Yu-Xiu DONG; Xian-Sheng ZHANG

    2005-01-01

    The grain color of wheat (Triticum aestivum L.) is an important characteristic in crop production.Dihydroflavonol 4-reductase genes (DFR) encode the key enzyme dihydroflavonol 4-reductase, which is involved in the pigmentation of plant tissues. To investigate the molecular mechanism of anthocyanin deposition in grains of wheat, we determined the expression of the wheat DFR gene in purple grains of cultivar Heimai 76. The results showed that DFR transcripts were localized in the seed coat of purple grains rather than in the pericarp, whereas anthocyanins were accumulated in both tissues of purple grains,suggesting that anthocyanin deposition was mainly regulated at the transcriptional level. Overexpression of the TaDFR-A gene in Arabidopsis showed that TaDFR-A was responsible for the pigmentation of Arabidopsis plant tissues, indicating TaDFR-A gene has the same role in Arabidopsis.

  5. Endothelial differentiation gene-1, a new downstream gene is involved in RTEF-1 induced angiogenesis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ping He

    Full Text Available Related Transcriptional Enhancer Factor-1 (RTEF-1 has been suggested to induce angiogenesis through regulating target genes. Whether RTEF-1 has a direct role in angiogenesis and what specific genes are involved in RTEF-1 driven angiogenisis have not been elucidated. We found that over-expressing RTEF-1 in Human dermal microvascular endothelial cells-1 (HMEC-1 significantly increased endothelial cell aggregation, growth and migration while the processes were inhibited by siRNA of RTEF-1. In addition, we observed that Endothelial differentiation gene-1 (Edg-1 expression was up-regulated by RTEF-1 at the transcriptional level. RTEF-1 could bind to Edg-1 promoter and subsequently induce its activity. Edg-1 siRNA significantly blocked RTEF-1-driven increases in endothelial cell aggregation in a Matrigel assay and retarded RTEF-1-induced endothelial cell growth and migration. Pertussis Toxin (PTX, a Gi/Go protein sensitive inhibitor, was found to inhibit RTEF-1 driven endothelial cell aggregation and migration. Our data demonstrates that Edg-1 is a potential target gene of RTEF-1 and is involved in RTEF-1-induced angiogenesis in endothelial cells. Gi/Go protein coupled receptor pathway plays a role in RTEF-1 driven angiogenesis in endothelial cells.

  6. Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    International Nuclear Information System (INIS)

    The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Prostate CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. CD90+ prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development

  7. Strategies for functional validation of genes involved in reproductive stages of orchids.

    Science.gov (United States)

    Lu, Hsiang-Chia; Chen, Hong-Hwa; Tsai, Wen-Chieh; Chen, Wen-Huei; Su, Hong-Ji; Chang, Doris Chi-Ning; Yeh, Hsin-Hung

    2007-02-01

    Plants in the largest family of angiosperms, Orchidaceae, are diverse in both specialized pollination and ecological strategies and provide a rich source for investigating evolutionary relationships and developmental biology. However, studies in orchids have been hindered by several challenges that include low transformation efficiency and long regeneration time. To overcome such obstacles, we selected a symptomless cymbidium mosaic virus (CymMV) isolate for constructing virus-induced gene-silencing vectors. The feasibility of the virus vectors was first assessed with use of an orchid phytoene desaturase gene. The vector was able to induce gene silencing in orchids; however, because of the slow growth of orchids, the commonly used phytoene desaturase gene was not a good visual marker in orchids. We inserted a 150-nucleotide unique region of a B-class MADS-box family gene, PeMADS6, into pCymMV-pro60. The transcription level of PeMADS6 in inoculated Phalaenopsis plants was reduced by up to 73%, but no effect was observed for other MADS-box family genes. In contrast, in Phalaenopsis plants inoculated with CymMV transcripts containing 500 nucleotides of PeMADS6, a conserved region among MADS-box genes, the transcription level of PeMADS6 and the B- and C-class MADS-box genes was reduced by up to 97.8% as compared with plants inoculated with the vector alone. Flower morphology was affected in the MADS-box family gene-silenced plants as well. This in vivo experiment demonstrates an efficient way to study genes involved in the reproductive stage of plants with a long life cycle.

  8. Characterization of Pneumococcal Genes Involved in Bloodstream Invasion in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Layla K Mahdi

    Full Text Available Streptococcus pneumoniae (the pneumococcus continues to account for significant morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteremia and meningitis, as well as less serious infections such as sinusitis, conjunctivitis and otitis media. Current polysaccharide vaccines are strictly serotype-specific and also drive the emergence of non-vaccine serotype strains. In this study, we used microarray analysis to compare gene expression patterns of either serotype 4 or serotype 6A pneumococci in the nasopharynx and blood of mice, as a model to identify genes involved in invasion of blood in the context of occult bacteremia in humans. In this manner, we identified 26 genes that were significantly up-regulated in the nasopharynx and 36 genes that were significantly up-regulated in the blood that were common to both strains. Gene Ontology classification revealed that transporter and DNA binding (transcription factor activities constitute the significantly different molecular functional categories for genes up-regulated in the nasopharynx and blood. Targeted mutagenesis of selected genes from both niches and subsequent virulence and pathogenesis studies identified the manganese-dependent superoxide dismutase (SodA as most likely to be essential for colonization, and the cell wall-associated serine protease (PrtA as important for invasion of blood. This work extends our previous analyses and suggests that both PrtA and SodA warrant examination in future studies aimed at prevention and/or control of pneumococcal disease.

  9. A ketoreductase gene from Streptomyces mycarofaciens 1748 DNA involved in biosynthesis of a spore pigment

    Institute of Scientific and Technical Information of China (English)

    夏焕章; 王以光

    1997-01-01

    An efficient plasmid transformation system for S. mycarofaciens 1748 has been established. In order to determine the function of MKR gene in S. mycarofaciens 1748, the gene disruption experiment was carried out. For this purpose the plasmid pKC1139 was used. A recombinant strain with white spore appeared, in contrast to the grey-colour spore of S. mycarofaciens 1748. This suggested that homologous recombination between plasmid-borne MKR gene sequence and the chromosome of S. mycarofaciens 1748 had occurred. A Southern hybridization experiment using α- P-labelled MKR gene as probe indicated that the desired integration event had occurred in the re-combinant. The result of gene disruption showed that the alteration of this gene in the chromosome of S. mycarofa-ciens 1748 made sporulating colonies remain white instead of taking on the typical grey colour of sporulating wild type colonies, suggesting that MKR gene is involved in the biosynthesis of a spore pigment. The recombinant strain was in-cubated wit

  10. Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2014-12-01

    Full Text Available Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469 were investigated using digital gene expression (DGE. A total of 1300 differentially expressed genes were identified, indicating that the response to hybrid necrosis in wheat is complicated. The assignments of the annotated genes based on Gene Ontology (GO revealed that most of the up-regulated genes belong to “universal stress related”, “DNA/RNA binding”, “protein degradation” functional groups, while the down-regulated genes belong to “carbohydrate metabolism” and “translation regulation” functional groups. These findings suggest that these pathways were affected by hybrid necrosis. Our results provide preliminarily new insight into the underlying molecular mechanisms of hybrid necrosis and will help to identify important candidate genes involved in wheat hybrid necrosis.

  11. DIFFERENTIAL EXPRESSION OF GENES INVOLVED IN METABOLISM BETWEEN TUMORIGENITIC HUMAN LEUKEMIA CELL LINES K562 AND K562-n

    Institute of Scientific and Technical Information of China (English)

    吕书晴; 许小平; 夏放; 居小萍; 李瑶; 应康; 毛裕民

    2003-01-01

    Objective: To study the molecular mechanism of different tumorigenicity in nude mice of human leukemia cell lines K562-n and K562. Methods: To analyze the genes differently expressed between K562 and K562-n cells by using cDNA microarray technique. Results: Among the 12800 genes detected, some genes involved in material metabolism and material transport were differently expressed between K562-n and K562 cells. These genes include homo sapiens placenta-specific ATP-binding cassette transporter gene, dihydrodiol dehydrogenase gene, hepatic dihydrodiol dehydrogenase gene, NAD-dependent methylene tetrahydrofolate dehydrogenase cyclohydrolase, lysophosphatidic acid acyltransferase, alpha gene, argininosuccinate lyase gene, mitochondrial isocitrtate dehydrogenase, adhesion protein SQM1 gene, dimethylarginine dimethylamino-hydrolase gene, M1 subunit of ribonucleotide reductase and farnesyl pyrophosphate synthetase gene. Conclusion: The high tumorigenicity of K562-n cells is related to the different expression of some genes concerned with cell metabolism and material transpoert.

  12. NDRG2: a Myc-repressed gene involved in cancer and cell stress

    Institute of Scientific and Technical Information of China (English)

    Libo Yao; Jian Zhang; Xuewu Liu

    2008-01-01

    As a master switch for cell proliferation and differentiation,Myc exerts its biological functions mainly through transcriptional regulation of its target genes,which are involved in cells' interaction and communication with their external environment.The N-Myc downstream-regulated gene (NDRG) family is composed ofNDRG1,NDRG2,NDRG3 and NDRG4,which are important in cell proliferation and differentiation.This review summarizes the recent studies on the structure,tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.

  13. GST ( phi) gene from Macrophyte Lemna minor is involved in cadmium exposure responses

    Science.gov (United States)

    Chen, Shihua; Chen, Xin; Dou, Weihong; Wang, Liang; Yin, Haibo; Guo, Shanli

    2016-03-01

    Reactive oxygen species (ROS) scavengers, including ascorbate peroxidase, superoxide dismutase, catalase and peroxidase, are the most commonly used biomarkers in assessing an organisms' response to many biotic and abiotic stresses. In this study, we cloned an 866 bp GST ( phi) gene in Lemna minor and investigated its characteristics, expression and enzymatic activities under 75 μmol/L cadmium concentrations in comparison with other ROS scavengers. GST ( phi) gene expression patterns were similar to those of other scavengers of ROS. This suggests that GST ( phi) might be involved in responding to heavy metal (cadmium) stress and that its expression level could be used as a bio-indicator in monitoring cadmium pollution.

  14. Identification and analysis of novel genes involved in gravitropism of Arabidopsis thaliana.

    Science.gov (United States)

    Morita, Miyo T.; Tasaka, Masao; Masatoshi Taniguchi, .

    2012-07-01

    Gravitropism is a continuous control with regard to the orientation and juxtaposition of the various parts of the plant body in response to gravity. In higher plants, the relative directional change of gravity is mainly suscepted in specialized cells called statocytes, followed by signal conversion from physical information into physiological information within the statocytes. We have studied the early process of shoot gravitropism, gravity sensing and signaling process, mainly by molecular genetic approach. In Arabidopsis shoot, statocytes are the endodermal cells. sgr1/scarcrow (scr) and sgr7/short-root (shr) mutants fail to form the endodermis and to respond to gravity in their inflorescence stems. Since both SGR1/SCR and SGR7/SHR are transcriptional factors, at least a subset of their downstream genes can be expected to be involved in gravitropism. In addition, eal1 (endodermal-amyloplast less 1), which exhibits no gravitropism in inflorescence stem but retains ability to form endodermis, is a hypomorphic allele of sgr7/shr. Take advantage of these mutants, we performed DNA microarray analysis and compared gene expression profiles between wild type and the mutants. We found that approx. 40 genes were commonly down-regulated in these mutants and termed them DGE (DOWN-REGULATED GENE IN EAL1) genes. DGE1 has sequence similarity to Oryza sativa LAZY1 that is involved in shoot gravitropism of rice. DGE2 has a short region homologous to DGE1. DTL (DGE TWO-LIKE}) that has 54% identity to DGE2 is found in Arabidopsis genome. All three genes are conserved in angiosperm but have no known functional domains or motifs. We analyzed T-DNA insertion for these genes in single or multiple combinations. In dge1 dge2 dtl triple mutant, gravitropic response of shoot, hypocotyl and root dramatically reduced. Now we are carrying out further physiological and molecular genetic analysis of the triple mutant.

  15. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  16. An evolutionary genomic approach to identify genes involved in human birth timing.

    Directory of Open Access Journals (Sweden)

    Jevon Plunkett

    2011-04-01

    Full Text Available Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.

  17. Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.

    Directory of Open Access Journals (Sweden)

    Charles E Niesen

    Full Text Available The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs. Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3 were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA showed that epilepsy subjects were clustered together tightly (except one sample and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.

  18. Identification of genes involved with tick infestation in Bos taurus and Bos indicus.

    Science.gov (United States)

    Kongsuwan, K; Piper, E K; Bagnall, N H; Ryan, K; Moolhuijzen, P; Bellgard, M; Lew, A; Jackson, L; Jonsson, N N

    2008-01-01

    Tick resistant cattle could provide a potentially sustainable and environmentally sound method of controlling cattle ticks. Advances in genomics and the availability of the bovine genome sequence open up opportunities to identify useful and selectable genes controlling cattle tick resistance. Using quantitative real-time PCR and theAffymetrix bovine array platform, differences in gene expression of skin biopsies from tick resistant Bos indicus (Brahman) and tick susceptible Bos taurus (Holstein-Friesian) cattle following tick challenge were examined. We identified 138 significant differentially-expressed genes, including several immunologicallhost defence genes, extracellularmatrix proteins, and transcription factors as well as genes involved in lipid metabolism. Three key pathways, represented by genes differentially expressed in resistant Brahmans, were identified; the development of the cell-mediated immune response, structural integrity of the dermis and intracellular Ca2+ levels. Ca2+, which is implicated in host responses to microbial stimuli, may be required for the enhancement or fine-tuning of transcriptional activation of Ca2+ -dependant host defence signalling pathways. PMID:18817288

  19. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes

    Directory of Open Access Journals (Sweden)

    Olsson Per-Erik

    2005-11-01

    Full Text Available Abstract Sex determination is the process deciding the sex of a developing embryo. This is usually determined genetically; however it is a delicate process, which in many cases can be influenced by environmental factors. The mechanisms controlling zebrafish sex determination and differentiation are not known. To date no sex linked genes have been identified in zebrafish and no sex chromosomes have been identified. However, a number of genes, as presented here, have been linked to the process of sex determination or differentiation in zebrafish. The zebrafish FTZ-F1 genes are of central interest as they are involved in regulating interrenal development and thereby steroid biosynthesis, as well as that they show expression patterns congruent with reproductive tissue differentiation and function. Zebrafish can be sex reversed by exposure to estrogens, suggesting that the estrogen levels are crucial during sex differentiation. The Cyp19 gene product aromatase converts testosterone into 17 beta-estradiol, and when inhibited leads to male to female sex reversal. FTZ-F1 genes are strongly linked to steroid biosynthesis and the regulatory region of Cyp19 contains binding sites for FTZ-F1 genes, further linking FTZ-F1 to this process. The role of FTZ-F1 and other candidates for zebrafish sex determination and differentiation is in focus of this review.

  20. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    Science.gov (United States)

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  1. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli.

    Science.gov (United States)

    Chung, Eu Jin; Lim, He Kyoung; Kim, Jin-Cheol; Choi, Gyung Ja; Park, Eun Jin; Lee, Myung Hwan; Chung, Young Ryun; Lee, Seon-Woo

    2008-02-01

    Using two forest soils, we previously constructed two fosmid libraries containing 113,700 members in total. The libraries were screened to select active antifungal clones using Saccharomyces cerevisiae as a target fungus. One clone from the Yuseong pine tree rhizosphere soil library, pEAF66, showed S. cerevisiae growth inhibition. Despite an intensive effort, active chemicals were not isolated. DNA sequence analysis and transposon mutagenesis of pEAF66 revealed 39 open reading frames (ORFs) and indicated that eight ORFs, probably in one transcriptional unit, might be directly involved in the expression of antifungal activity in Escherichia coli. The deduced amino acid sequences of eight ORFs were similar to those of the core genes encoding type II family polyketide synthases, such as the acyl carrier protein (ACP), ACP synthases, aminotransferase, and ACP reductase. The gene cluster involved in antifungal activity was similar in organization to the putative antibiotic production locus of Pseudomonas putida KT2440, although we could not select a similar active clone from the KT2440 genomic DNA library in E. coli. ORFs encoding ATP binding cassette transporters and membrane proteins were located at both ends of the antifungal gene cluster. Upstream ORFs encoding an IclR family response regulator and a LysR family response regulator were involved in the positive regulation of antifungal gene expression. Our results suggested the metagenomic approach as an alternative to search for novel antifungal antibiotics from unculturable soil bacteria. This is the first report of an antifungal gene cluster obtained from a soil metagenome using S. cerevisiae as a target fungus. PMID:18065615

  2. Identification of Listeria monocytogenes Genes Involved in Salt and Alkaline-pH Tolerance

    OpenAIRE

    Gardan, Rozenn; Cossart, Pascale; Labadie, Jean

    2003-01-01

    The capacity of Listeria monocytogenes to tolerate salt and alkaline stresses is of particular importance, as this pathogen is often exposed to such environments during food processing and food preservation. We screened a library of Tn917-lacZ insertional mutants in order to identify genes involved in salt and/or alkaline tolerance. We isolated six mutants sensitive to salt stress and 12 mutants sensitive to salt and alkaline stresses. The position of the insertion of the transposon was locat...

  3. Involvement of Adherence and Adhesion Staphylococcus epidermidis Genes in Pacemaker Lead-Associated Infections

    OpenAIRE

    Klug, Didier; Wallet, Frédéric; Kacet, Salem; Courcol, René J.

    2003-01-01

    We explored three genes of attachment (fbe and atlE) and adhesion (ica) in 27 and 10 Staphylococcus epidermidis strains involved in pacemaker-related infections (PMI) and intravascular-catheter-related infections (IVCI), respectively, and in 25 saprophytic strains. The detection rates of fbe and atlE were identical in PMI and IVCI strains, but ica detection rates were identical in PMI and saprophytic strains.

  4. Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

    OpenAIRE

    Hasan, Tarik; Choi, Chul Hee; Oh, Man Hwan

    2015-01-01

    Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the ge...

  5. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing

    OpenAIRE

    Jevon Plunkett; Scott Doniger; Guilherme Orabona; Thomas Morgan; Ritva Haataja; Mikko Hallman; Hilkka Puttonen; Ramkumar Menon; Edward Kuczynski; Errol Norwitz; Victoria Snegovskikh; Aarno Palotie; Leena Peltonen; Vineta Fellman; DeFranco, Emily A

    2010-01-01

    Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in par...

  6. Prion Infection of Mouse Brain Reveals Multiple New Upregulated Genes Involved in Neuroinflammation or Signal Transduction

    OpenAIRE

    Carroll, James A.; Striebel, James F.; Race, Brent; Phillips, Katie; Chesebro, Bruce

    2014-01-01

    Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre...

  7. FSH and bFGF regulate the expression of genes involved in Sertoli cell energetic metabolism.

    Science.gov (United States)

    Regueira, Mariana; Riera, María Fernanda; Galardo, María Noel; Camberos, María Del Carmen; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2015-10-01

    The purpose of this study was to investigate if FSH and bFGF regulate fatty acid (FA) metabolism and mitochondrial biogenesis in Sertoli cells (SC). SC cultures obtained from 20-day-old rats were incubated with 100ng/ml FSH or 30ng/ml bFGF for 6, 12, 24 and 48h. The expression of genes involved in transport and metabolism of FA such as: fatty acid transporter CD36 (FAT/CD36), carnitine-palmitoyltransferase 1 (CPT1), long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD, MCAD), and of genes involved in mitochondrial biogenesis such as: nuclear respiratory factors 1 and 2 (NRF1, NRF2) and transcription factor A (Tfam), was analyzed. FSH stimulated FAT/CD36, CPT1, MCAD, NRF1, NRF2 and Tfam mRNA levels while bFGF only stimulated CPT1 expression. A possible participation of PPARβ/δ activation in the regulation of gene expression and lactate production was then evaluated. SC cultures were incubated with FSH or bFGF in the presence of the PPARβ/δ antagonist GSK3787 (GSK; 20μM). bFGF stimulation of CPT1 expression and lactate production were inhibited by GSK. On the other hand, FSH effects were not inhibited by GSK indicating that FSH regulates the expression of genes involved in FA transport and metabolism and in mitochondrial biogenesis, independently of PPARβ/δ activation. FA oxidation and mitochondrial biogenesis as well as lactate production are essential for the energetic metabolism of the seminiferous tubule. The fact that these processes are regulated by hormones in a different way reflects the multifarious regulation of molecular mechanisms involved in Sertoli cell function. PMID:26315388

  8. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    Science.gov (United States)

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  9. Involvement of hormones and KNOXI genes in early Arabidopsis seedling development.

    Science.gov (United States)

    Soucek, Premysl; Klíma, Petr; Reková, Alena; Brzobohatý, Bretislav

    2007-01-01

    Plant hormones control plant development by modulating the expression of regulatory genes, including homeobox-containing KNOXI genes. However, much remains to be elucidated about the interactions involved. Therefore, hormonal regulation of KNOXI gene expression was investigated using hormone applications and an inducible transgenic ipt expression system to increase endogenous cytokinin (CK) levels. Treatments with auxin, abscisic acid (ABA), cytokinins, ethylene, and gibberellin (GA) did not result in ectopic expression of the BP (BREVIPEDICELLUS) gene. However, BP expression was strongly reduced by ABA, increased by auxin treatment (correlating with the initiation of lateral root meristems, which strongly express BP), and did not significantly respond to short-term treatments with the other hormones in whole seedlings. Following short-term ipt activation, organ-specific differential regulation of KNOXI gene expression was observed. While several KNOXI genes were transiently up-regulated to low levels, STM was selectively repressed (especially at low light) in hypocotyls. In cotyledons, activation of CK-responsive genes preceded ipt induction, suggesting that CKs are transported more rapidly than the inducing agent (dexamethasone). Long-term increases in CK levels induced raised levels of several KNOXI transcripts in hypocotyls, correlating with the radial expansion of vascular tissues, the main domains of KNOXI gene expression, suggesting that CKs had little effect on KNOXI promoter activity. No alterations in hormone sensitivity were observed in a bp null mutant. Constitutive BP overexpression caused reductions in the length and number of lateral roots, while the primary root remained unaffected. The transgenic seedlings displayed weak, but significant, alterations in sensitivity to ABA, CK, and 1-amino-cyclopropane-1-carboxylic acid. PMID:17951601

  10. Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium.

    Science.gov (United States)

    Jeppe, Katherine J; Carew, Melissa E; Long, Sara M; Lee, Siu F; Pettigrove, Vincent; Hoffmann, Ary A

    2014-05-01

    Freshwater invertebrates are often exposed to metal contamination, and changes in gene expression patterns can help understand mechanisms underlying toxicity and act as pollutant-specific biomarkers. In this study the expressions of genes involved in cysteine metabolism are characterized in the midge Chironomus tepperi during exposures to sublethal concentrations of cadmium and copper. These metals altered gene expression of the cysteine metabolism differently. Both metals decreased S-adenosylhomocysteine hydrolase expression and did not change the expression of S-adenosylmethionine synthetase. Cadmium exposure likely increased cystathionine production by up-regulating cystathionine-β-synthase (CβS) expression, while maintaining control level cysteine production via cystathionine-γ-lyase (CγL) expression. Conversely, copper down-regulated CβS expression and up-regulated CγL expression, which in turn could diminish cystathionine to favor cysteine production. Both metals up-regulated glutathione related expression (γ-glutamylcysteine synthase and glutathione synthetase). Only cadmium up-regulated metallothionein expression and glutathione S-transferase d1 expression was up-regulated only by copper exposure. These different transcription responses of genes involved in cysteine metabolism in C. tepperi point to metal-specific detoxification pathways and suggest that the transsulfuration pathway could provide biomarkers for identifying specific metals.

  11. Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization.

    Directory of Open Access Journals (Sweden)

    Sandra Da Re

    Full Text Available Protection provided by host bacterial microbiota against microbial pathogens is a well known but ill-understood property referred to as the barrier effect, or colonization resistance. Despite recent genome-wide analyses of host microbiota and increasing therapeutic interest, molecular analysis of colonization resistance is hampered by the complexity of direct in vivo experiments. Here we developed an in vitro-to-in vivo approach to identification of genes involved in resistance of commensal bacteria to exogenous pathogens. We analyzed genetic responses induced in commensal Escherichia coli upon entry of a diarrheagenic enteroaggregative E. coli or an unrelated Klebsiella pneumoniae pathogen into a biofilm community. We showed that pathogens trigger specific responses in commensal bacteria and we identified genes involved in limiting colonization of incoming pathogens within commensal biofilm. We tested the in vivo relevance of our findings by comparing the extent of intestinal colonization by enteroaggregative E. coli and K. pneumoniae pathogens in mice pre-colonized with E. coli wild type commensal strain, or mutants corresponding to identified colonization resistance genes. We demonstrated that the absence of yiaF and bssS (yceP differentially alters pathogen colonization in the mouse gut. This study therefore identifies previously uncharacterized colonization resistance genes and provides new approaches to unravelling molecular aspects of commensal/pathogen competitive interactions.

  12. Reversible Histone Acetylation Involved in Transcriptional Regulation of WT1 Gene

    Institute of Scientific and Technical Information of China (English)

    Yangguang SHAO; Jun LU; Cao CHENG; Liguo CUI; Guoping ZHANG; Baiqu HUANG

    2007-01-01

    To validate the involvement of reversible histone acetylation in the transcriptional regulation of human Wilms' tumor 1 gene (WT1), we analyzed the roles of histone deacetylases (HDACs) and histone acetyltransferase in this epigenetic process. Of the six HDACs (HDAC1-6) examined, HDAC4 and HDAC5 were found to have significant repressing effects on the activity of the WT1 reporter gene, as revealed by luciferase reporter assays and quantitative real-time reverse transcription-polymerase chain reaction assays.Luciferase reporter assays showed that the histone acetyltransferase p300 was able to counteract the HDAC4/HDAC5-mediated repression and that p300/CBP synergized with transcription factors Sp1, c-Myb, and Ets-1 in activation of the WT1 reporter. Chromatin immunoprecipitation experiments showed that p300 promotes the acetylation level of histone H3 at the WT1 intronic enhancer. Based on these data, we proposed a hypothetical model for the involvement of reversible histone acetylation in transcriptional regulation of the WT1 gene. This study provides further insight into the mechanisms of transcriptional regulation of the WT1 gene and WT1-associated diseases treatment.

  13. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    Science.gov (United States)

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  14. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    Science.gov (United States)

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches.

  15. Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves

    OpenAIRE

    Outchkourov, Nikolay S.; Carollo, Carlos A.; Gomez-Roldan, Victoria; De Vos, Ric C. H.; Bosch, Dirk; Hall, Robert D.; Beekwilder, Jules

    2014-01-01

    Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors (TFs). In this study we introduced Rosea1 (ROS1, a MYB type) and Delila (DEL, a bHLH type), into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized TFs from Snapdragon (Antirrhinum majus), which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamia...

  16. Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes

    Institute of Scientific and Technical Information of China (English)

    Jacqueline Brown; Hannelie Bothma; Robin Veale; Pascale Willem

    2011-01-01

    AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis. METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software. RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 ( CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21( C-MYC, FAM84B), 11q22.1-q22.3 ( BIRC2, BIRC3), 5p15.2 ( CTNND2), 3q11.2-q12.2 ( MINA) and 18p11.32 ( TYMS, YES1). The significant deletions included 1p31.2-p31.1 ( CTH, GADD45α, DIRAS3), 2q22.1 ( LRP1B), 3p12.1-p14.2 ( FHIT), 4q22.1-q32.1 ( CASP6, SMAD1), 8p23.2-q11.1 ( BNIP3L) and 18q21.1-q21.2 ( SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC. CONCLUSION: The finding that a significant number of genes that were amplified (FGF3 , FGF4 , FGF19 , CCND1 and C-MYC ) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

  17. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    WANG, Jing; LI, Guang; QIAN, Guang-Hui; HUA, Jun-Hao; WANG, Yi-Quan

    2016-01-01

    The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification. PMID:27265651

  18. Involvement of the Gli3 (Extra-Toes Gene Region in Body Weight in Mice

    Directory of Open Access Journals (Sweden)

    Benoît Martin

    2007-01-01

    Full Text Available The mutation extra-toes (Gli3Xt-J on chromosome (Chr 13 of the mouse is known to be involved in the development of the skeleton. The only visible manifestation is the presence of an extra digit on each hind foot. Here we report evidence from several experiments that Gli3XtJ/+ mice weigh more than littermate Gli3+/+ mice, suggesting an effect on body weight of Gli3 or of a gene tightly linked to it on Chr 13. Four independent experiments in different environments were conducted on mice with different genetic backgrounds derived from the C3XtEso Gli3Xt-J/+ Eso/+ linkage testing strain and the JE/Le strain at adult age. The analyses have shown an association between the Gli3Xt-J allele and a body weight increase of about 6.5%. This effect is genetically dominant. It would appear that if the gene of interest is not Gli3 itself, it must be very close to this locus. Indeed, the expected size for this fragment is 7.9 ± 5.3 cM. The manifestation of this gene, observed in two animal facilities and on different genetic backgrounds, is consistent with the idea that the effect of the gene(s is displayed in a stable manner. It accounts for a variation of 6.5% of body weight.

  19. Mapping of Genes Involved in Bardet-Biedl Syndrome (BBS in Pakistani Population

    Directory of Open Access Journals (Sweden)

    Shiraz Ahmad

    2012-07-01

    Full Text Available Bardet-Biedl Syndrome (BBS, one of an autosomal recessive or clinically and genetically heterogeneous disorder, which prevails all over the world and results due to increased rate of consanguinity. All of these BBS genes are involved either directly or indirectly in signaling pathways such as Leptin receptor signaling pathway and Wnt signaling pathway. The study presented here includes genetic mapping of two consanguineous families (A & B with BBS. (21.63-Mb region was found to be critical as it was gene rich and contains approximately eighty known and predicted genes. Out of eighty genes six (FGF2, BBS7, BBS12, NUDT6, SPATA5 and SPRY1 were found to be candidate genes. On mutations screening, sequencing of the coding exon 2 of BBS12 in affected individuals identified a novel homozygous c.2103C 1 A mutation, which is predicted to insert a stop codon at position 701 of the BBS12 protein (p.S701X. Identification of BBS12 mutation in families B can increase our understanding of molecular genetics and pathophysiology of BBS.

  20. A high-density association screen of 155 ion transport genes for involvement with common migraine

    Science.gov (United States)

    Nyholt, Dale R.; LaForge, K. Steven; Kallela, Mikko; Alakurtti, Kirsi; Anttila, Verneri; Färkkilä, Markus; Hämaläinen, Eija; Kaprio, Jaakko; Kaunisto, Mari A.; Heath, Andrew C.; Montgomery, Grant W.; Göbel, Hartmut; Todt, Unda; Ferrari, Michel D.; Launer, Lenore J.; Frants, Rune R.; Terwindt, Gisela M.; de Vries, Boukje; Verschuren, W.M. Monique; Brand, Jan; Freilinger, Tobias; Pfaffenrath, Volker; Straube, Andreas; Ballinger, Dennis G.; Zhan, Yiping; Daly, Mark J.; Cox, David R.; Dichgans, Martin; van den Maagdenberg, Arn M.J.M.; Kubisch, Christian; Martin, Nicholas G.; Wessman, Maija; Peltonen, Leena; Palotie, Aarno

    2008-01-01

    The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case–control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case–control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out. PMID:18676988

  1. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium.

    Directory of Open Access Journals (Sweden)

    Sophie Castède

    Full Text Available The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  2. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).

    Science.gov (United States)

    Castède, Sophie; Campoy, José Antonio; Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions. PMID:26587668

  3. Transcriptomic analysis using olive varieties and breeding progenies identify candidate genes involved in plant architecture

    Directory of Open Access Journals (Sweden)

    Juan José eGonzález Plaza

    2016-03-01

    Full Text Available Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2,252 differentially expressed genes associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  4. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  5. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport

    Directory of Open Access Journals (Sweden)

    Sun Yongzhen

    2011-10-01

    Full Text Available Abstract Background Camptotheca acuminata is a Nyssaceae plant, often called the "happy tree", which is indigenous in Southern China. C. acuminata produces the terpenoid indole alkaloid, camptothecin (CPT, which exhibits clinical effects in various cancer treatments. Despite its importance, little is known about the transcriptome of C. acuminata and the mechanism of CPT biosynthesis, as only few nucleotide sequences are included in the GenBank database. Results From a constructed cDNA library of young C. acuminata leaves, a total of 30,358 unigenes, with an average length of 403 bp, were obtained after assembly of 74,858 high quality reads using GS De Novo assembler software. Through functional annotation, a total of 21,213 unigenes were annotated at least once against the NCBI nucleotide (Nt, non-redundant protein (Nr, Uniprot/SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG, and Arabidopsis thaliana proteome (TAIR databases. Further analysis identified 521 ESTs representing 20 enzyme genes that are involved in the backbone of the CPT biosynthetic pathway in the library. Three putative genes in the upstream pathway, including genes for geraniol-10-hydroxylase (CaPG10H, secologanin synthase (CaPSCS, and strictosidine synthase (CaPSTR were cloned and analyzed. The expression level of the three genes was also detected using qRT-PCR in C. acuminata. With respect to the branch pathway of CPT synthesis, six cytochrome P450s transcripts were selected as candidate transcripts by detection of transcript expression in different tissues using qRT-PCR. In addition, one glucosidase gene was identified that might participate in CPT biosynthesis. For CPT transport, three of 21 transcripts for multidrug resistance protein (MDR transporters were also screened from the dataset by their annotation result and gene expression analysis. Conclusion This study produced a large amount of transcriptome data from C. acuminata by 454 pyrosequencing. According to

  6. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  7. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dawei Gou

    Full Text Available DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9 by members of the Su(var3-9 family of histone methyltransferases (HMTs triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1 can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2 and Su(var205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.

  8. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    Science.gov (United States)

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  9. [Involvement of PHO80 and PHO85 genes in Saccharomyces cerevisiae ion tolerance].

    Science.gov (United States)

    Mao, Xi-Cheng; Xia, Yu-Lei; Hu, Ya-Fang; Lu, Chang-De

    2003-01-01

    PHO85 is a versatile gene in Saccharomyces cerevisiae, which is involved in metabolism of inorganic phosphate and usage of carbon source, accumulation of glycogen, regulation of protein stability and cell cycle control. The viability of wild type budding yeast strain YPH499 and its derivative pho85Delta mutant, pho80 mutant, and pap1(pcl-7)Delta mutant in different cations were investigated and their tolerance to the cations(LC(50)) was measured. The results showed that the deletion of PHO85 or PHO80 gene both increased sensibility of Sacchromyces cerevisiae to ions K(+), Mg(2+), Zn(2+), Ca(2+) and Mn(2+), while the deletion of pap1(pcl-7) gene did not lead to such phenotype. The difference between the patterns of relative growth curve of the mutants and wild type strain in the above ions also implied that PHO80 was the unique PCLs in complex with PHO85 CDK, that were contributed to K(+) and Mg(2+) ion homeostasis control and there were some other PCLs besides PHO80 that were involved in Zn(2+), Ca(2+) and Mn(2+) tolerance regulation as cyclin of PHO85 CDK. Furthermore, the amount of the total cellular calcium of pho85Delta mutant, pho80Delta mutant and YPH499 indicated that the ability of calcium accumulation of pho85 mutant and pho80Delta mutant was impaired. PMID:12518234

  10. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene

    DEFF Research Database (Denmark)

    Honoré, B

    2000-01-01

    The hnRNP 2H9 gene products are involved in the splicing process and participate in early heat shock-induced splicing arrest. By combining low/high stringency hybridisation, database search, Northern and Western blotting it is shown that the gene is alternatively spliced into at least six...... transcripts: hnRNPs 2H9, 2H9A, 2H9B, 2H9C, 2H9D and 2H9E predicting proteins containing 346, 331, 297, 215, 145 and 139 amino acids, respectively. The hnRNP 2H9A cDNA sequence was used to obtain a genomic BAC clone and the structure of the hnRNP 2H9 gene was revealed by sequencing two subclones together...... indicates that the alternatively spliced transcripts give rise to different sets and levels of proteins expressed among various human cells and tissues. Due to their great structural variations the different proteins may thus possess different functions in the splicing reaction. Udgivelsesdato: 2000-Jun-21...

  11. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  12. Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.

    Directory of Open Access Journals (Sweden)

    Quillet Marie-Christine

    2010-06-01

    Full Text Available Abstract Background In our laboratory we use cultured chicory (Cichorium intybus explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15 sharing a similar genetic background. K59 is a responsive genotype (embryogenic capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE, whereas C15 is a non-responsive genotype (non-embryogenic and is unable to undergo SE. Previous studies 1 showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY that specifically binds arabinogalactan-proteins (AGPs blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE in chicory. In addition, a putative AGP (DT212818 encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation 2. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process. Results Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C

  13. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley.

    Science.gov (United States)

    Suprunova, Tatiana; Krugman, Tamar; Distelfeld, Assaf; Fahima, Tzion; Nevo, Eviatar; Korol, Abraham

    2007-05-01

    Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley. PMID:17238046

  14. Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding.

    Science.gov (United States)

    Janni, M; Bozzini, T; Moscetti, I; Volpi, C; D'Ovidio, R

    2013-11-01

    Polygalacturonase-inhibiting proteins (PGIPs) are cell wall leucine-rich repeat (LRR) proteins involved in plant defence. The hexaploid wheat (Triticum aestivum, genome AABBDD) genome contains one Pgip gene per genome. Tapgip1 (B genome) and Tapgip2 (D genome) are expressed in all tissues, whereas Tapgip3 (A genome) is inactive because of a long terminal repeat, Copia retrotransposon insertion within the coding region. To verify whether Tapgip1 and Tapgip2 encode active PGIPs and are involved in the wheat defence response, we expressed them transiently and analysed their expression under stress conditions. Neither TaPGIP1 nor TaPGIP2 showed inhibition activity in vitro against fungal polygalacturonases. Moreover, a wheat genotype (T. turgidum ssp. dicoccoides) lacking active homologues of Tapgip1 or Tapgip2 possesses PGIP activity. At transcript level, Tapgip1 and Tapgip2 were both up-regulated after fungal infection and strongly induced following wounding. This latter result has been confirmed in transgenic wheat plants expressing the β-glucuronidase (GUS) gene under control of the 5'-flanking region of Tdpgip1, a homologue of Tapgip1 with an identical sequence. Strong and transient GUS staining was mainly restricted to the damaged tissues and was not observed in adjacent tissues. Taken together, these results suggest that Tapgips and their homologues are involved in the wheat defence response by acting at the site of the lesion caused by pathogen infection.

  15. Early Involvement of Immune/Inflammatory Response Genes in Retinal Degeneration in DBA/2J Mice

    Directory of Open Access Journals (Sweden)

    W. Fan

    2010-03-01

    , representative of different functions/pathways, were validated with RT-PCR, and changes in glial responses were visualized in the retina with immunocytochemistry. Conclusions: The results showed that the expression of genes related to the immune response and acute stress were altered independently of the development of elevated IOP, and indicated early involvement of the immune system in the onset of the disease. The later development of elevated IOP, observed in this animal model, was coincident with continued changes in expression of genes observed at earlier time points. Further studies are warranted to identify the roles of specific genes identified here with respect to the death of the RGCs.

  16. Transcriptome analysis in Ceratitis capitata to unveil genes involved in ageing-maturation process

    Directory of Open Access Journals (Sweden)

    V. San Andrés

    2013-07-01

    Full Text Available The sterile insect technique (SIT is widely used in integrated programmes against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann (Diptera: Tephritidae. Information on the age distribution of insects, and more particularly, the knowledge of wild female reproductive status (mature or not at the time of the sterile male release is one of the key factors for the success of the SIT. In recent years, sequencing analysis has become an important tool in molecular biology. In this work we present a genome-wide expression analysis based on SSH (substractive sequence hybridization and EST (expressed sequence tag sequencing and macroarray expression analysis to identify signature genes related to the ageing-maturing process in C. capitata, leading to the successful identification of new putative candidate genes of reproductive status in medfly that would serve as molecular markers for ageing. We have sorted out 94 unigenes from 873 single-pass ESTs, of which 57% have homology with known genes. Ageing-maturing process in C. capitata presents a marked expression pattern accompanied by the increase of transcription level of genes involved in reproduction (vitellogenins, chorion proteins and male-specific serum proteins. Other identified cDNAs (43% with a differential expression pattern would be also candidates but deserve further studies, as they belong to the unknown function class.

  17. Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers.

    Science.gov (United States)

    Huang, Yajun; Hu, Hao; Li, Rui-Quan; Yu, Bingran; Xu, Fu-Jian

    2016-02-17

    Owing to the low cytotoxicity and excellent biocompatibility, polysaccharides are good candidates for the development of promising biomaterials. In this paper, a series of magnetic resonance imaging (MRI)-visible cationic polymeric nanoparticles involving liver cell-targeting polysaccharides were flexibly designed for multifunctional gene delivery systems. The pullulan-based vector (PuPGEA) consisting of one liver cell-targeting pullulan backbone and ethanolamine-functionalized poly(glycidyl methacrylate) (denoted by BUCT-PGEA) side chains with abundant hydroxyl units and secondary amine was first prepared by atom transfer radical polymerization. The resultant cationic nanoparticles (PuPGEA-GdL or PuPGEA-GdW) with MRI functions were produced accordingly by assembling PuPGEA with aminophenylboronic acid-modified Gd-DTPA (GdL) or GdW10O36(9-) (GdW) via the corresponding etherification or electrostatic interaction. The properties of the PuPGEA-GdL and PuPGEA-GdW nanoparticles including pDNA condensation ability, cytotoxicity, gene transfection, cellular uptake, and in vitro and in vivo MRI were characterized in details. Such kinds of cationic nanoparticles exhibited good performances in gene transfection in liver cells. PuPGEA-GdW demonstrated much better MRI abilities. The present design of PuPGEA-based cationic nanoparticles with the liver cell-targeting polysaccharides and MRI contrast agents would shed light on the exploration of tumor-targetable multifunctional gene delivery systems. PMID:26841955

  18. Identification of PEX7 as the second gene involved in Refsum disease.

    Science.gov (United States)

    van den Brink, Daan M; Brites, Pedro; Haasjes, Janet; Wierzbicki, Anthony S; Mitchell, John; Lambert-Hamill, Michelle; de Belleroche, Jacqueline; Jansen, Gerbert A; Waterham, Hans R; Wanders, Ronald J A

    2003-02-01

    Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.

  19. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration.

    Science.gov (United States)

    Simpkins, Jessica A; Rickel, Kirby E; Madeo, Marianna; Ahlers, Bethany A; Carlisle, Gabriel B; Nelson, Heidi J; Cardillo, Andrew L; Weber, Emily A; Vitiello, Peter F; Pearce, David A; Vitiello, Seasson P

    2016-01-01

    Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  20. Isolation and characterization of maize PMP3 genes involved in salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Jing Fu

    Full Text Available Plasma membrane protein 3 (PMP3, a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca(2+. Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants.

  1. Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco.

    Science.gov (United States)

    Daurelio, Lucas Damián; Petrocelli, Silvana; Blanco, Francisca; Holuigue, Loreto; Ottado, Jorgelina; Orellano, Elena Graciela

    2011-03-01

    Plants are continuously exposed to pathogen challenge. The most common defense response to pathogenic microorganisms is the nonhost response, which is usually accompanied by transcriptional changes. In order to identify genes involved in nonhost resistance, we evaluated the tobacco transcriptome profile after infection with Xanthomonas axonopodis pv. citri (Xac), a nonhost phytopathogenic bacterium. cDNA-amplified fragment length polymorphism was used to identify differentially expressed transcripts in tobacco leaves infected with Xac at 2, 8 and 24h post-inoculation. From a total of 2087 transcript-derived fragments (TDFs) screened (approximately 20% of the tobacco transcriptome), 316 TDFs showed differential expression. Based on sequence similarities, 82 differential TDFs were identified and assigned to different functional categories: 56 displayed homology to genes with known functions, 12 to proteins with unknown functions and 14 did not have a match. Real-time PCR was carried out with selected transcripts to confirm the expression pattern obtained. The results reveal novel genes associated with nonhost resistance in plant-pathogen interaction in tobacco. These novel genes could be included in future strategies of molecular breeding for nonhost disease resistance. PMID:20828873

  2. INVOLVEMENT OF SYNAPTIC GENES IN THE PATHOGENESIS OF AUTISM SPECTRUM DISORDERS: THE CASE OF SYNAPSINS

    Directory of Open Access Journals (Sweden)

    Silvia eGiovedi

    2014-09-01

    Full Text Available Autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn genes in humans have been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Synapsins are presynaptic proteins regulating synaptic vesicle traffic, neurotransmitter release and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.

  3. Conservation in the involvement of heterochronic genes and hormones during developmental transitions.

    Science.gov (United States)

    Faunes, Fernando; Larraín, Juan

    2016-08-01

    Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans. PMID:27297887

  4. Key genes involved in desiccation tolerance and dormancy across life forms.

    Science.gov (United States)

    Costa, Maria Cecília D; Farrant, Jill M; Oliver, Melvin J; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk M W

    2016-10-01

    Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a second powerful adaptation to cope with variations in the terrestrial environment. These naturally stress tolerant life forms may be a good source of genetic information to generate stress tolerant crops to face a future with predicted higher occurrence of drought. By mining for key genes and mechanisms related to DT and dormancy conserved across different species and life forms, unique candidate key genes may be identified. Here we identify several of these putative key genes, shared among multiple organisms, encoding for proteins involved in protection, growth and energy metabolism. Mutating a selection of these genes in the model plant Arabidopsis thaliana resulted in clear DT-, dormancy- and other seed-associated phenotypes, showing the efficiency and power of our approach and paves the way for the development of drought-stress tolerant crops. Our analysis supports a co-evolution of DT and dormancy by shared mechanisms that favour survival and adaptation to ever-changing environments with strong seasonal fluctuations. PMID:27593474

  5. Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans.

    Science.gov (United States)

    Lin, Lin; Li, Tao; Dai, Shang; Yu, Jiangliu; Chen, Xiuqin; Wang, Liangyan; Wang, Yunguang; Hua, Yuejin; Tian, Bing

    2016-01-01

    Autoinducer-2 (AI-2) serves as a quorum-sensing signaling molecule that mediates both intraspecies and interspecies communication among bacteria, and plays critical roles in regulating various bacterial behaviors. In the present study, we investigated the functions of AI-2 signaling in the extremophilic bacterium Deinococcus radiodurans R1 by construction of the LuxS gene disruption mutant, survival phenotype assay and gene transcription assay. The gene mutant (DRΔLuxS), which was unable to produce AI-2, was significantly more sensitive to both gamma radiation and H2O2 compared with the wild-type strain. Addition of the wild-type-derived spent medium into the cell culture of DRΔLuxS fully restored the radioresistance of D. radiodurans. A higher level of reactive oxygen species accumulated in the mutant compared with the wild type under normal or oxidative stress. Quantitative real-time PCR assays showed that transcriptional levels of stress-related proteins, including catalase, extracellular nuclease, Dps-1 and ABC transporters, were decreased in DRΔLuxS, indicating that AI-2 is involved in regulation of stress-related genes of D. radiodurans. Hence, AI-2 signaling may contribute to the extreme resistance of D. radiodurans to radiation and oxidative stresses.

  6. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    Science.gov (United States)

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  7. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection.

    Science.gov (United States)

    Siri, María Inés; Sanabria, Analía; Boucher, Christian; Pianzzola, María Julia

    2014-07-01

    This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots. PMID:24625029

  8. Analysis and interpretation of RNA splicing alterations in genes involved in genetic disorders.

    Science.gov (United States)

    Vreeswijk, Maaike P G; van der Klift, Heleen M

    2012-01-01

    Germ line mutations in genes involved in hereditary cancer syndromes, such as BRCA1 and BRCA2 in breast cancer and MSH2, MSH6, MLH1, and PSM2 in hereditary nonpolyposis colorectal cancer (HNPCC, more recently indicated as Lynch syndrome), confer a high risk to develop cancer. Mutation analysis in these genes has resulted in the identification of a large number of sequence variants, of which mutations causing frame shifts and nonsense codons are considered undoubtedly to be pathogenic. Many variants, however, cannot be classified as either disease-causing mutations or neutral variants and are therefore called unclassified variants (UVs). A subset of these variants may have an effect on RNA splicing. Appropriate RNA analysis will enable the characterization of the exact molecular nature of this effect and hence, is essential to determine the clinical relevance of the genomic variant. This chapter describes the design and implementation of RNA analysis as an indispensible tool in today's clinical diagnostic setting.

  9. The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2010-04-08

    Abstract Background Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion.

  10. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Viviana Di Rosa

    Full Text Available Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase and the antimüllerian hormone (amh, testis was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase and ZT 15:39 h (at night, respectively. The expression of foxl2 (forkhead box L2 was also rhythmic in the ovary (acrophase located at ZT 5:02 h and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1 was rhythmic in testes (acrophase at ZT 18:36 h. In the brain, cyp19a1b (brain aromatase and cyp11b (11beta-hydroxylase presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish.

  11. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish

    Science.gov (United States)

    Di Rosa, Viviana; López-Olmeda, Jose Fernando; Burguillo, Ana; Frigato, Elena; Bertolucci, Cristiano; Piferrer, Francesc; Sánchez-Vázquez, Francisco Javier

    2016-01-01

    Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish. PMID:27322588

  12. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. PMID:27155483

  13. Daily Rhythms of the Expression of Key Genes Involved in Steroidogenesis and Gonadal Function in Zebrafish.

    Science.gov (United States)

    Di Rosa, Viviana; López-Olmeda, Jose Fernando; Burguillo, Ana; Frigato, Elena; Bertolucci, Cristiano; Piferrer, Francesc; Sánchez-Vázquez, Francisco Javier

    2016-01-01

    Fish present daily and seasonal rhythms in spawning and plasmatic levels of steroids that control reproduction. However, the existence of the rhythms of expression of the genes that underlie the endocrine mechanisms responsible for processes such as steroidogenesis and reproduction in fish have still been poorly explored to date. Here we investigated the daily pattern of the expression of key genes involved in sex steroid production that ultimately set the sex ratio in fish. Adult zebrafish were maintained under a 12:12 h light-dark cycle at a constant temperature of 27°C and were sampled every 4 h during a 24-hour cycle. The expression of key genes in the gonads and brains of female and male individuals were analyzed. In gonads, the expression of aromatase (cyp19a1a, ovarian aromatase) and the antimüllerian hormone (amh, testis) was rhythmic, with almost opposite acrophases: ZT 5:13 h (in the light phase) and ZT 15:39 h (at night), respectively. The expression of foxl2 (forkhead box L2) was also rhythmic in the ovary (acrophase located at ZT 5:02 h) and the expression of dmrt1 (doublesex and mab-3-related transcription factor 1) was rhythmic in testes (acrophase at ZT 18:36 h). In the brain, cyp19a1b (brain aromatase) and cyp11b (11beta-hydroxylase) presented daily differences, especially in males, where the expression peaked at night. These results provide the first evidence for marked time-of-the-day-dependent differences in the expression of the genes involved in sex ratio control, which should be considered when investigating processes such as reproduction, sex differentiation and steroidogenesis in fish. PMID:27322588

  14. Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection.

    Science.gov (United States)

    Levkovitch-Verbin, Hani; Waserzoog, Yael; Vander, Shelly; Makarovsky, Daria; Ilia, Piven

    2014-10-01

    The second-generation tetracycline, minocycline, has been shown to exhibit neuroprotective therapeutic benefits in many neurodegenerative diseases including experimental glaucoma and optic nerve transection (ONT). This study investigated the mechanism underlying minocycline neuroprotection in a model of ONT. ONT was applied unilaterally in 36 Wistar rat eyes. The rats were randomly divided into a minocycline (22 mg/kg/d) treatment group and a saline treatment group (control). Treatment (minocycline or saline) was given by intraperitoneal injections initiated 3 d before ONT and continued daily until the end of the experiment. The involvement of pro-apoptotic, pro-survival and inflammatory pathways was analyzed by quantitative Real-Time Polymerase Chain Reaction at 4 h and 3 d after the transection in both treatment groups. The involvement of Bcl-2 protein was evaluated by immunohistochemistry. We found that Minocycline significantly increased the expression of the antiapoptotic gene bcl-2 4 h after transection (n = 8, p = 0.008) and decreased the expression of Bax at the same time point (n = 8, p = 0.03). Tumor Necrosis Factor α (TNFα), Inhibitor of Apoptosis Protein (IAP1) and Gadd45α were significantly upregulated in the retinas of eyes with ONTs compared to control (n = 10 for each gene, p = 0.02, p = 0.03, p = 0.04, respectively) but this effect was unaffected by minocycline. This study further support that the mechanism underlying minocycline neuroprotection involves the Bcl-2 gene family, suggesting that minocycline has antiapoptotic properties that support its value as a promising neuroprotective drug. PMID:24410139

  15. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Directory of Open Access Journals (Sweden)

    Yang Chengmin

    2011-11-01

    Full Text Available Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388. A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons, 12, 649 (52.6% of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10. All unique sequences were compared with NCBI expressed sequence tags (ESTs (237 and encoding sequences (44 from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111. The 23, 173 (96.4% unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s and 102 glycosyltransferases (GTs unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of

  16. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    DEFF Research Database (Denmark)

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina;

    2008-01-01

    , attained nominal significant P-values (P <0.05) in either a genotypic or allelic association test. All of these genes, except transcription factor DLX1, are involved in the adhesion between neurons and radial glial cells. Eight markers obtained nominal significance in both tests, and were located in...... intronic or 3'UTR regions of adhesion molecule MDGA1 and previously reported SZ candidate RELN. The most significant result was attained for MDGA1 SNP rs9462341 (unadjusted association results: genotypic P = 0.00095; allelic P = 0.010). Several haplotypes within MDGA1, RELN, ITGA3, and ENAH were nominally...

  17. Drosophila germline invasion by the endogenous retrovirus gypsy: involvement of the viral env gene.

    Science.gov (United States)

    Pelisson, A; Mejlumian, L; Robert, V; Terzian, C; Bucheton, A

    2002-10-01

    The endogenous retrovirus gypsy is expressed at high levels in mutant flamenco female flies. Gypsy viral particles extracted from such flies can infect naive flamenco individuals raised in the presence of these extracts mixed into their food. This results in the integration of new proviruses into the germline genome. These proviruses can then increase their copy number by (1) expression in the flamenco female somatic cells, (2) transfer into the oocyte and (3) integration into the genome of the progeny. Surprisingly, unlike the infection observed in the feeding experiments, this strategy of endogenous proviral multiplication does not seem to involve the expression of the viral env gene. PMID:12225916

  18. Differential expression of fructan 1-exohydrolase genes involved in inulin biodegradation in chicory (Cichorium intybus) cultivars

    OpenAIRE

    Maroufi, Asaf; Van Bockstaele, Erik; De Loose, Marc

    2012-01-01

    Fructan 1-exohydrolase (1-FEH; FEH) enzymes are involved in inulin degradation in the roots of chicory. rehgiH FEH expression in cold temperatures can decrease the quality and the quantity of the inulin. This is the case at the end of the growing season and during cold storage. Little is known at molecular level whether the expression levels of fructan 1-exohydrolase genes vary among chicory cultivars, especially during cold storage of roots. Real-time RT-PCR is the most sensitive method for ...

  19. Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis

    Directory of Open Access Journals (Sweden)

    Esquerré Diane

    2009-11-01

    Full Text Available Abstract Background Spermatogenesis is a late developmental process that involves a coordinated expression program in germ cells and a permanent communication between the testicular somatic cells and the germ-line. Current knowledge regarding molecular factors driving male germ cell proliferation and differentiation in vertebrates is still limited and mainly based on existing data from rodents and human. Fish with a marked reproductive cycle and a germ cell development in synchronous cysts have proven to be choice models to study precise stages of the spermatogenetic development and the germ cell-somatic cell communication network. In this study we used 9K cDNA microarrays to investigate the expression profiles underlying testis maturation during the male reproductive cycle of the trout, Oncorhynchus mykiss. Results Using total testis samples at various developmental stages and isolated spermatogonia, spermatocytes and spermatids, 3379 differentially expressed trout cDNAs were identified and their gene activation or repression patterns throughout the reproductive cycle were reported. We also performed a tissue-profiling analysis and highlighted many genes for which expression signals were restricted to the testes or gonads from both sexes. The search for orthologous genes in genome-sequenced fish species and the use of their mammalian orthologs allowed us to provide accurate annotations for trout cDNAs. The analysis of the GeneOntology terms therefore validated and broadened our interpretation of expression clusters by highlighting enriched functions that are consistent with known sequential events during male gametogenesis. Furthermore, we compared expression profiles of trout and mouse orthologs and identified a complement of genes for which expression during spermatogenesis was maintained throughout evolution. Conclusion A comprehensive study of gene expression and associated functions during testis maturation and germ cell differentiation in

  20. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg

    Directory of Open Access Journals (Sweden)

    Sibut Vonick

    2010-01-01

    Full Text Available Abstract Background As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses. Results Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference. The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in

  1. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    Science.gov (United States)

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  2. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein

    Directory of Open Access Journals (Sweden)

    Arase Sachiko

    2012-03-01

    Full Text Available Abstract Background Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. Results Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. Conclusions Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.

  3. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at pprotein

  4. Differential Fmo3 gene expression in various liver injury models involving hepatic oxidative stress in mice

    International Nuclear Information System (INIS)

    . Along with APAP, toxic ANIT treatment in mice markedly increased Fmo3 gene expression. While BDL increased the Fmo3 mRNA expression, the protein level did not change. The discrepancy with Fmo3 induction in cholestatic models, ANIT and BDL, is not entirely clear. Results from Nrf2 KO mice with APAP suggest that the transcriptional regulation of Fmo3 during liver injury may not involve Nrf2

  5. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Martin M. Herrmann

    2016-10-01

    Full Text Available After encounter with a central nervous system (CNS-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1 rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions.

  6. RPL1, a Gene Involved in Epigenetic Processes Regulates Phenotypic Plasticity in Rice

    Institute of Scientific and Technical Information of China (English)

    Cui-Cui Zhang; Wen-Ya Yuan; Qi-Fa Zhang

    2012-01-01

    Organisms can adjust their phenotype in response to changing environmental conditions.This phenomenon is termed phenotypic plasticity.Despite its ubiquitous occurrence,there has been very little study on the molecular mechanism of phenotypic plasticity.In this study,we isolated a rice (Oryza sativa L.) mutant,rice plasticity 1 (rpl1),that displayed increased environment-dependent phenotypic variations.RPL1 was expressed in all tissues examined.The protein was localized in the nucleus and its distribution in the nucleus overlapped with heterochromatin.The rpl1 mutation led to an increase in DNA methylation on repetitive sequences and a decrease in overall histone acetylation.In addition,the mutation affected responses of the rice plant to phytohormones such as brassinosteroid,gibberellin,and cytokinin.Analysis of the putative rice brassinosteroid receptor OsBRI1,a key hormone signaling gene,indicated that RPL1 may be involved in the regulation of epigenomic modification of the gene.These data suggest that RPL1 regulated phenotypic plasticity likely through its involvement in epigenetic processes affecting responses of the plant to phytohormones.

  7. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhimin Zheng

    2015-05-01

    Full Text Available Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also “infectious” to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.

  8. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae)

    Science.gov (United States)

    Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR). This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system. PMID:27761329

  9. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis.

    Science.gov (United States)

    Xing, Heming; McDonagh, Paul D; Bienkowska, Jadwiga; Cashorali, Tanya; Runge, Karl; Miller, Robert E; Decaprio, Dave; Church, Bruce; Roubenoff, Ronenn; Khalil, Iya G; Carulli, John

    2011-03-01

    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28. PMID:21423713

  10. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Heming Xing

    2011-03-01

    Full Text Available Tumor necrosis factor α (TNF-α is a key regulator of inflammation and rheumatoid arthritis (RA. TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28 score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig, and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.

  11. Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis

    Science.gov (United States)

    Xing, Heming; McDonagh, Paul D.; Bienkowska, Jadwiga; Cashorali, Tanya; Runge, Karl; Miller, Robert E.; DeCaprio, Dave; Church, Bruce; Roubenoff, Ronenn; Khalil, Iya G.; Carulli, John

    2011-01-01

    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28. PMID:21423713

  12. Identification of Aspergillus fumigatus multidrug transporter genes and their potential involvement in antifungal resistance.

    Science.gov (United States)

    Meneau, Isabelle; Coste, Alix T; Sanglard, Dominique

    2016-08-01

    Aspergillus fumigatus can cause severe fatal invasive aspergillosis in immunocompromised patients but is also found in the environment. A. fumigatus infections can be treated with antifungals agents among which azole and echinocandins. Resistance to the class of azoles has been reported not only from patient samples but also from environmental samples. Azole resistance mechanisms involve for most isolates alterations at the site of the azole target (cyp51A); however, a substantial number of isolates can also exhibit non-cyp51A-mediated mechanisms.We aimed here to identify novel A. fumigatus genes involved in azole resistance. For this purpose, we designed a functional complementation system of A. fumigatus cDNAs expressed in a Saccharomyces cerevisiae isolate lacking the ATP Binding Cassette (ABC) transporter PDR5 and that was therefore more azole-susceptible than the parent wild type. Several genes were recovered including two distinct ABC transporters (atrF, atrI) and a Major Facilitator transporter (mdrA), from which atrI (Afu3g07300) and mdrA (Afu1g13800) were not yet described. atrI mediated resistance to itraconazole and voriconazole, while atrF only to voriconazole in S. cerevisiae Gene inactivation of each transporter in A. fumigatus indicated that the transporters were involved in the basal level of azole susceptibility. The expression of the transporters was addressed in clinical and environmental isolates with several azole resistance profiles. Our results show that atrI and mdrA tended to be expressed at higher levels than atrF in normal growth conditions. atrF was upregulated in 2/4 of azole-resistant environmental isolates and was the only gene with a significant association between transporter expression and azole resistance. In conclusion, this work showed the potential of complementation to identify functional transporters. The identified transporters were suggested to participate in azole resistance of A. fumigatus; however, this hypothesis will

  13. Involvement of the pagR gene of pXO2 in anthrax pathogenesis.

    Science.gov (United States)

    Liang, Xudong; Zhang, Enmin; Zhang, Huijuan; Wei, Jianchun; Li, Wei; Zhu, Jin; Wang, Bingxiang; Dong, Shulin

    2016-01-01

    Anthrax is a disease caused by Bacillus anthracis. Specifically, the anthrax toxins and capsules encoded by the pXO1 and pXO2 plasmids, respectively, are the major virulence factors. We previously reported that the pXO1 plasmid was retained in the attenuated strain of B. anthracis vaccine strains even after subculturing at high temperatures. In the present study, we reinvestigate the attenuation mechanism of Pasteur II. Sequencing of pXO1 and pXO2 from Pasteur II strain revealed mutations in these plasmids as compared to the reference sequences. Two deletions on these plasmids, one each on pXO1 and pXO2, were confirmed to be unique to the Pasteur II strain as compared to the wild-type strains. Gene replacement with homologous recombination revealed that the mutation in the promoter region of the pagR gene on pXO2, but not the mutation on pXO1, contributes to lethal levels of toxin production. This result was further confirmed by RT-PCR, western blot, and animal toxicity assays. Taken together, our results signify that the attenuation of the Pasteur II vaccine strain is caused by a mutation in the pagR gene on its pXO2 plasmid. Moreover, these data suggest that pXO2 plasmid encoded proteins are involved in the virulence of B. anthracis. PMID:27363681

  14. Bioinformatics Analysis for Coding SNPs of the HLADQA1 Gene Involved in Susceptibility to Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Yanyun Li; Jun Xing; Linsheng Zhao; Yanni Li; Yuchuan Wang; Weiming Zhang

    2006-01-01

    OBJECTIVE To analyze coding SNPs of the HLA-DQA1 gene involved in susceptibility for cervical cancer by a bioinformatics approach, and to choose some SNPs that may have an association with cervical cancer.METHODS By a SNPper tool we extracted SNPs from a public database (dbSNP), exporting them in FASTA formats suitable for subsequent use.Then we used PARSESNP as a tool for the analysis of the cSNPs.RESULTS In the cSNPs of the HLA-DQA1 gene, we find that rs9272693and rs9272703, are made up of missense mutations which convert a codon for one amino acid into a codon for a different amino acid. We chose a PSSM Difference >10 as a lower level for the scores of changes predicted to be deldterious.CONCLUSION We used a bioinformatics approach for cSNPs analysis of the HLA-DQA1 gene. This method can select the variants in a conserved region, and give a PSSM Difference score. But the results need to be verified in cervical cancer patients and a control population.

  15. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  16. Screening and identification of microRNA involved in unstable angina using gene-chip analysis

    Science.gov (United States)

    Li, Si; Sun, Ya-Nan; Zhou, Yun-Tao; Zhang, Chun-Lai; Lu, Feng; Liu, Jia; Shang, Xiao-Ming

    2016-01-01

    Increasing evidence has suggested that microRNA (miRNA) may play a role in the pathogenesis of cardiovascular disease, which has led to a greater understanding of the complex pathophysiological processes underlying unstable angina (UA). The present study aimed to investigate changes in the miRNA expression profiles of patients with UA using gene-chip analysis, in order to further elucidate the pathogenesis of UA. Total RNA was extracted and purified from plasma samples collected from patients with UA and healthy controls. The samples underwent microarray analysis using an Exiqon miRCURY LNA™ microRNA Array. Differentially expressed miRNAs were identified by volcano plot filtering, and were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, functional annotation of the differentially expressed miRNAs involved gene ontology analyses. Among the 212 miRNAs differentially expressed between the two groups, 82 were upregulated and 130 were downregulated. Notably, the results of the RT-qPCR were consistent with the gene-chip results. The miRNAs identified in the present study may be potential novel biomarkers for the prevention and early diagnosis of UA. Furthermore, the results of the present study suggested that UA occurs as a result of complex and dynamic processes regulated by numerous factors, including multiple miRNAs.

  17. Involvement of the pagR gene of pXO2 in anthrax pathogenesis

    Science.gov (United States)

    Liang, Xudong; Zhang, Enmin; Zhang, Huijuan; Wei, Jianchun; Li, Wei; Zhu, Jin; Wang, Bingxiang; Dong, Shulin

    2016-01-01

    Anthrax is a disease caused by Bacillus anthracis. Specifically, the anthrax toxins and capsules encoded by the pXO1 and pXO2 plasmids, respectively, are the major virulence factors. We previously reported that the pXO1 plasmid was retained in the attenuated strain of B. anthracis vaccine strains even after subculturing at high temperatures. In the present study, we reinvestigate the attenuation mechanism of Pasteur II. Sequencing of pXO1 and pXO2 from Pasteur II strain revealed mutations in these plasmids as compared to the reference sequences. Two deletions on these plasmids, one each on pXO1 and pXO2, were confirmed to be unique to the Pasteur II strain as compared to the wild-type strains. Gene replacement with homologous recombination revealed that the mutation in the promoter region of the pagR gene on pXO2, but not the mutation on pXO1, contributes to lethal levels of toxin production. This result was further confirmed by RT-PCR, western blot, and animal toxicity assays. Taken together, our results signify that the attenuation of the Pasteur II vaccine strain is caused by a mutation in the pagR gene on its pXO2 plasmid. Moreover, these data suggest that pXO2 plasmid encoded proteins are involved in the virulence of B. anthracis. PMID:27363681

  18. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Highlights: ► We cloned the ptr5+ gene involved in nuclear mRNA export in fission yeast. ► The ptr5+ gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A)+ RNA transport] 1 to 11, which accumulate poly(A)+ RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A)+ RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5+ gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  19. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    Science.gov (United States)

    Ma, Chun-Hua; Gao, Zheng-Jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-Rong; Chen, Jun-Wen; Yang, Sheng-Chao; Zhang, Guang-Hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. Principal findings: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. Conclusion: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. PMID:27242873

  20. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  1. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development.

    Directory of Open Access Journals (Sweden)

    Mingjun Li

    Full Text Available Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs, MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS, MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates.

  2. Involvement of Three Esterase Genes from Panonychus citri (McGregor) in Fenpropathrin Resistance

    Science.gov (United States)

    Shen, Xiao-Min; Liao, Chong-Yu; Lu, Xue-Ping; Wang, Zhe; Wang, Jin-Jun; Dou, Wei

    2016-01-01

    The citrus red mite, Panonychus citri (McGregor), is a major citrus pest with a worldwide distribution and an extensive record of pesticide resistance. However, the underlying molecular mechanism associated with fenpropathrin resistance in this species have not yet been reported. In this study, synergist triphenyl phosphate (TPP) dramatically increased the toxicity of fenpropathrin, suggesting involvement of carboxylesterases (CarEs) in the metabolic detoxification of this insecticide. The subsequent spatiotemporal expression pattern analysis of PcE1, PcE7 and PcE9 showed that three CarEs genes were all over-expressed after insecticide exposure and higher transcripts levels were observed in different field resistant strains of P. citri. Heterologous expression combined with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) cytotoxicity assay in Spodoptera frugiperda (Sf9) cells revealed that PcE1-, PcE7- or PcE9-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against fenpropathrin, demonstrating that PcEs probably detoxify fenpropathrin. Moreover, gene silencing through the method of leaf-mediated dsRNA feeding followed by insecticide bioassay increased the mortalities of fenpropathrin-treated mites by 31% (PcE1), 27% (PcE7) and 22% (PcE9), respectively, after individual PcE gene dsRNA treatment. In conclusion, this study provides evidence that PcE1, PcE7 and PcE9 are functional genes mediated in fenpropathrin resistance in P. citri and enrich molecular understanding of CarEs during the resistance development of the mite. PMID:27548163

  3. Involvement of Three Esterase Genes from Panonychus citri (McGregor) in Fenpropathrin Resistance.

    Science.gov (United States)

    Shen, Xiao-Min; Liao, Chong-Yu; Lu, Xue-Ping; Wang, Zhe; Wang, Jin-Jun; Dou, Wei

    2016-01-01

    The citrus red mite, Panonychus citri (McGregor), is a major citrus pest with a worldwide distribution and an extensive record of pesticide resistance. However, the underlying molecular mechanism associated with fenpropathrin resistance in this species have not yet been reported. In this study, synergist triphenyl phosphate (TPP) dramatically increased the toxicity of fenpropathrin, suggesting involvement of carboxylesterases (CarEs) in the metabolic detoxification of this insecticide. The subsequent spatiotemporal expression pattern analysis of PcE1, PcE7 and PcE9 showed that three CarEs genes were all over-expressed after insecticide exposure and higher transcripts levels were observed in different field resistant strains of P. citri. Heterologous expression combined with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) cytotoxicity assay in Spodoptera frugiperda (Sf9) cells revealed that PcE1-, PcE7- or PcE9-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against fenpropathrin, demonstrating that PcEs probably detoxify fenpropathrin. Moreover, gene silencing through the method of leaf-mediated dsRNA feeding followed by insecticide bioassay increased the mortalities of fenpropathrin-treated mites by 31% (PcE1), 27% (PcE7) and 22% (PcE9), respectively, after individual PcE gene dsRNA treatment. In conclusion, this study provides evidence that PcE1, PcE7 and PcE9 are functional genes mediated in fenpropathrin resistance in P. citri and enrich molecular understanding of CarEs during the resistance development of the mite. PMID:27548163

  4. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis.

    Science.gov (United States)

    Rodríguez-Kessler, Margarita; Baeza-Montañez, Lourdes; García-Pedrajas, María D; Tapia-Moreno, Alejandro; Gold, Scott; Jiménez-Bremont, Juan F; Ruiz-Herrera, José

    2012-05-20

    Ustilago maydis displays dimorphic growth, alternating between a saprophytic haploid yeast form and a filamentous dikaryon, generated by mating of haploid cells and which is an obligate parasite. Induction of the dimorphic transition of haploid strains in vitro by change in ambient pH has been used to understand the mechanisms governing this differentiation process. In this study we used suppression subtractive hybridization to generate a cDNA library of U. maydis genes up-regulated in the filamentous form induced in vitro at acid pH. Expression analysis using quantitative RT-PCR showed that the induction of two unigenes identified in this library coincided with the establishment of filamentous growth in the acid pH medium. This expression pattern suggested that they were specifically associated to hyphal development rather than merely acid pH-induced genes. One of these genes, UmRrm75, encodes a protein containing three RNA recognition motifs and glycine-rich repeats and was selected for further study. The UmRrm75 gene contains 4 introns, and produces a splicing variant by a 3'-alternative splicing site within the third exon. Mutants deleted for UmRrm75 showed a slower growth rate than wild type strains in liquid and solid media, and their colonies showed a donut-like morphology on solid medium. Interestingly, although ΔUmRrm75 strains were not affected in filamentous growth induced by acid pH and oleic acid, they exhibited reduced mating, post-mating filamentous growth and virulence. Our data suggest that UmRrm75 is probably involved in cell growth, morphogenesis, and pathogenicity in U. maydis.

  5. Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.

    Science.gov (United States)

    Moutinho-Pereira, Sara; Stuurman, Nico; Afonso, Olga; Hornsveld, Marten; Aguiar, Paulo; Goshima, Gohta; Vale, Ronald D; Maiato, Helder

    2013-12-01

    Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen identified 197 genes involved in acentrosomal spindle assembly, eight of which had no previously described mitotic phenotypes and produced defective and/or short spindles. All 197 genes also produced RNAi phenotypes when centrosomes were present, indicating that none were entirely selective for the acentrosomal pathway. However, a subset of genes produced a selective defect in pole focusing when centrosomes were absent, suggesting that centrosomes compensate for this shape defect. Another subset of genes was specifically associated with the formation of multipolar spindles only when centrosomes were present. We further show that the chromosomal passenger complex orchestrates multiple centrosome-independent processes required for mitotic spindle assembly/maintenance. On the other hand, despite the formation of a chromosome-enriched RanGTP gradient, S2 cells depleted of RCC1, the guanine-nucleotide exchange factor for Ran on chromosomes, established functional bipolar spindles. Finally, we show that cells without functional centrosomes have a delay in chromosome congression and anaphase onset, which can be explained by the lack of polar ejection forces. Overall, these findings establish the constitutive nature of a centrosome-independent spindle assembly program and how this program is adapted to the presence/absence of centrosomes in animal somatic cells.

  6. Involvement of Three Esterase Genes from Panonychus citri (McGregor) in Fenpropathrin Resistance.

    Science.gov (United States)

    Shen, Xiao-Min; Liao, Chong-Yu; Lu, Xue-Ping; Wang, Zhe; Wang, Jin-Jun; Dou, Wei

    2016-08-19

    The citrus red mite, Panonychus citri (McGregor), is a major citrus pest with a worldwide distribution and an extensive record of pesticide resistance. However, the underlying molecular mechanism associated with fenpropathrin resistance in this species have not yet been reported. In this study, synergist triphenyl phosphate (TPP) dramatically increased the toxicity of fenpropathrin, suggesting involvement of carboxylesterases (CarEs) in the metabolic detoxification of this insecticide. The subsequent spatiotemporal expression pattern analysis of PcE1, PcE7 and PcE9 showed that three CarEs genes were all over-expressed after insecticide exposure and higher transcripts levels were observed in different field resistant strains of P. citri. Heterologous expression combined with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) cytotoxicity assay in Spodoptera frugiperda (Sf9) cells revealed that PcE1-, PcE7- or PcE9-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against fenpropathrin, demonstrating that PcEs probably detoxify fenpropathrin. Moreover, gene silencing through the method of leaf-mediated dsRNA feeding followed by insecticide bioassay increased the mortalities of fenpropathrin-treated mites by 31% (PcE1), 27% (PcE7) and 22% (PcE9), respectively, after individual PcE gene dsRNA treatment. In conclusion, this study provides evidence that PcE1, PcE7 and PcE9 are functional genes mediated in fenpropathrin resistance in P. citri and enrich molecular understanding of CarEs during the resistance development of the mite.

  7. Involvement of Three Esterase Genes from Panonychus citri (McGregor in Fenpropathrin Resistance

    Directory of Open Access Journals (Sweden)

    Xiao-Min Shen

    2016-08-01

    Full Text Available The citrus red mite, Panonychus citri (McGregor, is a major citrus pest with a worldwide distribution and an extensive record of pesticide resistance. However, the underlying molecular mechanism associated with fenpropathrin resistance in this species have not yet been reported. In this study, synergist triphenyl phosphate (TPP dramatically increased the toxicity of fenpropathrin, suggesting involvement of carboxylesterases (CarEs in the metabolic detoxification of this insecticide. The subsequent spatiotemporal expression pattern analysis of PcE1, PcE7 and PcE9 showed that three CarEs genes were all over-expressed after insecticide exposure and higher transcripts levels were observed in different field resistant strains of P. citri. Heterologous expression combined with 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetra-zolium bromide (MTT cytotoxicity assay in Spodoptera frugiperda (Sf9 cells revealed that PcE1-, PcE7- or PcE9-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against fenpropathrin, demonstrating that PcEs probably detoxify fenpropathrin. Moreover, gene silencing through the method of leaf-mediated dsRNA feeding followed by insecticide bioassay increased the mortalities of fenpropathrin-treated mites by 31% (PcE1, 27% (PcE7 and 22% (PcE9, respectively, after individual PcE gene dsRNA treatment. In conclusion, this study provides evidence that PcE1, PcE7 and PcE9 are functional genes mediated in fenpropathrin resistance in P. citri and enrich molecular understanding of CarEs during the resistance development of the mite.

  8. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanpeng [State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources; Xiamen Univ. (China). School of Life Sciences; Shao, Zongze [State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources

    2012-04-15

    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47{delta}B) or Pseudomonas fluorescens KOB2{delta}1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C{sub 12} to C{sub 24}; three p450 genes were up-regulated by C{sub 8}-C{sub 16} n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C{sub 24} to C{sub 36}). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C{sub 8}) to long (C{sub 36}) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates. (orig.)

  9. Absence of linkage between MHC and a gene involved in susceptibility to human schistosomiasis

    Directory of Open Access Journals (Sweden)

    Chiarella J.M.

    1998-01-01

    Full Text Available Six hundred million people are at risk of infection by Schistosoma mansoni. MHC haplotypes have been reported to segregate with susceptibility to schistosomiasis in murine models. In humans, a major gene related to susceptibility/resistance to infection by S. mansoni (SM1 and displaying the mean fecal egg count as phenotype was detected by segregation analysis. This gene displayed a codominant mode of inheritance with an estimated frequency of 0.20-0.25 for the deleterious allele and accounted for more than 50% of the variance of infection levels. To determine if the SM1 gene segregates with the human MHC chromosomal region, we performed a linkage study by the lod score method. We typed for HLA-A, B, C, DR and DQ antigens in 11 informative families from an endemic area for schistosomiasis in Bahia, Brazil, by the microlymphocytotoxicity technique. HLA-DR typing by the polymerase chain reaction with sequence-specific primers (PCR-SSP and HLA-DQ were confirmed by PCR-sequence-specific oligonucleotide probes (PCR-SSOP. The lod scores for the different q values obtained clearly indicate that there is no physical linkage between HLA and SM1 genes. Thus, susceptibility or resistance to schistosomiasis, as defined by mean fecal egg count, is not primarily dependent on the host's HLA profile. However, if the HLA molecule plays an important role in specific immune responses to S. mansoni, this may involve the development of the different clinical aspects of the disease such as granuloma formation and development of hepatosplenomegaly.

  10. AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Danyu Kong; Yuxing Zhu; Huilan Wu; Xudong Cheng; Hui Liang; Hong-Qing Ling

    2008-01-01

    Thiamine (vitamin B1) is an essential compound for organisms.It contains a pyrimidine ring structure and a thiazole ring structure.These two moieties of thiamine are synthesized independently and then coupled together.Here we report the molecular characterization of AtTHIC,which is involved in thiamine biosynthesis in Arabidopsis.AtTHIC is similar to Escherichia coil ThiC,which is involved in pyrimidine biosynthesis in prokaryotes.Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E.coll.Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thicl showed albino (white leaves) and lethal phenotypes under the normal culture conditions.The thicl mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression ofAtTHIC cDNA.Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts.AtTHIC was strongly expressed in leaves,flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine.In conclusion,AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis,and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.

  11. Dietary Njavara rice bran oil reduces experimentally induced hypercholesterolaemia by regulating genes involved in lipid metabolism.

    Science.gov (United States)

    Chithra, Pushpan K; Sindhu, G; Shalini, V; Parvathy, Rathnam; Jayalekshmy, Ananthasankaran; Helen, Antony

    2015-04-28

    The present study was carried out to evaluate the anti-atherogenic effect of Njavara rice bran oil (NjRBO) on atherosclerosis by modulating enzymes and genes involved in lipid metabolism in rats fed a high-cholesterol diet (HCD). Adult male rats (Sprague-Dawley strain, weighing 100-120 g) were divided into three groups of nine animals each. Group I served as the control, group II were fed a HCD and group III were fed a HCD and NjRBO (100 mg/kg body weight). The study duration was 60 d. Serum and tissue lipid profile, atherogenic index, enzymes of lipid metabolism, plasma C-reactive protein levels, serum paraoxonase and arylesterase activities, thiobarbituric acid-reactive substances, gene and protein expression of paraoxonase 1 (PON1), PPARα, ATP-binding cassette transporter A1 (ABCA1), apoB and apoA1 in the liver were quantified. Total cholesterol, TAG, phospholipid, NEFA, LDL-cholesterol concentrations in the serum and liver, lipogenic enzyme activities, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and atherogenic index were significantly increased in HCD-fed rats, but they decreased after treatment with NjRBO. HDL-cholesterol level and lecithin cholesterol acyl transferase activity were increased in the NjRBO-treated group, but decreased in the HCD-fed group. The expression levels of ABCA1, apoA1, PON1 and PPARα were found to be significantly increased in NjRBO-treated group compared with the HCD-fed group; however, the expression level of apoB was found to be higher in HCD-fed group and lower in the NjRBO-treated group. These data suggest that NjRBO possesses an anti-atherogenic property by modulating lipid metabolism and up-regulating genes involved in reverse cholesterol transport and antioxidative defence mechanism through the induction of the gene expression PON1. PMID:25823019

  12. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    OpenAIRE

    Arti Sharma; Rajinder Singh Chauhan

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In sil...

  13. Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752

    NARCIS (Netherlands)

    Kemperman, R; Jonker, M; Nauta, A; Kuipers, OP; Kok, J

    2003-01-01

    A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping ope

  14. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  15. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    International Nuclear Information System (INIS)

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  16. Polymorphisms in genes involved in the estrogen pathway and mammographic density

    Directory of Open Access Journals (Sweden)

    Dumas Isabelle

    2010-11-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs in genes involved in the estrogen pathway appear to be associated with breast cancer risk and possibly with mammographic density (MD, but little is known of these associations among premenopausal women. This study examines the association of 11 polymorphisms in five estrogen-related genes (estrogen receptors alpha and beta (ERα, ERβ, 17β-hydroxysteroid dehydrogenase 1 (HSD17B1, catechol-O-methyltransferase (COMT, cytochrome P450 1B1 (CYP1B1 with premenopausal MD. Effect modification of four estrogen-related factors (parity, age at menarche, hormonal derivatives use and body mass index (BMI on this relation is also assessed. Methods Polymorphisms were genotyped in 741 premenopausal Caucasian women whose MD was measured in absolute density (AD, cm2 and percent density using a computer-assisted method. Multivariate linear models were used to examine the associations (Ptrend and interactions (Pi. Results None of the SNPs showed a statistically significant association with AD. However, each additional rare allele of rs1056836 CYP1B1 was associated with a reduction in AD among nulliparous women (Ptrend = 0.004, while no association was observed among parous women (Ptrend = 0.62; Pi = 0.02. An increase in the number of rare alleles of the HSD17B1 SNP (rs598126 and rs2010750 was associated with an increase in AD among women who never used hormonal derivatives (Ptrend = 0.06 and Ptrend = 0.04, respectively, but with a decrease in AD among past hormonal derivatives users (Ptrend = 0.04; Pi = 0.02 and Ptrend = 0.08; Pi = 0.01, respectively. Moreover, a negative association of rs598126 HSD17B1 SNP with AD was observed among women with higher BMI (>median (Ptrend = 0.01; Pi = 0.02. A negative association between an increased number of rare alleles of COMT rs4680 SNP and AD was limited to women who never used hormonal derivatives (Ptrend = 0.02; Pi = 0.03 or with late age at menarche (>median

  17. PTK 7 is a transforming gene and prognostic marker for breast cancer and nodal metastasis involvement.

    Directory of Open Access Journals (Sweden)

    Silvia Gärtner

    Full Text Available Protein Tyrosin Kinase 7 (PTK7 is upregulated in several human cancers; however, its clinical implication in breast cancer (BC and lymph node (LN is still unclear. In order to investigate the function of PTK7 in mediating BC cell motility and invasivity, PTK7 expression in BC cell lines was determined. PTK7 signaling in highly invasive breast cancer cells was inhibited by a dominant-negative PTK7 mutant, an antibody against the extracellular domain of PTK7, and siRNA knockdown of PTK7. This resulted in decreased motility and invasivity of BC cells. We further examined PTK7 expression in BC and LN tissue of 128 BC patients by RT-PCR and its correlation with BC related genes like HER2, HER3, PAI1, MMP1, K19, and CD44. Expression profiling in BC cell lines and primary tumors showed association of PTK7 with ER/PR/HER2-negative (TNBC-triple negative BC cancer. Oncomine data analysis confirmed this observation and classified PTK7 in a cluster with genes associated with agressive behavior of primary BC. Furthermore PTK7 expression was significantly different with respect to tumor size (ANOVA, p = 0.033 in BC and nodal involvement (ANOVA, p = 0.007 in LN. PTK7 expression in metastatic LN was related to shorter DFS (Cox Regression, p = 0.041. Our observations confirmed the transforming potential of PTK7, as well as its involvement in motility and invasivity of BC cells. PTK7 is highly expressed in TNBC cell lines. It represents a novel prognostic marker for BC patients and has potential therapeutic significance.

  18. PTK 7 is a transforming gene and prognostic marker for breast cancer and nodal metastasis involvement.

    Science.gov (United States)

    Gärtner, Silvia; Gunesch, Angela; Knyazeva, Tatiana; Wolf, Petra; Högel, Bernhard; Eiermann, Wolfgang; Ullrich, Axel; Knyazev, Pjotr; Ataseven, Beyhan

    2014-01-01

    Protein Tyrosin Kinase 7 (PTK7) is upregulated in several human cancers; however, its clinical implication in breast cancer (BC) and lymph node (LN) is still unclear. In order to investigate the function of PTK7 in mediating BC cell motility and invasivity, PTK7 expression in BC cell lines was determined. PTK7 signaling in highly invasive breast cancer cells was inhibited by a dominant-negative PTK7 mutant, an antibody against the extracellular domain of PTK7, and siRNA knockdown of PTK7. This resulted in decreased motility and invasivity of BC cells. We further examined PTK7 expression in BC and LN tissue of 128 BC patients by RT-PCR and its correlation with BC related genes like HER2, HER3, PAI1, MMP1, K19, and CD44. Expression profiling in BC cell lines and primary tumors showed association of PTK7 with ER/PR/HER2-negative (TNBC-triple negative BC) cancer. Oncomine data analysis confirmed this observation and classified PTK7 in a cluster with genes associated with agressive behavior of primary BC. Furthermore PTK7 expression was significantly different with respect to tumor size (ANOVA, p = 0.033) in BC and nodal involvement (ANOVA, p = 0.007) in LN. PTK7 expression in metastatic LN was related to shorter DFS (Cox Regression, p = 0.041). Our observations confirmed the transforming potential of PTK7, as well as its involvement in motility and invasivity of BC cells. PTK7 is highly expressed in TNBC cell lines. It represents a novel prognostic marker for BC patients and has potential therapeutic significance. PMID:24409301

  19. Dexamethasone acutely down-regulates genes involved in steroidogenesis in stallion testes.

    Science.gov (United States)

    Ing, Nancy H; Forrest, David W; Riggs, Penny K; Loux, Shavahn; Love, Charlie C; Brinsko, Steven P; Varner, Dickson D; Welsh, Thomas H

    2014-09-01

    In rodents, livestock and primate species, a single dose of the synthetic glucocorticoid dexamethasone acutely lowers testosterone biosynthesis. To determine the mechanism of decreased testosterone biosynthesis, stallions were treated with 0.1mg/kg dexamethasone 12h prior to castration. Dexamethasone decreased serum concentrations of testosterone by 60% compared to saline-treated control stallions. Transcriptome analyses (microarrays, northern blots and quantitative PCR) of testes discovered that dexamethasone treatment decreased concentrations of glucocorticoid receptor alpha (NR3C1), alpha actinin 4 (ACTN4), luteinizing hormone receptor (LHCGR), squalene epoxidase (SQLE), 24-dehydrocholesterol reductase (DHCR24), glutathione S-transferase A3 (GSTA3) and aromatase (CYP19A1) mRNAs. Dexamethasone increased concentrations of NFkB inhibitor A (NFKBIA) mRNA in testes. SQLE, DHCR24 and GSTA3 mRNAs were predominantly expressed by Leydig cells. In man and livestock, the GSTA3 protein provides a major 3-ketosteroid isomerase activity: conversion of Δ(5)-androstenedione to Δ(4)-androstenedione, the immediate precursor of testosterone. Consistent with the decrease in GSTA3 mRNA, dexamethasone decreased the 3-ketosteroid isomerase activity in testicular extracts. In conclusion, dexamethasone acutely decreased the expression of genes involved in hormone signaling (NR3C1, ACTN4 and LHCGR), cholesterol synthesis (SQLE and DHCR24) and steroidogenesis (GSTA3 and CYP19A1) along with testosterone production. This is the first report of dexamethasone down-regulating expression of the GSTA3 gene and a very late step in testosterone biosynthesis. Elucidation of the molecular mechanisms involved may lead to new approaches to modulate androgen regulation of the physiology of humans and livestock in health and disease. PMID:25010478

  20. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions.

    Science.gov (United States)

    Grawe, F; Wodarz, A; Lee, B; Knust, E; Skaer, H

    1996-03-01

    Morphogenetic movements of epithelia during development underlie the normal elaboration of the final body plan. The tissue integrity critical for these movements is conferred by anchorage of the cytoskeleton by adherens junctions, initially spot and later belt-like, zonular structures, which encircle the apical side of the cell. Loss-of-function mutations in the Drosophila genes crumbs and stardust lead to the loss of cell polarity in most ectodermally derived epithelia, followed in some, such as the epidermis, by extensive apoptosis. Here we show that both mutants fail to establish proper zonulae adherentes in the epidermis. Our results suggest that the two genes are involved in different aspects of this process. Further, they are compatible with the hypothesis that crumbs delimits the apical border, where the zonula adherens usually forms and where Crumbs protein is normally most abundant. In contrast, stardust seems to be required at an earlier stage for the assembly of the spot adherence junctions. In both mutants, the defect observed at the ultrastructural level are preceded by a misdistribution of Armadillo and DE-cadherin, the homologues of beta-catenin and E-cadherin, respectively, which are two constituents of the vertebrate adherens junctions. Strikingly, expansion of the apical membrane domain in epidermal cells by overexpression of crumbs also abolishes the formation of adherens junctions and results in the disruption of tissue integrity, but without loss of membrane polarity. This result supports the view that membrane polarity is independent of the formation of adherens junctions in epidermal cells.

  1. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals.

    Science.gov (United States)

    Luglio, Harry Freitag; Sulistyoningrum, Dian Caturini; Susilowati, Rina

    2015-09-01

    The ability of obese people to reduce weight in the same treatment varied. Genetic make up as well as the behavioral changes are important for the successfulness of the program. One of the most proposed genetic variations that have been reported in many intervention studies was genes that control lipolysis process. This review summarizes studies that were done showing the influence of genetic polymorphisms in lipolysis pathway and weight loss in a weight loss treatment program. Some studies had shown that certain enzymes involved in this process were related to successfulness of weight loss program. Single Nucleotide Polymorphism (SNP) in PLIN (11482G>A) and ADRB3 (Trp64Arg) are the most studied polymorphisms that have effect on weight loss intervention. However, those studies were not conclusive because of limited number of subjects used and controversies in the results. Thus, replication and confirmation on the role of those genes in weight loss are important due to their potential to be used as predictors of the results of the program. PMID:26388665

  2. Characterization of Two Putative Protein Phosphatase Genes and Their Involvement in Phosphorus Efficiency in Phaseolus vulgari

    Institute of Scientific and Technical Information of China (English)

    Cui-Yue Liang; Zhi-Jian Chen; Zhu-Fang Yao; Jiang Tian; Hong Liao

    2012-01-01

    Protein dephosphorylation mediated by protein phosphatases plays a major role in signal transduction of plant responses to environmental stresses.In this study,two putative protein phosphatases,PvPS2:1 and PvPS2:2 were identified and characterized in bean (Phaseolus vulgaris).The two PvPS2 members were found to be localized to the plasma membrane and the nucleus by transient expression of PvPS2:GFP in onion epidermal cells.Transcripts of the two PvPS2 genes were significantly increased by phosphate (Pi) starvation in the two bean genotypes,G19833 (a P-efficient genotype) and DOR364 (a P-inefficient genotype).However,G19833 exhibited higher PvPS2:1 expression levels than DOR364 in both leaves and roots during P1 starvation.Increased transcription of PvPS2:1 in response to Pi starvation was further verified through histochemical analysis of PvPS2:1 promoter fusion β-glucuronidase (GUS) in transgenic Arabidopsis plants.Analysis of PvPS2∶1 overexpression lines in bean hairy roots and Arabidopsis showed that PvS2:1 was involved in root growth and P accumulation.Furthermore,expression levels of two P(1) starvation responsive genes were upregulated and the APase activities were enhanced in the overexpressing PvPS2∶1 Arabidopsis lines.Taken together,our results strongly suggested that PvPS2∶1positively regulated plant responses to P1 starvation,and could be further targeted as a candidate gene to improve crop P efficiency.

  3. Novel essential gene Involved in 16S rRNA processing in Escherichia coli.

    Science.gov (United States)

    Kurata, Tatsuaki; Nakanishi, Shinobu; Hashimoto, Masayuki; Taoka, Masato; Yamazaki, Yukiko; Isobe, Toshiaki; Kato, Jun-ichi

    2015-02-27

    Biogenesis of ribosomes is a complex process mediated by many factors. While its transcription proceeds, ribosomal RNA (rRNA) folds itself into a characteristic three-dimensional structure through interaction with ribosomal proteins, during which its ends are processed. Here, we show that the essential protein YqgF, a RuvC family protein with an RNase-H-like motif, is involved in the processing of pre-16S rRNA during ribosome maturation. Indeed, pre-16S rRNA accumulated in cells of a temperature-sensitive yqgF mutant (yqgF(ts)) cultured at a non-permissive temperature. In addition, purified YqgF was shown to process the 5' end of pre-16S rRNA within 70S ribosomes in vitro. Mass spectrometry analysis of the total proteins in the yqgF(ts) mutant cells showed that the expression of genes containing multiple Shine-Dalgarno-like sequences was observed to be lower than in wild type. These results are interpreted to indicate that YqgF is involved in a novel enzymic activity necessary for the processing of pre-16S rRNA, thereby affecting elongation of translation.

  4. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  5. Fluorescence Resonance Energy Transfer (FRET as a method to calculate the dimerization strength of basic Helix-Loop-Helix (bHLH proteins

    Directory of Open Access Journals (Sweden)

    Centonze Victoria E.

    2004-01-01

    Full Text Available Post-translational modifications such as phosphorylation play a vital role in the regulation of protein function. In our study of the basic Helix-loop-Helix (bHLH transcription factor HAND1, we show that HAND1 is phosphorylated during the trophoblast giant cell differentiation on residues residing in Helix I of the bHLH domain. Our hypothesis is that these modifications result in changes in HAND1 dimerization affinities with other bHLH factors. To test this idea, we employed FRET to measure the protein-protein interactions of HAND1 and HAND1 point mutants in HEK293 cells using YFP and CFP fusion proteins and laser scanning confocal microscopy.

  6. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation

    OpenAIRE

    Crane, Yan Ma; Gelvin, Stanton B

    2007-01-01

    We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed “chromatin genes” hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (res...

  7. A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes.

    Science.gov (United States)

    Ruiu, Fabrizio; Picarella, Maurizio Enea; Imanishi, Shunsuke; Mazzucato, Andrea

    2015-10-01

    The tomato parthenocarpic fruit (pat) mutation associates a strong competence for parthenocarpy with homeotic transformation of anthers and aberrancy of ovules. To dissect this complex floral phenotype, genes involved in the pollination-independent fruit set of the pat mutant were investigated by microarray analysis using wild-type and mutant ovaries. Normalized expression data were subjected to one-way ANOVA and 2499 differentially expressed genes (DEGs) displaying a >1.5 log-fold change in at least one of the pairwise comparisons analyzed were detected. DEGs were categorized into 20 clusters and clusters classified into five groups representing transcripts with similar expression dynamics. The "regulatory function" group (685 DEGs) contained putative negative or positive fruit set regulators, "pollination-dependent" (411 DEGs) included genes activated by pollination, "fruit growth-related" (815 DEGs) genes activated at early fruit growth. The last groups listed genes with different or similar expression pattern at all stages in the two genotypes. qRT-PCR validation of 20 DEGs plus other four selected genes assessed the high reliability of microarray expression data; the average correlation coefficient for the 20 DEGs was 0.90. In all the groups were evidenced relevant transcription factors encoding proteins regulating meristem differentiation and floral organ development, genes involved in metabolism, transport and response of hormones, genes involved in cell division and in primary and secondary metabolism. Among pathways related to secondary metabolites emerged genes related to the synthesis of flavonoids, supporting the recent evidence that these compounds are important at the fruit set phase. Selected genes showing a de-regulated expression pattern in pat were studied in other four parthenocarpic genotypes either genetically anonymous or carrying lesions in known gene sequences. This comparative approach offered novel insights for improving the present

  8. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis)

    OpenAIRE

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-II; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-01-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in ‘Michael J’ (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse t...

  9. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis).

    OpenAIRE

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-II; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-01-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse t...

  10. Analysis of gene expression of myo1c and inpp5k genes involved in endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Abstract: Inpp5k gene encodes a protein which plays a very vital role in a number of metabolic pathways. It is very significant in the glucose metabolism where it regulates the signalling of the insulin pathway. But the full molecular details of the pathways regulated by Inpp5k encoded protein are not known. It is speculated that Inpp5k gene expression is altered in case of endometrial adenocarcinoma. Myolc gene encodes for a protein called Myosin-lc which acts an actin-based molecular motor in the cells. II has been studied that this gene down-regulates during endometrial adenocarcinoma and colorectal cancers. In this study the expression analysis of these two was carried out using multiplex PCR. An endogenous control was used for this PCR. ACTS gene served as the endogenous control because of it being a house keeping gene. It thus shows a universal expression in all cells. Thus in this study the gene expression of Inpp5k and Myulc genes was comparatively analysed with ACTS gene. The results that came out of this study showed an over-expression of Inpp5k gene and down-regulation of myolc gene with respect to ACTS gene in cancer cell lines as was indicated by the previous studies with these genes. Expression of both genes i.e. Inpp5k and Myolc was statistically compared between normal and cancerous cell lines and was found statistically significant at a value of P< O.O I in most of the cases. (author)

  11. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro.

    Science.gov (United States)

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan

    2015-12-11

    Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.

  12. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection.

    Science.gov (United States)

    Wei, Shina; Huang, Youhua; Huang, Xiaohong; Cai, Jia; Yan, Yang; Guo, Chuanyu; Qin, Qiwei

    2014-01-01

    The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection.

  13. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  14. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    Science.gov (United States)

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.

  15. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    International Nuclear Information System (INIS)

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (μg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl2) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 μg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 μg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 μg/g) but increased cGnRH-II mRNA at the lowest dose (5 μg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  16. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants. PMID:19781795

  17. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass

    Energy Technology Data Exchange (ETDEWEB)

    Martyniuk, Christopher J. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sanchez, Brian C. [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States); Szabo, Nancy J.; Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Sepulveda, Maria S., E-mail: mssepulv@purdue.edu [Department of Forestry and Natural Resources and School of Civil Engineering, 195 Marsteller St., Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens ({mu}g/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl{sub 2}) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 {mu}g/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 {mu}g/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 {mu}g/g) but increased cGnRH-II mRNA at the lowest dose (5 {mu}g/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.

  18. Involvement of a proapoptotic gene (BBC3) in islet injury mediated by cold preservation and rewarming.

    Science.gov (United States)

    Omori, Keiko; Kobayashi, Eiji; Komatsu, Hirotake; Rawson, Jeffrey; Agrawal, Garima; Parimi, Mounika; Oancea, Alina R; Valiente, Luis; Ferreri, Kevin; Al-Abdullah, Ismail H; Kandeel, Fouad; Takahashi, Masafumi; Mullen, Yoko

    2016-06-01

    Long-term pancreatic cold ischemia contributes to decreased islet number and viability after isolation and culture, leading to poor islet transplantation outcome in patients with type 1 diabetes. In this study, we examined mechanisms of pancreatic cold preservation and rewarming-induced injury by interrogating the proapoptotic gene BBC3/Bbc3, also known as Puma (p53 upregulated modulator of apoptosis), using three experimental models: 1) bioluminescence imaging of isolated luciferase-transgenic ("Firefly") Lewis rat islets, 2) cold preservation of en bloc-harvested pancreata from Bbc3-knockout (KO) mice, and 3) cold preservation and rewarming of human pancreata and isolated islets. Cold preservation-mediated islet injury occurred during rewarming in "Firefly" islets. Silencing Bbc3 by transfecting Bbc3 siRNA into islets in vitro prior to cold preservation improved postpreservation mitochondrial viability. Cold preservation resulted in decreased postisolation islet yield in both wild-type and Bbc3 KO pancreata. However, after culture, the islet viability was significantly higher in Bbc3-KO islets, suggesting that different mechanisms are involved in islet damage/loss during isolation and culture. Furthermore, Bbc3-KO islets from cold-preserved pancreata showed reduced HMGB1 (high-mobility group box 1 protein) expression and decreased levels of 4-hydroxynonenal (4-HNE) protein adducts, which was indicative of reduced oxidative stress. During human islet isolation, BBC3 protein was upregulated in digested tissue from cold-preserved pancreata. Hypoxia in cold preservation increased BBC3 mRNA and protein in isolated human islets after rewarming in culture and reduced islet viability. These results demonstrated the involvement of BBC3/Bbc3 in cold preservation/rewarming-mediated islet injury, possibly through modulating HMGB1- and oxidative stress-mediated injury to islets. PMID:27117005

  19. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines.

    Science.gov (United States)

    Wang, Li; Yin, Xiangjing; Cheng, Chenxia; Wang, Hao; Guo, Rongrong; Xu, Xiaozhao; Zhao, Jiao; Zheng, Yi; Wang, Xiping

    2015-06-01

    MADS-box transcription factors are involved in many aspects of plant growth and development, such as floral organ determination, fruit ripening, and embryonic development. Yet not much is known about grape (Vitis vinifera) MADS-box genes in a relatively comprehensive genomic and functional way during ovule development. Accordingly, we identified 54 grape MADS-box genes, aiming to enhance our understanding of grape MADS-box genes from both evolutionary and functional perspectives. Synteny analysis indicated that both segmental and tandem duplication events contributed to the expansion of the grape MADS-box family. Furthermore, synteny analysis between the grape and Arabidopsis genomes suggested that several grape MADS-box genes arose before divergence of the two species. Phylogenetic analysis and comparisons of exon-intron structures provided further insight into the evolutionary relationships between the genes, as well as their putative functions. Based on phylogenetic tree analysis, grape MADS-box genes were divided into type I and type II subgroups. Tissue-specific expression analysis suggested roles in both vegetative and reproductive tissue development. Expression analysis of the MADS-box genes following gibberellic acid (GA3) treatment revealed their response to GA3 treatment and that seedlessness caused by GA3 treatment underwent a different mechanism from that of normal ovule abortion. Expression profiling of MADS-box genes from six cultivars suggests their function in ovule development and may represent potential ovule identity genes involved in parthenocarpy. The results presented provide a few candidate genes involved in ovule development for future study, which may be useful in seedlessness-related molecular breeding programs. PMID:25429734

  20. The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Fukaki, H; Fujisawa, H; Tasaka, M

    1997-07-01

    In higher plants, shoots show negative gravitropism and roots show positive gravitropism. To elucidate the molecular mechanisms of root and hypocotyl gravitropism, we segregated the second mutation from the original phyB-1 mutant line which impaired both root and hypocotyl gravitropism and characterized this novel mutation named rhg (for root and hypocotyl gravitropism). The rhg is a single recessive nuclear mutation and it is mapped on the lower part of the chromosome 1. Analyses on the gravitropic responses of the rhg mutant indicate that root and hypocotyl gravitropism are severely impaired but inflorescence stem gravitropism is not affected by the rhg mutation. In the rhg mutant seedlings, amyloplasts (statoliths for gravity-perception) were present in the presumptive statocytes of roots and hypocotyls. Phototropism by roots and hypocotyls was not impaired in the rhg mutant. These results suggest that the RHG gene product probably acts on the gravity-perception and/or the gravity-signal transduction in root and hypocotyl gravitropism. This is the first report about the genetic locus specifically involved in both root and hypocotyl gravitropism but not inflorescence stem gravitropism, supporting our hypothesis that the mechanisms of gravitropism are genetically different between hypocotyls and inflorescence stems.

  1. Involvement of Relish gene from Macrobrachium rosenbergii in the expression of anti-microbial peptides.

    Science.gov (United States)

    Shi, Yan-Ru; Jin, Min; Ma, Fu-Tong; Huang, Ying; Huang, Xin; Feng, Jin-Ling; Zhao, Ling-Ling; Chen, Yi-Hong; Ren, Qian

    2015-10-01

    Relish is an NF-kB transcription factor involved in immune-deficiency (IMD) signal pathway. In this study, a Relish gene (MrRelish) was identified from Macrobrachium rosenbergii. The full length of MrRelish comprises 5072 bp, including a 3510 bp open reading frame encoding a 1169 bp amino acid protein. MrRelish contains a Rel homology domain (RHD), a nucleus localization signal, an IκB-like domain (6 ankyrin repeats), and a death domain. Phylogenetic analysis showed that MrRelish and other Relish from crustaceans belong to one group. MrRelish was expressed in all detected tissues, with the highest expression level in hemocytes and intestines. MrRelish was also upregulated in hepatopancreas at 6 h after Vibrio anguillarum challenge. The over-expression of MrRelish could induce the expression of antimicrobial peptides (AMPs), such as Drosophila Metchnikowin (Mtk), Attacin (Atta), Drosomycin (Drs), and Cecropin (CecA) and shrimp Penaeidin (Pen4). The RNAi of MrRelish in gills showed that the expression of crustin (cru) 2, Cru5, Cru8, lysozyme (Lyso) 1, and Lyso2 was inhibited. However, the expression of anti-lipopolysaccharide factor (ALF) 1 and ALF3 did not change when MrRelish was knocked down. These results indicate that MrRelish may play an important role in innate immune defense against V. anguillarum in M. rosenbergii.

  2. Simulated microgravity alters the expression of key genes involved in fracture healing

    Science.gov (United States)

    McCabe, N. Patrick; Androjna, Caroline; Hill, Esther; Globus, Ruth K.; Midura, Ronald J.

    2013-11-01

    Fracture healing in animal models has been shown to be altered in both ground based analogs of spaceflight and in those exposed to actual spaceflight. The molecular mechanisms behind altered fracture healing as a result of chronic exposure to microgravity remain to be elucidated. This study investigates temporal gene expression of multiple factors involved in secondary fracture healing, specifically those integral to the development of a soft tissue callus and the transition to that of hard tissue. Skeletally mature female rats were subjected to a 4 week period of simulated microgravity and then underwent a closed femoral fracture procedure. Thereafter, they were reintroduced to the microgravity and allowed to heal for a 1 or 2 week period. A synchronous group of weight bearing rats was used as a normal fracture healing control. Utilizing Real-Time quantitative PCR on mRNA from fracture callus tissue, we found significant reductions in the levels of transcripts associated with angiogenesis, chondrogenesis, and osteogenesis. These data suggest an altered fracture healing process in a simulated microgravity environment, and these alterations begin early in the healing process. These findings may provide mechanistic insight towards developing countermeasure protocols to mitigate these adaptations.

  3. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  4. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies.

    Science.gov (United States)

    Yalçın, Ozlem

    2012-03-01

    Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both patients with absence epilepsies and animal models revealed the involvement of GABA receptors and calcium channels, but also of novel non-ion channel proteins in inducing spike wave discharges (SWD). Functional studies on a mutated variant of these proteins also support their role in the epileptogenesis of absence seizures. Studies in animal models point to both the thalamus and cortex as the origin of SWDs: the abnormalities in the components of these circuits leading to seizure activity. This review examines the current research on mutations and susceptibility alleles determined in the genes that code for the subunits of GABA receptors (GABRG2, GABRA1, GABRB3, GABRA5, GABA(B1) and GABA(B2)), calcium channels (CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3), and novel non-ion channel proteins, taking into account the results of functional studies on these variants. PMID:22206818

  5. HP1a/KDM4A is involved in the autoregulatory loop of the oncogene gene c-Jun.

    Science.gov (United States)

    Liu, Yan; Zhang, Daoyong

    2015-01-01

    The proto-oncogene c-Jun plays crucial roles in tumorigenesis, and its aberrant expression has been implicated in many cancers. Previous studies have shown that the c-Jun gene is positively autoregulated by its product. Notably, it has also been reported that c-Jun proteins are enriched in its gene body region. However, the role of c-Jun proteins in its gene body region has yet to be uncovered. HP1a is an evolutionarily conserved heterochromatin-associated protein, which plays an essential role in heterochromatin-mediated gene silencing. Interestingly, accumulating evidence shows that HP1a is also localized to euchromatic regions to positively regulate gene transcription. However, the underlying mechanism has not been defined. In this study, we demonstrate that HP1a is involved in the positive autoregulatory loop of the Jra gene, the c-Jun homolog in Drosophila. Jra recruits the HP1a/KDM4A complex to its gene body region upon osmotic stress to reduce H3K36 methylation levels and disrupt H3K36 methylation-dependent histone deacetylation, resulting in high levels of histone acetylation in the Jra gene body region, thus promoting gene transcription. These results not only expand our knowledge toward the mechanism of c-Jun regulation, but also reveal the mechanism by which HP1a exerts its positive regulatory function in gene expression.

  6. PathoPlant: a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses.

    Science.gov (United States)

    Bülow, Lorenz; Schindler, Martin; Hehl, Reinhard

    2007-01-01

    Plants react to pathogen attack by expressing specific proteins directed toward the infecting pathogens. This involves the transcriptional activation of specific gene sets. PathoPlant, a database on plant-pathogen interactions and signal transduction reactions, has now been complemented by microarray gene expression data from Arabidopsis thaliana subjected to pathogen infection and elicitor treatment. New web tools enable identification of plant genes regulated by specific stimuli. Sets of genes co-regulated by multiple stimuli can be displayed as well. A user-friendly web interface was created for the submission of gene sets to be analyzed. This results in a table, listing the stimuli that act either inducing or repressing on the respective genes. The search can be restricted to certain induction factors to identify, e.g. strongly up- or down-regulated genes. Up to three stimuli can be combined with the option of induction factor restriction to determine similarly regulated genes. To identify common cis-regulatory elements in co-regulated genes, a resulting gene list can directly be exported to the AthaMap database for analysis. PathoPlant is freely accessible at http://www.pathoplant.de. PMID:17099232

  7. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    Science.gov (United States)

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  8. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Guifeng Liu

    2012-01-01

    Full Text Available The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  9. MGA2 Is Involved in the Low-Oxygen Response Element-Dependent Hypoxic Induction of Genes in Saccharomyces cerevisiae

    OpenAIRE

    Jiang, Yide; Vasconcelles, Michael J.; Wretzel, Sharon; Light, Anne; Martin, Charles E.; Goldberg, Mark A.

    2001-01-01

    Eukaryotes have the ability to respond to changes in oxygen tension by alterations in gene expression. For example, OLE1 expression in Saccharomyces cerevisiae is upregulated under hypoxic conditions. Previous studies have suggested that the pathway regulating OLE1 expression by unsaturated fatty acids may involve Mga2p and Spt23p, two structurally and functionally related proteins. To define the possible roles of each of these genes on hypoxia-induced OLE1 expression, we examined OLE1 expres...

  10. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tabuchi

    2014-05-01

    Full Text Available Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF, we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I and Atf4 and Hspa5 (for Up-II. Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells.

  11. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12

    NARCIS (Netherlands)

    Volkers, R.J.M.; Ballerstedt, H.; Ruijssenaars, H.; Bont, J.A.M. de; Winde, J.H. de; Wery, J.

    2009-01-01

    Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent e

  12. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    Science.gov (United States)

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny. PMID:26744331

  13. Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus

    NARCIS (Netherlands)

    Chaillou, S.; Lokman, B.C.; Leer, R.J.; Posthuma, C.; Postma, P.W.; Pouwels, P.H.

    1998-01-01

    Two genes, xylP and xylQ, from the xylose regulon of Lactobacillus pentosus were cloned and sequenced. Together with the repressor gene of the regulon, xylR, the xylPQ genes form an operon which is inducible by xylose and which is transcribed from a promoter located 145 bp upstream of xylP. A putati

  14. Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Breuner, Anne; Brøndsted, Lone; Hammer, Karin

    1999-01-01

    In this work, the phage-encoded proteins involved in site-specific excision of the prophage genome of the temperate lactococcal bacteriophage TP901-1 were identified. The phage integrase is required for the process, and a low but significant frequency of excision is observed when the integrase...... of extended resolvases. Orf7 is a basic protein of 64 amino acids, and the corresponding gene (orf7) is the third gene in the early lytic operon. This location of an excisionase gene of a temperate bacteriophage has never been described before. The experiments are based on in vivo excision of specifically...

  15. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  16. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    Science.gov (United States)

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  17. Exploring regulation genes involved in the expression of L-amino acid oxidase in Pseudoalteromonas sp. Rf-1.

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    Full Text Available Bacterial L-amino acid oxidase (LAAO is believed to play important biological and ecological roles in marine niches, thus attracting increasing attention to understand the regulation mechanisms underlying its production. In this study, we investigated genes involved in LAAO production in marine bacterium Pseudoalteromonas sp. Rf-1 using transposon mutagenesis. Of more than 4,000 mutants screened, 15 mutants showed significant changes in LAAO activity. Desired transposon insertion was confirmed in 12 mutants, in which disrupted genes and corresponding functionswere identified. Analysis of LAAO activity and lao gene expression revealed that GntR family transcriptional regulator, methylase, non-ribosomal peptide synthetase, TonB-dependent heme-receptor family, Na+/H+ antiporter and related arsenite permease, N-acetyltransferase GCN5, Ketol-acid reductoisomerase and SAM-dependent methytransferase, and their coding genes may be involved in either upregulation or downregulation pathway at transcriptional, posttranscriptional, translational and/or posttranslational level. The nhaD and sdmT genes were separately complemented into the corresponding mutants with abolished LAAO-activity. The complementation of either gene can restore LAAO activity and lao gene expression, demonstrating their regulatory role in LAAO biosynthesis. This study provides, for the first time, insights into the molecular mechanisms regulating LAAO production in Pseudoalteromonas sp. Rf-1, which is important to better understand biological and ecological roles of LAAO.

  18. Telomere-Mediated Plasmid Segregation in Saccharomyces Cerevisiae Involves Gene Products Required for Transcriptional Repression at Silencers and Telomeres

    OpenAIRE

    Longtine, M. S.; Enomoto, S.; Finstad, S L; Berman, J

    1993-01-01

    Plasmids that contain Saccharomyces cerevisiae TG(1-3) telomere repeat sequences (TRS plasmids) segregate efficiently during mitosis. Mutations in histone H4 reduce the efficiency of TRS-mediated plasmid segregation, suggesting that chromatin structure is involved in this process. Sir2, Sir3 and Sir4 are required for the transcriptional repression of genes located at the silent mating type loci (HML and HMR) and at telomeres (telomere position effect) and are also involved in the segregation ...

  19. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis

    OpenAIRE

    Leiva, Kritsye; Werner, Nicole; Sepúlveda, Dionisia; Barahona, Salvador; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. Results In this study, the CYP51 gene from X. dendrorhous was isolated and its ...

  20. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rachid Lahlali

    Full Text Available An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc, suppressed clubroot (Plasmodiophora brassicae -Pb on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001 with the severity of clubroot at 5 weeks after treatment at a low (2×10(5 spores pot(-1 but not high (2×10(5 spores pot(-1 dose of pathogen inoculum. Transcript levels of nine B. napus (Bn genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL. These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2, ethylene (BnACO, auxin (BnAAO1, and PR-2 protein (BnPR-2 biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte.

  1. The involvement of human-nuc gene in polyploidization of K562 cell line.

    Science.gov (United States)

    Cavalloni, G; Danè, A; Piacibello, W; Bruno, S; Lamas, E; Bréchot, C; Aglietta, M

    2000-12-01

    During megakaryocyte differentiation, the immature megakaryocyte increases its ploidy to a 2(x) DNA content by a process called endomitosis. This leads to the formation of a giant cell, the mature megakaryocyte, which gives rise to platelets. We investigated the role of human-nuc (h-nuc), a gene involved in septum formation in karyokynesis in yeast, during megakaryocytic polyploidization. Nocodazole and 12-O-tetradecanoylphorbol-13-acetate (TPA) were used to induce megakaryocytic differentiation in K562 cell line. The ploidy distribution and CD41 expression of treated K562 cells were evaluated by flow cytometry. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we analyzed the h-nuc mRNA expression on treated K562 cells. Mature megakaryocyte-like polyploid cells were detected at day 5-7 of treatment with nocodazole. TPA also had a similar effect on K562 cells, but it was much weaker than that of nocodazole. The analysis of ploidy of nocodazole-treated K562 cells showed that nocodazole preferentially induced polyploidization of K562 cell line with a pronounced increase of the cells 8N at day 7 of culture. Expression of CD41, a differentiation-related phenotype, was significantly induced by TPA after 7 days of treatment, showing that functional maturation was mainly induced by TPA. In contrast, there was no significant increase in CD41 expression in nocodazole-treated K562 cells, suggesting that polyploidization and functional maturation are separately regulated during megakaryocytopoiesis. RT-PCR analysis indicated that h-nuc mRNA increased after 72 hours in the presence of nocodazole, preceding the induction of polyploidization. Our data indicate that h-nuc might play a role in polyploidization during megakaryocytic differentiation via inhibition of septum formation.

  2. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition.

    Science.gov (United States)

    Huang, Feng; Hu, Xiaoxiao; Fang, Chunni; Liu, Hong; Lin, Chensheng; Zhang, Yanding; Hu, Xuefeng

    2015-11-01

    Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ. PMID:26266341

  3. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  4. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    OpenAIRE

    Sipla Aggarwal; Vishnu Shukla; Kaushal Kumar Bhati; Mandeep Kaur; Shivani Sharma; Anuradha Singh; Shrikant Mantri; Ajay Kumar Pandey

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements...

  5. Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay

    OpenAIRE

    Mohammed Uddin; Giovanna Pellecchia; Bhooma Thiruvahindrapuram; Lia D’Abate; Daniele Merico; Ada Chan; Mehdi Zarrei; Kristiina Tammimies; Susan Walker; Gazzellone, Matthew J.; Thomas Nalpathamkalam; Yuen, Ryan K.C.; Koenraad Devriendt; Géraldine Mathonnet; Emmanuelle Lemyre

    2016-01-01

    A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P 

  6. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer.

    NARCIS (Netherlands)

    Siezen, Christine L E; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Kram, Nicolien R; Doeselaar, Marina van; Kranen, Henk J van

    2006-01-01

    The objective of this study on colorectal cancer was to investigate the associations between SNPs in the genes involved in the arachidonic acid (AA)-pathway, their haplotypes and colorectal cancer. Moreover, interactions between SNPs and fish consumption were considered. In this study, a total of 50

  7. Transcriptional profiling of genes involved in n-hexadecane compounds assimilation in the hydrocarbon degrading Dietzia cinnamea P4 strain

    NARCIS (Netherlands)

    Procopio, Luciano; Pereira e Silva, Michele de Cassia; van Elsas, Jan Dirk; Seldin, Lucy

    2013-01-01

    The petroleum-derived degrading Dietzia cinnamea strain P4 recently had its genome sequenced and annotated. This allowed employing the data on genes that are involved in the degradation of n-alkanes. To examine the physiological behavior of strain P4 in the presence of n-alkanes, the strain was grow

  8. Functional analysis of genes involved in the regulation of development of reproductive organs in rice (Oryza sativa)

    NARCIS (Netherlands)

    Chen, Yi

    2011-01-01

    Quality of the rice grain is determined mainly by starch and protein contents of the endosperm. In this thesis, the analyses of four genes involved in the regulation of development of rice grain and floret are presented. Two CCCH type zinc finger proteins, OsGZF1 and OsGZF2, were identified as novel

  9. Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia.

    Science.gov (United States)

    Hertzberg, L; Katsel, P; Roussos, P; Haroutunian, V; Domany, E

    2015-05-01

    The number of Genome Wide Association Studies (GWAS) of schizophrenia is rapidly growing. However, the small effect of individual genes limits the number of reliably implicated genes, which are too few and too diverse to perform reliable pathway analysis; hence the biological roles of the genes implicated in schizophrenia are unclear. To overcome these limitations we combine GWAS with genome-wide expression data from human post-mortem brain samples of schizophrenia patients and controls, taking these steps: 1) Identify 36 GWAS-based genes which are expressed in our dataset. 2) Find a cluster of 19 genes with highly correlated expression. We show that this correlation pattern is robust and statistically significant. 3) GO-enrichment analysis of these 19 genes reveals significant enrichment of ion channels and calcium-related processes. This finding (based on analyzing a small number of coherently expressed genes) is validated and enhanced in two ways: First, the emergence of calcium channels and calcium signaling is corroborated by identifying proteins that interact with those encoded by the cluster of 19. Second, extend the 19 cluster genes into 1028 genes, whose expression is highly correlated with the cluster's average profile. When GO-enrichment analysis is performed on this extended set, many schizophrenia related pathways appear, with calcium-related processes enriched with high statistical significance. Our results give further, expression-based validation to GWAS results, support a central role of calcium-signaling in the pathogenesis of schizophrenia, and point to additional pathways potentially related to the disease.

  10. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    Science.gov (United States)

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. PMID:27033902

  11. Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation.

    Science.gov (United States)

    Lenka, Nibedita; Krishnan, Shruthi; Board, Philip; Rangasamy, Danny

    2014-06-01

    Identifying the genes or epigenetic factors that control the self-renewal and differentiation of stem cells is critical to understanding the molecular basis of cell commitment. Although a number of insertional mutagenesis vectors have been developed for identifying gene functions in animal models, the L1 retrotransposition system offers additional advantages as a tool to disrupt genes in embryonic stem cells in order to identify their functions and the phenotypes associated with them. Recent advances in producing synthetic versions of L1 retrotransposon vector system and the optimization of techniques to accurately identify retrotransposon integration sites have increased their utility for gene discovery applications. We have developed a novel episomal, nonviral L1 retrotransposon vector using scaffold/matrix attachment regions that provides stable, sustained levels of retrotransposition in cell cultures without being affected by epigenetic silencing or from some of the common problems of vector integration. This modified vector contains a GFP marker whose expression occurs only after successful gene disruption events and thus the cells with disrupted genes can be easily picked for functional analysis. Here we present a method to disrupt gene function in embryonic stem cells that aid in the identification of genes involved in stem cell differentiation processes. The methods presented here can be easily adapted to the study of other types of cancer stem cells or induced pluripotent stem cells using the L1 retrotransposon as an insertional mutagen.

  12. Identification of Genes Involved in the Glyoxylate Regeneration Cycle in Methylobacterium extorquens AM1, Including Two New Genes, meaC and meaD

    OpenAIRE

    Korotkova, Natalia; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2005-01-01

    The glyoxylate regeneration cycle (GRC) operates in serine cycle methylotrophs to effect the net conversion of acetyl coenzyme A to glyoxylate. Mutants have been generated in several genes involved in the GRC, and phenotypic analysis has been carried out to clarify their role in this cycle.

  13. Cloning and functional analysis of the genes involved in signal transduction in tomato Cf-4-Avr4 pathosystem

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; FENG Dongxin; WANG Xiaowu; DU Yongchen

    2007-01-01

    Hypersensitive response(HR)is one of the most efficient and common resistance mechanisms in plants.Cloning signaling genes are very important to elucidate the resistance mechanisms.A gene in tomato homologous to several resistance proteins in plant was involved in HR and named as RGL(Resistance Gene Like).RGL protein was used as a bait to screen interacting protein(s)from tomato cDNA library through the yeast two-hybrid system.Two interacting proteins were found,which were called as RGLIP-I and RGLIP2(RGL Interacting Protein),respectively.RGLIP-1 is a protein of 291 amino acids with significant homology with thylakoid lumen protein.RGLIP-2 is a protein of 248 amino acids with significant homology with transducin protein.Virus-Induced Gene Silencing(VIGS)of the two genes results in a partial and complete suppression of Avr4induced HR,which indicates that both genes are involved in hypersensitive response.

  14. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum.

    Science.gov (United States)

    Jin, Lin; Zhang, Hui; Chen, Liwen; Yang, Chen; Yang, Sheng; Jiang, Weihong; Gu, Yang

    2014-03-10

    D-Xylose utilization by Clostridium acetobutylicum, an important industrial microorganism used in ABE (Acetone, Butanol and Ethanol) production, has attracted increasing interests. We demonstrated previously that co-overexpression of genes, encoding d-xylose symporter, D-xylose isomerase and xylulokinase, improved D-xylose utilization by C. acetobutylicum (Xiao, H., et al., 2011. Applied and Environmental Microbiology 77, 7886-7895). Here, we further identified genes involved in PPP (Pentose Phosphate Pathway) in C. acetobutylicum and evaluated their contribution to d-xylose utilization. Among all the candidate genes, the CAC1347, CAC1348, CAC1730 and CAC2880 were validated to encode genes tal, tkl, rpe and rpi, four key genes involved in PPP, respectively. The following combined overexpression of these genes conferred a significantly improved xylose-utilizing ability to the recombinant strain, reaching a solvent titer 42% higher than that of the wild-type strain. This finding offers a useful strategy to optimize d-xylose utilization by C. acetobutylicum.

  15. Identification of genes regulated by Wnt/β-catenin pathway and involved in apoptosis via microarray analysis

    International Nuclear Information System (INIS)

    Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide microarrays, a series of differential expression of genes was identified and further confirmed by RT-PCR. Stably integrated inducible RNAi vector could effectively suppress β-catenin expression and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant alteration in their expression level after the knockdown of β-catenin. Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed or indirected target genes may represent excellent targets to limit tumor growth

  16. Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874▿

    Science.gov (United States)

    Throne-Holst, Mimmi; Wentzel, Alexander; Ellingsen, Trond E.; Kotlar, Hans-Kristian; Zotchev, Sergey B.

    2007-01-01

    Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30°C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains. PMID:17400787

  17. Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems.

    Directory of Open Access Journals (Sweden)

    Josep M Mercader

    Full Text Available Type 2 Diabetes (T2D is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549, including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5. This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases.

  18. Prevalence of chromosomal rearrangements involving non-ETS genes in prostate cancer

    DEFF Research Database (Denmark)

    Kluth, Martina; Galal, Rami; Krohn, Antje;

    2015-01-01

    Prostate cancer is characterized by structural rearrangements, most frequently including translocations between androgen-dependent genes and members of the ETS family of transcription factor like TMPRSS2:ERG. In a recent whole genome sequencing study we identified 140 gene fusions that were...

  19. The gntP Gene of Escherichia coli Involved in Gluconate Uptake

    DEFF Research Database (Denmark)

    Klemm, Per; Tong, S.; Nielsen, Henrik;

    1996-01-01

    The gntP gene, located between the fim and uxu loci in Escherichia coli K-12, has been cloned and characterized. Nucleotide sequencing of a region encompassing the gntP gene revealed an open reading frame of 447 codons with significant homology to the Bacillus subtilis gluconate permease. Northern...

  20. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria.

    KAUST Repository

    Weinitschke, Sonja

    2010-01-01

    Ubiquitous isethionate (2-hydroxyethanesulfonate) is dissimilated by diverse bacteria. Growth of Cupriavidus necator H16 with isethionate was observed, as was inducible membrane-bound isethionate dehydrogenase (IseJ) and inducible transcription of the genes predicted to encode IseJ and a transporter (IseU). Biodiversity in isethionate transport genes was observed and investigated by transcription experiments.

  1. Characterization of R genes involved in resistance to Cherry leaf roll virus in paradox hybrids

    Science.gov (United States)

    A single dominant ‘R’ gene (clrvR), in black walnuts (Juglans hindsii) or ‘paradox’ hybrids (J. hindsii x J. regia) confers resistance to Cherry leaf roll virus (CLRV), the causal agent of blackline disease. The identification and cloning of the ‘R’ gene is expected to aid the walnut breeding progra...

  2. Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens.

    Science.gov (United States)

    Carpenter, Margaret A; Ridgway, Hayley J; Stringer, Alison M; Hay, Amanda J; Stewart, Alison

    2008-04-01

    A monooxygenase gene was isolated from a biocontrol strain of Trichoderma hamatum and its role in biocontrol was investigated. The gene had homologues in other fungal genomes, but was not closely related to any fully characterised gene. The T. hamatum monooxygenase gene was expressed specifically in response to the plant pathogens Sclerotinia sclerotiorum, Sclerotinia minor and Sclerotium cepivorum, but not in response to Botrytis cinerea or T. hamatum. Expression of the gene did not occur until contact had been made between the two fungal species. Homologues in T. atroviride and T. virens showed similar expression patterns. Expression of the gene in response to S. sclerotiorum was influenced by pH, with a peak of expression at pH 4, and was subject to nitrogen catabolite repression. Disruption of the monooxygenase gene did not affect the growth or morphology of T. hamatum, but caused a decrease in its ability to inhibit the growth and sclerotial production of S. sclerotiorum. The monooxygenase gene had a role in the antagonistic activity of Trichoderma species against specific fungal plant pathogens and is therefore a potentially important factor in biocontrol by Trichoderma species. PMID:18231791

  3. Jarid1b targets genes regulating development and is involved in neural differentiation

    DEFF Research Database (Denmark)

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina;

    2011-01-01

    to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation...

  4. Redefining the expressed prototype SICAvar gene involved in Plasmodium knowlesi antigenic variation

    Directory of Open Access Journals (Sweden)

    Galinski Mary R

    2009-07-01

    Full Text Available Abstract Background The SICAvar gene family, expressed at the surface of infected erythrocytes, is critical for antigenic variation in Plasmodium knowlesi. When this family was discovered, a prototypic SICAvar gene was characterized and defined by a 10-exon structure. The predicted 205-kDa protein lacked a convincing signal peptide, but included a series of variable cysteine-rich modules, a transmembrane domain encoded by the penultimate exon, and a cytoplasmic domain encoded by the final highly conserved exon. The 205 SICAvar gene and its family with up to 108 possible family members, was identified prior to the sequencing of the P. knowlesi genome. However, in the published P. knowlesi database this gene remains disjointed in five fragments. This study addresses a number of structural and functional questions that are critical for understanding SICAvar gene expression. Methods Database mining, bioinformatics, and traditional genomic and post-genomic experimental methods including proteomic technologies are used here to confirm the genomic context and expressed structure of the prototype 205 SICAvar gene. Results This study reveals that the 205 SICAvar gene reported previously to have a 10-exon expressed gene structure has, in fact, 12 exons, with an unusually large and repeat-laden intron separating two newly defined upstream exons and the bona fide 5'UTR from the remainder of the gene sequence. The initial exon encodes a PEXEL motif, which may function to localize the SICA protein in the infected erythrocyte membrane. This newly defined start of the 205 SICAvar sequence is positioned on chromosome 5, over 340 kb upstream from the rest of the telomerically positioned SICAvar gene sequence in the published genome assembly. This study, however, verifies the continuity of these sequences, a 9.5 kb transcript, and provides evidence that the 205 SICAvar gene is located centrally on chromosome 5. Conclusion The prototype 205 SICAvar gene has been

  5. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole;

    2009-01-01

    the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1......Ovarian cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth, whereas others are causal for metastasis and recurrence. By using publicly available data sets, we have investigated......-4 consecutive cytogenetic bands identified regions with increased expression for chromosome 5q12-14, and a very large region of chromosome 7 with the strongest signal at 7p15-13 among tumors from short-living patients. Reduced gene expression was identified at 4q26-32, 6p12-q15, 9p21-q32, and 11p14-11. We...

  6. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr

    DEFF Research Database (Denmark)

    Kehrenberg, Corinna; Aarestrup, Frank Møller; Schwarz, Stefan

    2007-01-01

    exporter gene lsa(B) and the gene cfr for combined resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics bracketed by IS21-558 insertion sequences orientated in the same direction. A 6-bp target site duplication was detected at the integration site within...... was detected on the ca. 43-kb plasmid pSCFS6 in S. warneri and S. simulans isolates. Sequence analysis of a 22,010-bp segment revealed that the new Tn558 variant harbored an additional resistance gene region integrated into the tnpC reading frame. This resistance gene region consisted of the clindamycin......During a study of florfenicol-resistant porcine staphylococci from Denmark, the genes cfr and fexA were detected in the chromosomal DNA or on plasmids of Staphylococcus hyicus, Staphylococcus warneri, and Staphylococcus simulans. A novel variant of the phenicol resistance transposon Tn558...

  7. H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

    Institute of Scientific and Technical Information of China (English)

    Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

    2009-01-01

    Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H2O2, but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H2O2-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO2 for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO2 or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H2O2 signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.

  8. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Yost, Christopher K; Rath, Amber M; Noel, Tanya C; Hynes, Michael F

    2006-07-01

    A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

  9. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition

    Directory of Open Access Journals (Sweden)

    Elomaa Paula

    2010-06-01

    Full Text Available Abstract Background The flowering process in plants proceeds through the induction of an inflorescence meristem triggered by several pathways. Many of the genes associated with both the flowering process and floral architecture encode transcription factors of the MADS domain family. Gerbera, a member of the sunflower family, Asteraceae, bears compressed inflorescence heads (capitula with three different flower types characterized by differences in both sexuality and floral symmetry. To understand how such a complex inflorescence structure is achieved at the molecular level, we have characterized the array of Gerbera MADS box genes. The high number of SQUAMOSA-like genes in Gerbera compared to other model species raised the question as to whether they may relate to Gerbera's complex inflorescence structure and whether or not a homeotic A function is present. Results In this paper we describe six Gerbera genes related to the SQUAMOSA/APETALA1/FRUITFULL genes of snapdragon and Arabidopsis. Based on phylogenetic analysis of the entire gene lineage, our data indicates that GSQUA1 and GSQUA3 are members of the SQUA/AP1 clade, while GSQUA2, GSQUA4, GSQUA5 and GSQUA6 are co-orthologs of the Arabidopsis FUL gene. GSQUA1/GSQUA3 and GSQUA4/GSQUA5/GSQUA6, respectively, represent several gene duplication events unknown in the model systems that may be specific to either Gerbera or Asteraceae. GSQUA genes showed specific expression profiles. GSQUA1, GSQUA2, and GSQUA5 were inflorescence abundant, while GSQUA3, GSQUA4, and GSQUA6 expression was also detected in vegetative organs. Overexpression of GSQUA2 in Gerbera led to accelerated flowering, dwarfism and vegetative abnormalities, all new and specific phenomena observed in transgenic Gerbera plants with modified MADS box gene expression. Conclusions Based on expression patterns, none of the Gerbera SQUA-like genes are likely to control flower organ identity in the sense of the floral A function. However, our

  10. Identification of specific genes and pathways involved in NSAIDs-induced apoptosis of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Richard H Huang; Jianyuan Chai; Andrzej S Tarnawski

    2006-01-01

    AIM: To study whether indomethacin (IND), a nonselective cyclooxygenase (COX) inhibitor or NS-398(NS), a COX-2-selective inhibitor, in duces apoptosis inhuman colon cancer cells and which apoptosis-related genes and pathways are involved.METHODS: Human colon cancer Caco-2 cells were treated with either: placebo, IND (0.05-0.5 mmol/L)or NS (0.01-0.2 mmol/L) for 1, 5 and 18 h. We then studied: (1) Cell death by the TUNEL method, (2) mRNA expression of 96 apoptosis-related genes using DNA microarray, (3) expression of selected apoptosis related proteins by Western blotting.RESULTS: Both IND and NS induced apoptosis in 30%-50% of Caco-2 cells in a dose dependent manner.IND (0.1 mmol/L for 1 h) significantly up-regulated proapoptotic genes in four families: (1) TNF receptor and ligand, (2) Caspase, (3) Bcl-2 and (4) Caspase recruiting domain. NS treatment up-regulated similar pro-apoptotic genes as IND. In addition, IND also down-regulated antiapoptotic genes of the IAP family.CONCLUSION: (1) Both non-selective and COX-2-selective NSAIDs induce apoptosis in colon cancer cell sin a dose dependent manner. (2) Both NSAIDs induce apoptosis by activating two main apoptotic pathways:the death receptor pathway (involving TNF-R) and the mitochondrial pathway. (3) IND induces apoptosis by up-regulating pro-apoptotic genes and down-regulating anti-apoptotic genes, while NS only up-regulates proapoptotic genes. (4) Induction of apoptosis in colon cancer cells by NSAIDs may explain in part, their inhibitory action on colon cancer growth.

  11. [Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata].

    Science.gov (United States)

    Dmytruk, K V; Abbas, C A; Voronovsky, A Y; Kshanovska, B V; Sybirna, K A; Sybirny, A A

    2004-01-01

    The riboflavin overproducing mutants of the flavinogenic yeast Candida famata isolated by conventional selection methods are used for the industrial production of vitamin B2. Recently, a transformation system was developed for C. famata using the leu2 mutant as a recipient strain and Saccharomyces cerevislae LEU2 gene as a selective marker. In this paper the cloning of C. famata genes for riboflavin synthesis on the basis of developed transformation system for this yeast species is described. Riboflavin autotrophic mutants were isolated from a previously selected C. famata leu2 strain. C. famata genomic DNA library was constructed and used for cloning of the corresponding structural genes for riboflavin synthesis by complementation of the growth defects on a medium without leucine and riboflavin. As a result, the DNA fragments harboring genes RIB1, RIB2, RIB5, RIB6 and RIB7 encoding GTP cyclohydrolase, reductase, dimethylribityllumazine synthase, dihydroxybutanone phosphate synthase and riboflavin synthase, were isolated and subsequently subcloned to the smallest possible fragments. The plasmids with these genes successfully complemented riboflavin auxotrophies of the corresponding mutants of another flavinogenic yeast Pichia guilliermondii. This suggested that C. famata structural genes for riboflavin synthesis and not some of the supressor genes were cloned. PMID:15909421

  12. Novel MLPA procedure using self-designed probes allows comprehensive analysis for CNVs of the genes involved in Hirschsprung disease

    Directory of Open Access Journals (Sweden)

    Antiñolo Guillermo

    2010-05-01

    Full Text Available Abstract Background Hirschsprung disease is characterized by the absence of intramural ganglion cells in the enteric plexuses, due to a fail during enteric nervous system formation. Hirschsprung has a complex genetic aetiology and mutations in several genes have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. In this study, we have looked for CNVs in some of the genes related to Hirschsprung (EDNRB, GFRA1, NRTN and PHOX2B using the Multiple Ligation-dependent Probe Amplification (MLPA approach. Methods CNVs screening was performed in 208 HSCR patients using a self-designed set of MLPA probes, covering the coding region of those genes. Results A deletion comprising the first 4 exons in GFRA1 gene was detected in 2 sporadic HSCR patients and in silico approaches have shown that the critical translation initiation signal in the mutant gene was abolished. In this study, we have been able to validate the reliability of this technique for CNVs screening in HSCR. Conclusions The implemented MLPA based technique presented here allows CNV analysis of genes involved in HSCR that have not been not previously evaluated. Our results indicate that CNVs could be implicated in the pathogenesis of HSCR, although they seem to be an uncommon molecular cause of HSCR.

  13. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  14. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa.

    Science.gov (United States)

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage. PMID:26904064

  15. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  16. Indexing Effects of Copy Number Variation on Genes Involved in Developmental Delay.

    Science.gov (United States)

    Uddin, Mohammed; Pellecchia, Giovanna; Thiruvahindrapuram, Bhooma; D'Abate, Lia; Merico, Daniele; Chan, Ada; Zarrei, Mehdi; Tammimies, Kristiina; Walker, Susan; Gazzellone, Matthew J; Nalpathamkalam, Thomas; Yuen, Ryan K C; Devriendt, Koenraad; Mathonnet, Géraldine; Lemyre, Emmanuelle; Nizard, Sonia; Shago, Mary; Joseph-George, Ann M; Noor, Abdul; Carter, Melissa T; Yoon, Grace; Kannu, Peter; Tihy, Frédérique; Thorland, Erik C; Marshall, Christian R; Buchanan, Janet A; Speevak, Marsha; Stavropoulos, Dimitri J; Scherer, Stephen W

    2016-01-01

    A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10(-15)) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10(-50), OR = 2.11) and adult (P < 6.03 × 10(-18), OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs. PMID:27363808

  17. Identification of a Gene Involved in Assembly of Actinomyces naeslundii T14V Type 2 Fimbriae

    OpenAIRE

    Yeung, Maria K.; Donkersloot, Jacob A.; Cisar, John O.; Ragsdale, Pamela A.

    1998-01-01

    The nucleotide sequence of the Actinomyces naeslundii T14V type 2 fimbrial structural subunit gene, fimA, and the 3′ flanking DNA region was determined. The fimA gene encoded a 535-amino-acid precursor subunit protein (FimA) which included both N-terminal leader and C-terminal cell wall sorting sequences. A second gene, designated orf365, that encoded a 365-amino-acid protein which contained a putative transmembrane segment was identified immediately 3′ to fimA. Mutants in which either fimA o...

  18. Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly

    DEFF Research Database (Denmark)

    Whiteman, Noah K.; Gloss, Andrew D.; Sackton, Timothy B.;

    2012-01-01

    transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the......Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the...... evolution of novel genes and the co-option of conserved stress-related genes....

  19. Functional Analysis of the Two Brassica AP3 Genes Involved in Apetalous and Stamen Carpelloid Phenotypes

    OpenAIRE

    Zhang, Yanfeng; Wang, Xuefang; Zhang, Wenxue; Yu, Fei; Tian, Jianhua; Li, Dianrong; Guo, Aiguang

    2011-01-01

    The Arabidopsis homeotic genes APETALA3 (AP3) and PISTILLATA (PI) are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC) mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8...

  20. Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis.

    OpenAIRE

    Kooistra, J; Venema, G

    1991-01-01

    The genes encoding the subunits of the Bacillus subtilis ATP-dependent nuclease (add genes) have been cloned. The genes were located on an 8.8-kb SalI-SmaI chromosomal DNA fragment. Transformants of a recBCD deletion mutant of Escherichia coli with plasmid pGV1 carrying this DNA fragment showed ATP-dependent nuclease activity. Three open reading frames were identified on the 8.8-kb SalI-SmaI fragment, which could encode three proteins with molecular masses of 135 (AddB protein), 141 (AddA pro...

  1. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    International Nuclear Information System (INIS)

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  2. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation

    Directory of Open Access Journals (Sweden)

    Yuanping Lu

    2015-12-01

    Full Text Available Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V

  3. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2014-11-01

    Full Text Available The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested, which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.

  4. An unbiased approach to identify genes involved in development in a turtle with temperature-dependent sex determination

    Directory of Open Access Journals (Sweden)

    Chojnowski Jena L

    2012-07-01

    Full Text Available Abstract Background Many reptiles exhibit temperature-dependent sex determination (TSD. The initial cue in TSD is incubation temperature, unlike genotypic sex determination (GSD where it is determined by the presence of specific alleles (or genetic loci. We used patterns of gene expression to identify candidates for genes with a role in TSD and other developmental processes without making a priori assumptions about the identity of these genes (ortholog-based approach. We identified genes with sexually dimorphic mRNA accumulation during the temperature sensitive period of development in the Red-eared slider turtle (Trachemys scripta, a turtle with TSD. Genes with differential mRNA accumulation in response to estrogen (estradiol-17β; E2 exposure and developmental stages were also identified. Results Sequencing 767 clones from three suppression-subtractive hybridization libraries yielded a total of 581 unique sequences. Screening a macroarray with a subset of those sequences revealed a total of 26 genes that exhibited differential mRNA accumulation: 16 female biased and 10 male biased. Additional analyses revealed that C16ORF62 (an unknown gene and MALAT1 (a long noncoding RNA exhibited increased mRNA accumulation at the male producing temperature relative to the female producing temperature during embryonic sexual development. Finally, we identified four genes (C16ORF62, CCT3, MMP2, and NFIB that exhibited a stage effect and five genes (C16ORF62, CCT3, MMP2, NFIB and NOTCH2 showed a response to E2 exposure. Conclusions Here we report a survey of genes identified using patterns of mRNA accumulation during embryonic development in a turtle with TSD. Many previous studies have focused on examining the turtle orthologs of genes involved in mammalian development. Although valuable, the limitations of this approach are exemplified by our identification of two genes (MALAT1 and C16ORF62 that are sexually dimorphic during embryonic development. MALAT1 is

  5. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Science.gov (United States)

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  6. Cloning and characterization of a glycosyltransferase gene involved in the biosynthesis of anthracycline antibiotic beta-rhodomycin from Streptomyces violaceus.

    Science.gov (United States)

    Miyamoto, Yuji; Johdo, Osamu; Nagamatsu, Yasunori; Yoshimoto, Akihiro

    2002-01-10

    A glycosyltransferase gene, rhoG, involved in the biosynthesis of the anthracycline antibiotic beta-rhodomycin was isolated as a 4.1-kb DNA fragment containing rhoG and its flanking region from Streptomyces violaceus by degenerate and inverse PCR. Sequencing analysis showed that rhoG was located in a gene cluster involved in the biosynthesis of the constitutive deoxysugar of beta-rhodomycin. The function of rhoG was verified by gene disruption, which was generated by replacing the internal 0.9-kb region of S. violaceus chromosome with a fragment including the SacI-blunted region. The rhoG disruption resulted in complete loss of beta-rhodomycin productivity, along with the accumulation of a non-glycosyl intermediate epsilon-rhodomycinone. In addition, the complementation test demonstrated that rhoG restored beta-rhodomycin production in this gene disruptant. These results indicated that rhoG is the glycosyltransferase gene responsible for the glycosylation of epsilon-rhodomycinone in beta-rhodomycin biosynthesis. PMID:11814657

  7. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  8. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Upstream regulatory region and flanking DNA of yellow gene wereisolated and cloned from a Drosophila genomic library. A vector containing yellow gene and regulatory elements was constructed using the recombinant DNA technique. Then this vector was integrated into Drosophila genome by genetic transformation. Using both FLP/FRT and Cre/LoxP site-specific recombination systems, two new yellow alleles were created at the same position in the genome of transgenic flies. Results from genetic and molecular analysis indicated that transcriptional enhancers regulate the developmental expression of the transgene. Furthermore, interactions between new-created yellow alleles were observed. Such interactions can influence markedly the expression of yellow gene during development. This effect may also be a form of enhancer-mediated gene expression.

  9. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  10. Transient receptor potential channel A1 involved in calcitonin gene-related peptide release in neurons

    Institute of Scientific and Technical Information of China (English)

    Nobumasa Ushio; Yi Dai; Shenglan Wang; Tetsuo Fukuoka; Koichi Noguchi

    2013-01-01

    Transient receptor potential channel A1 is one of the important transducers of noxious stimuli in the primary afferents, which may contribute to generation of neurogenic inflammation and hyperalgesia. The present study was designed to investigate if activation of transient receptor potential channel A1 may induce calcitonin gene-related peptide release from the primary afferent neurons. We found that application of al yl isothiocyanate, a transient receptor potential channel A1 activator, caused calcitonin gene-related peptide release from the cultured rat dorsal root ganglion neurons. Knock-down of transient receptor potential channel A1 with an antisense oligodeoxynucleotide prevented calcitonin gene-related peptide release by al yl isothiocyanate application in cultured dorsal root ganglion neurons. Thus, we concluded that transient receptor potential channel A1 activation caused calcitonin gene-related peptide release in sensory neurons.

  11. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening.

    Science.gov (United States)

    Fan, Zhong-Qi; Kuang, Jian-Fei; Fu, Chang-Chun; Shan, Wei; Han, Yan-Chao; Xiao, Yun-Yi; Ye, Yu-Jie; Lu, Wang-Jin; Lakshmanan, Prakash; Duan, Xue-Wu; Chen, Jian-Ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  12. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening

    Science.gov (United States)

    Fan, Zhong-qi; Kuang, Jian-fei; Fu, Chang-chun; Shan, Wei; Han, Yan-chao; Xiao, Yun-yi; Ye, Yu-jie; Lu, Wang-jin; Lakshmanan, Prakash; Duan, Xue-wu; Chen, Jian-ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  13. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1)

    OpenAIRE

    Christopher Terranova; Narla, Sridhar T.; Yu-Wei Lee; Jonathan Bard; Abhirath Parikh; Stachowiak, Ewa K.; Tzanakakis, Emmanuel S.; Buck, Michael J; Barbara Birkaya; Stachowiak, Michal K.

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partn...

  14. Chromosomal translocation involving the beta T cell receptor gene in acute leukemia

    OpenAIRE

    1988-01-01

    DNA spanning a t(7;19) chromosomal translocation breakpoint was isolated from the human T cell line SUP-T7 established from an acute lymphoblastic leukemia. Nucleotide sequence analysis showed that the point of crossover on chromosome 7 occurred immediately adjacent to joining segment J beta 1.1 within the TCR-beta gene, suggesting that this translocation resulted from an error in TCR gene rearrangement. On chromosome 19, the translocation occurred within a previously uncharacterized transcri...

  15. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  16. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata.

    OpenAIRE

    N. Kimura; Tsuge,T.

    1993-01-01

    The filamentous fungus Alternaria alternata produces melanin, a black pigment, from acetate via 1,8-dihydroxynaphthalene. To isolate a fungal gene required for melanin biosynthesis, we transformed an A. alternata Brm1- (light brown) mutant with the DNA of a wild-type strain genomic library constructed by use of a cosmid carrying the hygromycin B phosphotransferase gene. When hygromycin B-resistant transformants were screened for melanin production, 1 of 1,363 transformants appeared to regain ...

  17. Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis

    OpenAIRE

    Zhang, Yong; Cheng, Yan; Guo, Jiahui; Yang, Ennian; Liu, Cheng; Zheng, Xuelian; Deng, Kejun; Zhou, Jianping

    2014-01-01

    Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response t...

  18. Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis

    OpenAIRE

    Yong Zhang; Yan Cheng; Jiahui Guo; Ennian Yang; Cheng Liu; Xuelian Zheng; Kejun Deng; Jianping Zhou

    2014-01-01

    Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response ...

  19. ESTROGEN REGULATION OF LRP16 GENE EXPRESSION INVOLVES SP1 TRANSCRIPTION FACTOR

    Institute of Scientific and Technical Information of China (English)

    SI Yi-ling; HAN Wei-dong; ZhAO Ya-li; LI Qi; HAO Hao-jie; SONG Hai-jing; MU Yi-ming; YU Li

    2006-01-01

    Objective: To investigate the role of Sp1 as transcription factor required for transactivation of LRP16 gene by estrogen. Methods: Specific antibodies of Erα and Sp1 were used to precipitate the target DNA/protein complexes of MCF-7 cells at different time points after estrogen treatment (Chromatin immunoprecipitation assay), the promoter region of LRP16 gene was amplified by semi-nested polymerase chain reaction (snPCR). Small interfering RNA (siRNA) against Sp1 was transiently cotransfected with LRP16-Luc (containing the region from -213bp to -126bp of LRP16 gene promoter) in MCF-7 cells. The luciferase activities were measured by dual-luciferase assay. Results: The results of chromatin immunoprecipitation assay showed that Sp1 protein directly bound to the -213bp to -126bp region of LRP16 gene, and Erα could enhance the affinity of Sp1 to DNA. Sp1-siRNA specifically decreased the transactivation of LRP16-Luc by 17β-estradiol to 70-80%. Conclusion: The estrogen-induced transactivation of the human LRP16 gene was mediated by Sp1 protein. Moreover, the interactions of ER(/Sp1 functional complex with LRP16 promoter DNA were required for enhanced LRP16 gene transactivation.

  20. Cancer specificity of promoters of the genes involved in cell proliferation control.

    Science.gov (United States)

    Kashkin, K N; Chernov, I P; Stukacheva, E A; Kopantzev, E P; Monastyrskaya, G S; Uspenskaya, N Ya; Sverdlov, E D

    2013-07-01

    Core promoters with adjacent regions of the human genes CDC6, POLD1, CKS1B, MCM2, and PLK1 were cloned into a pGL3 vector in front of the Photinus pyrails gene Luc in order to study the tumor specificity of the promoters. The cloned promoters were compared in their ability to direct luciferase expression in different human cancer cells and in normal fibroblasts. The cancer-specific promoter BIRC5 and non-specific CMV immediately early gene promoter were used for comparison. All cloned promoters were shown to be substantially more active in cancer cells than in fibroblasts, while the PLK1 promoter was the most cancer-specific and promising one. The specificity of the promoters to cancer cells descended in the series PLK1, CKS1B, POLD1, MCM2, and CDC6. The bidirectional activity of the cloned CKS1B promoter was demonstrated. It apparently directs the expression of the SHC1 gene, which is located in a "head-to-head" position to the CKS1B gene in the human genome. This feature should be taken into account in future use of the CKS1B promoter. The cloned promoters may be used in artificial genetic constructions for cancer gene therapy.

  1. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  2. Transcriptome Profiling of Louisiana iris Root and Identification of Genes Involved in Lead-Stress Response

    Directory of Open Access Journals (Sweden)

    Songqing Tian

    2015-11-01

    Full Text Available Louisiana iris is tolerant to and accumulates the heavy metal lead (Pb. However, there is limited knowledge of the molecular mechanisms behind this feature. We describe the transcriptome of Louisiana iris using Illumina sequencing technology. The root transcriptome of Louisiana iris under control and Pb-stress conditions was sequenced. Overall, 525,498 transcripts representing 313,958 unigenes were assembled using the clean raw reads. Among them, 43,015 unigenes were annotated and their functions classified using the euKaryotic Orthologous Groups (KOG database. They were divided into 25 molecular families. In the Gene Ontology (GO database, 50,174 unigenes were categorized into three GO trees (molecular function, cellular component and biological process. After analysis of differentially expressed genes, some Pb-stress-related genes were selected, including biosynthesis genes of chelating compounds, metal transporters, transcription factors and antioxidant-related genes. This study not only lays a foundation for further studies on differential genes under Pb stress, but also facilitates the molecular breeding of Louisiana iris.

  3. Curcumin induces changes in expression of genes involved in cholesterol homeostasis.

    Science.gov (United States)

    Peschel, Dieter; Koerting, Ramona; Nass, Norbert

    2007-02-01

    Curcuminoids, the yellow pigments of curcuma, exhibit anticarcinogenic, antioxidative and hypocholesterolemic activities. To understand the molecular basis for the hypocholesterolemic effects, we examined the effects of curcumin on hepatic gene expression, using the human hepatoma cell line HepG2 as a model system. Curcumin treatment caused an up to sevenfold, concentration-dependent increase in LDL-receptor mRNA, whereas mRNAs of the genes encoding the sterol biosynthetic enzymes HMG CoA reductase and farnesyl diphosphate synthase were only slightly increased at high curcumin concentrations where cell viability was reduced. Expression of the regulatory SREBP genes was moderately increased, whereas mRNAs of the PPARalpha target genes CD36/fatty acid translocase and fatty acid binding protein 1 were down-regulated. LXRalpha expression and accumulation of mRNA of the LXRalpha target gene ABCg1 were increased at low curcumin concentrations. Although curcumin strongly inhibited alkaline phosphatase activity, an activation of a retinoic acid response element reporter employing secreted alkaline phosphatase was observed. These changes in gene expression are consistent with the proposed hypocholesterolemic effect of curcumin.

  4. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis.

    Science.gov (United States)

    Voronovsky, Andriy Y; Abbas, Charles A; Dmytruk, Kostyantyn V; Ishchuk, Olena P; Kshanovska, Barbara V; Sybirna, Kateryna A; Gaillardin, Claude; Sibirny, Andriy A

    2004-11-01

    Previously cloned Candida famata (Debaryomyces hansenii) strain VKM Y-9 genomic DNA fragments containing genes RIB1 (codes for GTP cyclohydrolase II), RIB2 (encodes specific reductase), RIB5 (codes for dimethylribityllumazine synthase), RIB6 (encodes dihydroxybutanone phosphate synthase) and RIB7 (codes for riboflavin synthase) were sequenced. The derived amino acid sequences of C. famata RIB genes showed extensive homology to the corresponding sequences of riboflavin synthesis enzymes of other yeast species. The highest identity was observed to homologues of D. hansenii CBS767, as C. famata is the anamorph of this hemiascomycetous yeast. The D. hansenii CBS767 RIB3 gene encoding specific deaminase was cloned. This gene successfully complemented riboflavin auxotrophy of the rib3 mutant of flavinogenic yeast, Pichia guilliermondii. Putative iron-responsive elements (potential sites for binding of the transcription factors Fep1p or Aft1p and Aft2p) were found in the upstream regions of some C. famata and D. hansenii RIB genes. The sequences of C. famata RIB genes have been submitted to the EMBL data library under Accession Nos AJ810169-AJ810173. PMID:15543522

  5. Identification of genes involved in breast cancer and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Apostolou P

    2015-07-01

    Full Text Available Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs, which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarray

  6. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis.

    Science.gov (United States)

    Voronovsky, Andriy Y; Abbas, Charles A; Dmytruk, Kostyantyn V; Ishchuk, Olena P; Kshanovska, Barbara V; Sybirna, Kateryna A; Gaillardin, Claude; Sibirny, Andriy A

    2004-11-01

    Previously cloned Candida famata (Debaryomyces hansenii) strain VKM Y-9 genomic DNA fragments containing genes RIB1 (codes for GTP cyclohydrolase II), RIB2 (encodes specific reductase), RIB5 (codes for dimethylribityllumazine synthase), RIB6 (encodes dihydroxybutanone phosphate synthase) and RIB7 (codes for riboflavin synthase) were sequenced. The derived amino acid sequences of C. famata RIB genes showed extensive homology to the corresponding sequences of riboflavin synthesis enzymes of other yeast species. The highest identity was observed to homologues of D. hansenii CBS767, as C. famata is the anamorph of this hemiascomycetous yeast. The D. hansenii CBS767 RIB3 gene encoding specific deaminase was cloned. This gene successfully complemented riboflavin auxotrophy of the rib3 mutant of flavinogenic yeast, Pichia guilliermondii. Putative iron-responsive elements (potential sites for binding of the transcription factors Fep1p or Aft1p and Aft2p) were found in the upstream regions of some C. famata and D. hansenii RIB genes. The sequences of C. famata RIB genes have been submitted to the EMBL data library under Accession Nos AJ810169-AJ810173.

  7. IDENTIFICATION, ISOLATION AND AMPLIFICATION OF BRCA1 GENE INVOLVED IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Karaneh Eftekhari

    2014-02-01

    Full Text Available Cancer is a disease that begins in the cells ofthe body which is characterized by uncontrolled, uncoordinated and undesirable cell division. If a cell accumulates critical mutations in five or six of the proto-oncogenes, tumour suppressor genes and DNA repair genes are likely to result in a fully malignant cell, capable of forming a tumour. In this work we described the isolation and amplification of the BRCA1 gene. Primers were designed and synthesised later used to amplify the BRCA1 gene. The total new workflow includes all steps from purified DNA to data analysis, and includes PCR for all amplicons covering the gene, PCR cleanup, cycle sequencing, electrophoresis, and data analysis. To simplify workflows and decrease the time-to-result, we focused on the method “one sample, one assay” approach. The success of this workflow was the 24-well plate design, which contained prespotted PCR primers covering the gene and also included multiplex nontemplate controls. The workflow was developed using a Genetic Analyzer and bands were observed.

  8. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae).

    Science.gov (United States)

    Li, Chun-xiao; Guo, Xiao-xia; Zhang, Ying-mei; Dong, Yan-de; Xing, Dan; Yan, Ting; Wang, Gang; Zhang, Heng-duan; Zhao, Tong-yan

    2016-05-01

    Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes.

  9. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae).

    Science.gov (United States)

    Li, Chun-xiao; Guo, Xiao-xia; Zhang, Ying-mei; Dong, Yan-de; Xing, Dan; Yan, Ting; Wang, Gang; Zhang, Heng-duan; Zhao, Tong-yan

    2016-05-01

    Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes. PMID:26802491

  10. Transcriptome analysis of skeletal muscle tissue to identify genes involved in pre-slaughter stress response in pigs

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2010-01-01

    Full Text Available The knowledge of genes and molecular processes controlling stress reactions and involved in the genetic system determining resistance to stress in pigs could be important for the improvement of meat quality. This research aimed to compare the expression profiles of skeletal muscle between physically stressed and not stressed pigs of different breeds immediately before slaughter. DNA microarray analysis showed that different functional categories of genes are up-regulated in stressed compared to not stressed pigs and relevant differences among breeds were found.

  11. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  12. Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis.

    Directory of Open Access Journals (Sweden)

    Qinghai Hu

    Full Text Available Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%-98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to

  13. Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer.

    Directory of Open Access Journals (Sweden)

    Mikhail Shugay

    Full Text Available Reciprocal chromosomal translocations (RCTs leading to the formation of fusion genes are important drivers of hematological cancers. Although the general requirements for breakage and fusion are fairly well understood, quantitative support for a general mechanism of RCT formation is still lacking. The aim of this paper is to analyze available high-throughput datasets with computational and robust statistical methods, in order to identify genomic hallmarks of translocation partner genes (TPGs. Our results show that fusion genes are generally overexpressed due to increased promoter activity of 5' TPGs and to more stable 3'-UTR regions of 3' TPGs. Furthermore, expression profiling of 5' TPGs and of interaction partners of 3' TPGs indicates that these features can help to explain tissue specificity of hematological translocations. Analysis of protein domains retained in fusion proteins shows that the co-occurrence of specific domain combinations is non-random and that distinct functional classes of fusion proteins tend to be associated with different components of the gene fusion network. This indicates that the configuration of fusion proteins plays an important role in determining which 5' and 3' TPGs will combine in specific fusion genes. It is generally accepted that chromosomal proximity in the nucleus can explain the specific pairing of 5' and 3' TPGS and the recurrence of hematological translocations. Using recently available data for chromosomal contact probabilities (Hi-C we show that TPGs are preferentially located in early replicated regions and occupy distinct clusters in the nucleus. However, our data suggest that, in general, nuclear position of TPGs in hematological cancers explains neither TPG pairing nor clinical frequency. Taken together, our results support a model in which genomic features related to regulation of expression and replication timing determine the set of candidate genes more likely to be translocated in

  14. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  15. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Alok Arun

    Full Text Available Real-time quantitative reverse transcription PCR (qRT-PCR is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae, two developmental stages (pupal and adult and two sexes (male and female, all of which were subjected to two food treatments (food stress and control feeding ad libitum. The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the

  16. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus.

    Science.gov (United States)

    Geng, Tuoyu; Guan, Xiaojing; Smith, Edward J

    2015-09-01

    Antibody response, an important trait in both agriculture and biomedicine, plays a part in protecting animals from infection. Dissecting molecular basis of antibody response may improve artificial selection for natural disease resistance in livestock and poultry. A number of genetic markers associated with antibody response have been identified in the chicken and mouse by linkage-based association studies, which only define genomic regions by genetic markers but do not pinpoint genes for antibody response. In contrast, global expression profiling has been applied to define the molecular bases of a variety of biological traits through identification of differentially expressed genes (DEGs). Here, we employed Affimetrix GeneChip Chicken Genome Arrays to identify differentially expressed genes for antibody response to sheep red blood cells (SRBC) using chickens challenged with and without SRBC or chickens with high and low anti-SRBC titers. The DEGs include those with known (i.e., MHC class I and IgH genes) or unknown function in antibody response. Classification test of these genes suggested that the response of the chicken to intravenous injection of SRBC involved multiple biological processes, including response to stress or other different stimuli, sugar, carbohydrate or protein binding, and cell or soluble fraction, in addition to antibody response. This preliminary study thus provides an insight into molecular basis of antibody response to SRBC in the chicken.

  17. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees.

    Science.gov (United States)

    Ueno, Hiroki; Urasaki, Naoya; Natsume, Satoshi; Yoshida, Kentaro; Tarora, Kazuhiko; Shudo, Ayano; Terauchi, Ryohei; Matsumura, Hideo

    2015-04-01

    The sex type of papaya (Carica papaya) is determined by the pair of sex chromosomes (XX, female; XY, male; and XY(h), hermaphrodite), in which there is a non-recombining genomic region in the Y and Y(h) chromosomes. This region is presumed to be involved in determination of males and hermaphrodites; it is designated as the male-specific region in the Y chromosome (MSY) and the hermaphrodite-specific region in the Y(h) chromosome (HSY). Here, we identified the genes determining male and hermaphrodite sex types by comparing MSY and HSY genomic sequences. In the MSY and HSY genomic regions, we identified 14,528 nucleotide substitutions and 965 short indels with a large gap and two highly diverged regions. In the predicted genes expressed in flower buds, we found no nucleotide differences leading to amino acid changes between the MSY and HSY. However, we found an HSY-specific transposon insertion in a gene (SVP like) showing a similarity to the Short Vegetative Phase (SVP) gene. Study of SVP-like transcripts revealed that the MSY allele encoded an intact protein, while the HSY allele encoded a truncated protein. Our findings demonstrated that the SVP-like gene is a candidate gene for male-hermaphrodite determination in papaya.

  18. 热带爪蟾bHLH转录因子鉴定与进化分析%Identification and evolutionary analysis of the Xenopus tropicalis bHLH transcription factors

    Institute of Scientific and Technical Information of China (English)

    刘武艺

    2012-01-01

    爪蟾是重要的生物医学模式动物.文章根据NCBI公布的热带爪蟾(Xenopus tropicalis)基因组数据,利用生物信息学方法提取和鉴定了爪蟾全基因组范围的碱性螺旋-环-螺旋(bHLH)基因信息,应用系统发生方法进行分类并做基因本体论(Gene Ontology,GO)功能富集分布分析,以期从整体上探讨爪蟾bHLH转录因子基因家族的分类及功能.结果表明,在热带爪蟾基因组数据库中发现了70个bHLH转录因子,其中69个可以分别归到6大组(A~F)的34个亚家族中,另一个为“孤儿因子”(Orphan)基因.GO富集分布统计发现有51个显著富集分布的GO注释语句,其中转录调控活性、转录调控、DNA结合、RNA代谢过程调控、DNA依赖的转录调控、转录和转录因子活性等出现频率很高,表明这些GO术语是爪蟾bHLH基因最常见的功能;许多bHLH转录因子在一些重要的发育或生理过程中发挥调控作用,如肌肉组织和器官(横纹肌、骨骼肌、眼部和咽部肌肉)的分化和发育、消化系统发育、咽部和感觉器官的发育、碱基和核苷及核酸的代谢调控、生物合成过程调控、DNA结合和蛋白质异聚化活性等.另外,还有一些重要信号通路(Signaling pathway)的GO术语显著地富集.文章还对Hes转录因子家族做了进化分析.这些结果为热带爪蟾bHLH基因的进一步研究打下了很好的基础.%Xenopus is an important model animal for biomedicine researches. In order to probe into the classification and function of the basic helix-loop-helix (bHLH) transcription factor family, we conducted a genome-wide survey and identified 70 bHLH transcription factors using the Xenopus tropicalis genome project data in the study. Among these transcription factors, 69 bHLH transcription factors were classified into 6 large groups composed of 34 sub-families and the remaining one was classified as 'orphan'. Results of Gene Ontology (GO) enrichment statistics showed

  19. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  20. The amrG1 gene is involved in the activation of acetate in Corynebacterium glutamicum

    Institute of Scientific and Technical Information of China (English)

    RUAN Hong; R. Gerstmeir; S. Schnicke; B.J. Eikmanns

    2005-01-01

    During growth of Corynebacterium glutamicum on acetate as its carbon and energy source, the expression of the pta-ack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genes amrG1 and amrG2 found in the deregulated transposon mutant C. glutamicum G25. The amrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C. glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain of amrG1 in the C. glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, the amrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of the amrG1 gene in C. glutamicum 13032 had the adverse regulatory effect. These results indicate that the amrG1 gene encodes a repressor or co-repressor of the pta-ack operon.

  1. Identification of eight genes that are potentially involved in tamoxifen sensitivity in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Qing JING; Liguo NEW; Jiahuai HAN

    2005-01-01

    Although the antiestrogen agent tamoxifen has long been used to treat women with hormone receptor positive invasive breast carcinoma, the mechanisms of its action and acquired resistance to tamoxifen during treatment are largely unknown. A number of studies have revealed that over-activation of some signaling pathways can cause tamoxifen resistance; however, very little information is available regarding the genes whose loss-of-function alternation contribute to tamoxifen resistance. Here we used a forward genetic approach in vitro to generate tamoxifen resistant cells from the tamoxifen sensitive breast cancer cell line ZR-75-1, and further identified the disrupted gene in different tamoxifen resistant clones. Retinol binding protein 7, DNA polymerase-transactivated protein 3, γ-glutamyltransferase-like activity 1,slit-robo RhoGTPase-activating protein, tetraspan NET-4, HSPC 194, amiloride-sensitive epithelial sodium channel gene,and Notch2, were the eight mutated genes identified in different tamoxifen resistant clones, suggesting their requirement for tamoxifen sensitivity in ZR-75-1 cells. Since the functions of these genes are not related to each other, it suggests that multiple pathways can influence tamoxifen sensitivity in breast cancer cells.

  2. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    Science.gov (United States)

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways.

  3. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.

    Directory of Open Access Journals (Sweden)

    Yanfeng Zhang

    Full Text Available The Arabidopsis homeotic genes APETALA3 (AP3 and PISTILLATA (PI are B genes which encode MADS-box transcription factors and specify petal and stamen identities. In the current study, the stamen carpelloid (SC mutants, HGMS and AMS, of B. rapa and B. napus were investigated and two types of AP3 genes, B.AP3.a and B.AP3.b, were functional characterized. B.AP3.a and B.AP3.b share high similarity in amino acid sequences except for 8 residues difference located at the C-terminus. Loss of this 8 residues in B.AP3.b led to the change of PI-derived motifs. Meanwhile, B.AP3.a specified petal and stamen development, whereas B.AP3.b only specified stamen development. In B. rapa, the mutations of both genes generated the SC mutant HGMS. In B. napus that contained two B.AP3.a and two B.AP3.b, loss of the two B.AP3.a functions was the key reason for the apetalous mutation, however, the loss-of-function in all four AP3 was related to the SC mutant AMS. We inferred that the 8 residues or the PI-derived motif in AP3 gene probably relates to petal formation.

  4. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  5. Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverse abiotic stresses in rice

    Directory of Open Access Journals (Sweden)

    Joao eBraga De Abreu Neto

    2016-01-01

    Full Text Available Plants are exposed to a wide range of abiotic stresses, which often occur in combination. Because physiological investigations typically focus on one stress, our understanding of unspecific stress responses remains limited. The plant redox homeostasis, i.e. the production and removal of reactive oxygen species (ROS, may be involved in many environmental stress conditions. Therefore, this study intended to identify genes, which are activated in diverse abiotic stresses, focusing on ROS–related pathways. We conducted a meta-analysis (MA of microarray experiments, focusing on rice. Transcriptome data were mined from public databases and fellow researchers, which represented 36 different experiments and investigated diverse abiotic stresses, including ozone stress, drought, heat, cold, salinity, and mineral deficiencies/toxicities. To overcome the inherent artefacts of different MA methods, data were processed using Fisher, rOP, REM and product of rank (GeneSelector, and genes identified by most approaches were considered as shared differentially expressed genes (DEGs. Two MA strategies were adopted: first, datasets were separated into shoot, root and seedling experiments, and these tissues were analyzed separately to identify shared DEGs. Second, shoot and seedling experiments were classed into oxidative stress (OS, i.e. ozone and hydrogen peroxide treatments directly producing ROS in plant tissue, and other abiotic stresses (AS, in which ROS production is indirect. In all tissues and stress conditions, genes a priori considered as ROS-related were overrepresented among the DEGs, as they represented 4% of all expressed genes but 7-10% of the DEGs. The combined MA approach was substantially more conservative than individual MA methods and identified 1001 shared DEGs in shoots, 837 shared DEGs in root, and 1172 shared DEGs in seedlings. Within the OS and AS groups, 990 and 1727 shared DEGs were identified, respectively. In total, 311 genes were

  6. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    Directory of Open Access Journals (Sweden)

    Luciane S Fonseca

    Full Text Available Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2 one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  7. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    Science.gov (United States)

    Fonseca, Luciane S; da Silva, Josefa B; Milanez, Juliana S; Monteiro-Vitorello, Claudia B; Momo, Leonardo; de Morais, Zenaide M; Vasconcellos, Silvio A; Marques, Marilis V; Ho, Paulo L; da Costa, Renata M A

    2013-01-01

    Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  8. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  9. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  10. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  11. Ovine herpesvirus-2 encoded microRNAs target virus genes involved in virus latency

    OpenAIRE

    Riaz, Aayesha; Dry, Inga; Levy, C; Hopkins, John; Grey, Finn; Shaw, Darren; Dalziel, Robert

    2013-01-01

    Herpesviruses encode miRNAs that target both virus and host genes; however their role in herpesvirus biology is poorly understood. We previously identified eight miRNAs encoded by OvHV-2; the causative agent of malignant catarrhal fever (MCF) and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF 20 (cell cycle inhibition), ORF 50 (reactivation) and ORF 73 (latency maintenance) each contain predicted targets ...

  12. Molecular evolution and population genetics of two Drosophila mettleri cytochrome P450 genes involved in host plant utilization

    OpenAIRE

    Jeremy M Bono; Matzkin, Luciano M.; Castrezana, Sergio; Therese A Markow

    2008-01-01

    Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification ...

  13. De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A.

    Science.gov (United States)

    Zhao, Ning; Lin, Xi; Qi, Shan-Shan; Luo, Zhi-Mei; Chen, Shuang-Lin; Yan, Shu-Zhen

    2016-01-01

    Shiraia bambusicola is a species of the monotypic genus Shiraia in the phylum Ascomycota. In China, it is known for its pharmacological properties that are used to treat rheumatic arthritis, sciatica, pertussis, tracheitis and so forth. Its major medicinal active metabolite is hypocrellin A, which exhibits excellent antiviral and antitumor properties. However, the genes involved in the hypocrellin A anabolic pathways were still unknown due to the lack of genomic information for this species. To investigate putative genes that are involved in the biosynthesis of hypocrellin A and determine the pathway, we performed transcriptome sequencing for Shiraia bambusicola S4201-W and the mutant S4201-D1 for the first time. S4201-W has excellent hypocrellin A production, while the mutant S4201-D1 does not. Then, we obtained 38,056,034 and 39,086,896 clean reads from S4201-W and S4201-D1, respectively. In all, 17,923 unigenes were de novo assembled, and the N50 length was 1970 bp. Based on the negative binomial distribution test, 716 unigenes were found to be upregulated, and 188 genes were downregulated in S4201-D1, compared with S4201-W. We have found seven unigenes involved in the biosynthesis of hypocrellin A and proposed a putative hypocrellin A biosynthetic pathway. These data will provide a valuable resource and theoretical basis for future molecular studies of hypocrellin A, help identify the genes involved in the biosynthesis of hypocrellin A and help facilitate functional studies for enhancing hypocrellin A production. PMID:26927096

  14. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358.

    OpenAIRE

    Marugg, J. D.; Nielander, H.B.; Horrevoets, A J; Van Megen, I; van Genderen, I; Weisbeek, P.J.

    1988-01-01

    In iron-limited environments, the plant-growth-stimulating Pseudomonas putida WCS358 produces a yellow-green fluorescent siderophore called pseudobactin 358. The transcriptional organization and the iron-regulated expression of a major gene cluster involved in the biosynthesis and transport of pseudobactin 358 were analyzed in detail. The cluster comprises a region with a minimum length of 33.5 kilobases and contains at least five transcriptional units, of which some are relatively large. The...

  15. Identification of New Genes Involved in the Virulence of Listeria monocytogenes by Signature-Tagged Transposon Mutagenesis

    OpenAIRE

    Autret, Nicolas; Dubail, Iharilalao; Trieu-Cuot, Patrick; Berche, Patrick; Charbit, Alain

    2001-01-01

    Listeria monocytogenes is a gram-positive, facultative intracellular pathogen that can cause severe food-born infections in humans and animals. We have adapted signature-tagged transposon mutagenesis to L. monocytogenes to identify new genes involved in virulence in the murine model of infection. We used transposon Tn1545 carried on the integrative vector pAT113. Forty-eight tagged transposons were constructed and used to generate banks of L. monocytogenes mutants. Pools of 48 mutants were as...

  16. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng;

    2010-01-01

    (muc1-4, tff3) in ileal segments isolated on Day 1 and Day 6 after birth. Additionally, the presence of Lactobacillus and E. coli in the ileal samples was assessed by 16S rRNA gene quantification. The pups in the groups were born from dams that were either: 1) germ free (GF), 2) conventional specific...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium...... expression of all mucin genes are dependent on the presence of microorganisms and whether specific bacteria are capable of regulating mucus production in early life remains, however, to be established. The very first period after birth is believed to be vulnerable for establishment of the gut microbiota...

  17. Influence of the gut microbiota on transcriptional regulation of genes involved in early life development of the intestinal mucus layer

    DEFF Research Database (Denmark)

    Bergström, Anders; Kristensen, Matilde Bylov; Metzdorff, Stine Broeng;

    (muc1-4, tff3) in ileal segments isolated on Day 1 and Day 6 after birth. Additionally, the presence of Lactobacillus and E. coli in the ileal samples was assessed by 16S rRNA gene quantification. The pups in the groups were born from dams that were either: 1) germ free (GF), 2) conventional specific...... the mucosal surfaces of all epithelial linings by physical hindrance or specific binding of pathogenic agents including virus and bacteria. It has been shown that the presence and composition of the microbiota is directly involved in the regulation of gene transcription in the intestinal epithelium...... expression of all mucin genes are dependent on the presence of microorganisms and whether specific bacteria are capable of regulating mucus production in early life remains, however, to be established. The very first period after birth is believed to be vulnerable for establishment of the gut microbiota...

  18. A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense)

    Science.gov (United States)

    Rahi, Md. Lifat; Nguyen, Viet Tuan; Mather, Peter B.; Hurwood, David A.

    2016-01-01

    Background Understanding the genomic basis of osmoregulation (candidate genes and/or molecular mechanisms controlling the phenotype) addresses one of the fundamental questions in evolutionary ecology. Species distributions and adaptive radiations are thought to be controlled by environmental salinity levels, and efficient osmoregulatory (ionic balance) ability is the main mechanism to overcome the problems related to environmental salinity gradients. Methods To better understand how osmoregulatory performance in freshwater (FW) crustaceans allow individuals to acclimate and adapt to raised salinity conditions, here we (i), reviewed the literature on genes that have been identified to be associated with osmoregulation in FW crustaceans, and (ii), performed a transcriptomic analysis using cDNA libraries developed from mRNA isolated from three important osmoregulatory tissues (gill, antennal gland, hepatopancreas) and total mRNA from post larvae taken from the freshwater prawn, Macrobrachium australiense using Illumina deep sequencing technology. This species was targeted because it can complete its life cycle totally in freshwater but, like many Macrobrachium sp., can also tolerate brackish water conditions and hence should have genes associated with tolerance of both FW and saline conditions. Results We obtained between 55.4 and 65.2 million Illumina read pairs from four cDNA libraries. Overall, paired end sequences assembled into a total of 125,196 non-redundant contigs (≥200 bp) with an N50 length of 2,282 bp and an average contig length of 968 bp. Transcriptomic analysis of M. australiense identified 32 different gene families that were potentially involved with osmoregulatory capacity. A total of 32,597 transcripts were specified with gene ontology (GO) terms identified on the basis of GO categories. Abundance estimation of expressed genes based on TPM (transcript per million) ≥20 showed 1625 transcripts commonly expressed in all four libraries. Among the

  19. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    Science.gov (United States)

    Woegerbauer, Markus; Kuffner, Melanie; Domingues, Sara; Nielsen, Kaare M.

    2015-01-01

    Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3′)-IIa (nptII) gene. APH(3′)-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99–100% sequence identity with aph(3′)-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3′)-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3′)-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants. PMID:26042098

  20. Involvement of aph(3‘-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    Directory of Open Access Journals (Sweden)

    Markus eWoegerbauer

    2015-05-01

    Full Text Available Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination.We screened the GenBank database for mosaic gene formation in homologs of the aph(3’-IIa (nptII gene. APH(3’-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria.The retrieved GenBank sequences were grouped in 3 datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program, RDP4, and the Genetic Algorithm for Recombination Detection, GARD.From a total of 89 homologous sequences, 83% showed 99% - 100% sequence identity with aph(3’-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3’-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3’-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants.

  1. Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva.

    Science.gov (United States)

    Płoneczka-Janeczko, Katarzyna; Lis, Paweł; Bierowiec, Karolina; Rypuła, Krzysztof; Chorbiński, Paweł

    2014-12-01

    Bap and icaA genes are commonly known to be involved in the biofilm formation. The prevalence of bap and icaA genes and biofilm formation was determined in conjunctival isolates of coagulase negative staphylococci (CNS) collected from cats. The study was conducted on 90 archival CNS isolates collected from feline conjunctiva obtained from clinically healthy cats and cats with ocular problems. Biofilm formation was examined using the microtiter plate (MTP) method. The prevalence of icaA and bap genes was determined using polymerase chain reaction (PCR). Genetic profiles of the bap-positive isolates were examined using the modified random amplified polymorphic DNA (RAPD) method. Of the 90 CNS isolates investigated, 58.9% (53/90) were confirmed to form biofilms on a polystyrene plate after 24 h, and the intensity of the biofilm production varied strongly between positive strains. Among the biofilm-producing isolates, 24.5% (13/53) carried the icaA gene and 3.8% (2/53) carried the bap gene. Among the isolates that did not produce biofilms, the icaA gene and bap gene were detected in 8.1% (3/37) and 2.7% (1/37) of isolates, respectively. This is the first report demonstrating that CNS isolated from feline conjunctiva can potentially be a bap gene reservoir. Preliminary comparison of the genetic profiles of three bap-positive isolates collected from cats showed that each of the isolates has a different genetic background with a high similarity with the human strain of S. epidermidis.

  2. Whole-Genome Resequencing and Transcriptomic Analysis to Identify Genes Involved in Leaf-Color Diversity in Ornamental Rice Plants

    Science.gov (United States)

    Shin, Younhee; Lim, Hye-Min; Lee, Gang-Seob; Kim, A-Ram; Lee, Tae-Ho; Lee, Jae-Hee; Park, Dong-Suk; Yoo, Seungil; Kim, Yong-Hwan; Kim, Yong-Kab

    2015-01-01

    Rice field art is a large-scale art form in which people design rice fields using various kinds of ornamental rice plants with different leaf colors. Leaf color-related genes play an important role in the study of chlorophyll biosynthesis, chloroplast structure and function, and anthocyanin biosynthesis. Despite the role of different metabolites in the traditional relationship between leaf and color, comprehensive color-specific metabolite studies of ornamental rice have been limited. We performed whole-genome resequencing and transcriptomic analysis of regulatory patterns and genetic diversity among different rice cultivars to discover new genetic mechanisms that promote enhanced levels of various leaf colors. We resequenced the genomes of 10 rice leaf-color accessions to an average of 40× reads depth and >95% coverage and performed 30 RNA-seq experiments using the 10 rice accessions sampled at three developmental stages. The sequencing results yielded a total of 1,814 × 106 reads and identified an average of 713,114 SNPs per rice accession. Based on our analysis of the DNA variation and gene expression, we selected 47 candidate genes. We used an integrated analysis of the whole-genome resequencing data and the RNA-seq data to divide the candidate genes into two groups: genes related to macronutrient (i.e., magnesium and sulfur) transport and genes related to flavonoid pathways, including anthocyanidin biosynthesis. We verified the candidate genes with quantitative real-time PCR using transgenic T-DNA insertion mutants. Our study demonstrates the potential of integrated screening methods combined with genetic-variation and transcriptomic data to isolate genes involved in complex biosynthetic networks and pathways. PMID:25897514

  3. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134.

    Science.gov (United States)

    Pérez-Pantoja, Danilo; Donoso, Raúl A; Sánchez, Miguel A; González, Bernardo

    2009-11-01

    Maleylacetate reductases (MAR) are required for biodegradation of several substituted aromatic compounds. To date, the functionality of two MAR-encoding genes (tfdF(I) and tfdF(II)) has been reported in Cupriavidus necator JMP134(pJP4), a known degrader of aromatic compounds. These two genes are located in tfd gene clusters involved in the turnover of 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-CB). The C. necator JMP134 genome comprises at least three other genes that putatively encode MAR (tcpD, hqoD and hxqD), but confirmation of their functionality and their role in the catabolism of haloaromatic compounds has not been assessed. RT-PCR expression analyses of C. necator JMP134 cells exposed to 2,4-D, 3-CB, 2,4,6-trichlorophenol (2,4,6-TCP) or 4-fluorobenzoate (4-FB) showed that tfdF(I) and tfdF(II) are induced by haloaromatics channelled to halocatechols as intermediates. In contrast, 2,4,6-TCP only induces tcpD, and any haloaromatic compounds tested did not induce hxqD and hqoD. However, the tcpD, hxqD and hqoD gene products showed MAR activity in cell extracts and provided the MAR function for 2,4-D catabolism when heterologously expressed in MAR-lacking strains. Growth tests for mutants of the five MAR-encoding genes in strain JMP134 showed that none of these genes is essential for degradation of the tested compounds. However, the role of tfdF(I)/tfdF(II) and tcpD genes in the expression of MAR activity during catabolism of 2,4-D and 2,4,6-TCP, respectively, was confirmed by enzyme activity tests in mutants. These results reveal a striking example of genetic redundancy in the degradation of aromatic compounds. PMID:19684066

  4. Gene Expression Profiling of Preplate Neurons Destined for the Subplate: Genes Involved in Transcription, Axon Extension, Neurotransmitter Regulation, Steroid Hormone Signaling, and Neuronal Survival

    OpenAIRE

    Osheroff, Hilleary; Hatten, Mary E.

    2009-01-01

    During mammalian corticogenesis a series of transient cell layers establish laminar architectonics. The preplate, which forms from the earliest-generated neurons, separates into the marginal zone and subplate layer. To provide a systematic screen for genes involved in subplate development and function, we screened lines of transgenic mice, generated using bacterial artificial chromosome methodology (GENSAT Project), to identify transgenic lines of mice that express the enhanced green fluoresc...

  5. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    Science.gov (United States)

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH.

  6. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    Science.gov (United States)

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  7. In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2012-01-01

    Full Text Available Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  8. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jimmy E Rodríguez

    Full Text Available The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL and diacyltrehalose/polyacyltrehalose (DAT/PAT profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1 and anaerobiosis (NRP2 models of hypoxia (Wayne model, and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  9. Association of triacylglyceride content and transcript abundance of genes involving in lipid synthesis of nitrogen deficient Phaeodactylum tricornutum

    Science.gov (United States)

    Zhang, Lin; Han, Jichang; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2014-03-01

    Phaeodactylum tricornutum is a diatom that is rich in lipids. Recently, it has received much attention as a feedstock for biodiesel production. Nitrogen deficiency is widely known to increase the content of neutral lipids (mainly triacylglycerides, or TAGs) of microalgae, including P. tricornutum, but the mechanism is unclear. In this study, we deciphered the correlations between TAG content and nine key enzymatic genes involved in lipid synthesis in P. tricornutum. After being cultured under nitrogen-free conditions for 0, 4, 24, 48, 72, 120, and 168 h, the TAG contents of P. tricornutum cells were assayed and the transcript abundances of the target genes were monitored by quantitative real-time PCR. The results show that the abundances of four target gene transcripts ( LACS3, G3PDH2, G3PDH3, and G3PDH5) were positively correlated with TAG content, indicating that these genes may be involved in TAG synthesis in P. tricornutum. The findings improve our understanding of the metabolic network and regulation of lipid synthesis and will guide the future genetic improvement of the TAG content of P. tricornutum.

  10. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  11. HSP90B1, a thyroid hormone-responsive heat shock protein gene involved in photoperiodic signaling.

    Science.gov (United States)

    Graham, Gemma; Sharp, Peter J; Li, Qiushi; Wilson, Peter W; Talbot, Richard T; Downing, Alison; Boswell, Timothy

    2009-05-29

    In order to further advance the understanding of genes involved in avian photoperiodic signaling, a chicken hypothalamic cDNA microarray was made to identify changes in gene expression in the whole hypothalamus of juvenile male domestic chickens after 4 days' photostimulation. The most robust change was a depression in heat shock protein 90B1 (HSP90B1) expression. This observation was confirmed using quantitative PCR, and it was subsequently demonstrated that the depression in HSP90B1 expression first occurs in the anterior hypothalamus after 1 day's photostimulation, and was also depressed in the anterior and basal hypothalamus after 4 days' photostimulation. Four days after an intravenous injection of thyroxine (T4), an avian photomimetic, in short day birds, HSP90B1 expression was depressed in the anterior, but not in the basal hypothalamus. Depressed HSP901 expression after photostimulation or T4 treatment was associated with increased GnRH-I mRNA and plasma LH. HSP90B1 is abundant throughout the brain where it occurs in glial cells, and is involved in regulating white matter plasticity. It is suggested that photoperiodically depressed hypothalamic HSP90B1 may affect glial function in photoperiodic signaling pathways in the neuroendocrine system. This is the first report of a thyroid hormone-responsive gene involved in photoperiodic signaling. PMID:19429192

  12. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    Science.gov (United States)

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-01-01

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  13. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    Science.gov (United States)

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum. PMID:25099378

  14. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    Science.gov (United States)

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.

  15. Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development.

    Science.gov (United States)

    Zhang, Ji; Loyd, Melanie R; Randall, Mindy S; Morris, John J; Shah, Jayesh G; Ney, Paul A

    2015-01-01

    Retinoblastoma-1 (RB1), and the RB1-related proteins p107 and p130, are key regulators of the cell cycle. Although RB1 is required for normal erythroid development in vitro, it is largely dispensable for erythropoiesis in vivo. The modest phenotype caused by RB1 deficiency in mice raises questions about redundancy within the RB1 family, and the role of RB1 in erythroid differentiation. Here we show that RB1 is the major pocket protein that regulates terminal erythroid differentiation. Erythroid cells lacking all pocket proteins exhibit the same cell cycle defects as those deficient for RB1 alone. RB1 has broad repressive effects on gene transcription in erythroid cells. As a group, RB1-repressed genes are generally well expressed but downregulated at the final stage of erythroid development. Repression correlates with E2F binding, implicating E2Fs in the recruitment of RB1 to repressed genes. Merging differential and time-dependent changes in expression, we define a group of approximately 800 RB1-repressed genes. Bioinformatics analysis shows that this list is enriched for terms related to the cell cycle, but also for terms related to terminal differentiation. Some of these have not been previously linked to RB1. These results expand the range of processes potentially regulated by RB1, and suggest that a principal role of RB1 in development is coordinating the events required for terminal differentiation. PMID:26397180

  16. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.

  17. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  18. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  19. Complement regulatory protein genes in channel catfish and their involvement in disease defense response.

    Science.gov (United States)

    Jiang, Chen; Zhang, Jiaren; Yao, Jun; Liu, Shikai; Li, Yun; Song, Lin; Li, Chao; Wang, Xiaozhu; Liu, Zhanjiang

    2015-11-01

    Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.

  20. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    Science.gov (United States)

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. PMID:27524241

  1. The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis

    DEFF Research Database (Denmark)

    Schwientek, Tilo; Keck, Birgit; Levery, Steven B;

    2002-01-01

    The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function...

  2. GWAS for executive function and processing speed suggests involvement of the CADM2 gene

    DEFF Research Database (Denmark)

    Ibrahim-Verbaas, C A; Bressler, J; Debette, S;

    2016-01-01

    in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2...

  3. Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Michel, Laurent; Bachelard, Aude; Reimmann, Cornelia

    2007-05-01

    In response to iron starvation, Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted to the extracellular environment, pyochelin chelates iron and transports it to the bacterial cytoplasm via its specific outer-membrane receptor FptA and the inner-membrane permease FptX. Exogenously added pyochelin also acts as a signal which induces the expression of the pyochelin biosynthesis and uptake genes by activating PchR, a cytoplasmic regulatory protein of the AraC/XylS family. The importance of ferripyochelin uptake genes in this regulation was evaluated. The fptA and fptX genes were shown to be part of the fptABCX ferripyochelin transport operon, which is conserved in Burkholderia sp. and Rhodospirillum rubrum. The fptB and fptC genes were found to be dispensable for utilization of pyochelin as an iron source, for signalling and for pyochelin production. By contrast, mutations in fptA and fptX not only interfered with pyochelin utilization, but also affected signalling and diminished siderophore production. It is concluded from this that pyochelin-mediated signalling operates to a large extent via the ferripyochelin transport system.

  4. Identification of Novel Pepper Genes Involved in Bax- or INF1-Mediated Cell Death Responses by High-Throughput Virus-Induced Gene Silencing

    Directory of Open Access Journals (Sweden)

    Jeong Hee Lee

    2013-11-01

    Full Text Available Hot pepper is one of the economically important crops in Asia. A large number of gene sequences, including expressed sequence tag (EST and genomic sequences are publicly available. However, it is still a daunting task to determine gene function due to difficulties in genetic modification of a pepper plants. Here, we show the application of the virus-induced gene silencing (VIGS repression for the study of 459 pepper ESTs selected as non-host pathogen-induced cell death responsive genes from pepper microarray experiments in Nicotiana benthamiana. Developmental abnormalities in N. benthamiana plants are observed in the 32 (7% pepper ESTs-silenced plants. Aberrant morphological phenotypes largely comprised of three groups: stunted, abnormal leaf, and dead. In addition, by employing the combination of VIGS and Agrobacterium-mediated transient assays, we identified novel pepper ESTs that involved in Bax or INF1-mediated cell death responses. Silencing of seven pepper ESTs homologs suppressed Bax or INF1-induced cell death, five of which suppressed both cell death responses in N. benthamiana. The genes represented by these five ESTs encode putative proteins with functions in endoplasmic reticulum (ER stress and lipid signaling. The genes represented by the other two pepper ESTs showing only Bax-mediated cell death inhibition encode a CCCH-type zinc finger protein containing an ankyrin-repeat domain and a probable calcium-binding protein, CML30-like. Taken together, we effectively isolated novel pepper clones that are involved in hypersensitive response (HR-like cell death using VIGS, and identified silenced clones that have different responses to Bax and INF1 exposure, indicating separate signaling pathways for Bax- and INF1-mediated cell death.

  5. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    International Nuclear Information System (INIS)

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6f/f and PGRcre/+Mig-6f/f (Mig-6d/d) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6d/d uterus treated with vehicle as compared with Mig-6f/f mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6d/d mice showed a significant increase in the number of proliferative cells compared to Mig-6f/f mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGRcre/+Cited2f/f; Cited2d/d). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene

  6. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  7. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    International Nuclear Information System (INIS)

    The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features

  8. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jilong

    2001-01-01

    [1]Geyer, P. K., Green, M. M., Corces, V. G., Tissue-specific transcriptional enhancers may act on the gene located in the homologous chromosome, EMBO J., 1990, 9(7): 2247.[2]Chen, J. L., Liu, J., Chen, Z. W. et al., Molecular analysis of gene transvection by using Drosophila yellow gene model, Devel. Reprod. Biol., 1998, 7(2): 43.[3]Goldsborough, A. S., Kornberg, T. B., Reduction of transcription by homologue asynapsis in Drosophila imaginal discs, Nature, 1996, 381: 807.[4]Wu, C.- T., Morris, J. R., Transvection and other homology effects, Current Opinion in Genetics & Development, 1999, 9: 237.[5]Pal-Bhadra, M., Bhadra, U., Birchler, J. A., Cosuppression in Drosophila: gene silencing of alcohol dehydrogenase by white-Adh transgenes is polycomb dependent, Cell, 1997, 90: 479.[6]Matzke, M. A., Matzke, A. J. M., Homology-dependent gene silencing in transgenic plants: what does it really tell us? Trends Genet., 1995, 11: 1..[7]Aramayo, R., Metzenberg, R. L., Meiotic transvection in fungi, Cell, 1996, 86: 103.[8]Leiserson, W. M., Bonini, N. M., Benzer, S., Transvection at the eyes absent gene of Drosophila, Genetics, 1994, 138: 1171.[9]Sun, F. L., Dean, W. L., Kelsey, G. et al., Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann Syndrome, Nature, 1997, 389: 809.[10] Morris, J. R., Chen, J. L., Geyer, P. K. et al., Two modes of transvection: enhancer action in trans and by pass of a chromatin insulator in cis, Proc. Natl. Acad. Sci. USA, 1998, 95: 10740.[11] Morris, J. R., Chen, J. L., Filandrinos, S. T. et al., An analysis of transvection at the yellow locus of Drosophila melanogaster, Genetics, 1999, 151: 633.[12] Chen, J. L., Longo, F. J., Expression and localization of DNA topo II during spermatogenesis, Mol. Reprod. Devel., 1996, 45: 61.[13] Rubin, G. M., Spradling, A. C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, 218: 348.[14] Johnson

  9. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Parul Goel

    Full Text Available Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT, ammonium transporters (AMT, nitrate reductase (NR, nitrite reductase (NiR, glutamine synthetase (GS, glutamate synthase (GOGAT, glutamate dehydrogenase (GDH, asparagines synthetase (ASN were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl, osmotic (250 mM Mannitol, cold (4°C and heat (42°C stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h, which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  10. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    Science.gov (United States)

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  11. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    Science.gov (United States)

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  12. Expression Profiling Reveals Genes Involved in the Regulation of Wool Follicle Bulb Regression and Regeneration in Sheep

    Directory of Open Access Journals (Sweden)

    Guangbin Liu

    2015-04-01

    Full Text Available Wool is an important material in textile manufacturing. In order to investigate the intrinsic factors that regulate wool follicle cycling and wool fiber properties, Illumina sequencing was performed on wool follicle bulb samples from the middle anagen, catagen and late telogen/early anagen phases. In total, 13,898 genes were identified. KRTs and KRTAPs are the most highly expressed gene families in wool follicle bulb. In addition, 438 and 203 genes were identified to be differentially expressed in wool follicle bulb samples from the middle anagen phase compared to the catagen phase and the samples from the catagen phase compared to the late telogen/early anagen phase, respectively. Finally, our data revealed that two groups of genes presenting distinct expression patterns during the phase transformation may have important roles for wool follicle bulb regression and regeneration. In conclusion, our results demonstrated the gene expression patterns in the wool follicle bulb and add new data towards an understanding of the mechanisms involved in wool fiber growth in sheep.

  13. Novel therapeutic targets in osteoarthritis: Narrative review on knock-out genes involved in disease development in mouse animal models.

    Science.gov (United States)

    Veronesi, Francesca; Della Bella, Elena; Cepollaro, Simona; Brogini, Silvia; Martini, Lucia; Fini, Milena

    2016-05-01

    Osteoarthritis (OA) can affect every joint, especially the knee. Given the complexity of this pathology, OA is difficult to treat with current therapies, which only relieve pain and inflammation and are not capable of restoring tissues once OA has started. Currently, researchers focus on finding a therapeutic strategy that may help to arrest disease progression. The present narrative review gives an overview of the genes involved in the development and progression of OA, assessing in vivo studies performed in knock-out mice affected by OA, to suggest new therapeutic strategies. The article search was performed on the PubMed database and www.webofknowledge.com website with the following keywords: "knee osteoarthritis" AND "knockout mice". The included studies were in English and published from 2005 to 2015. Additional papers were found within the references of the selected articles. In the 55 analyzed in vivo studies, genes mainly affected chondrocyte homeostasis, inflammatory processes, extracellular matrix and the relationship between obesity and OA. Genes are defined as inducing, preventing and not influencing OA. This review shows that joint homeostasis depends on a variety of genetic factors, and preventing or restoring the loss of a gene encoding for protective proteins, or inhibiting the expression of proteins that induce OA, might be a potential therapeutic approach. However, conclusions cannot be drawn because of the wide variability concerning the technique used for OA induction, the role of the genes, the method for tissue evaluations and the lack of assessments of all joint tissues. PMID:27059198

  14. Transcription analysis of genes involved in lipid metabolism reveals the role of chromium in reducing body fat in animal models.

    Science.gov (United States)

    Sadeghi, Mostafa; Najaf Panah, Mohammad Javad; Bakhtiarizadeh, Mohammad Reza; Emami, Ali

    2015-10-01

    Chromium was proposed to be an essential trace element over 50 years ago and has been accepted as an essential element for over 30 years. The recent studies indicated that the addition of supra nutritional amounts of chromium to the diet can only be considered as having pharmacological effects. However, the precise mechanism through which chromium acts on lipid, carbohydrate, protein and nucleic acid metabolism are relatively poor studied. To uncover, at least partially, the role of chromium in lipid metabolism, in this study, we evaluated the expression status of eight important genes, involved in fat biosynthesis and lipid metabolism, in four different tissue types (liver, subcutaneous fat, visceral fat, and longissimus muscle) in domestic goat kids feeding on three different chromium levels. The quantitative real-time PCR (RT-PCR) was established for expression analyses with HSP90 gene was used as reference gene. The results showed that supplementation of goats with 1.5mg/day chromium significantly decreases the expression of the ACC1, DGAT1, FABP4, FAS, HSL, LEP genes, but does not affect the expression of the LPL and SCD1 genes in all studied tissues. This study highlights, for the first time, the role of supra nutritional levels of chromium in lipid biosynthesis and metabolism. These findings are of especial importance for improving meat quality in domestic animals. PMID:26302911

  15. Involvement of the mitfa gene in the development of pigment cell in Japanese ornamental (Koi) carp (Cyprinus carpio L.).

    Science.gov (United States)

    Liu, J H; Wen, S; Luo, C; Zhang, Y Q; Tao, M; Wang, D W; Deng, S M; Xiao, Y M

    2015-01-01

    A colored phenotype is an important feature of ornamental fish. In mammals, microphthalmia-associated transcription factor (MITF) was found to regulate the development of melanocytes. In this study, the mitfa cDNA was first cloned from the Japanese ornamental (Koi) carp (Cyprinus carpio L.), an important ornamental freshwater fish. The full-length cDNA of the mitfa gene contains 1634 bp, coding for 412 amino acids in Koi. The identity degree of mitfa amino acid sequences between the Koi carp and zebrafish is 92.9%. We tested the expression of the mitfa gene in several varieties of Koi using reverse transcription-polymerase chain reaction and found that the mitfa gene is highly expressed in the skin tissues of the Taisho sanke and the Procypris merus. Interestingly, the mitfa gene was also expressed in the Kohaku and Yamabaki ogon, although melanocytes were not observed in the skin. Koi carp embryos were transparent and colorless, while after hatching, different types of pigment cells successively emerged in a fixed order. In Taisho sanke, melanocytes first appeared in the trunk at approximately 12 days of age. Subsequently, there was a large area of melanocytes by 30 days of age. The expression level of the mitfa mRNA was low in early embryos and newly hatched larvae, and increased to high levels in 30-day-old fry. The results show that the mitfa gene is involved in regulating fish body color in the development of both melanocytes and pigment cells. PMID:25867426

  16. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Kathleen C. Light

    2012-01-01

    Full Text Available In complex multisymptom disorders like fibromyalgia syndrome (FMS and chronic fatigue syndrome (CFS that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2, and the purinergic 2X4 (P2X4 ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

  17. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    Science.gov (United States)

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR. PMID:26458557

  18. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis.

    Science.gov (United States)

    Rosner, Margit; Dolznig, Helmut; Schipany, Katharina; Mikula, Mario; Brandau, Oliver; Hengstschläger, Markus

    2011-09-01

    Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene

  19. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach

    Directory of Open Access Journals (Sweden)

    Zaffalon Valerio

    2011-06-01

    Full Text Available Abstract Background Field observations and a few physiological studies have demonstrated that peach embryogenesis and fruit development are tightly coupled. In fact, attempts to stimulate parthenocarpic fruit development by means of external tools have failed. Moreover, physiological disturbances during early embryo development lead to seed abortion and fruitlet abscission. Later in embryo development, the interactions between seed and fruit development become less strict. As there is limited genetic and molecular information about seed-pericarp cross-talk and development in peach, a massive gene approach based on the use of the μPEACH 1.0 array platform and quantitative real time RT-PCR (qRT-PCR was used to study this process. Results A comparative analysis of the transcription profiles conducted in seed and mesocarp (cv Fantasia throughout different developmental stages (S1, S2, S3 and S4 evidenced that 455 genes are differentially expressed in seed and fruit. Among differentially expressed genes some were validated as markers in two subsequent years and in three different genotypes. Seed markers were a LTP1 (lipid transfer protein, a PR (pathogenesis-related protein, a prunin and LEA (Late Embryogenesis Abundant protein, for S1, S2, S3 and S4, respectively. Mesocarp markers were a RD22-like protein, a serin-carboxypeptidase, a senescence related protein and an Aux/IAA, for S1, S2, S3 and S4, respectively. The microarray data, analyzed by using the HORMONOMETER platform, allowed the identification of hormone-responsive genes, some of them putatively involved in seed-pericarp crosstalk. Results indicated that auxin, cytokinins, and gibberellins are good candidates, acting either directly (auxin or indirectly as signals during early development, when the cross-talk is more active and vital for fruit set, whereas abscisic acid and ethylene may be involved later on. Conclusions In this research, genes were identified marking different phases of

  20. Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes.

    Science.gov (United States)

    Wang, Ning; Xu, Zhiwen; Wang, Kunhao; Zhu, Minghui; Li, Yang

    2014-04-01

    Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy.

  1. The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Cheng; Li Sun; Tiancong Qi; Bosen Zhang; Wen Peng; Yule Liu; Daoxin Xie

    2011-01-01

    The Arabidopsis Jasmonate ZIM-domain proteins (JAZs) act as substrates of SCFCOI1 complex to repress their downstream targets,which are essential for JA-regulated plant development and defense. The bHLH transcription factor MYC2 was found to interact with JAZs and mediate JA responses including JA-inhibitory root growth. Here,we identified another bHLH transcription factor MYC3 which directly interacted with JAZs by virtue of its N-terminal region to regulate JA responses. The transgenic plants with overexpression of MYC3 exhibited hypersensitivity in JA-inhibitory root elongation and seedling development. The JAZ-interacting pattern and the JA-induced expression pattern of MYC3 were distinguishable from those of MYC2. We speculate that MYC3 and MYC2 may have redundant but also distinguishable functions in regulation of JA responses.

  2. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit.

    Science.gov (United States)

    Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he

    2015-10-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato. PMID:26465132

  3. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction.

    Science.gov (United States)

    Haider, Neena B; Mollema, Nissa; Gaule, Meghan; Yuan, Yang; Sachs, Andrew J; Nystuen, Arne M; Naggert, Jürgen K; Nishina, Patsy M

    2009-09-01

    The retinal transcription factor Nr2e3 plays a key role in photoreceptor development and function. In this study we examine gene expression in the retina of Nr2e3(rd7/rd7) mutants with respect to wild-type control mice, to identify genes that are misregulated and hence potentially function in the Nr2e3 transcriptional network. Quantitative candidate gene real time PCR and subtractive hybridization approaches were used to identify transcripts that were misregulated in Nr2e3(rd7/rd7) mice. Chromatin immunoprecipitation assays were then used to determine which of the misregulated transcripts were direct targets of NR2E3. We identified 24 potential targets of NR2E3. In the developing retina, NR2E3 targets transcription factors such as Ror1, Rorg, and the nuclear hormone receptors Nr1d1 and Nr2c1. In the mature retina NR2E3 targets several genes including the rod specific gene Gnb1 and cone specific genes blue opsin, and two of the cone transducin subunits, Gnat2 and Gnb3. In addition, we identified 5 novel transcripts that are targeted by NR2E3. While mislocalization of proteins between rods and cones was not observed, we did observe diminished concentration of GNB1 protein in adult Nr2e3(rd7/rd7) retinas. These studies identified novel transcriptional pathways that are potentially targeted by Nr2e3 in the retina and specifically demonstrate a novel role for NR2E3 in regulating genes involved in phototransduction. PMID:19379737

  4. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum.

    OpenAIRE

    Márquez, G.; Sousa, J. M.; Sánchez, F.

    1985-01-01

    The Brevibacterium lactofermentum genes which complement Escherichia coli lysA and asd-1 mutants were identified, respectively, as a 1.9-kilobase PstI-ClaI fragment and a 2.5-kilobase PstI fragment by cloning into pBR325. Southern blot transfers show hybridization to chromosomal fragments of identical size. The putative B. lactofermentum asd and lysA products are 44 and 48 kilodaltons, respectively.

  5. A study on the possible involvement of the PAX3 gene in human neural tube defects

    Energy Technology Data Exchange (ETDEWEB)

    Hol, F.A.; Hamel, B.C.J.; Geurds, M.P.A. [University Hospital Nijmegen (Netherlands)] [and others

    1994-09-01

    Neural tube defects (NTD) are congenital malformations of the central nervous system which are generally attributed to a combination of environmental and genetic factors. Recently, the molecular defect responsible for the phenotype of the Splotch mouse, a monogenic model system for NTD, was determined. A mutation disrupts the homeodomain of the gene for Pax3. In humans, mutations in the cognate gene for PAX3 can cause Waardenburg syndrome (WS), which is associated with NTD. Based on these findings, PAX3 can be regarded as a candidate gene for human NTD. To test this hypothesis we have screened the DNA of 39 familial and 70 sporadic NTD patients for mutations in the coding exons and flanking intron sequences of the PAX3 gene. SSC analysis revealed abnormal bands in exon 2, exon 5, exon 6 and exon 7 in different patients. A missense mutation was identified in exon 6 downstream from the homeodomain in several patients resulting in an amino acid substitution (Thr315Lys) in the protein. However, the same substitution was detected in unaffected controls suggesting no biological significance. Above shifts most likely represent polymorphisms that are irrelevant for NTD. A conspicuous SSC-band shift was observed in exon 5 of one familial patient with spina bifida. Sequencing revealed that the patient was heterozygous for a 5 bp deletion upstream of the homeodomain. The deletion causes a frameshift, which leads to premature termination of translation. Mild characteristics of WS were detected in several members of the family including the index patient. DNA analysis showed co-segregation of the mutation with these symptoms. Although PAX3 mutations can increase the penetrance of NTD in families with WS, our results show that their presence is not sufficient to cause NTD.

  6. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    OpenAIRE

    Li Shi; Peng Wei; Xiangzun Wang; Guangmao Shen; Jiao Zhang; Wei Xiao; Zhifeng Xu; Qiang Xu; Lin He

    2016-01-01

    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, res...

  7. Desulfovibrio sp. Genes Involved in the Respiration of Sulfate during Metabolism of Hydrogen and Lactate

    OpenAIRE

    Steger, Jennifer L.; Vincent, Carr; Ballard, Jimmy D.; Lee R. Krumholz

    2002-01-01

    To develop a better understanding of respiration by sulfate-reducing bacteria, we examined transcriptional control of respiratory genes during growth with lactate or hydrogen as an electron donor. RNA extracts of Desulfovibrio desulfuricans subsp. aestuarii were analyzed by using random arbitrarily primed PCR. RNA was reverse transcribed under low-stringency conditions with a set of random primers, and candidate cDNAs were cloned, sequenced, and characterized by BLAST analysis. Putative diffe...

  8. Obesity induces upregulation of genes involved in myocardial Ca2+ handling

    Directory of Open Access Journals (Sweden)

    A.P. Lima-Leopoldo

    2008-07-01

    Full Text Available Obesity is a complex multifactorial disorder that is often associated with cardiovascular diseases. Research on experimental models has suggested that cardiac dysfunction in obesity might be related to alterations in myocardial intracellular calcium (Ca2+ handling. However, information about the expression of Ca2+-related genes that lead to this abnormality is scarce. We evaluated the effects of obesity induced by a high-fat diet in the expression of Ca2+-related genes, focusing the L-type Ca2+ channel (Cacna1c, sarcolemmal Na+/Ca2+ exchanger (NCX, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a, ryanodine receptor (RyR2, and phospholamban (PLB mRNA in rat myocardium. Male 30-day-old Wistar rats were fed a standard (control or high-fat diet (obese for 15 weeks. Obesity was defined as increased percent of body fat in carcass. The mRNA expression of Ca2+-related genes in the left ventricle was measured by RT-PCR. Compared with control rats, the obese rats had increased percent of body fat, area under the curve for glucose, and leptin and insulin plasma concentrations. Obesity also caused an increase in the levels of SERCA2a, RyR2 and PLB mRNA (P < 0.05 but did not modify the mRNA levels of Cacna1c and NCX. These findings show that obesity induced by high-fat diet causes cardiac upregulation of Ca2+ transport_related genes in the sarcoplasmic reticulum.

  9. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development.

    Directory of Open Access Journals (Sweden)

    Jeongwoo Kwon

    Full Text Available The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modification of cells and organisms. However, the applicability and efficiency of this system in pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 function as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide RNA (sgRNA against OCT4 decreased the percentages of OCT4-positive embryos to 37-50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunostaining. We assessed the mutation status near the guide sequence using polymerase chain reaction (PCR and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50% in exon 5 had insertions/deletions near protospacer-adjacent motifs (PAMs. Different target sites had frequent deletions, but different concentrations of sgRNA made no impact. OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detectable in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about 1.8 kb in the same chromosome. Next, we injected an enhanced green fluorescent protein (eGFP vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We confirmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the mutation status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for gene functional studies by deleting target genes in the pig.

  10. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    Science.gov (United States)

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.

  11. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency

    Institute of Scientific and Technical Information of China (English)

    R David Hawkins; Zhen Ye; Samantha Kuan; Pengzhi Yu; Hui Liu; Xinmin Zhang; Roland D Green; Victor V Lobanenkov; Ron Stewart; James A Thomson; Bing Ren; Gary C Hon; Chuhu Yang; Jessica E Antosiewicz-Bourget; LeonardKLee; Que-Minh Ngo; Sarit Klugman; Keith A Ching; Lee E Edsall

    2011-01-01

    Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells.While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types.In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genomewide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage.We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes.We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4mel and H3K27ac,which correlate with expression of their potential target genes.Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs.Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.

  12. Regulation of the genes involved in neurotransmission in Attention Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Cuch Barbara

    2015-06-01

    Full Text Available Attention Deficit Hyperactivity Disorder is the full name of the disease commonly deemed ADHD. This disease is most frequently diagnosed in childhood, and it affects up to 12 % of all children world-wide. The current clinical criteria (the base for diagnosis can be found in DSM -V. The core symptoms are divided in three groups: hyperactivity, impulsivity and impaired attention. The aetiology of the disorder is combined, including a wide range of factors, and the genetic, environmental, toxic, perinatal background is taken into account. Because, currently, more and more studies are seeking to explore the heritability of the disorder, the aim of this study is to review the information provided by different research centres which discuss the genetic background of the disease. Herein, we present the results of different studies gathered from the online database. Our findings indicate that the participation of genetic factors within this disorder is supported by family, twin and adoption studies. Indeed, in current literature, researchers estimate that there is a higher risk of developing ADHD among children from families with an ADHD history. Of particular note is that there are some studies indicating particular genes that determine the susceptibility to ADHD. Such studies make mention that most of these genes encode components of the dompaminergic and serotoninergic neurotransmission systems. Researchers in the field, thus, are attempting to link the presence of certain alleles in affected children with their response to treatment. Yet, while ADHD is now considered as being a disorder of genetic background, we cannot indicate a single gene or its mutation that would be crucial in the aetiology and diagnosis. Still, a number of candidate genes have been reported so far.

  13. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals

    OpenAIRE

    Luglio, Harry Freitag; Sulistyoningrum, Dian Caturini; Susilowati, Rina

    2015-01-01

    The ability of obese people to reduce weight in the same treatment varied. Genetic make up as well as the behavioral changes are important for the successfulness of the program. One of the most proposed genetic variations that have been reported in many intervention studies was genes that control lipolysis process. This review summarizes studies that were done showing the influence of genetic polymorphisms in lipolysis pathway and weight loss in a weight loss treatment program. Some studies h...

  14. Genes involved in sex pheromone discrimination in Drosophila melanogaster and their background-dependent effect.

    Directory of Open Access Journals (Sweden)

    Benjamin Houot

    Full Text Available Mate choice is based on the comparison of the sensory quality of potential mating partners, and sex pheromones play an important role in this process. In Drosophila melanogaster, contact pheromones differ between male and female in their content and in their effects on male courtship, both inhibitory and stimulatory. To investigate the genetic basis of sex pheromone discrimination, we experimentally selected males showing either a higher or lower ability to discriminate sex pheromones over 20 generations. This experimental selection was carried out in parallel on two different genetic backgrounds: wild-type and desat1 mutant, in which parental males showed high and low sex pheromone discrimination ability respectively. Male perception of male and female pheromones was separately affected during the process of selection. A comparison of transcriptomic activity between high and low discrimination lines revealed genes not only that varied according to the starting genetic background, but varied reciprocally. Mutants in two of these genes, Shaker and quick-to-court, were capable of producing similar effects on discrimination on their own, in some instances mimicking the selected lines, in others not. This suggests that discrimination of sex pheromones depends on genes whose activity is sensitive to genetic context and provides a rare, genetically defined example of the phenomenon known as "allele flips," in which interactions have reciprocal effects on different genetic backgrounds.

  15. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  16. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  17. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze).

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-01-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops. PMID:27465480

  18. Hypoxanthine deregulates genes involved in early neuronal development. Implications in Lesch-Nyhan disease pathogenesis.

    Science.gov (United States)

    Torres, R J; Puig, J G

    2015-11-01

    Neurological manifestations in Lesch-Nyhan disease (LND) are attributed to the effect of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency on the nervous system development. HPRT deficiency causes the excretion of increased amounts of hypoxanthine into the extracellular medium and we hypothesized that HPRT deficiency related to hypoxanthine excess may then lead, directly or indirectly, to transcriptional aberrations in a variety of genes essential for the function and development of striatal progenitor cells. We have examined the effect of hypoxanthine excess on the differentiation of neurons in the well-established human NTERA-2 cl.D1 (NT2/D1) embryonic carcinoma neurogenesis model. NT2/D1 cells differentiate along neuroectodermal lineages after exposure to retinoic acid (RA). Hypoxanthine effects on RA-differentiation were examined by the changes on the expression of various transcription factor genes essential to neuronal differentiation and by the changes in tyrosine hydroxylase (TH), dopamine, adenosine and serotonin receptors (DRD, ADORA, HTR). We report that hypoxanthine excess deregulate WNT4, from Wnt/β-catenin pathway, and engrailed homeobox 1 gene and increased TH and dopamine DRD1, adenosine ADORA2A and serotonin HTR7 receptors, whose over expression characterize early neuro-developmental processes. PMID:25940910

  19. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)

    Science.gov (United States)

    Jayaswall, Kuldip; Mahajan, Pallavi; Singh, Gagandeep; Parmar, Rajni; Seth, Romit; Raina, Aparnashree; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Shankar, Ravi; Sharma, Ram Kumar

    2016-07-01

    To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.

  20. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  1. A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription

    Institute of Scientific and Technical Information of China (English)

    Danièle Moes; Sabrina Gatti; Céline Hoffmann; Monika Dieterle; Flora Moreau; Katrin Neumann; Marc Schumacher

    2013-01-01

    The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution,suggesting that,in addition to their previously described roles in actin cytoskeleton organization,they participate in nuclear processes.Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters,we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA.Using both green fluorescent protein (GFP) fusion-and immunology-based strategies,we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton,the nucleus,and the nucleolus.Interestingly,the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction,pinpointing a possible novel cytoskeletal-nuclear crosstalk.Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles.Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains.Importantly,reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells.Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression,suggesting a role of NtWLIM2 in the activation of basal histone gene expression.Interestingly,both live cell and in vitro data support NtWLIM2 di/oligomerization.We propose that NtWLIM2 functions as an actin-stabilizing protein,which,upon cytoskeleton remodeling,shuttles to the nucleus in order to modify gene expression.

  2. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection.

    Directory of Open Access Journals (Sweden)

    Jungan Park

    Full Text Available BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV. Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were

  3. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes

    NARCIS (Netherlands)

    A. Santos; A.D. Bakker; B. Zandieh-Doulabi; C.M. Semeins; J. Klein-Nulend

    2009-01-01

    Strain-derived flow of interstitial fluid activates signal transduction pathways in osteocytes that regulate bone mechanical adaptation. Wnts are involved in this process, but whether mechanical loading modulates Wnt signaling in osteocytes is unclear. We assessed whether mechanical stimulation by p

  4. De Novo assembly of the Japanese flounder (Paralichthys olivaceus spleen transcriptome to identify putative genes involved in immunity.

    Directory of Open Access Journals (Sweden)

    Lin Huang

    Full Text Available Japanese flounder (Paralichthys olivaceus is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity.A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14% were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45% unigenes were categorized into three Gene Ontology groups, 19,547 (91.38% were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78% were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways.The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder.

  5. Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters in Burkholderia sp. strain SJ98.

    Directory of Open Access Journals (Sweden)

    Surendra Vikram

    Full Text Available Biodegradation of para-Nitrophenol (PNP proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT and hydroquinone (HQ as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM and p-benzoquinone reductase (BqR. Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ, while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ. Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions.

  6. Gene expression profiling of alpha-radiation-induced rat osteosarcomas: Identification of dys-regulated genes involved in radiation-induced tumorigenesis of bone

    Energy Technology Data Exchange (ETDEWEB)

    Daino, K.; Ugolin, N.; Altmeyer-Morel, S.; Guilly, M.N.; Chevillard, S. [Laboratoire de Cancerologie Experimentale, iRCM, DSV, CEA, Fontenay-aux-Roses (France)

    2009-07-01

    To better understand the molecular basis of radiation-induced osteosarcoma (OS), we performed global gene expression profiling of rat OS tumors induced by the bone-seeking alpha emitter {sup 238}Pu, and the expression profiles were compared with those of normal osteoblasts (OB). The expressions of 72 genes were significantly differentially expressed in the tumors related to OB. These included genes involved in the cell adhesion (e.g., Podxl, Col18a1, Cd93, Emcn and Vcl), differentiation, developmental processes (e.g., Hhex, Gata2, P2ry6, P2rx5, Cited2, Osmr and Igsf10), tumor suppressor function (e.g., Nme3, Blcap and Rrm1), Src tyrosine kinase signaling (e.g., Hck, Shf, Arhgap29, Cttn and Akap12), and Wnt/b-catenin signaling (e.g., Fzd6, Lzic, Dkk3 and Ctnna1) pathways. Expression changes of several genes were validated by quantitative real-time RT-PCR analysis. Notably, all of the identified genes involved in the Wnt/{beta}-catenin signaling pathway were known or proposed to be negative regulators of this pathway and were down-regulated in the tumors, suggesting the activation of {beta}-catenin in radiation-induced OS. By using immunohistochemical and immunoblot analyses, constitutive activation of the Wnt/{beta}-catenin signaling pathway in the tumors was confirmed by observing nuclear and/or cytoplasmic localization of {beta}-catenin and a decrease in its inactive (phosphorylated) form. Furthermore, we found a significant reduction in the levels of glycogen synthase kinase 3b (GSK-3b) protein in the tumors relative to OB. Taken together, these findings provide new insights into the molecular basis of radiation-induced OS. (authors)

  7. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions

    Directory of Open Access Journals (Sweden)

    Kathy E Schwinn

    2014-11-01

    Full Text Available Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida] and Eustoma grandiflorum (lisianthus plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor (ROSEA1 that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related bHLH transcription factor transgene (LEAF COLOR, LC, which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1×35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment accumulation in the petal throat region, and the anthers changed from yellow to purple colour. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1×35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  8. Identification of genes involved in the sensitivity to antitumour drug 17-allylamino,17-demethoxygeldanamycin (17AAG).

    Science.gov (United States)

    Barresi, Vincenza; Fortuna, Cosimo G; Garozzo, Roberta; Musumarra, Giuseppe; Scirè, Salvatore; Condorelli, Daniele F

    2006-05-01

    In the present study we analysed the gene expression database provided by the National Cancer Institute in an attempt to correlate activity profiles of geldanamycin, 17AAG and 11 other analogues in 60 human tumor cell lines with their gene expression profiles determined by the cDNA microarray technique. On the basis of the activity profiles two classes of geldanamycin analogues could be distinguished, having geldanamycin and 17AAG, respectively, as prototype compounds (denominated as gelda-like and 17AAG-like classes). Application of the "soft" statistical methodology of PLS (partial least squares modelling in latent variables or projections to latent structures) allowed us to evaluate the influence of each gene expression target in determining the therapeutical responses. The transcript encoding the translocating chain-associated membrane protein (TRAM) showed a significant statistical correlation with activity profiles of 17AAG. In order to validate the role of TRAM in determining sensitivity to 17AAG we induced a selective knocking-down of this transcript by the RNA interference methodology in H226 non-small cell lung carcinoma cell line. The efficiency of double-stranded RNA oligonucleotides (short-interfering RNAs, siRNAs) was determined by measuring TRAM mRNA levels by quantitative real-time RT-PCR at different times (24-72 hours) after siRNA lipotransfection. A significant increase in chemosensitivity to 17AAG was observed in siRNA-silenced cells. Although a number of factors may affect tumour sensitivity to 17AAG the present methodology allowed us to dissect out a single parameter which may be partly responsible for its activity. PMID:16880941

  9. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid pIJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into pIJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb PstI I-Apa I DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by using strategy of gene disruption, and the resulting sawB mutant failed to form spores and produced loosely coiled aerial hyphal. The result showed that sawB is closely related to hyphal coiling and sporulation in S. ansochromogenes, and also indicated that the sawB can complement whiH mutant (C119) to restore the grey phenotype of Streptomyces coelicolor J1501(wild type).

  10. Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Wennuan Liu

    2008-08-01

    Full Text Available Prostate cancer cell lines provide ideal in vitro systems for the identification and analysis of prostate tumor suppressors and oncogenes. A detailed characterization of the architecture of prostate cancer cell line genomes would facilitate the study of precise roles of various genes in prostate tumorigenesis in general. To contribute to such a characterization, we used the GeneChip 500K single nucleotide polymorphic (SNP array for analysis of genotypes and relative DNA copy number changes across the genome of 11 cell lines derived from both normal and cancerous prostate tissues. For comparison purposes, we also examined the alterations observed in the cell lines in tumor/normal pairs of clinical samples from 72 patients. Along with genome-wide maps of DNA copy number changes and loss of heterozygosity for these cell lines, we report previously unreported homozygous deletions and recurrent amplifications in prostate cancers in this study. The homozygous deletions affected a number of biologically important genes, including PPP2R2A and BNIP3L identified in this study and CDKN2A/CDKN2B reported previously. Although most amplified genomic regions tended to be large, amplifications at 8q24.21 were of particular interest because the affected regions are relatively small, are found in multiple cell lines, are located near MYC, an oncogene strongly implicated in prostate tumorigenesis, and are known to harbor SNPs that are associated with inherited susceptibility for prostate cancer. The genomic alterations revealed in this study provide an important catalog of positional information relevant to efforts aimed at deciphering the molecular genetic basis of prostate cancer.

  11. Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism.

    Science.gov (United States)

    Qi, Yixiang; Teng, Ziwen; Gao, Lingfeng; Wu, Shunfan; Huang, Jia; Ye, Gongyin; Fang, Qi

    2015-04-01

    For successful parasitization, parasitiods usually depend on the chemosensory cues for the selection of hosts, as well as a variety of virulence factors introduced into their hosts to overcome host immunity and prevent rejection of progeny development. In bracovirus-carrying wasps, the symbiotic polydnaviruses act in manipulating development and immunity of hosts. The endoparasitoid Cotesia chilonis carrying bracovirus as a key host immunosuppressive factor is a superior endoparasitoid of rice stem borer, Chilo suppressalis. So far, genomic information for C. chilonis is not available and transcriptomic data may provide valuable resources for global studying on physiological processes of C. chilonis, including chemosensation and parasitism at molecular level. Here, we performed RNA-seq to characterize the transcriptome of C. chilonis adults. We obtained 27,717,892 reads, assembled into 38,318 unigenes with a mean size of 690 bp. Approximately, 62.1% of the unigenes were annotated using NCBI databases. A large number of chemoreception-related genes encoding proteins including odorant receptors, gustatory receptors, odorant-binding proteins, chemosensory proteins, transient receptor potential ion channels, and sensory neuron membrane proteins were identified in silico. Totally, 72 transcripts possessing high identities with the bracovirus-related genes were identified. We investigated the mRNA expression levels of several transcripts at different developmental stages (including egg, larva, pupae, and adult) by quantitative real-time PCR analysis. The results revealed that some genes had adult-specific expression, indicating their potential significance for mating and parasitism. Overall, these results provide comprehensive insights into transcriptomic data of a polydnavirus-carrying parasitoid of a rice pest. PMID:25336406

  12. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  13. No muscle involvement in myoclonus-dystonia caused by epsilon-sarcoglycan gene mutations1

    DEFF Research Database (Denmark)

    Hjermind, L.E.; Vissing, J.; Asmus, F.;

    2008-01-01

    homologous and may substitute for one-another in different tissues. We therefore investigated whether mutations in SGCE also cause abnormalities of skeletal and myocardial muscle. Six patients with clinically and genetically verified M-D and no signs of limb-girdle muscular dystrophy were included. Skeletal......Mutations in the epsilon-sarcoglycan gene (SGCE) can cause autosomal dominant inherited myoclonus-dystonia (M-D). Defects in other sarcoglycans; alpha-, beta-, gamma-, and delta can cause autosomal recessive inherited limb girdle muscular dystrophies. epsilon- and alpha-sarcoglycans are very...

  14. Induction of liver alpha-1 acid glycoprotein gene expression involves both positive and negative transcription factors.

    OpenAIRE

    Y. M. Lee; Tsai, W H; Lai, M Y; Chen, D S; Lee, S. C.

    1993-01-01

    Expression of the alpha-1 acid glycoprotein (AGP) gene is liver specific and acute phase responsive. Within the 180-bp region of the AGP promoter, at least five cis elements have been found to interact with trans-acting factors. Four of these elements (A, C, D, and E) interacted with AGP/EBP, a liver-enriched transcription factor, as shown by footprinting analysis and by an anti-AGP/EBP antibody-induced supershift in a gel retardation assay. Modification of these sites by site-directed mutage...

  15. [Microdeletion 12p12 involving SOX5 gene: a new syndrome with developmental delay].

    Science.gov (United States)

    Arroyo-Carrera, Ignacio; de Zaldívar-Tristancho, M Solo; Martín-Fernández, Rebeca; Hernández-Martín, Raquel; López-Lafuente, Amparo; Rodríguez-Revenga, Laia

    2015-05-16

    Introduccion. El gen SOX5 codifica un factor de transcripcion implicado en la regulacion de la condrogenia y el desarrollo del sistema nervioso. Caso clinico. Niña de 10 anos con discapacidad intelectual, alteracion conductual y malformaciones menores de este nuevo sindrome con alteracion en el neurodesarrollo, con una delecion 12p12 que incluye el gen SOX5. Conclusiones. Se revisan los casos publicados tanto de deleciones intragenicas de SOX5 como de deleciones mas grandes que incluyen este gen, y se analizan las correlaciones genotipo-fenotipo y los genes implicados en esta paciente.

  16. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei.

  17. Intersex in Scrobicularia plana: transcriptomic analysis reveals novel genes involved in endocrine disruption.

    Science.gov (United States)

    Ciocan, Corina M; Cubero-Leon, Elena; Peck, Mika R; Langston, William J; Pope, Nick; Minier, Christophe; Rotchell, Jeanette M

    2012-12-01

    Intersex, the appearance of female characteristics in male gonads, has been identified in a wide range of aquatic species worldwide, yet the underpinning molecular etiology remains uncharacterized. The presence of intersex has been shown to be a widespread phenomenon in bivalve, S. plana, populations from the southwest coast of the U.K., as well as inducible in an experimental exposure regime using endocrine disrupting compounds (EDCs). Herein, we use the suppressive subtractive hybridization approach to isolate differentially expressed transcripts in S. plana males exhibiting intersex. Transcripts involved in cell signaling, cell cycle control, energy production/metabolism, microtubule assembly, and sperm physiology are all highlighted as differentially expressed in intersex male clams. These provide both an insight into the molecular mechanisms of action involved in the development of intersex, as well as facilitating potential molecular-level "early warning" biomarkers of the condition. PMID:23110442

  18. An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis

    OpenAIRE

    Adriano R. Lucheta; Ana Carla O. Silva-Pinhati; Ana Carolina Basílio-Palmieri; Irving J. Berger; Juliana Freitas-Astúa; Mariângela Cristofani

    2007-01-01

    Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST) in Citrus sinensis (L.) Osbeck co...

  19. P12 - PTHC1: A Continuing Cell Line Expressing PTH and Genes Involved in Calcium Homeostasis

    OpenAIRE

    Fabbri, S.; Mazzotta, C.; Ciuffi, S.; Mavilia, C.; Galli, G.; Zonefrati, R; Strigoli, D.; Cavalli, L.; Cavalli, T.; Brandi, M.L.

    2010-01-01

    The main organs regulating serum levels of ionised calcium (Ca2+) are the parathyroids, which are composed of two different cell types: chief cells and oxyphil cells. Chief cells, through the calcium sensing receptor (CaSR), are affected by changes in calcium concentration, modifying PTH secretion in proportion to calcium levels. Current understanding of calcium regulation mechanisms connected to PTH and of the signalling pathways involved derive from in vitro studies carried out on primary c...

  20. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait.

    Science.gov (United States)

    Chai, You-Rong; Lei, Bo; Huang, Hua-Lei; Li, Jia-Na; Yin, Jia-Ming; Tang, Zhang-Lin; Wang, Rui; Chen, Li

    2009-01-01

    Molecular dissection of the Brassica yellow seed trait has been the subject of intense investigation. Arabidopsis thaliana TRANSPARENT TESTA 12 (AtTT12) encodes a multidrug and toxic compound extrusion (MATE) transporter involved in seed coat pigmentation. Two, one, and one full-length TT12 genes were isolated from B. napus, B. oleracea, and B. rapa, respectively, and Southern hybridization confirmed these gene numbers, implying loss of some of the triplicated TT12 genes in Brassica. BnTT12-1, BnTT12-2, BoTT12, and BrTT12 are 2,714, 3,062, 4,760, and 2,716 bp, with the longest mRNAs of 1,749, 1,711, 1,739, and 1,752 bp, respectively. All genes contained alternative transcriptional start and polyadenylation sites. BrTT12 and BoTT12 are the progenitors of BnTT12-1 and BnTT12-2, respectively, validating B. napus as an amphidiploid. All Brassica TT12 proteins displayed high levels of identity (>99%) to each other and to AtTT12 (>92%). Brassica TT12 genes resembled AtTT12 in such basic features as MatE/NorM CDs, subcellular localization, transmembrane helices, and phosphorylation sites. Plant TT12 orthologs differ from other MATE proteins by two specific motifs. Like AtTT12, all Brassica TT12 genes are most highly expressed in developing seeds. However, a range of organ specificity was observed with BnTT12 genes being less organ-specific. TT12 expression is absent in B. rapa yellow-seeded line 06K124, but not downregulated in B. oleracea yellow-seeded line 06K165. In B. napus yellow-seeded line L2, BnTT12-2 expression is absent, whereas BnTT12-1 is expressed normally. Among Brassica species, TT12 genes are differentially related to the yellow seed trait. The molecular basis for the yellow seed trait, in Brassica, and the theoretical and practical implications of the highly variable intron 1 of these TT12 genes are discussed. PMID:19018571

  1. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome in China

    Institute of Scientific and Technical Information of China (English)

    Shao-shuai WANG; Fu-yuan QIAO; Ling FENG; Juan-juan LV

    2008-01-01

    Objective: To explore the relationship between genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), the central enzymes in folate metabolism that affects DNA methylation and synthesis, and the risk of Down syndrome in China. Methods: Genomic DNA was isolated from the peripheral lymphocytes of 64 mothers of children with Down syndrome and 70 age matched control subjects. Polymerase chain reaction and restriction fragment length polymorphism were used to examine the polymorphisms of MTHFR 677C→T, MTRR 66A→G and the relationship between these genotypes and the risk of Down syndrome was analyzed. Results: The results show that the MTHFR 677C→T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 3.78 (95% confidence interval (CI), 1.78~8.47). In addition, the homozygous MTRR 66A→G polymorphism was independently associated with a 5.2-fold increase in estimated risk (95% CI, 1.90~14.22). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than the presence of either alone, with an odds ratio of 6.0 (95% CI, 2.058~17.496).The two polymorphisms appear to act without a multiplicative interaction. Conclusion: MTHFR and MTRR gene mutation alleles are related to Down syndrome, and CT, TT and GG gene mutation types increase the risk of Down syndrome.

  2. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  3. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris.

    Science.gov (United States)

    Lin, Yu-Fu; Chen, You-Yi; Hsiao, Yu-Yun; Shen, Ching-Yu; Hsu, Jui-Ling; Yeh, Chuan-Ming; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2016-09-01

    TEOSINTE-BRANCHED/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors known to have a role in multiple aspects of plant growth and development at the cellular, organ and tissue levels. However, there has been no related study of TCPs in orchids. Here we identified 23 TCP genes from the genome sequence of Phalaenopsis equestris Phylogenetic analysis distinguished two homology classes of PeTCP transcription factor families: classes I and II. Class II was further divided into two subclasses, CIN and CYC/TB1. Spatial and temporal expression analysis showed that PePCF10 was predominantly expressed in ovules at early developmental stages and PeCIN8 had high expression at late developmental stages in ovules, with overlapping expression at day 16 after pollination. Subcellular localization and protein-protein interaction analyses revealed that PePCF10 and PeCIN8 could form homodimers and localize in the nucleus. However, PePCF10 and PeCIN8 could not form heterodimers. In transgenic Arabidopsis thaliana plants (overexpression and SRDX, a super repression motif derived from the EAR-motif of the repression domain of tobacco ETHYLENE-RESPONSIVE ELEMENT-BINDING FACTOR 3 and SUPERMAN, dominantly repressed), the two genes helped regulate cell proliferation. Together, these results suggest that PePCF10 and PeCIN8 play important roles in orchid ovule development by modulating cell division. PMID:27543606

  4. Structure and function of sawB, a gene involved in differentiation of Streptomyces ansochromogenes

    Institute of Scientific and Technical Information of China (English)

    聂丽平; 王韫恂; 贾君永; 田宇清; 谭华荣

    2000-01-01

    A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid plJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into plJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb Pstl l-Apa l DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by usi

  5. CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly.

    Science.gov (United States)

    Basit, Sulman; Al-Harbi, Khalid M; Alhijji, Sabri A M; Albalawi, Alia M; Alharby, Essa; Eldardear, Amr; Samman, Mohammed I

    2016-10-01

    Autosomal recessive primary microcephaly (MCPH) is a static neurodevelopmental disorder characterized by congenital small head circumference and non-progressive intellectual disability without additional severe brain malformations. MCPH is a genetically heterogeneous disorder. Sixteen genes (MCPH1-MCPH16) have been discovered so far, mutations thereof lead to autosomal recessive primary microcephaly. In a family, segregating MCPH in an autosomal recessive manner, genome-wide homozygosity mapping mapped a disease locus to 16.9-Mb region on chromosome 12q24.11-q24.32. Following this, exome sequencing in three affected individuals of the family discovered a splice site variant (c.753+3A>T) in citron kinase (CIT) gene, segregating with the disorder in the family. CIT co-localizes to the midbody ring during cytokinesis, and its loss of expression results in defects in neurogenic cytokinesis in both humans and mice. Splice site variant in CIT, identified in this study, is predicted to abolish splice donor site. cDNA sequence of an affected individual showed retention of an intron next to the splice donor site. The study, presented here, revealed the first variant in the CIT causing MCPH in the family. PMID:27519304

  6. The microcephaly gene aspm is involved in brain development in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Taek; Lee, Mi-Sun; Choi, Jung-Hwa [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Jung, Ju-Yeon [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Ahn, Dae-Gwon [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yeo, Sang-Yeob [Department of Biotechnology, Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Choi, Dong-Kug, E-mail: choidk@kku.ac.kr [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Kim, Cheol-Hee, E-mail: zebrakim@cnu.ac.kr [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} We identified a zebrafish aspm/mcph5 gene that is expressed in proliferating cells in the CNS during early development. {yields} Embryos injected with the aspm MO consistently showed a reduced head and eye size but were otherwise grossly normal, closely mimicking the known phenotypes of human microcephaly patients. {yields} Knock-down of aspm causes cell cycle arrest and apoptotic cell death during early development. -- Abstract: MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.

  7. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Mencinger, M.; Panagopoulos, I.; Andreasson, P. [Univ. Hospital of Lund (Sweden)] [and others

    1997-05-01

    Homology searches in the Expressed Sequence Tag Database were performed using SPYGQ-rich regions as query sequences to find genes encoding protein regions similar to the N-terminal parts of the sarcoma-associated EWS and FUS proteins. Clone 22911 (T74973), encoding a SPYGQ-rich region in its 5{prime} end, and several other clones that overlapped 22911 were selected. The combined data made it possible to assemble a full-length cDNA sequence. This cDNA sequence is 1677 bp, containing an initiation codon ATG, an open reading frame of 400 amino acids, a poly(A) signal, and a poly(A) tail. We found 100% identity between the 5{prime} part of the consensus sequence and the 598-bp-long sequence named TFG. The TFG sequence is fused to the 3{prime} end of NTRK1, generating the TRK-T3 fusion transcript found in papillary thyroid carcinoma. The cDNA therefore represents the full-length transcript of the TFG gene. TFG was localized to 3q11-q12 by fluorescence in situ hybridization. The 3{prime} and the 5{prime} ends of the TFG cDNA probe hybridized to a 2.2-kb band on Northern blot filters in all tissues examined. 28 refs., 5 figs., 1 tab.

  8. Homologue Pairing in Flies and Mammals: Gene Regulation When Two Are Involved

    Directory of Open Access Journals (Sweden)

    Manasi S. Apte

    2012-01-01

    Full Text Available Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will contrast the role of pairing in transmitting information between homologues in flies and mammals. In mammals, somatic homologue pairing is tightly regulated, occurring at specific loci and in a developmentally regulated fashion. Inappropriate pairing, or loss of normal pairing, is associated with gene misregulation in some disease states. While homologue pairing in flies is capable of influencing gene expression, the significance of this for normal expression remains unknown. The sex chromosomes pose a particularly interesting situation, as females are able to pair X chromosomes, but males cannot. The contribution of homologue pairing to the biology of the X chromosome will also be discussed.

  9. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Directory of Open Access Journals (Sweden)

    Alene Kast

    2015-05-01

    Full Text Available Cytoplasmic virus like elements (VLEs from Kluyveromyces lactis (Kl, Pichia acaciae (Pa and Debaryomyces robertsiae (Dr are extremely A/T-rich (>75% and encode toxic anticodon nucleases (ACNases along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5 results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  10. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Science.gov (United States)

    Kast, Alene; Voges, Rapha