Fermionic NNLO contributions to Bhabha scattering
Actis, S; Gluza, J; Riemann, T
2007-01-01
We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m_e, combined with arbitrary values of the fermion mass m_f in the loop, $m_e^2<
Virtual Hadronic Corrections to Massive Bhabha Scattering
Actis, Stefano; Riemann, Tord
2008-01-01
Virtual hadronic contributions to the Bhabha process at the NNLO level are discussed. They are substantial for predictions with per mil accuracy. The studies of heavy fermion and hadron corrections complete the calculation of Bhabha virtual effects at the NNLO level.
On master integrals for two loop Bhabha scattering
Czakon, M; Riemann, Tord
2004-01-01
All scalar master integrals (MIs) for massive 2-loop QED Bhabha scattering are identified. The 2- and 3-point MIs have been calculated in terms of harmonic polylogarithms with the differential equation method. The calculation of 4-point MIs is underway. We sketch some alternative methods which help to solve (mainly) singularities of some MIs.
On master integrals for two loop Bhabha scattering
Energy Technology Data Exchange (ETDEWEB)
Czakon, M.; Gluza, J. [Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Riemann, T.
2004-09-01
All scalar master integrals (MIs) for massive 2-loop QED Bhabha scattering are identified. The 2- and 3-point MIs have been calculated in terms of harmonic polylogarithms with the differential equation method. The calculation of 4-point MIs is underway. We sketch some alternative methods which help to solve (mainly) singularities of some MIs. (orig.)
Measurement of radiative Bhabha and quasi-real Compton scattering
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G
1998-01-01
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50~{\\GeV} and 170~{\\GeV} and 20~{\\GeV} and 140~{\\GeV}, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of $232.2 \\,\\pb$. A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling $\\lambda$ for the on-shell production of an excited electron $\\e^{\\star}$ decaying into a $\\gamma\\e$ pair in the mass range $20 \\gev < m_{\\e^{\\star}} < 170 \\gev$.
Searching for vector bileptons in polarized Bhabha scattering
Meirose, B
2009-01-01
In this paper we analyze the effects of virtual vector bileptons in polarized Bhabha scattering at the energies of the future linear colliders. In order to make the calculations of the differential cross sections more realistic, important beam effects such as initial state radiation and beamstrahlung are accounted for. The finite resolution of a typical electromagnetic calorimeter planned for the new linear colliders is also considered in the simulation. The 95% confidence level limits for bilepton masses in 331 models are evaluated.
Virtual hadronic and leptonic contributions to Bhabha scattering.
Actis, Stefano; Czakon, Michał; Gluza, Janusz; Riemann, Tord
2008-04-04
Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, the CERN Large Electron-Positron Collider, and the International Linear Collider. With a typical amount of 1-3 per mil they are of relevance for precision experiments.
Two-Loop Fermionic Corrections to Massive Bhabha Scattering
Actis, S; Gluza, J; Riemann, T
2007-01-01
We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses me, mf and the Mandelstam invariants s,t,u. We determine the limit of fixed scattering angle and high energy, assuming the hierarchy of scales me^2 << mf^2 << s,t,u. The numerical result is combined with the available non-fermionic contributions. As a by-product, we provide an independent check of the known electron-loop contributions.
Eponymous citations to Homi Jehangir Bhabha
Swarna, T.; Kalyane, V. L.; Prakasan, E. R.; Vijai Kumar, *
2004-01-01
The epoch-making research by H. J. Bhabha has gained eponymous status synonymous with his name and international fame. Out of the 427 eponymous bibliographic records for H. J. Bhabha retrieved from the Science Citation Index (1982-2002), majority of the records were for: bhabha scattering (290), angle bhabha scattering (42), small angle bhabha scattering (21), radiative bhabha scattering (17), large-angle bhabha scattering (16), resonant bhabha scattering (12), and low-angle bhabha scattering...
Virtual Hadronic and Leptonic Contributions to Bhabha Scattering
Actis, Stefano; Gluza, Janusz; Riemann, Tord
2007-01-01
Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects in photon propagation. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, LEP, and the ILC. The effects turn out to be smaller, in most cases, than those corresponding to electron loop insertions, but stay, with amounts of typically one per mille, of relevance for precision experiments. Hadronic corrections themselves are typically about 2-3 times larger than those of intermediate muon pairs (the largest heavy leptonic terms).
Irreducible tensor basis and general Fierz relations for Bhabha scattering like amplitudes
Liu, Tao
2016-01-01
We construct an irreducible s- and t-channel tensor basis for Bhabha scattering like amplitudes based on the properties of the underlying Lorentz symmetry in four space-time dimensions. In the given basis the calculation of amplitude contractions like the amplitude square reduces to the contraction of their corresponding coefficient tensors. Further the basis retains the full amplitude information and thus can be applied in off-shell cases. The general Fierz transformations which relate the s- and t-channel basis with each other are obtained. As an example for application we use the basis to calculate the tree-level Bhabha scattering amplitude.
A complete set of scalar master integrals for massive 2-loop Bhabha scattering: where we are
Energy Technology Data Exchange (ETDEWEB)
Czakon, M. [Deutsches Elektronen-Synchrotron, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40007 Katowice (Poland); Gluza, J. [Deutsches Elektronen-Synchrotron, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Riemann, T. [Deutsches Elektronen-Synchrotron, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)
2004-10-01
We define a complete set of scalar master integrals (MIs) for massive 2-loop QED Bhabha scattering. Among others, there are thirty three 2-loop box type MIs. Five of them have been published in (semi-)analytical form, one is determined here, the rest remains to be calculated. Further, the last four so far unknown 2-loop 3-point MIs are identified and also computed here.
Master integrals for massive two-loop Bhabha scattering in QED
Czakon, M; Riemann, Tord
2004-01-01
We present a set of scalar master integrals (MIs) needed for a complete treatment of massive two-loop corrections to Bhabha scattering in QED, including integrals with arbitrary fermionic loops. The status of analytical solutions for the MIs is reviewed and examples of some methods to solve MIs analytically are worked out in more detail. Analytical results for the pole terms in epsilon of so far unknown box MIs with five internal lines are given.
Master integrals for massive two-loop Bhabha scattering in QED
Energy Technology Data Exchange (ETDEWEB)
Czakon, M. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Gluza, J. [Uniwersytet Slaski, Katowice (Poland). Inst. Fizyki; Riemann, T.
2004-12-01
We present a set of scalar master integrals (MIs) needed for a complete treatment of massive two-loop corrections to Bhabha scattering in QED, including integrals with arbitrary fermionic loops. The status of analytical solutions for the MIs is reviewed and examples of some methods to solve MIs analytically are worked out in more detail. Analytical results for the pole terms in {epsilon} of so far unknown box MIs with five internal lines are given. (orig.)
Planar two-loop master integrals for massive Bhabha scattering: N_f=1 and N_f=2
Actis, S; Gluza, J; Riemann, Tord; Actis, Stefano; Czakon, Michal; Gluza, Janusz; Riemann, Tord
2006-01-01
Recent developments in the computation of two-loop master integrals for massive Bhabha scattering are briefly reviewed. We apply a method based on expansions of exact Mellin-Barnes representations and evaluate all planar four-point master integrals in the approximation of small electron mass at fixed scattering angle for the one-flavor case. The same technique is employed to derive and evaluate also all two-loop masters generated by additional fermion flavors. The approximation is sufficient for the determination of QED two-loop corrections for Bhabha scattering in the kinematics planned to be used for the luminosity determination at the ILC.
QED radiative corrections to low-energy Møller and Bhabha scattering
Epstein, Charles S.; Milner, Richard G.
2016-08-01
We present a treatment of the next-to-leading-order radiative corrections to unpolarized Møller and Bhabha scattering without resorting to ultrarelativistic approximations. We extend existing soft-photon radiative corrections with new hard-photon bremsstrahlung calculations so that the effect of photon emission is taken into account for any photon energy. This formulation is intended for application in the OLYMPUS experiment and the upcoming DarkLight experiment but is applicable to a broad range of experiments at energies where QED is a sufficient description.
QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering
Epstein, Charles S
2016-01-01
We present a treatment of the next-to-leading-order radiative corrections to unpolarized Moller and Bhabha scattering without resorting to ultra-relativistic approximations. We extend existing soft-photon radiative corrections with new hard-photon bremsstrahlung calculations so that the effect of photon emission is taken into account for any photon energy. This formulation is intended for application in the OLYMPUS experiment and the upcoming DarkLight experiment, but is applicable to a broad range of experiments at energies where QED is a sufficient description.
Two-loop NF=1 QED Bhabha scattering differential cross section
Bonciani, R.; Ferroglia, A.; Mastrolia, P.; Remiddi, E.; van der Bij, J. J.
2004-11-01
We calculate the two-loop virtual, UV renormalized corrections at order α(N=1) in QED to the Bhabha scattering differential cross section, for arbitrary values of the squared c.m. energy s and momentum transfer t, and on-shell electrons and positrons of finite mass m. The calculation is carried out within the dimensional regularization scheme; the remaining IR divergences appear as polar singularities in (D-4). The result is presented in terms of 1- and 2-dimensional harmonic polylogarithms, of maximum weight 3.
Two-loop NF=1 QED Bhabha scattering differential cross section
Energy Technology Data Exchange (ETDEWEB)
Bonciani, R. [Fakultaet fuer Mathematik und Physik, Albert-Ludwigs-Universitaet Freiburg, D-79104 Freiburg (Germany)]. E-mail: roberto.bonciani@physik.uni-freiburg.de; Ferroglia, A. [Fakultaet fuer Mathematik und Physik, Albert-Ludwigs-Universitaet Freiburg, D-79104 Freiburg (Germany)]. E-mail: andrea.ferroglia@physik.uni-freiburg.de; Mastrolia, P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States)]. E-mail: mastrolia@physics.ucla.edu; Remiddi, E. [Physics Department, Theory Division, CERN, CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica dell' Universita di Bologna, and INFN, Sezione di Bologna, I-40126 Bologna (Italy)]. E-mail: ettore.remiddi@bo.infn.it; Bij, J.J. van der [Fakultaet fuer Mathematik und Physik, Albert-Ludwigs-Universitaet Freiburg, D-79104 Freiburg (Germany)]. E-mail: jochum@physik.uni-freiburg.de
2004-11-22
We calculate the two-loop virtual, UV renormalized corrections at order {alpha}4(NF=1) in QED to the Bhabha scattering differential cross section, for arbitrary values of the squared c.m. energy s and momentum transfer t, and on-shell electrons and positrons of finite mass m. The calculation is carried out within the dimensional regularization scheme; the remaining IR divergences appear as polar singularities in (D-4). The result is presented in terms of 1- and 2-dimensional harmonic polylogarithms, of maximum weight 3.
Virtual Hadronic and Heavy-Fermion O(alpha^2) Corrections to Bhabha Scattering
Actis, Stefano; Gluza, Janusz; Riemann, Tord
2008-01-01
Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering and have been first announced in \\cite{Actis:2007fs}. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O(alpha^2) QED corrections to the Bhabha-scattering cross-section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O(alpha^2) corrections generated by muon-, tau- and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; o...
Virtual hadronic and heavy-fermion O(α2) corrections to Bhabha scattering
Actis, Stefano; Czakon, Michał; Gluza, Janusz; Riemann, Tord
2008-10-01
Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering and have been announced in [S. Actis, M. Czakon, J. Gluza, and T. Riemann, Phys. Rev. Lett. 100, 131602 (2008).PRLTAO0031-900710.1103/PhysRevLett.100.131602]. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O(α2) QED corrections to the Bhabha-scattering cross section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O(α2) corrections generated by muon-, tau-, and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille. For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region.
NLO QED corrections to hard-bremsstrahlung emission in Bhabha scattering
Energy Technology Data Exchange (ETDEWEB)
Actis, Stefano [Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Mastrolia, Pierpaolo [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ossola, Giovanni, E-mail: gossola@citytech.cuny.ed [Physics Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States)
2010-01-04
We present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e{sup -}e{sup +}->e{sup -}e{sup +}gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we evaluate also the one-loop QED corrections to e{sup -}e{sup +}->mu{sup -}mu{sup +}gamma, and show an interesting application of the method in the presence of two different mass scales in the loops.
NLO QED Corrections to Hard-Bremsstrahlung Emission in Bhabha Scattering
Actis, Stefano; Ossola, Giovanni
2010-01-01
In this paper we present a numerical implementation of the one-loop QED corrections to the hard-bremsstrahlung process e- e+ \\to e- e+ gamma. These corrections can be included in the Monte Carlo event generators employed for simulating Bhabha scattering events at low-energy high-luminosity electron-positron colliders. The calculation is performed by employing the reduction method developed by Ossola, Papadopoulos and Pittau. Our results are implemented in a modular code for the numerical evaluation of the scattering amplitudes for any given phase-space point. In a similar way, we also evaluate the one-loop QED corrections to e- e+ \\to mu- mu+ gamma, which represents an interesting application of the method in the presence of two different mass scales in the loops.
Institute of Scientific and Technical Information of China (English)
JIANG Min; FANG Zhen-Yun; SANG Wen-Long; GAO Fei
2006-01-01
@@ In the minimum electromagnetism coupling model of interaction between photon and electron (positron), we accurately calculate photon chain renormalized propagator and obtain the accurate result of differential cross section of Bhabha scattering with a photon chain renormalized propagator in quantum electrodynamics. The related radiative corrections are briefly reviewed and discussed.
Anlauf, H; Manakos, P; Ohl, T
1995-01-01
This manual describes version 2.2 of the Monte Carlo event generator UNIBAB for large angle Bhabha scattering at LEP and SLC. UNIBAB implements higher order electromagnetic radiative corrections and the effects of soft photon exponentiation in a photon shower approach. Weak corrections are included through the use of an electroweak library.
NNLO massive corrections to Bhabha scattering and theoretical precision of BabaYaga rate at NLO
Energy Technology Data Exchange (ETDEWEB)
Carloni Calame, C.M. [Southampton Univ. (United Kingdom). School of Physics; Czyz, H.; Gluza, J.; Gunia, M. [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics; Montagna, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Sezione di Pavia (Italy); Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia (Italy); Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Worek, M. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik
2011-12-15
We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga rate at NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga rate at NLO is presented and possible directions for a further error reduction are sketched. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Carloni Calame, C. [Southampton Univ. (United Kingdom). School of Physics; Czyz, H.; Gluza, J.; Gunia, M. [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics; Montagna, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Sezione di Pavia (Italy); Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia (Italy); Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Worek, M. [Wuppertal Univ. (Germany). Fachbereich C Physik
2011-07-15
Virtual fermionic N{sub f}=1 and N{sub f}=2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package BHANNLOHF, and real corrections with the Monte Carlo generators BHAGEN-1PH, HELAC-PHEGAS and EKHARA. Numerical results are discussed at the energies of and with realistic cuts used at the {phi} factory DA{phi}NE, at the B factories PEP-II and KEK, and at the charm/{tau} factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator BABAYAGA rate at NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy. (orig.)
Electroweak coupling measurements from polarized Bhabha scattering at the Z{sup 0} resonance
Energy Technology Data Exchange (ETDEWEB)
Pitts, K.T.
1994-03-01
The cross section for Bhabha scattering (e{sup +}e{sup {minus}} {yields} e{sup +}e{sup {minus}}) with polarized electrons at the center of mass energy of the Z{sup 0} resonance has been measured with the SLD experiment at the Stanford Linear Accelerator Center during the 1992 and 1993 runs. The electroweak couplings of the electron are extracted. At small angles the measurement is done in the SLD Silicon/Tungsten Luminosity Monitor (LMSAT). A detailed description of the design, construction, commissioning and operation of the LMSAT is provided. The integrated luminosity for 1992 is measured to be L = 420.86{plus_minus}2.56 (stat){plus_minus}4.23 (sys) nb{sup {minus}1}. The luminosity asymmetry for polarized beams is measured to be A{sub LR}(LUM) = (1.7 {plus_minus} 6.4) {times} 10{sup {minus}3}. The large angle polarized Bhabha scattering reveals the effective electron vector and axial vector couplings to the Z{sup 0} through the measurement of the Z{sup 0} {yields} e{sup +}e{sup {minus}} partial width, {Gamma}{sub ee}, and the parity violation parameter, A{sub e}. From the combined 1992 and 1993 data the effective electron vector and axial vector couplings are measured to be {bar g}{sub v}{sup e} = {minus}0.0495{plus_minus}0.0096{plus_minus}0.0030, and {bar g}{sub {alpha}}{sup e} = {minus}0.4977{plus_minus}0.0035{plus_minus}0.0064 respectively. The effective weak mixing angle is measured to be sin{sup 2}{theta}{sub W}{sup eff} = 0.2251{plus_minus}0.0049{plus_minus}0.0015. These results are compared with other experiments.
Calame, C. Carloni; Czyż, H.; Gluza, J.; Gunia, M.; Montagna, G.; Nicrosini, O.; Piccinini, F.; Riemann, T.; Worek, M.
2011-07-01
Virtual fermionic N f = 1 and N f = 2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package bha_nnlo_hf, and real corrections with the Monte Carlo generators B hagen-1P h, H elac-P hegas and E khara. Numerical results are discussed at the energies of and with realistic cuts used at the Φ factory DANE, at the B factories PEP-II and KEK, and at the charm/τ factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator B abaY aga@NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy.
Shumar, Wesley
2010-01-01
Homi K. Bhabha is not only a major postcolonial theorist, but he has also become an important thinker for education. This article reviews the major themes of Bhabha's work as it applies to education. The article also cautions us that the pressures in scholarship are to "reify" thinkers and their concepts and then "spend" those concepts like…
Homi Jehangir Bhabha : Architect of Modern Science and Technology in India
Singh, Virendra
2009-01-01
After describing Bhabha's early life at Bombay, now Mumbai, we discuss his research career at Cambridge, where he made many distinguished contributions to positron physics, cosmic rays and the meson theory. These include theory of positron-electron scattering (Bhabha scattering), Bhabha-Heitler theory of cosmic ray showers and prediction of heavier electrons (ie. muons). Later in his life, after 1945, Bhabha worked in India at Bangalore and Mumbai. In India Bhabha laid foundations of modern n...
Two-loop Bhabha scattering at high energy beyond leading power approximation
Directory of Open Access Journals (Sweden)
Alexander A. Penin
2016-09-01
Full Text Available We evaluate the two-loop O(me2/s contribution to the wide-angle high-energy electron–positron scattering in the double-logarithmic approximation. The origin and the general structure of the power-suppressed double logarithmic corrections are discussed in detail.
Bonciani, R.; Ferroglia, A.; Mastrolia, P.; Remiddi, E.; van der Bij, J. J.
2004-12-01
In this paper we present the master integrals necessary for the analytic calculation of the box diagrams with one electron loop (N_{F}=1) entering in the 2-loop (\\alpha^3) QED virtual corrections to the Bhabha scattering amplitude of the electron. We consider on-shell electrons and positrons of finite mass m, arbitrary squared c.m. energy s, and momentum transfer t; both UV and soft IR divergences are regulated within the continuous D-dimensional regularization scheme. After a brief overview of the method employed in the calculation, we give the results, for s and t in the Euclidean region, in terms of 1- and 2-dimensional harmonic polylogarithms, of maximum weight 3. The corresponding results in the physical region can be recovered by analytical continuation. For completeness, we also provide the analytic expression of the 1-loop scalar box diagram including the first order in (D-4).
Bonciani, R; Mastrolia, Pierpaolo; Remiddi, E; Van der Bij, J J
2004-01-01
Recently, we evaluated the virtual cross-section for Bhabha scattering in pure QED, up to corrections of order alpha^4 (N_F =1). This calculation is valid for arbitrary values of the squared center of mass energy s and momentum transfer t; the electron and positron mass m was considered a finite, non vanishing quantity. In the present work, we supplement the previous calculation by considering the contribution of the soft photon emission diagrams to the differential cross-section, up to and including terms of order alpha^4 (N_F=1). Adding the contribution of the real corrections to the renormalized virtual ones, we obtain an UV and IR finite differential cross-section; we evaluate this quantity numerically for a significant set of values of the squared center of mass energy s.
H. J. Bhabha and the birth of the second family of elementary particles
Cowsik, Ramanath
2007-04-01
Homi Jehangir Bhabha was one of the great pioneers of theoretical high energy physics, known to present day physicists through extensive eponymous citations to Bhabha scattering. Perhaps because of this, much of his other superlative contributions have been well nigh forgotten. In this presentation, we provide an overview of a sequence of papers written by Bhabha during an 11-month period between December 1936 and October 1937 that argue in a compelling way for the presence of a massive charged particle very similar to the electron in every way, except for its mass, which he estimated to be in excess of 100 me. This particle is called a muon and today it is classified as a member of the second family of elementary constituents of matter, along with the muon-neutrino, charmed and strange quarks. These three new members of the family were discovered after a gap of nearly 25 years; in the decade of the 1960's.
MOVING BEYOND EDWARD SAID: HOMI BHABHA
Chakrabarti, Sumit
2012-01-01
The essay takes up the issue of postcolonial representation in terms of a critique of European modernism that has been symptomatic of much postcolonial theoretical debates in the recent years. It tries to enumerate the epistemic changes within the paradigm of postcolonial theoretical writing that began tentatively with the publication of Edward Said’s Orientalism in 1978 and has taken a curious postmodern turn in recent years with the writings of Gayatri Spivak and Homi Bhabha....
Differential Luminosity Measurement using Bhabha Events
Poss, Stephane
2013-01-01
A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV CLIC. The model is used in a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.
Staging the Politics of Difference: Homi Bhabha's Critical Literacy.
Olson, Gary A.; Worsham, Lynn
1998-01-01
Presents an interview with postcolonial theorist Homi Bhabha, who sees writing as a highly political activity. Discusses: critical literacy as an essential step toward agency, self-representation, and an effective democracy; the role of postcolonial theory; and cultural difference. (RS)
Vaidya, Sheila
2010-01-01
The focus of this paper is on the current developments in science education occurring in the posthumously built Homi Bhabha Centre for Science Education in Mumbai and to offer context for various indigenous developments that are shaping science education in India today. In this paper, I describe the story of Homi Bhabha and his rich legacy of…
Kinematic Fit for the Radiative Bhabha Calibration of BaBar's Electromagnetic Calorimeter
2000-01-01
For the radiative Bhabha calibration of BaBar's electromagnetic calorimeter, the measured energy of a photon cluster is being compared with the energy obtained via a kinematic fit involving other quantities from that event. The details of the fitting algorithm are described in this note, together with its derivation and checks that ensure that the fitting routine is working properly.
Mi vecino Homi Bhabha. En: LaRivada, v. 1, nº 1
Camblong, Ana María, dir.
2013-01-01
En este artículo se indican convergencias y diferencias entre enfoques y conceptos propuestos por Homi Bhabha y mis propias investigaciones. Los ejes temáticos que ordenan este cotejo son los siguientes: 1) Relevancia del lenguaje primario espacial; 2) Umbrales, procesos liminares y contingencia; 3) Configuración del “tercero”, traducciones y procesos paradójicos; 4) Derecho a significar; 5) Vida cotidiana, sentido común y ponderaciones vecinales.
Kademani, B.S.; Surwase, Ganesh; Anil Sagar; Lalit Mohan; Gaderao, C. R.; Anil Kumar; Kalyane, V. L.; Prakasan, E.R.; Vijai Kumar
2005-01-01
Scientrometric analysis of 1733 papers published by the teams comprising total of 926 participating scientists at Chemistry Division of Bhabha Atomic Research Centre (BARC) during 1970-1999 in the domains: Radiation & Photochemistry and Chemical Dynamics (649), Solid State Studies (558), Inorganic, Structural and Materials Chemistry (460) and Theoretical Chemistry (66) were analysed for yearwise productivity, authorship pattern and collaboration. The highest number of publicationsin a year we...
2005-01-01
Attempts to analyse quantitatively 475 papers published by the Bio-Organic Division of Bhabha Atomic Research Centre during 1972–2002 in various domains like Synthesis (202), Bioorganic Chemistry (100), Biotechnology (70), Natural Products (53), Waste Management (30), Supra-molecular Chemistry (18) and Organic Spectroscopy (2). The highest number of publications in a year were 38 in 2001. The average number of publications per year was 15.3 and the highest collaboration coefficient 1.0 was fo...
Bhabha vs. Moeller scattering as a contact-interaction analyzer at a polarized linear collider
Pankov, A A
2002-01-01
We discuss electron-electron contact-interaction searches in the processes e sup + e sup -->e sup + e sup - and e sup - e sup -->e sup - e sup - at planned Linear Colliders run in the e sup + e sup - and e sup - e sup - modes with both beams longitudinally polarized. Our analysis is based on the measurement, for the two processes, of polarized differential cross sections, and allows to simultaneously take into account the general set of electron contact interaction couplings as independent, non-zero, parameters thus avoiding the simplifying choice of a model. We evaluate the corresponding model-independent constraints on the contact coupling constants, emphasizing the role of the available beam polarization and the complementarity, as far as the chirality of the constants is concerned, of the two processes in giving the best constraints. We also make a comparison with the potential of e sup + e sup --> mu supmu sup - at the same energy and initial beams polarization.
Fourth order wave equation in Bhabha-Madhavarao spin-$\\frac{3}{2}$ theory
Markov, Yu A; Bondarenko, A I
2016-01-01
Within the framework of the Bhabha-Madhavarao formalism, a consistent approach to the derivation of a system of the fourth order wave equations for the description of a spin-$\\frac{3}{2}$ particle is suggested. For this purpose an additional algebraic object, the so-called $q$-commutator ($q$ is a primitive fourth root of unity) and a new set of matrices $\\eta_{\\mu}$, instead of the original matrices $\\beta_{\\mu}$ of the Bhabha-Madhavarao algebra, are introduced. It is shown that in terms of the $\\eta_{\\mu}$ matrices we have succeeded in reducing a procedure of the construction of fourth root of the fourth order wave operator to a few simple algebraic transformations and to some operation of the passage to the limit $z \\rightarrow q$, where $z$ is some (complex) deformation parameter entering into the definition of the $\\eta$-matrices. In addition, a set of the matrices ${\\cal P}_{1/2}$ and ${\\cal P}_{3/2}^{(\\pm)}(q)$ possessing the properties of projectors is introduced. These operators project the matrices ...
Development of neutron detectors and neutron radiography at Bhabha Atomic Research Centre
Indian Academy of Sciences (India)
A M Shaikh
2008-10-01
Design and development of neutron detectors and R&D work in neutron radiography (NR) for non-destructive evaluation are important parts of the neutron beam and allied research programme of Solid State Physics Division (SSPD) of Bhabha Atomic Research Centre (BARC). The detectors fabricated in the division not only meet the in-house requirement of neutron spectrometers but also the need of other divisions in BARC, Department of Atomic Energy units and some universities and research institutes in India and abroad for a variety of applications. The NR facility set up by SSPD at Apsara reactor has been used for a variety of applications in nuclear, aerospace, defense and metallurgical industries. The work done in the development of neutron detectors and neutron radiography is reported in this article.
Susan E. Sterrett
2015-01-01
Homi K. Bhabha is a post-colonial and cultural theorist who describes the emergence of new cultural forms from multiculturalism. When health profession students enculturated into their profession discuss patient care in an interprofessional group, their unilateral view is challenged. The students are in that ambiguous area, or Third Space, where statements of their profession’s view of the patient enmesh and an interprofessional identity begins to form. The lessons learned from others ways of...
2014-01-01
Evaluation of the collection is a very important step toward the development of good and balanced collection in the library. Bhabha Atomic Research Centre (BARC) library is a special scientific research library, which provides exhaustive information in the field of nuclear science and technology and allied fields. In this study, we have used Bradford′s law to evaluate and analyze the book collection of BARC library. A total collection of 94,450 books was considered for the study. The collecti...
Design and Operation of a Radiative Bhabha Luminosity Monitor for CESR-c
Palmer, Mark A; Crede, Volker; Dooley, Katherine L; Napalitano, James; Rubin, David; Smith, Jeffrey C; Vogel, Helmut
2005-01-01
The CLEO-c experiment at the Cornell Electron Storage Ring (CESR) is presently embarking on a multi-year exploration of charm and QCD physics in the 3-5 GeV center-of-mass energy range. In order to facilitate rapid optimization of machine parameters over this energy range, a luminosity monitor based on the measurement of radiative-bhabha photons coming from the CLEO-c interaction point (IP) has been designed and installed in the CESR ring. Key design criteria of the device include: better than 1% statistical measurements of the luminosity with a 1 Hz update rate over the full range of CESR-c operating conditions; bunch-by-bunch measurement capability; a large horizontal aperture to enable measurements under conditions ranging from single-bunch head-on collisions to multi-bunch collisions with a horizontal crossing angle of up to 4~mrad; and, a segmented readout to provide direct information on beam characteristics at the IP. We review the design and performance of this device and discuss its application to ma...
Plant Species Diversity along an Altitudinal Gradient of Bhabha Valley in Western Himalaya
Institute of Scientific and Technical Information of China (English)
Amit Chawla; S. Rajkumar; K.N. Singh; Brij Lal; R.D. Singh; A. K. Thukral
2008-01-01
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a charactersfic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90% of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.
Directory of Open Access Journals (Sweden)
Susan E. Sterrett
2015-10-01
Full Text Available Homi K. Bhabha is a post-colonial and cultural theorist who describes the emergence of new cultural forms from multiculturalism. When health profession students enculturated into their profession discuss patient care in an interprofessional group, their unilateral view is challenged. The students are in that ambiguous area, or Third Space, where statements of their profession’s view of the patient enmesh and an interprofessional identity begins to form. The lessons learned from others ways of assessing and treating a patient, seen through the lens of hybridity allow for the development of a richer, interprofessional identity. This manuscript will seek out the ways Bhabha’s views of inbetweenness enhance understanding of the student’s development of an interprofessional viewpoint or identity, and deepen the author’s developing framework of an Interprofessional Community of Practice.
Energy Technology Data Exchange (ETDEWEB)
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Energy Technology Data Exchange (ETDEWEB)
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2013-08-01
Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Superradiant Forward Scattering in Multiple Scattering
Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin
2012-01-01
We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.
Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration
2017-03-01
The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.
Henderson, B S; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Benito, R Perez; Perrino, R; Redwine, R P; neiro, D Rodríguez Pi\\; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V
2016-01-01
The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio $R_{2\\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of $\\approx 20^\\circ$ to $80^\\circ$. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at $12^\\circ$, as well as symmetric M{\\o}ller/Bhabha calorimeters at $1.29^\\circ$. A total integrated luminosity of 4.5 fb$^{-1}$ was collected. In the extraction of $R_{2\\gamma}$, radiative effects were taken into account using a Monte Carlo generator to ...
On scattered subword complexity
Kása, Zoltán
2011-01-01
Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Imaging with Scattered Neutrons
Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.
2006-01-01
We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.;
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent smal...
di Francia, Giuliano Toraldo
1973-01-01
The art of deriving information about an object from the radiation it scatters was once limited to visible light. Now due to new techniques, much of the modern physical science research utilizes radiation scattering. (DF)
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Silveirinha, Mario G
2016-01-01
In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
Stover, John C.
1991-12-01
Optical scatter is a bothersome source of optical noise, limits resolution and reduces system throughput. However, it is also an extremely sensitive metrology tool. It is employed in a wide variety of applications in the optics industry (where direct scatter measurement is of concern) and is becoming a popular indirect measurement in other industries where its measurement in some form is an indicator of another component property - like roughness, contamination or position. This paper presents a brief review of the current state of this technology as it emerges from university and government laboratories into more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements made at dozens of laboratories around the country cover the spectrum from the uv to the mid- IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. Another area of research driven by space applications is understanding the non-topographic sources of mid-IR scatter that are associated with Beryllium and other materials. The current flurry of work in this growing area of metrology can be expected to continue for several more years and to further expand to applications in other industries.
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Polonyi, Janos
2011-01-01
The cross section of elastic electron-proton scattering taking place in an electron gas is calculated within the Closed Time Path method. It is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. The other term is due to the scattering particles-electron gas entanglement. This term dominates the usual one when the exchange energy is in the vicinity of the Fermi energy. Furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
Manipulating scattering features by metamaterials
Directory of Open Access Journals (Sweden)
Lu Cui
2016-01-01
Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Modelling Hyperboloid Sound Scattering
DEFF Research Database (Denmark)
Burry, Jane; Davis, Daniel; Peters, Brady;
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...
Dremin, I M
2012-01-01
When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...
Dremin, I. M.
2013-01-01
Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.
Miller, Erin A; Caggiano, Joseph A; Runkle, Robert C; White, Timothy A; Bevill, Aaron M
2011-03-01
As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam in the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typical medical imaging scenarios, even for low-density cargo, with scatter-to-primary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.
Institute of Scientific and Technical Information of China (English)
郑海文
2014-01-01
Xu Bing is one of the most active contemporary artists. As an artist influenced by the 85 new trend in the specific period, Xu Bing does not advocate wholesale Westernization like some artists, but takes a more creative and energetic form of art, inte-grating a large number of Chinese and Western cultural forms and creating a conflict and collision, which arouses people's re-flections. Tobacco Project is Xu Bing's works since 2000. The works can be interpreted from multiple perspectives, just as the understanding of artist himself:returning the right of interpreta-tion to the audience. The writer found that Xu Bing's Tobacco Project are highly integrated with the contradiction and mixture in Homi K. Bhabha's postcolonial theory, so the interpretation from this perspective will be interesting. This paper mainly interprets Xu Bing's "Tobacco Project-Durham" from the perspective of Homi K. Bhabha's postcolonial theory.%徐冰是当代最活跃的艺术家之一，作为一个受85新潮影响的特定时代的艺术家，徐冰不像有些艺术家那样全盘西化，走出一条更有创造和生命力的艺术形式，大量地结合中西的文化形式，产生出一种矛盾和碰撞，引人反思。“烟草计划”是徐冰2000年以来的作品，对于这个作品的解读可以是多角度的，就像是艺术家自己理解的那样：将解释权归给观众。笔者发现徐冰的“烟草计划”与霍米•巴巴的后殖民主义思想中的矛盾、混杂性非常契合，用此来解读也会很有意思。本文主要是通过霍米•巴巴的后殖民主义思想来解读徐冰的“烟草计划•达勒姆”。
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Invariant Scattering Convolution Networks
Bruna, Joan
2012-01-01
A wavelet scattering network computes a translation invariant image representation, which is stable to deformations and preserves high frequency information for classification. It cascades wavelet transform convolutions with non-linear modulus and averaging operators. The first network layer outputs SIFT-type descriptors whereas the next layers provide complementary invariant information which improves classification. The mathematical analysis of wavelet scattering networks explains important properties of deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments and can thus discriminate textures having the same Fourier power spectrum. State of the art classification results are obtained for handwritten digits and texture discrimination, using a Gaussian kernel SVM and a generative PCA classifier.
$\\Lambda$ Scattering Equations
Gomez, Humberto
2016-01-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter $\\Lambda$ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting $\\Lambda$ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the $\\Lambda$ algorithm.
Energy Technology Data Exchange (ETDEWEB)
ZALIZNYAK,I.A.; LEE,S.H.
2004-07-30
Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... embedded in an arbitrary dielectric environment. By considering the two different models for dipole interaction known as the minimal-coupling and electric-dipole interaction Hamiltonians, we find exact relations between the electric field and the dipole operators in the Heisenberg picture, while keeping...... for the dipoles while treating them as quantum two-level systems and using the Born–Markov and rotating-wave approximations. Postponing the rotating-wave approximation to the very end of the formal calculations allows us to identify the different physical parameters of the dipole evolution in terms of physical...
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2014-07-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Koch, Robert de Mello
2016-01-01
We study the worldsheet S-matrix of a string attached to a D-brane in AdS$_5\\times$S$^5$. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the $su(2|3)$ sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter) and inelastic (when magnons at the endpoint of an open string participate) scattering. Both of these $S$-matrices are determined (up to an overall phase) by the $su(2|2)^2$ global symmetry of the theory. In this note we study the $S$-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the $su(2)$ sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a uniq...
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2016-07-01
This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
Scattering problems in elastodynamics
Diatta, Andre; Kadic, Muamer; Wegener, Martin; Guenneau, Sebastien
2016-09-01
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this Rapid Communication, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasistatic regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
Scattering problems in elastodynamics
Diatta, Andre; Wegener, Martin; Guenneau, Sebastien
2016-01-01
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
Coherent Scatter Imaging Measurements
Ur Rehman, Mahboob
In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.
Scattering with partial information
Carney, Daniel; Semenoff, Gordon
2016-01-01
We study relativistic scattering when one only has access to a subset of the particles, using the language of quantum measurement theory. We give an exact, non-perturbative formula for the von Neumann entanglement entropy of an apparatus particle scattered off an arbitrary set of system particles, in either the elastic or inelastic regime, and show how to evaluate it perturbatively. We give general formulas for the late-time expectation values of apparatus observables. Some simple example applications are included: in particular, a protocol to verify preparation of coherent superpositions of spatially localized system states using position-space information in the outgoing apparatus state, at lowest order in perturbation theory in a weak apparatus-system coupling.
Scattering fidelity in elastodynamics
Gorin, T.; Seligman, T. H.; Weaver, R. L.
2006-01-01
The recent introduction of the concept of scattering fidelity causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the “distortion” of the coda of an acoustic signal is measured under temperature changes. This quantity is, in fact, the negative logarithm of scattering fidelity. We reanalyze their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems, only. While the first sample may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is surprising. For the first sample, the random matrix analysis yields perturbation strengths compatible with semiclassical predictions. For the cuboid, the measured perturbation strengths are by a common factor of (5)/(3) too large. Apart from that, the experimental curves for the distortion are well reproduced.
Protostring Scattering Amplitudes
Thorn, Charles B
2016-01-01
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...
Nitrogen Scattering at Ru Surfaces
Zaharia, T.; Ueta, H.; Kleyn, A. W.; Gleeson, M. A.
2013-01-01
Results on the scattering of hyperthermal N2 molecules from bare and N-covered Ru(0001) surfaces are presented. These are compared with Ar scattering from the same surfaces as a reference non-reactive system. In the case of bare Ru(0001) the measured angular distributions are consistent with scatter
Low energy + scattering on = nuclei
Indian Academy of Sciences (India)
Swapan Das; Arun K Jain
2003-11-01
The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.
Modern Electromagnetic Scattering
2013-08-10
Section 4.3) of the cylindrical annulus is properly accounted for, and if the cylindrical void is sufficiently small . We refer to this approximation as...tempered distributions . . . . . . . . . . . . . 59 CHAPTER 4 MEASURING THE VOID: THEORETICAL STUDY OF SCATTERING BY A CYLINDRICAL ANNULUS ...and phase of the far-field pattern in the forward direction for a Teflon cylindrical annulus in vacuum, with an outer radius of 10 cm at 100 GHz, is
Vernon, M. F.
1983-07-01
The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.
Energy Technology Data Exchange (ETDEWEB)
Vernon, M.F.
1983-07-01
The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.
Bianchi, Marco S; Mauri, Andrea; Penati, Silvia; Santambrogio, Alberto
2011-01-01
We study the correspondence between scattering amplitudes and Wilson loops in three-dimensional Chern-Simons matter theories. In particular, using N=2 superspace formalism, we compute at one loop the whole spectrum of four-point superamplitudes for generic N>=2 supersymmetric theories and find a vanishing result for N=6 ABJ(M) and N=8 BLG models. This restricts the possible range of theories for which Wilson loops/scattering amplitudes duality might work. At two loops, we present the computation of the four-point ABJ scattering amplitude for external chiral superfields. Extending the known result for the ABJM Wilson loop to the ABJ case we find perfect agreement. We also discuss the dual conformal invariance of our results and the relationship between the Feynman diagram computation and unitarity methods. While for the ABJM theory dual conformally invariant integrals exactly reproduce the amplitude, for the ABJ case this happens only up to a residual constant depending on the parity-violating parameter. Final...
Neutron scattering in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)
1994-12-31
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.
Plasma scattering of electromagnetic radiation
Sheffield, John
1975-01-01
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge
Gravitational scattering of electromagnetic radiation
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Scattering Solar Thermal Concentrators
Energy Technology Data Exchange (ETDEWEB)
Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)
2015-01-31
This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the
Energy Technology Data Exchange (ETDEWEB)
Edwards, D.F.
1988-09-30
A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.
Protostring scattering amplitudes
Thorn, Charles B.
2016-11-01
We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.
Scattering and coherence in EUVL
Milster, Tomas D.; Beaudry, Neil A.
1998-06-01
We illustrate the importance of considering scattering from the illuminator in extreme UV lithography systems. Our results indicate that a significant amount of amplitude modulation noise is present in the aerial image if scatter is present in a Koehler illuminator. The effect depends on the spatial frequency of the pattern on the mask, the numerical aperture of the projection camera, the coherence factor, and placement of the plane in the illuminator where the scattering occurs.
Heterodyne Near-Field Scattering
Brogioli, D; Giglio, M; Giglio, Marzio
2002-01-01
We describe an optical technique based on the statistical analysis of the random intensity distribution due to the interference of the near-field scattered light with the strong transmitted beam. It is shown that, from the study of the two-dimensional power spectrum of the intensity, one derives the scattered intensity as a function of the scattering wave vector. Near-field conditions are specified and discussed. The substantial advantages over traditional scattering technique are pointed out, and is indicated that the technique could be of interest for wave lengths other than visible light.
Scattering from isospectral quantum graphs
Energy Technology Data Exchange (ETDEWEB)
Band, R; Sawicki, A; Smilansky, U, E-mail: rami.band@weizmann.ac.i, E-mail: assawi@cft.edu.p, E-mail: uzy.smilansky@weizmann.ac.i [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)
2010-10-15
Quantum graphs can be extended to scattering systems when they are connected by leads to infinity. It is shown that for certain extensions, the scattering matrices of isospectral graphs are conjugate to each other and their poles distributions are therefore identical. The scattering matrices are studied using a recently developed isospectral theory (Band et al 2009 J. Phys. A: Math. Theor. 42 175202 and Parzanchevski and Band 2010 J. Geom. Anal. 20 439-71). At the same time, the scattering approach offers a new insight on the mentioned isospectral construction.
Light scattering by small particles
Hulst, H C van de
1981-01-01
""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties
Born approximation, scattering, and algorithm
Martinez, Alex; Hu, Mengqi; Gu, Haicheng; Qiao, Zhijun
2015-05-01
In the past few decades, there were many imaging algorithms designed in the case of the absence of multiple scattering. Recently, we discussed an algorithm for removing high order scattering components from collected data. This paper is a continuation of our previous work. First, we investigate the current state of multiple scattering in SAR. Then, we revise our method and test it. Given an estimate of our target reflectivity, we compute the multi scattering effects in the target region for various frequencies. Furthermore, we propagate this energy through free space towards our antenna, and remove it from the collected data.
Optimization of Scatterer Concentration in High-Gain Scattering Media
Institute of Scientific and Technical Information of China (English)
ZHU Jiu-Gao; ZHU He-Yuan; SUN Die-Chi; DU Ge-Guo; LI Fu-Ming
2001-01-01
We report the scatterer concentration-dependent behaviour of laser action in high-gain scattering media. Amodified model of a random laser is proposed to explain the experimental results in good agreement. We mayuse this modified model to design and optimize the random laser system. A further detailed model is needed toquantitatively analyse the far-field distribution of random laser action.
A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees
2016-09-01
for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE A Discrete Scatterer...constituents (trunks, branches, and foliage) potentially becomes an important determinant of the detection performance of the radar sensor and processing
Surface enhanced Raman scattering
Furtak, Thomas
1982-01-01
In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...
Weak Polarized Electron Scattering
Erler, Jens; Mantry, Sonny; Souder, Paul A
2014-01-01
Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.
Nitrogen Scattering at Ru Surfaces
Zaharia, T.; Ueta, H.; Kleyn, A.W.; Gleeson, M.A.
2013-01-01
Results on the scattering of hyperthermal N2 molecules from bare and N-covered Ru(0001) surfaces are presented. These are compared with Ar scattering from the same surfaces as a reference nonreactive system. In the case of bare Ru(0001) the measured angular distributions are consistent with scatteri
Nitrogen Scattering at Ru Surfaces
Zaharia, T.; Ueta, H.; Kleyn, A.W.; Gleeson, M.A.
2013-01-01
Results on the scattering of hyperthermal N-2 molecules from bare and N-covered Ru(0001) surfaces are presented. These are compared with Ar scattering from the same surfaces as a reference non-reactive system. In the case of bare Ru(0001) the measured angular distributions are consistent with scatte
Dynamic measurement of forward scattering
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen; Rusch, W.
1975-01-01
A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...
Scattering matrices with block symmetries
Życzkowski, Karol
1997-01-01
Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian...
Scattering matrix theory for stochastic scalar fields.
Korotkova, Olga; Wolf, Emil
2007-05-01
We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.
Rahman, M A; Haque, S
2003-01-01
Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...
Quantum theory of Thomson scattering
Crowley, B. J. B.; Gregori, G.
2014-12-01
The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].
Scattering of electromagnetic waves by obstacles
Kristensson, Gerhard
2016-01-01
The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.
Infrared limit in external field scattering
Herdegen, Andrzej
2012-01-01
Scattering of electrons/positrons by external classical electromagnetic wave packet is considered in infrared limit. In this limit the scattering operator exists and produces physical effects, although the scattering cross-section is trivial.
Superconductivity, antiferromagnetism, and neutron scattering
Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.
2014-01-01
High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.
Milliman, T. E.; Connelly, J. P.; Heisenberg, J. H.; Hersman, F. W.; Wise, J. E.; Papanicolas, C. N.
1990-06-01
Differential cross sections for electron scattering from 92Mo have been measured for excitation energies less than 5.1 MeV over a range of momentum transfer of 0.5 to 3.1 fm-1. The elastic scattering data are analyzed along with existing electron and muonic atom data to provide an improved description of the ground-state charge distribution. The inelastic scattering data have been analyzed to extract electromagnetic transition densities. These densities are interpreted in terms of the underlying nuclear structure.
Vector boson scattering at CLIC
Energy Technology Data Exchange (ETDEWEB)
Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)
2016-07-01
Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.
Radar interferometry persistent scatterer technique
Kampes, Bert M
2006-01-01
Only book on Permanent Scatterer technique of radar interferometryExplains the Permanent Scatterer technique in detail, possible pitfalls, and details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS techniqueThe use of Permanent Scatterer allows very precise measurements of the displacement of hundreds of points per square kilometerDescribes the only technique currently able to perform displacement measurements in the past, utilizing the ERS satellite data archive using data acquired from 1992-prese
Neutron scattering and hydrogen storage
Directory of Open Access Journals (Sweden)
A.J. Ramirez-Cuesta
2009-11-01
Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.
Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries
Energy Technology Data Exchange (ETDEWEB)
Geoffrey Krafft; A. Doyuran; James Rosenzweig
2005-05-01
In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.
Unveiling small sphere's scattering behavior
Tzarouchis, Dimitrios C; Sihvola, Ari
2016-01-01
A classical way for exploring the scattering behavior of a small sphere is to approximate Mie coefficients with a Taylor series expansion. This ansatz delivered a plethora of insightful results, mostly for small spheres supporting electric localized plasmonic resonances. However, many scattering aspects are still uncharted, especially for the case of magnetic resonances. Here, an alternative system ansatz is proposed based on the Pad\\'e approximants for the Mie coefficients. The extracted results reveal new aspects, such as the existence of a self-regulating radiative damping mechanism for the first magnetic resonance. Hence, a systematic way of exploring the scattering behavior is introduced, sharpening our understanding about sphere's scattering behavior and its emergent functionalities.
Superconductivity, antiferromagnetism, and neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.
2014-01-15
High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.
Scattering theory with path integrals
Energy Technology Data Exchange (ETDEWEB)
Rosenfelder, R. [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)
2014-03-15
Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.
Scattering Theory with Path Integrals
Rosenfelder, R
2013-01-01
Starting from well-known expressions for the $T$-matrix and its derivative in standard nonrelativistic potential scattering I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.
Cardona, Manuel
2007-01-01
This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...
Classical scattering from oscillating targets
Energy Technology Data Exchange (ETDEWEB)
Papachristou, P.K.; Diakonos, F.K.; Constantoudis, V.; Schmelcher, P.; Benet, L
2002-12-30
We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets.
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Integration Rules for Scattering Equations
Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H
2015-01-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any M\\"obius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
Integration rules for scattering equations
Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-09-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints fo any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
Nanocatalytic resonance scattering spectral analysis
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The resonance scattering spectral technique has been established using the synchronous scanning technique on spectrofluorometry.Because of its advantages of simplicity,rapidity and sensitivity,it has been widely applied to analyses of proteins,nucleic acids and inorganic ions.This paper summarizes the application of immunonanogold and aptamer modified nanogold(AptAu) catalytic resonance scattering spectral technique in combination with the work of our group,citing 53 references.
Polarized lepton-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Hughes, E.
1994-02-01
Deep inelastic polarized lepton-nucleon scattering is reviewed in three lectures. The first lecture covers the polarized deep inelastic scattering formalism and foundational theoretical work. The second lecture describes the nucleon spin structure function experiments that have been performed up through 1993. The third lecture discusses implication of the results and future experiments aimed at high-precision measurements of the nucleon spin structure functions.
Euclidean formulation of diffractive scattering
Meggiolaro, E
2005-01-01
After a brief review (in the first part) of some relevant properties of the high-energy parton-parton scattering amplitudes, in the second part we shall discuss the infrared finiteness and some analyticity properties of the loop-loop scattering amplitudes in gauge theories, when going from Minkowskian to Euclidean theory, and we shall see how they can be related to the still unsolved problem of the s-dependence of the hadron-hadron total cross-sections.
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Fundamentals of neutron scattering by condensed matter
Energy Technology Data Exchange (ETDEWEB)
Scherm, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1996-12-31
The purpose of this introductory lecture is to give the basic facts about the scattering of neutrons by condensed matter. This lecture is restricted to nuclear scattering, whereas magnetic scattering will be dealt with in an other course. Most of the formalism, however, can also be easily extended to magnetic scattering. (author) 17 figs., 3 tabs., 10 refs.
Equilibrium Tail Distribution Due to Touschek Scattering
Energy Technology Data Exchange (ETDEWEB)
Nash,B.; Krinsky, S.
2009-05-04
Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Thomson scattering from laser plasmas
Energy Technology Data Exchange (ETDEWEB)
Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A
1999-01-12
Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.
Nonlinear scattering in plasmonic nanostructures
Chu, Shi-Wei
2016-09-01
Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.
The Notion of Unhomeliness in "The Pickup": Homi Bhabha Revisited
Rostami, Ali Akbar Moghaddasi; Parvaneh, Farid
2016-01-01
This study centers on two characters in Nadine Gordimer's novel "The Pickup": Abdu and Julie. Abdu is an illegal immigrant in South Africa and is deported from there to his homeland. Julie who is white woman from a high social class in South Africa meets and falls in love with Abdu and moves to Abdu's unknown Islamic country. She finds…
Positron-alkali atom scattering
Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.
1990-01-01
Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.
Helium atom scattering from surfaces
1992-01-01
High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.
SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS
Directory of Open Access Journals (Sweden)
M.Benhamou
2004-01-01
Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.
Single-Scattering Optical Tomography
Markel, V A; Markel, Vadim A.; Schotland, John C.
2007-01-01
We describe a novel tomographic imaging modality. The proposed technique utilizes visible or near-infrared light as a tissue probe in the ``mesoscopic'' scattering regime when the tissue layer exhibits sufficiently strong scattering so that its direct visual inspection is not possible, yet transmitted and reflected light are not diffuse. The forward model for light propagation in tissues is based on the scattering-order expansion of the radiative transport equation Green's function. The associated inverse problem is similar to the problem of inverting the Radon transform of x-ray tomography, except that the ray integrals are evaluated not along straight lines but along broken rays. As a result, the method does not require rotating the imaging device around the sample and taking multiple projections and, therefore, can be used in backscattering. An algebraic image reconstruction algorithm is numerically implemented using computer-generated data. An analytic image reconstruction formula analogous to the filtere...
Light Scattering in Exoplanet Transits
Robinson, Tyler D.; Fortney, Jonathan J.
2016-10-01
Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major
New Techniques in Neutron Scattering
DEFF Research Database (Denmark)
Birk, Jonas Okkels
Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...... potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA...
Scattering behaviour of Janus particles
Kaya, H
2002-01-01
Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)
Stimulated Brillouin Scattering Microscopic Imaging.
Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V
2015-01-01
Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.
Stimulated Brillouin Scattering Microscopic Imaging
Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.
2015-12-01
Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.
Optical scattering measurement and analysis
Stover, John C
2012-01-01
Newly included are scatter models for pits and particles as well as the use of wafer scanners to locate and size isolated surface features. New sections cover the multimillion-dollar wafer scanner business, establishing that microroughness is the noise, not the signal, in these systems. Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed. These new capabilities are now supported by a series of international standards, and a new chapter reviews t
Geometric Scattering in Robotic Telemanipulation
Stramigioli, Stefano; Schaft, Arjan van der; Maschke, Bernhard; Melchiorri, Claudio
2002-01-01
In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The contribu
Effective potential for relativistic scattering
Elbistan, Mahmut; Balog, Janos
2016-01-01
We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum potential of the equivalent Ruijsenaars-Schneider model.
Nuclear matter and electron scattering
Energy Technology Data Exchange (ETDEWEB)
Sick, I. [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Antiproton-Proton Glory Scattering
2002-01-01
This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).
Light repolarization by scattering media
Sorrentini, Jacques; Soriano, Gabriel; Amra, Claude
2011-01-01
The polarization of a coherent depolarized incident light beam passing through a disordered medium is investigated. The local polarization of the scattered far field and the probability density function are calculated and show an excellent agreement with experiment. It is demonstrated that complex media may confer high degree of polarization (0.75 DOP average) to the incident unpolarized light.
Optical scattering in glass ceramics
Mattarelli, M.; Montagna, M.; Verrocchio, P.
2008-01-01
The transparency of glass ceramics with nanocrystals is generally higher than that expected from the theory of Rayleigh scattering. We attribute this ultra-transparency to the spatial correlation of the nanoparticles. The structure factor is calculated for a simple model system, the random sequentia
Quantum scattering at low energies
DEFF Research Database (Denmark)
Derezinski, Jan; Skibsted, Erik
2009-01-01
For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...
Coupling between minimum scattering antennas
DEFF Research Database (Denmark)
Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans
1974-01-01
Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...
Alpha particle collective Thomson scattering in TFTR
Energy Technology Data Exchange (ETDEWEB)
Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)
1993-11-01
A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.
Electromagnetic Scattering by Spheres of Topological Insulators
Ge, Lixin; Zi, Jian
2015-01-01
The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.
Bursting behaviours in cascaded stimulated Brillouin scattering
Institute of Scientific and Technical Information of China (English)
Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang
2012-01-01
Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.
Scattering series in mobility problem for suspensions
Makuch, Karol
2012-01-01
The mobility problem for suspension of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.
Spatial photon correlations in multiple scattering media
DEFF Research Database (Denmark)
Smolka, Stephan; Muskens, O.; Lagendijk, A.;
2010-01-01
We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....
Scattering characteristics from porous silicon
Directory of Open Access Journals (Sweden)
R. Sabet-Dariani
2000-12-01
Full Text Available Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet. In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.
Perspectives on stimulated Brillouin scattering
Garmire, Elsa
2017-01-01
This collection of papers describes research that goes into detail on some of the more important issues in the physics of stimulated Brillouin scattering. This perspective describes the earliest years of the physics of stimulated Brillouin scattering, along with key developments that have led to this technically and physically rich field of today’s nonlinear optics. Stimulated Brillouin has a profound effect in optical fiber communications, initially discovered by its limit on the transmitted power. By controlling SBS in fibers and making use of its phase conjugation properties in both fibers and bulk media, a wide range of applications have been enabled. Today ring Brillouin lasers in fibers, whispering gallery modes and in photonic integrated circuits provide optical delay lines and switches, pulse shapers and components for increasingly complex and important optical systems.
Second order resonant Raman scattering
Energy Technology Data Exchange (ETDEWEB)
Garcia-Cristobal, A.; Catarero, A. [Valencia Univ. (Spain). Dept. de Fisica Aplicada; Trallero-Giner, C. [Instituto Politecnico Nacional, Mexico City (Mexico). Centro de Investigacion y de Estudios Avanzados
1996-03-01
A theoretical model for resonant Raman scattering by two optical phonons in zincblende-type semiconductors is presented. The effect of Coulomb interaction between electrons and holes is taken into account by introducing discrete and continuous excitonic intermediate states. The model can be applied for laser frequencies below and above the band gap. We consider deformation potential and Froehlich interaction for the electron-one-phonon coupling. The absolute value of the scattering efficiency is evaluated for the L-O-phonons, TO-plus LO-phonon and two-TO-photons Raman processes, around the E{sub o} absorption edge of II-VI compound semiconductors. Comparison with the electron-hole uncorrelated theory and experimental data emphasizes the role if the excitonic effects. (author). 10 refs., 2 figs.
SCATTERING FUNCTION OF POLYMER BLENDS
Institute of Scientific and Technical Information of China (English)
Lin-ping Ke; Mei-li Guo; De-lu Zhao
2004-01-01
For a system of flexible polymer molecules, the concepts of two concentrations, namely the segmental and the molecular concentrations, have been proposed in this paper. The former is equivalent to the volume fraction. The latter can be defined as the number of the gravity centers of macromolecules in a unit volume. The two concentrations should be correlated with each other by the conformational function of the polymer chain and should be discussed in different thermodynamic equations. On the basis of these concepts it has been proved that the Flory-Huggins entropy of mixing should be the result of the mixing "ideal gases of the gravity centers of macromolecules". The general correlation between the free energy of mixing and the scattering function (structural factor) of polymer blends has been studied based on the general fluctuation theory. When the Flory-Huggins free energy of mixing is adopted, the de Gennes scattering function of a polymer blend can be derived.
Brillouin scattering self-cancellation
Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.
2016-06-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Brillouin Scattering Self-Cancellation
Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo
2016-01-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...
Scattering by two spheres: Theory and experiment
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...
Decreased scattering coefficient of blue sclerae
Lanting, P J; Borsboom, P C; te Meerman, G J; ten Kate, L P
1985-01-01
The optical scattering properties of blue and normal sclerae were studied with a fiber optic scattering monitor. The scattering was clearly reduced in two osteogenesis imperfecta patients with blue sclerae, and low normal in one osteogenesis imperfecta patient without blue sclerae.
Multiple scattering Model in GEANT4
Urbàn, L
2002-01-01
We present a new multiple scattering (MSC) model to simulate the multiple scattering of charged particles in matter. This model does not use the Moliere formalism, it is based on the more complete Lewis theory. The model simulates the scattering of the particle after a given step, computes the path length correction and the lateral displacement as well.
Classical and quantum scattering in optical systems
Puentes, Graciana
2007-01-01
The central topic of the Thesis concerns light scattering experiments with entangled photons. Specifically, we study the effect of scattering processes on polarization-entanglement of twin-photons. The main idea is that scattering generally couples polarization and spatial degrees of freedom of pho
Elastic Scattering Properties of Ultracold Strontium Atoms
Institute of Scientific and Technical Information of China (English)
张计才; 朱遵略; 刘玉芳; 孙金锋
2011-01-01
We investigate the elastic scattering properties of strontium atoms at ultracold temperatures.The scattering parameters,such as s-wave scattering lengths,effective ranges and p-wave scattering lengths,are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method,respectively.Good agreements are obtained.The scattering parameters are very sensitive to small changes of the reduced mass.Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections,84Sr-86Srmixture is a good candidate to realize Bose-Bose quantum degenerate atomic gases.%We investigate the elastic scattering properties of strontium atoms at ultracold temperatures. The scattering parameters, such as s-wave scattering lengths, effective ranges and p-wave scattering lengths, are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method, respectively. Good agreements are obtained. The scattering parameters are very sensitive to small changes of the reduced mass. Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections, MSr-s(iSr mixture is a good candidate to realize Bose-Bose quantum degenerate atomic gases.
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
Regional Seismograms: Attenuation and Scattering
1992-03-06
chosen because it can produce a full solution to the elastodynamic equation of motion, and unlike high frequency approximations (such as raytracing ...Lechniques such as raytracing are valid only when the size of the scatterer is large compared to a wavelength (e.g., ka > 10) (Cervenk, et al., 1982...crustal structure in southern Norway, Bull. Seismol. Soc. Am., 61, 457-471, 1971. Skolnik, M. I., Radar Handbook, McGraw-Hill Book Co., New York, 1970
Spectroscopy, scattering, and KK molecules
Energy Technology Data Exchange (ETDEWEB)
Weinstein, J. [Univ. of Mississippi, University, MS (United States)
1994-04-01
The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.
Transverse stimulated Raman scattering in KDP
Energy Technology Data Exchange (ETDEWEB)
Barker, C.E.; Sacks, R.A.; Wonterghem, B.M. Van; Caird, J.A.; Murray, J.R.; Campbell, J.H.; Kyle, K.; Ehrlich, R.E.; Nielsen, N.D.
1995-09-12
Optical components of large-aperture, high irradiance and high fluence lasers can experience significant levels of stimulated scattering along their transverse dimensions. The authors have observed transverse stimulated Raman scattering in large aperture KDP crystals, and have measured the stimulated gain coefficient. With sufficiently high gain, transverse stimulated scattering can lead to energy loss from the main beam and, more importantly, optical damage in the components in which this scattering occurs. Thus transverse stimulated,scattering is of concern in large aperture fusion lasers such as Nova and Beamlet, which is a single-aperture, full-scale scientific prototype of the laser driver for the proposed National Ignition Facility.
Incoherent subharmonic light scattering in isotropic media.
Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S
2005-02-01
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.
Scattering zippers and their spectral theory
Marin, Laurent
2011-01-01
A scattering zipper is a system obtained by concatenation of scattering events with equal even number of incoming and out going channels. The associated scattering zipper operator is the unitary equivalent of Jacobi matrices with matrix entries and generalizes Blatter-Browne and Chalker-Coddington models and CMV matrices. Weyl discs are analyzed and used to prove a bijection between the set of semi-infinite scattering zipper operators and matrix valued probability measures on the unit circle. Sturm-Liouville oscillation theory is developed as a tool to calculate the spectra of finite and periodic scattering zipper operators.
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Mechanism of nuclear rainbow scattering
Energy Technology Data Exchange (ETDEWEB)
Ohkubo, S. [Department of Applied Science and Environment, Kochi Women University, Kochi 780-8515 (Japan)
2001-09-01
Full text: Nuclear rainbow phenomenon has been widely observed in light heavy ion scattering such as {sup 16} 0 + {sup 16} 0, {sup 16} 0 + {sup 12} C and {sup 12} C + {sup 12} C and great progress has been made experimentally and theoretically especially in the nineties. The nuclear rainbow has been understood quite often in analogy to meteorological rainbow caused by scattering of light from water droplets, because they are both considered to be a refractive phenomenon. Traditionally nuclear rain- bow has been explained by the far side component of the scattering amplitudes in the presence of a strong attractive force: The observed Airy structure in the angular distributions has been understood by the interference between it's two sub amplitudes in analogy to the interference of two refractive waves in meteorological rainbow, although it was not easy to theoretically extract its components separately. By studying the {sup 16} 0 + {sup 16} 0 scattering measured at Strasbourg, we have theoretically succeeded in extracting the sub amplitudes of the far side scattering in a rigorous but easy way: the sub amplitudes are obtained by decomposing the calculated scattering amplitude into its internal wave and barrier wave components. It is found that the Airy structure observed in the angular distributions in the E L = 75-145 MeV is caused by the interference between the far side internal-wave and far side barrier-wave. The minima in the 90-excitation function, which has been interpreted to be the passage of the Airy elephants, can also be explained as the interference between the far side internal- wave and barrier-wave. It is noted that although the internal wave is a refracted wave the barrier wave is a reflected wave, which does not feel the attractive potential in the very internal region. This means that the nuclear Airy structure is caused by the interference between the refractive wave and reflective wave. This finding is very different from the traditional
PREFACE: Atom-surface scattering Atom-surface scattering
Miret-Artés, Salvador
2010-08-01
It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties
Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li
2016-04-01
Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.
Small angle scattering and polymers
Energy Technology Data Exchange (ETDEWEB)
Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1996-12-31
The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.
Quasielastic K-nucleus scattering
Pace, A D; Oset, E
1997-01-01
Quasielastic K^+ - nucleus scattering data at q=290, 390 and 480 MeV/c are analyzed in a finite nucleus continuum random phase approximation framework, using a density-dependent particle-hole interaction. The reaction mechanism is consistently treated according to Glauber theory, keeping up to two-step inelastic processes. A good description of the data is achieved, also providing a useful constraint on the strength of the effective particle-hole interaction in the scalar-isoscalar channel at intermediate momentum transfers. We find no evidence for the increase in the effective number of nucleons participating in the reaction which has been reported in the literature.
Moliere multiple scattering theory revisited
Tarasov, Alexander
2012-01-01
We have received the rigorous relations between the screening parameters of the Moliere multiple scattering theory, instead of the approximate one obtained in the original paper by Moliere. We also calculated the relative Coulomb corrections to the first Born screening angle in the range from Z=4 to Z=82, and showed that their maximum values comprise the order of 40 percent. Additionally, we evaluated absolute and relative accuracies of the Moliere theory in determining the screening angle and have concluded that for Z~80 they are about 20, and 34 percents, respectively.
Compton Scattering on the Proton
Scholten, O
2002-01-01
A microscopic coupled-channels model for Compton and pion scattering off the nucleon is introduced which is applicable at the lowest energies (polarizabilities) as well as at GeV energies. To introduce the model first the conventional K-matrix approach is discussed to extend this in a following chapter to the "Dressed K-Matrix" model. The latter approach restores causality, or analyticity, of the amplitude to a large extent. In particular, crossing symmetry, gauge invariance and unitarity are satisfied. The extent of violation of analyticity (causality) is used as an expansion parameter.
Hadron scattering, resonances, and QCD
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Scattering equations and Feynman diagrams
Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-09-01
We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in φ 3-theory. We also discuss the generalization to general scalar field theories with φ p interactions, corresponding to polygonal graphs involving vertices of order p. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.
Scattering Equations and Feynman Diagrams
Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H
2015-01-01
We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in $\\phi^3$-theory. We also discuss the generalization to general scalar field theories with $\\phi^p$ interactions, corresponding to polygonal graphs involving vertices of order $p$. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Energy Technology Data Exchange (ETDEWEB)
Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)
2014-12-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Intrabeam scattering in the LHC
Mertens, Tom; Sousa Da Costa, Miguel
2011-01-01
Intrabeam Scattering (IBS) is the process where particles within an accelerator beam elastically scatter off each other. The effect of IBS is not to be confused with the Coulomb repulsion due to the fields generated by the other particles in the beam. The Coulomb repulsion effects are referred to as space-charge effects in Accelerator Physics and become less important than IBS at high energies because of the 1/gamma^2 that occurs in the space-charge equations making IBS one of the most important causes of beam size growth. At high energies (for example at 7 TeV or the LHC nominal operation energy) IBS effects are counteracted by Radiation Damping effects, in some cases leading to decrease in beam sizes instead of beam growth. But at the time of writing the operation energies were still low enough to neglect Radiation Damping Effects in comparison with IBS effects (Radiation Lifetimes were a factor five to ten higher than the IBS Lifetimes in the cases presented at the end of this text). Because of its effect ...
Bromley, Benjamin C
2014-01-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primor...
Institute of Scientific and Technical Information of China (English)
Lanqing Xu; Hui Li; Yongping Zheng
2009-01-01
Monte Carlo algorithm and Stokes-Mueller formalism are used to simulate the propagation behavior of polarized light in turbid media. The influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media is discussed. Single and double scattering photons form the major part of backscattered polarization patterns, while multiple scattering photons present more likely as background. Further quantitative analyses show that single scattering approximation and double scattering approxima tion are quite accurate when discussing the polarization patterns near the incident point.
Improved Scatter Search Using Cuckoo Search
Directory of Open Access Journals (Sweden)
Ahmed T.Sadiq Al-Obaidi
2013-02-01
Full Text Available The Scatter Search (SS is a deterministic strategy that has been applied successfully to some combinatorial and continuous optimization problems. Cuckoo Search (CS is heuristic search algorithm which is inspired by the reproduction strategy of cuckoos. This paper presents enhanced scatter search algorithm using CS algorithm. The improvement provides Scatter Search with random exploration for search space of problem and more of diversity and intensification for promising solutions. The original and improved Scatter Search has been tested on Traveling Salesman Problem. A computational experiment with benchmark instances is reported. The results demonstrate that the improved Scatter Search algorithms produce better performance than original Scatter Search algorithm. The improvement in the value of average fitness is 23.2% comparing with original SS. The developed algorithm has been compared with other algorithms for the same problem, and the result was competitive with some algorithm and insufficient with another.
An improved algorithm for cloud multiple scattering
Institute of Scientific and Technical Information of China (English)
Guibin Yuan; Xiaogang Sun; Jingmin Dai
2006-01-01
@@ Clouds' radiation characteristics are very important in clouds scene simulation, weather forecasting, pattern recognition, and other fields. Radiation of a cloud mainly comes from its multiple scattering. A new algorithm to calculate multiple scattering, called build-up factor algorithm, is proposed in this paper. In this algorithm, a modified gamma distribution is assumed to describe droplets distribution inside a cloud, then the radiation transport equation is calculated to get the solution of single scattering, and finally, a build-up factor is defined to estimate the multiple scattering contributions. This algorithm considers both single scattered radiance and multiple scattered radiance and needs shorter computing time. It can be used in real time simulations.
Inverse scattering: applications to nuclear physics
Mackintosh, Raymond S
2012-01-01
In what follows we first set the context for inverse scattering in nuclear physics with a brief account of inverse problems in general. We then turn to inverse scattering which involves the S-matrix, which connects the interaction potential between two scattering particles with the measured scattering cross section. The term `inverse' is a reference to the fact that instead of determining the scattering S-matrix from the interaction potential between the scattering particles, we do the inverse. That is to say, we calculate the interaction potential from the S-matrix. This review explains how this can now be done reliably, but the emphasis will be upon reasons why one should wish to do this, with an account of some of the ways this can lead to understanding concerning nuclear interactions.
Relativistic Coulomb scattering of spinless bosons
Garcia, M G
2015-01-01
The relativistic scattering of spin-0 bosons by spherically symmetric Coulomb fields is analyzed in detail with an arbitrary mixing of vector and scalar couplings. It is shown that the partial wave series reduces the scattering amplitude to the closed Rutherford formula exactly when the vector and scalar potentials have the same magnitude, and as an approximation for weak fields. The behavior of the scattering amplitude near the conditions that furnish its closed form is also discussed. Strong suppressions of the scattering amplitude when the vector and scalar potentials have the same magnitude are observed either for particles or antiparticles with low incident momentum. We point out that such strong suppressions might be relevant in the analysis of the scattering of fermions near the conditions for the spin and pseudospin symmetries. From the complex poles of the partial scattering amplitude the exact closed form of bound-state solutions for both particles and antiparticles with different scenarios for the ...
An electrical analogy to Mie scattering
Caridad, José M.; Connaughton, Stephen; Ott, Christian; Weber, Heiko B.; Krstić, Vojislav
2016-01-01
Mie scattering is an optical phenomenon that appears when electromagnetic waves, in particular light, are elastically scattered at a spherical or cylindrical object. A transfer of this phenomenon onto electron states in ballistic graphene has been proposed theoretically, assuming a well-defined incident wave scattered by a perfectly cylindrical nanometer scaled potential, but experimental fingerprints are lacking. We present an experimental demonstration of an electrical analogue to Mie scattering by using graphene as a conductor, and circular potentials arranged in a square two-dimensional array. The tabletop experiment is carried out under seemingly unfavourable conditions of diffusive transport at room-temperature. Nonetheless, when a canted arrangement of the array with respect to the incident current is chosen, cascaded Mie scattering results robustly in a transverse voltage. Its response on electrostatic gating and variation of potentials convincingly underscores Mie scattering as underlying mechanism. The findings presented here encourage the design of functional electronic metamaterials. PMID:27671003
An electrical analogy to Mie scattering
Caridad, José M.; Connaughton, Stephen; Ott, Christian; Weber, Heiko B.; Krstić, Vojislav
2016-09-01
Mie scattering is an optical phenomenon that appears when electromagnetic waves, in particular light, are elastically scattered at a spherical or cylindrical object. A transfer of this phenomenon onto electron states in ballistic graphene has been proposed theoretically, assuming a well-defined incident wave scattered by a perfectly cylindrical nanometer scaled potential, but experimental fingerprints are lacking. We present an experimental demonstration of an electrical analogue to Mie scattering by using graphene as a conductor, and circular potentials arranged in a square two-dimensional array. The tabletop experiment is carried out under seemingly unfavourable conditions of diffusive transport at room-temperature. Nonetheless, when a canted arrangement of the array with respect to the incident current is chosen, cascaded Mie scattering results robustly in a transverse voltage. Its response on electrostatic gating and variation of potentials convincingly underscores Mie scattering as underlying mechanism. The findings presented here encourage the design of functional electronic metamaterials.
Polarization phenomena in hyperon-nucleon scattering
Ishikawa, S; Iseri, Y; Yamamoto, Y
2004-01-01
We investigate polarization observables in hyperon-nucleon scattering by decomposing scattering amplitudes into spin-space tensors, where each component describes scattering by corresponding spin-dependent interactions, so that contributions of the interactions in the observables are individually identified. In this way, for elastic scattering we find some linear combinations of the observables sensitive to particular spin-dependent interactions such as symmetric spin-orbit (LS) interactions and antisymmetric LS ones. These will be useful to criticize theoretical predictions of the interactions when the relevant observables are measured. We treat vector analyzing powers, depolarizations, and coefficients of polarization transfers and spin correlations, a part of which is numerically examined in $\\Sigma^{+} p$ scattering as an example. Total cross sections are studied for polarized beams and targets as well as for unpolarized ones to investigate spin dependence of imaginary parts of forward scattering amplitud...
Bayesian Inversion of Seabed Scattering Data
2014-09-30
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics) Gavin A.M.W. Steininger School of Earth & Ocean...project are to carry out joint Bayesian inversion of scattering and reflection data to estimate the in-situ seabed scattering and geoacoustic parameters...valid OMB control number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Bayesian
Scattering properties of PT-symmetric objects
Miri, Mohammad-Ali; Facao, Margarida; Abouraddy, Ayman F; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N
2016-01-01
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
Bistatic Forward Scattering Radar Detection and Imaging
2016-01-01
Forward Scattering Radar (FSR) is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS), FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology u...
Boundary scattering in the phi^4 model
Dorey, Patrick; Mercer, James; Romanczukiewicz, Tomasz; Shnir, Yasha
2015-01-01
We study boundary scattering in the phi^4 model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state.
Energy Transfer in Scattering by Rotating Potentials
Indian Academy of Sciences (India)
Volker Enss; Vadim Kostrykin; Robert Schrader
2002-02-01
Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave operators, and existence of a conserved quantity under scattering. In a simple model we determine the energy transferred to a particle by collision with a rotating blade.
Efficient Finite Element Modelling of Elastodynamic Scattering
Velichko, A.; Wilcox, P. D.
2010-02-01
A robust and efficient technique for predicting the complete scattering behavior for an arbitrarily-shaped defect is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. Example results for 2D and 3D scattering in isotropic material and guided wave scattering are presented.
Quantum rainbow scattering at tunable velocities
Strebel, M; Ruff, B; Stienkemeier, F; Mudrich, M
2012-01-01
Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances.
Instruments and accessories for neutron scattering research
Energy Technology Data Exchange (ETDEWEB)
Ishii, Yoshinobu; Morii, Yukio [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)
2000-04-01
This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)
Circular Intensity Differential Scattering of chiral molecules
Energy Technology Data Exchange (ETDEWEB)
Bustamante, C.J.
1980-12-01
In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.
Hierarchy in chaotic scattering in Hill's problem
Kovács, Z
1997-01-01
Hierarchic properties of chaotic scattering in a model of satellite encounters, studied first by Petit and Henon, are examined by decomposing the dwell time function and comparing scattering trajectories. The analysis reveals an (approximate) ternary organization in the chaotic set of bounded orbits and the presence of a stable island. The results can open the way for a calculation of global quantities characterizing the scattering process by using tools of the thermodynamic formalism.
Shaped beam scattering by an anisotropic particle
Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang
2017-03-01
An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.
Hadron scattering and resonances in QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Forward Scattering of Loaded and Unloaded Antennas
DEFF Research Database (Denmark)
Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard
2012-01-01
Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...
Scatter From Optical Components: An Overview
Stover, John C.
1990-01-01
Although optical scatter is a source of noise, limits resolution and reduces system throughput, it is also an extremely sensitive metrology tool and is being employed in a wide variety of applications both in and out of the optics industry. This paper is intended as a brief review of the current state of this important technology as it emerges from university and government laboratories to more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements are routinely made at several laboratories around the country from the UV to the mid-IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants, which is a key issue for space optics, is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. The current flurry of work in this growing area of metrology can be expected to continue for several more years and expand to applications outside the optics industry.
Charmed Meson Scattering from Lattice QCD
Moir, Graham
2016-01-01
State-of-the-art lattice QCD calculations of scattering amplitudes in coupled-channel $D\\pi$, $D\\eta$ and $D_{s}\\bar{K}$ scattering, as well elastic $DK$ scattering are discussed. The methodology employed allows a determination of the relevant poles in the scattering matrix, while also providing a measure of the coupling of each channel to a given pole. By investigating $S$, $P$ and $D$ wave interactions, the nature of states with $J^{P} = 0^{+}$, relevant for the $D^{*}_{0}(2400)$ and $D^{*}_{s0}(2317)$, as well as states with $J^{P} = 1^{-}, 2^{+}$ are discussed.
Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.
Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta
2016-06-20
We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.
Advanced electromagnetics and scattering theory
2015-01-01
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...
Polyhedral Scattering of Fundamental Monopoles
Battye, R; Rychenkova, P; Sutcliffe, P; Battye, Richard; Gibbons, Gary; Rychenkova, Paulina; Sutcliffe, Paul
2003-01-01
The dynamics of n slowly moving fundamental monopoles in the SU(n+1) BPS Yang-Mills-Higgs theory can be approximated by geodesic motion on the 4n-dimensional hyperkahler Lee-Weinberg-Yi manifold. In this paper we apply a variational method to construct some scaling geodesics on this manifold. These geodesics describe the scattering of n monopoles which lie on the vertices of a bouncing polyhedron; the polyhedron contracts from infinity to a point, representing the spherically symmetric n-monopole, and then expands back out to infinity. For different monopole masses the solutions generalize to form bouncing nested polyhedra. The relevance of these results to the dynamics of well separated SU(2) monopoles is also discussed.
Backward pion-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Huang, F. [Univ. of Georgia, Athens, GA (United States); Sibirtsev, Alex [Helmholtz-Institut furr Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, D-53115 Bonn, Germany; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Haidenbauer, Johann [Forschungszentrum Julich (Germany); Meissner, Ulf-G. [Helmholtz-Institut fur Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, Bonn, Germany; Forschungszentrum Julich (Germany)
2010-02-01
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Vortex scattering by step topography
Hinds, A. K.; Johnson, E. R.; McDonald, N. R.
The scattering at a rectilinear step change in depth of a shallow-water vortex pair consisting of two patches of equal but opposite-signed vorticity is studied. Using the constants of motion, an explicit relationship is derived relating the angle of incidence to the refracted angle after crossing. A pair colliding with a step from deep water crosses the escarpment and subsequently propagates in shallow water refracted towards the normal to the escarpment. A pair colliding with a step from shallow water either crosses and propagates in deep water refracted away from the normal or, does not cross the step and is instead totally internally reflected by the escarpment. For large depth changes, numerical computations show that the coherence of the vortex pair is lost on encountering the escarpment.
Elastic scattering in geometrical model
Plebaniak, Zbigniew; Wibig, Tadeusz
2016-10-01
The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.
Enhanced incoherent scatter plasma lines
Directory of Open Access Journals (Sweden)
H. Nilsson
Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
Herschbach, Christian; Fedorov, Dmitry V.; Mertig, Ingrid; Gradhand, Martin; Chadova, Kristina; Ebert, Hubert; Ködderitzsch, Diemo
2013-11-01
We present a detailed analysis of the skew-scattering contribution to the spin Hall conductivity using an extended version of the resonant scattering model of Fert and Levy [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.157208 106, 157208 (2011)]. For 5d impurities in a Cu host, the proposed phase shift model reproduces the corresponding first-principles calculations. Crucial for that agreement is the consideration of two scattering channels related to p and d impurity states since the discussed mechanism is governed by a subtle interplay between the spin-orbit and potential scattering in both angular-momentum channels. It is shown that the potential scattering strength plays a decisive role for the magnitude of the spin Hall conductivity.
Estimating the Location of Scatterers by Seismic Interferometry of Scattered Surface Waves
Harmankaya, U.; Kaslilar, A.; Thorbecke, J.W.; Wapenaar, C.P.A.; Draganov, D.S.
2012-01-01
In this study, non-physical (ghost) scattered surface waves are used to obtain the location of a near surface scatterer. The ghost is obtained from application of seismic interferometry to only one source at the surface. Different locations for virtual sources are chosen and ghost scattered surface
Inverse scattering problem in turbulent magnetic fluctuations
Treumann, R A; Narita, Y
2016-01-01
We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.
Double pulse Thomson scattering system at RTP
Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.
1997-01-01
In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator fo
D-brane scattering and annihilation
D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie
2015-01-01
We study the dynamics of parallel brane-brane and brane-antibrane scattering in string theory in flat spacetime, focusing on the pair production of open strings that stretch between the branes. We are particularly interested in the case of scattering at small impact parameter b
PKP precursors : Implications for global scatterers
Waszek, Lauren; Thomas, Christine; Deuss, Arwen
2015-01-01
Precursors to the core phase PKP are generated by scattering of seismic energy from heterogeneities in the mantle. Here we examine a large global data set of PKP precursors in individual seismograms and array data, to better understand scattering locations. The precursor amplitudes from individual s
High-precision positioning of radar scatterers
Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.
2016-01-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy
Cascaded Bragg scattering in fiber optics.
Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G
2013-01-15
We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.
Minimizing the scattering of a nonmagnetic cloak
DEFF Research Database (Denmark)
Zhang, Jingjing; Luo, Yu; Mortensen, Asger
2010-01-01
theory. It is demonstrated that the forward scattering of the impedance matched cloak increases dramatically as the thickness of the cloak decreases. Nevertheless, it is still possible to effectively reduce the total scattering cross section with a very thin cloak whose impedance is not matched...
Universality in bosonic dimer-dimer scattering
Energy Technology Data Exchange (ETDEWEB)
Deltuva, A. [Centro de Fisica Nuclear, Universidade de Lisboa, P-1649-003 Lisboa (Portugal)
2011-08-15
Bosonic dimer-dimer scattering is studied near the unitary limit using momentum-space equations for the four-particle transition operators. The impact of the Efimov effect on the dimer-dimer scattering observables is explored, and a number of universal relations is established with high accuracy. The rate for the creation of Efimov trimers via dimer-dimer collisions is calculated.
Correlation Widths in Quantum--Chaotic Scattering
Dietz, B.; Richter, A; WeidenmÜller, H.
2011-01-01
An important parameter to characterize the scattering matrix S for quantum-chaotic scattering is the width Gamma_{corr} of the S-matrix autocorrelation function. We show that the "Weisskopf estimate" d/(2pi) sum_c T_c (where d is the mean resonance spacing, T_c with 0
Radiative corrections to electron-proton scattering
Maximon, LC; Tjon, JA
2000-01-01
The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton vertex correction in this model increases by at least 2% of the overall factor
X-ray scattering from liquid interfaces
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Synchrotron radiation X-ray scattering is a useful tool for structural characterization of liquid interfaces.Specular refiectivity provides precise measurement of the interfacial widths and of the ordering of surfactants adsorbed to these interfaces. Diffuse scattering gives information on phase transitions and domain formation in surfactant monolayers and on interfacial fluctuations confined by and coupled across fluidic films.
An Algebraic Approach to the Scattering Equations
Huang, Rijun; Feng, Bo; He, Yang-Hui
2015-01-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Compton scattering and the complementarity principle
Sastry, G P
1993-01-01
We explain briefly why Compton scattering from a crystal gives a featureless continuous x-ray background while Bragg scattering from the same crystal produces sharp diffraction peaks. It is shown that the answer lies at the heart of quantum mechanics, namely the uncertainty and the complementarity principles. (author)
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Critical Magnetic Scattering of Neutrons in Iron
DEFF Research Database (Denmark)
Passell, L.; Blinowski, K.; Brun, T.;
1964-01-01
scattered at small angles in iron and determined the spin correlation range 1∕κ1 and a parameter Λ associated with the lifetime of the fluctuations. Our results confirm the recent observation of Jacrot, Konstantinovic, Parette, and Cribier that the scattering is not elastic even at the Curie temperature. We...
The Amsterdam-Granada Light Scattering Database
Muñoz, O.; Moreno, F.; Guirado, D.; Dabrowska, D.D.; Volten, H.; Hovenier, J.W.
2012-01-01
The Amsterdam Light Scattering Database proved to be a very successful way of promoting the use of the data obtained with the Amsterdam Light Scattering apparatus at optical wavelengths. Many different research groups around the world made use of the experimental data. After the closing down of the
Blue Skies, Coffee Creamer, and Rayleigh Scattering
Liebl, Michael
2010-01-01
The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.
2015-01-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Light scattering of interacting gold nanorods
Energy Technology Data Exchange (ETDEWEB)
McGuirt, Baxter; Kielbasa, Jerry; Park, Jung-Ho; Zhang, Junping; Peterson, Eric; Williams, Richard; Carroll, David [Center for Nanotechnology and Molecular Materials and Department of Physics, Wake Forest University, Winston-Salem, NC (United States); Sisco, Patrick; Murphy, Catherine; Adams, Richard D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)
2009-12-15
The optical field intensity of light scattering from nanorods of gold has been imaged at distances that are intermediate between the near-field and far-field regimes using a near-field scanning optical microscope (NSOM). For scattering from isolated nanorods the Fraunhofer diffractive behaviour is modified slightly by the dipolar nature of metal nanoantannae as would be expected at these imaging distances. However, when the nanorods are brought into close proximity, interactions between the nanorods alter the scattering behaviour substantially creating large field intensities between the structures. By sampling the field with the near-field microscope tip scanned at different heights, detailed maps of the scattering profile can be generated. The NSOM image of far-field scattered light from an isolated gold nanorod. The nanorod was imaged at a distance of roughly 8 {mu}m above the support substrate using a scanning near-field microscope operated at constant height mode. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Polarized Scattering and Biosignatures in Exoplanetary Atmospheres
Berdyugina, S V
2016-01-01
Polarized scattering in planetary atmospheres is computed in the context of exoplanets. The problem of polarized radiative transfer is solved for a general case of absorption and scattering, while Rayleigh and Mie polarized scattering are considered as most relevant examples. We show that (1) relative contributions of single and multiple scattering depend on the stellar irradiation and opacities in the planetary atmosphere; (2) cloud (particle) physical parameters can be deduced from the wavelength-dependent measurements of the continuum polarization and from a differential analysis of molecular band absorption; (3) polarized scattering in molecular bands increases the reliability of their detections in exoplanets; (4) photosynthetic life can be detected on other planets in visible polarized spectra with high sensitivity. These examples demonstrate the power of spectropolarimetry for exoplanetary research and for searching for life in the universe.
Overview: Electromagnetic Scattering from Ocean Surface
Institute of Scientific and Technical Information of China (English)
ZHAO Zhi-qin
2006-01-01
Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.
Investigating Static and Dynamic Light Scattering
Sun, Yong
2011-01-01
A new size, static radii $R_{s}$, can be measured accurately using Static Light Scattering (SLS) technique when the Rayleigh-Gans-Debye approximation is valid for dilute homogenous spherical particles in dispersion. The method proposed in this work not only can measures the particle size distribution and average molar mass accurately but also enables us to explore Dynamic Light Scattering (DLS) technique further. Detailed investigation of the normalized time auto-correlation function of the scattered light intensity $g^{2)}(\\tau)$ shows that the measurements of DLS can be expected accurately and the static and hydrodynamic radii of nanoparticles are different. Only at some special conditions, the Z-average hydrodynamic radius can be measured accurately at a given scattering angle. The fact that the values of average hydrodynamic radius measured at different scattering angles are consistent or the values of polydispersity index are small does not mean the particle size distribution is narrow or monodisperse.
Recoil corrections in antikaon-deuteron scattering
Directory of Open Access Journals (Sweden)
Mai Maxim
2016-01-01
Full Text Available Using the non-relativistic effective field theory approach for K−d scattering, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ξ = MK/mN is possible in spite of the fact that K−d scattering at low energies is inherently non-perturbative due to the large values of the K̄N scattering lengths. The first order correction to the K−d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN ≃ 0:5.
Modelling the inelastic scattering of fast electrons
Energy Technology Data Exchange (ETDEWEB)
Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); D' Alfonso, A.J., E-mail: a.j@dalfonso.com.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia)
2015-04-15
Imaging at atomic resolution based on the inelastic scattering of electrons has become firmly established in the last three decades. Harald Rose pioneered much of the early theoretical work on this topic, in particular emphasising the role of phase and the importance of a mixed dynamic form factor. In this paper we review how the modelling of inelastic scattering has subsequently developed and how numerical implementation has been achieved. A software package μSTEM is introduced, capable of simulating various imaging modes based on inelastic scattering in both scanning and conventional transmission electron microscopy. - Highlights: • Harald Rose was a pioneer of important work on atomic resolution imaging using inelastic scattering. • We review how the modelling of inelastic scattering has subsequently developed and been applied. • A software package μSTEM is introduced, capable of simulating various inelastic imaging modes.
Light scattering on chlorella vulgaris cells
Krol, Tadeusz; Zielinski, Andrzej; Witkowski, Konrad
1992-12-01
Laboratory measurements of light scattering on the axenic cultures of unicellular alga Chlorella vulgaris monoculture confirm the thesis of multi-level light scattering by the cell i.e., both by outer cell membrane and the internal structure of the cell, as well as by its molecular structures. In the measurements, the technique of dynamic light scattering and analysis by the regulation method was used, indicate that the light scattering phenomenon is affected by particles of sizes corresponding either to overall dimensions of the cell or to the dimensions of its internal structures. A correlation was found between the suggested sizes and the stage of physiological evolution of the culture. The measurements of 10 functions constituting the elements of the scattering matrix for an alive Chlorella vulgaris culture and cultures with internal cell structures modified by chemical and mechanical agents evidence that the internal structures of cells play an important role in the interaction of phytoplankton and light.
Controlling electromagnetic scattering with wire metamaterial resonators
Filonov, Dmitry S; Iorsh, Ivan; Belov, Pavel A; Ginzburg, Pavel
2016-01-01
Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to a surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As the result, properly designed electromagnetic environment could govern waves' phenomena. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial) are analyzed both numerically and experimentally. Impact of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on scattering phenomena was studied. It was shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering sup...
Translation correlations in anisotropically scattering media
Judkewitz, Benjamin; Vellekoop, Ivo M; Yang, Changhuei
2014-01-01
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of applications in biomedical imaging. However finding the right wavefront to shape is a challenge when the scattering transmission matrix is not known. Correlations in transmission matrices, especially the so-called memory-effect, have been exploited to address this limitation. However, the traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media. Here, we report on analogous transmission matrix correlations within thick anisotropically scattering media, with wide-ranging implications for biomedical imaging. We use a simple conceptual framework to explain these findings and relate them to the traditional memory effect.
Spatial bandlimitedness of scattered electromagnetic fields
Khankhoje, Uday K
2015-01-01
In this tutorial paper, we consider the problem of electromagnetic scattering by a bounded dielectric object, and discuss certain interesting properties of the scattered field. Using the electric field integral equation, along with the techniques of Fourier theory and the properties of Bessel functions, we show analytically and numerically, that the scattered fields are spatially bandlimited. Further, we derive an upper bound on the number of incidence angles that are useful as constraints in an inverse problem setting (determining permittivity given measurements of the scattered field). We also show that the above results are independent of the dielectric properties of the scattering object and depend only on geometry. Though these results have previously been derived in the literature using the framework of functional analysis, our approach is conceptually far easier. Implications of these results on the inverse problem are also discussed.
Multiangle static and dynamic light scattering in the intermediate scattering angle range
Tamborini, Elisa
2012-01-01
We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range $0.5\\dg \\le \\theta \\le 25\\dg$, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension.
Larsson, Anne; Johansson, Lennart
2003-11-21
In single photon emission computed tomography (SPECT), transmission-dependent convolution subtraction has been shown to be useful when correcting for scattered events. The method is based on convolution subtraction, but includes a matrix of scatter fractions instead of a global scatter fraction. The method can be extended to iteratively improve the scatter estimate, but in this note we show that this requires a modification of the theory to use scatter-to-total scatter fractions for the first iteration only and scatter-to-primary fractions thereafter. To demonstrate this, scatter correction is performed on a Monte Carlo simulated image of a point source of activity in water. The modification of the theory is compared to corrections where the scatter fractions are based on the scatter-to-total ratio, using one and ten iterations. The resulting ratios of subtracted to original counts are compared to the true scatter-to-total ratio of the simulation and the most accurate result is found for our modification of the theory.
Krywonos, Andrey; Harvey, James E; Choi, Narak
2011-06-01
Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.
Electronic Raman Scattering in Graphene
Institute of Scientific and Technical Information of China (English)
LU Hong-Yan; WANG Qiang-Hua
2008-01-01
Linear dispersion near the Dirac points in the band structure of graphenes can give rise to novel physical properties.We calculate the electronic contribution to the Raman spectra in graphenes, which also shows novel features.In the clean limit, the Raman spectrum in the undoped graphene is linear (with a universal slope against impurity scattering) at low energy due to the linear dispersion near the Dirac points, and it peaks at a position corresponding to the van Hove singularity in the band structure. In a doped graphene, the electronic Raman absorption is forbidden up to a vertical inter-band particle-hole gap. Beyond the gap the spectrum follows the undoped case. In the presence of impurities, absorption within the gap (in the otherwise clean case) is induced, which is identified as the intra-band contribution. The Drude-like intra-band contribution is seen to be comparable to the higher energy inter-band Raman peak. The results are discussed in connection to experiments.
"Phonon" scattering beyond perturbation theory
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Exclusive scattering off the deuteron
Energy Technology Data Exchange (ETDEWEB)
Amrath, D.
2007-12-15
Exclusive processes are a special class of processes giving insight into the inner structure of hadrons. In this thesis we consider two exclusive processes and compute their total cross sections as well as the beam charge and beam polarization asymmetries for different kinematical constraints. These calculations o er the opportunity to get access to the nonperturbative GPDs. Theoretically they can be described with the help of models. The rst process we investigate contains a GPD of the pion, which is basically unknown so far. We include different models and make predictions for observables that could in principle be measured at HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron scattering in the kinematical range where the deuteron breaks up into a proton and a neutron. This can be used to investigate the neutron, which cannot be taken as a target due to its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross section we implement models for the proton and neutron GPDs. Once there are experimental data available our calculations are ready for comparison. (orig.)
Controlling electromagnetic scattering with wire metamaterial resonators
Filonov, Dmitry S.; Shalin, Alexander S.; Iorsh, Ivan; Belov, Pavel A.; Ginzburg, Pavel
2016-10-01
Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to a surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As the result, properly designed electromagnetic environment could govern waves' phenomena. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial) are analyzed both numerically and experimentally. Impact of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on scattering phenomena was studied. It was shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering were observed. Numerical analysis is in an agreement with experiments, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.
Theory of Multiple Coulomb Scattering from Extended Nuclei
Cooper, L. N.; Rainwater, J.
1954-08-01
Two independent methods are described for calculating the multiple scattering distribution for projected angle scattering resulting when very high energy charged particles traverse a thick scatterer. The results are compared with the theories of Moliere and Olbert.
Neutron Scattering from 36Ar and 4He Films
DEFF Research Database (Denmark)
Carneiro, K.
1977-01-01
Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...
Local orbitals in electron scattering calculations*
Winstead, Carl L.; McKoy, Vincent
2016-05-01
We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Isospin odd {pi}K scattering length
Energy Technology Data Exchange (ETDEWEB)
Schweizer, J. [Institut fuer Theoretische Physik, University of Vienna, A-1090 Vienna (Austria)]. E-mail: julia.schweizer@univie.ac.at
2005-10-13
We make use of the chiral two-loop representation of the {pi}K scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m{sub s} in the chiral expansion, in the sense that the corrections to the current algebra result are of order M{sub {pi}}{sup 2}. In view of the planned lifetime measurement on {pi}K atoms at CERN it is important to understand the size of these corrections.
Linearized inversion of multiple scattering seismic energy
Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad
2014-05-01
Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains
Carrier scattering in metals and semiconductors
Gantmakher, VF
1987-01-01
The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental
Coherent Scattering Imaging Monte Carlo Simulation
Hassan, Laila Abdulgalil Rafik
Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness
Inclusive inelastic electron scattering from nuclei
Fomin, Nadia
2007-01-01
Inclusive electron scattering from nuclei at large x and $Q^2$ is the result of a reaction mechanism that includes both quasi--elastic scattering from nucleons and deep inelastic scattering from the quark constituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the influence of final state interactions and the approach to $y$-scaling, the strength of nucleon-nucleon correlations, and the approach to $x$- scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.
Compton scattering in the Endpoint Model
Dagaonkar, Sumeet
2016-01-01
We use the Endpoint model for exclusive hadronic processes to study Compton scattering of the proton. The parameters of the Endpoint model are fixed using the data for $F_1$ and the ratio of Pauli and Dirac form factors ($F_2/F_1$) and then used to get numerical predictions for the differential scattering cross section. We studied the Compton scattering at fixed $\\theta_{CM}$ in the $s \\sim t \\gg \\Lambda_{QCD}$ limit and at fixed $s$ much larger than $t$ limit. We observed that the calculations in the Endpoint Model give a good fit with experimental data in both regions.
Quantum optics in multiple scattering random media
DEFF Research Database (Denmark)
Lodahl, Peter
Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...
Resonance Light Scattering Imaging Determination of Heparin
Institute of Scientific and Technical Information of China (English)
Hong Ping GUO; Cheng Zhi HUANG; Jian LING
2006-01-01
A laser-induced resonance light scattering (RLS) imaging method to determine heparin is described based on the high light scattering emission power of the aggregation species of heparin with α, β, γ, δtetra(4-trimethylaminoniumphenyl)prophyrin (TAPP) in solution. By imaging the light scattering signals of the aggregation species, we proposed the method to determine the heparin with a detection range of 0.02 - 0.6 μg/mL and the detection limit (3 σ) of 1.3 ng/mL.
Scattering effect on entanglement propagation in RCFTs
Numasawa, Tokiro
2016-01-01
In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.
Neutron scattering studies of modulated magnetic structures
Energy Technology Data Exchange (ETDEWEB)
Aagaard Soerensen, Steen
1999-08-01
This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization
CMB Cold Spot from Inflationary Feature Scattering
Wang, Yi
2015-01-01
We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.
Scattering lengths of calcium and barium isotopes
Energy Technology Data Exchange (ETDEWEB)
Dammalapati, U.; Willmann, L.; Knoop, S. [Kernfysisch Versneller Instituut (KVI), University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)
2011-11-15
We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed {sup 40}Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.
Thomson Scattering in the Solar Corona
Inhester, Bernd
2015-01-01
The fundaments of the application of Thomson scattering to the analysis of coronagraph images has been laid decades ago. Even though the basic formulation is undebated, a discussion has grown in recent years about the spatial distribution of Thomson scatter sensitivity in space. These notes are an attempt to clarify the understanding about this topic. We reformulate the classical calculations in a more transparent way using modern SI-compatible quantities and extend the scattering calculations to the case of relativistic electrons. Many mathematical and some basic physical ingredients are made explicit in several chapters of the appendix.
Scattered light mapping of protoplanetary disks
Stolker, T.; Dominik, C.; Min, M.; Garufi, A.; Mulders, G. D.; Avenhaus, H.
2016-12-01
Context. High-contrast scattered light observations have revealed the surface morphology of several dozen protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. Aims: We aim to construct a method which takes into account how the flaring shape of the scattering surface of an optically thick protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (e.g., scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected images (r2-scaled) and dust phase functions. Methods: The scattered light mapping method projects a power law shaped disk surface onto the detector plane after which the observed scattered light image is interpolated backward onto the disk surface. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in the R' band and VLT/NACO in the H and Ks bands. Results: The brightest side of the r2-scaled R' band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r2-scaling. The decrease in polarized surface brightness in the scattering angle range of 40°-70° is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak, which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Conclusions: Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the
Isospin odd pi K scattering length
Schweizer, J
2005-01-01
We make use of the chiral two-loop representation of the pi K scattering amplitude [J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m_s in the chiral expansion, in the sense that the corrections to the current algebra result are of order M_pi^2. In view of the planned lifetime measurement on pi K atoms at CERN it is important to understand the size of these corrections.
Meteor forward scattering at multiple frequencies
Nedeljkovic, Sasa
2006-08-01
Meteor forward scattering is a well known method of detecting meteors using a radio telescope to receive signals from distant transmitters scattered from a meteor trail. The traditional way of performing the meteor forward scattering is to tune the receiver to some particular frequency to match a distant transmitter and wait for reflected signals. In this paper I will show how new technologies can be used to make a simpler digital radio telescope capable of analyzing broadband spectra from 0 to 250 MHz. Such spectra contain information about several reflections on a single meteor, which can be enough to calculate the meteor's kinetic parameters.
Observability of stochastic resonance in neutron scattering.
Condat, C A; Lamberti, P W
1999-10-01
The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated, considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise ratio is shown to be similar to that arising in the corresponding power spectrum. Effects of potential asymmetry are discussed in detail. Asymmetry leads to a reduction of the signal-to-noise ratio by a factor of 1-xi(2), where xi is an asymmetry parameter which is zero for symmetric problems and equal to unity in a completely asymmetric case.
Chromospheric diagnosis with forward scattering polarization
Carlin, E S
2016-01-01
Is it physically feasible to perform chromospheric diagnosis using spatial maps of scattering polarization at the solar disk center? To investigate it we synthesized polarization maps (in 8542 Angstroms) resulting from MHD solar models and NLTE radiative transfer calculations that consider Hanle effect and vertical macroscopic motions. After explaining the physical con- text of forward scattering and presenting our results, we arrive at the definition of Hanle polarity inversion lines. We show how such features can give support for a clearer chromospheric diagnosis in which the magnetic and dynamic effects in the scattering polarization could be disentangled.
Techniques in high pressure neutron scattering
Klotz, Stefan
2013-01-01
Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea
Graviton and gluon scattering from first principles
Boels, Rutger H
2016-01-01
Graviton and gluon scattering are studied from minimal physical assumptions such as Poincare and gauge symmetry as well as unitarity. The assumptions lead to an interesting and surprisingly restrictive set of linear equations. This shows gluon and graviton scattering to be related in many field and string theories, explaining and extending several known results. By systematic analysis exceptional graviton scattering amplitudes are derived which in general dimensions can not be related to gluon amplitudes. The simplicity of the formalism guarantees wide further applicability to gauge and gravity theories.
Institute of Scientific and Technical Information of China (English)
XIE Shi-Peng; LUO Li-Min
2012-01-01
The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT).The scatter kernel superposition (SKS) method has been used occasionally in previous studies.However,this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel.This study first evaluates the scatter kernel parameters using the SDB,and then isolates the scatter distribution based on the SKS.The quality of image can be improved by removing the scatter distribution.The results show that the method can effectively reduce the scatter artifacts,and increase the image quality.Our approach increases the image contrast and reduces the magnitude of cupping.The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel.This method is computationally efficient,easy to implement,and provides scatter correction using a single scan acquisition.
Distorted Coulomb field of the scattered electron
Thomsen, H D; Andersen, K K; Lund, M D; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S; Connell, S H
2010-01-01
Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation inten...
Scattering theory of the Johnson spin transistor
Geux, Linda S.; Brataas, Arne; Bauer, Gerrit E. W.
1999-01-01
We discuss a simple, semiclassical scattering theory for spin-dependent transport in a many-terminal formulation, with special attention to the four terminal device of Johnson referred to as spin transistor
Light scattering from exoplanet oceans and atmospheres
Zugger, Michael E; Williams, Darren M; Kane, Timothy J; Philbrick, C Russell
2010-01-01
Orbital variation in polarized and unpolarized reflected starlight from exoplanets could eventually be used to detect liquid water on planet surfaces. Exoplanets with rough surfaces, or those dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 degrees, whereas ocean-covered planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 degrees. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 degrees; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach...
Zero energy scattering calculation in Euclidean space
Carbonell, J
2016-01-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Zero energy scattering calculation in Euclidean space
Directory of Open Access Journals (Sweden)
J. Carbonell
2016-03-01
Full Text Available We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Resonances in Coupled-Channel Scattering
Wilson, David J
2016-01-01
Excited hadrons are seen as resonances in the scattering of lighter stable hadrons like $\\pi$, $K$ and $\\eta$. Many decay into multiple final states necessitating coupled-channel analyses. Recently it has become possible to obtain coupled-channel scattering amplitudes from lattice QCD. Using large diverse bases of operators it is possible to obtain reliable finite volume spectra at energies where multiple channels are open. Utilising the finite volume formalism proposed by L\\"uscher and extended by several others, scattering amplitudes can be extracted from the finite volume spectra. Recent applications will be discussed where the energy dependence of scattering amplitudes is mapped out in several quantum numbers. These are then continued to complex energies to extract resonance poles and couplings.
Zero energy scattering calculation in Euclidean space
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France); Karmanov, V.A., E-mail: karmanov@sci.lebedev.ru [Lebedev Physical Institute, Leninsky Prospekt 53, 119991 Moscow (Russian Federation)
2016-03-10
We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Zero energy scattering calculation in Euclidean space
Carbonell, J.; Karmanov, V. A.
2016-03-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Composed Scattering Model for Direct Volume Rendering
Institute of Scientific and Technical Information of China (English)
蔡文立; 石教英
1996-01-01
Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.
On the scattering power of radiotherapy protons
Gottschalk, Bernard
2009-01-01
Scattering power (T = d/dx of mean squared multiple Coulomb scattering (MCS) angle), as used in proton transport theory, is properly viewed as a differential description of the Gaussian approximation to MCS theories such as Moliere's. That is, we seek a function T which, when integrated over a finite slab, will recover the Moliere/Fano/Hanson angle for that slab. To be accurate, T must include a single scattering correction, which means mathematically it must be nonlocal, depending on how much MCS has taken place as well as the energy and scattering material at the POI. We review five formulas for T and introduce a sixth, testing each against the Moliere/Fano/Hanson prediction as well as experimental data. We discuss how sensitive some practical problems are to the choice of T. That choice is probably most important for general Monte Carlo codes, which are expected to address a wide variety of problems.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Conformal bootstrap, universality and gravitational scattering
Directory of Open Access Journals (Sweden)
Steven Jackson
2015-12-01
Full Text Available We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles between two heavy states (BTZ black holes. We find that the operator algebra in this regime is (i universal and identical to that of Liouville CFT, and (ii takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.
Neutron detectors for scattering experiments at HANARO
Indian Academy of Sciences (India)
Myungkook Moon; Changhee Lee; Jongkyu Cheon; Younghyun Choi; Harkrho Kim; Shraddha S Desai
2008-11-01
Position sensitive detectors (PSD) measure the distribution of scattered neutrons and are essential tools for neutron scattering experiments. Various types of neutron detectors used at neutron diffractometers are conventional tube detectors, 1-D and 2-D PSDs. Korea Atomic Energy Research Institute (KAERI) has been developing various kinds of PSDs to improve the instrument performance and to develop new scattering instruments. Our development work is initiated with 1-D PSD for residual stress analysis spectrometer and finally the technology is extended to development of 2-D PSD with planar and curved geometry. All PSDs are based on multiwire grid assembly with delay line readout method for position encoding, as the response is faster than charge division method and enables higher count rate capability. Design details and operational characteristics of some of the PSDs developed, for application at neutron scattering instruments are presented.
New Scattered Disk Object and Centaur Colors
Brucker, Melissa; Wilcox, P.; Stansberry, J.
2013-10-01
We report B, V, and R magnitudes for scattered disk objects and centaurs from observations taken in December 2011 and August 2013 using the Lowell Observatory Perkins Telescope with PRISM and observations taken in March 2012 at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona. Targeted scattered disk objects include 2002 CY224, 2003 UY117, 2006 QJ181, 2008 CT190, 2009 YG19, 2010 FD49, 2010 VZ98. Targeted centaurs include 2002 QX47, 2005 UJ438, 2006 UX184, and 2007 RH283. We will determine if the resultant centaur colors follow the bimodal distribution (B-R either red or gray) previously detected. We will also compare the resultant scattered disk object colors to those published for other scattered disk objects. This work is based on observations with the Perkins Telescope at Lowell Observatory, and with the VATT: The Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.
Topographical scattering of waves: a spectral approach
Magne, R; Rey, V; Herbers, T H C; Magne, Rudy; Ardhuin, Fabrice; Rey, Vincent; Herbers, Thomas H. C.
2005-01-01
The topographical scattering of gravity waves is investigated using a spectral energy balance equation that accounts for first order wave-bottom Bragg scattering. This model represents the bottom topography and surface waves with spectra, and evaluates a Bragg scattering source term that is theoretically valid for small bottom and surface slopes and slowly varying spectral properties. The robustness of the model is tested for a variety of topographies uniform along one horizontal dimension including nearly sinusoidal, linear ramp and step profiles. Results are compared with reflections computed using an accurate method that applies integral matching along vertical boundaries of a series of steps. For small bottom amplitudes, the source term representation yields accurate reflection estimates even for a localized scatterer. This result is proved for small bottom amplitudes $h$ relative to the mean water depth $H$. Wave reflection by small amplitude bottom topography thus depends primarily on the bottom elevati...
Stabilizing chaotic-scattering trajectories using control
Lai, Ying-Cheng; Tél, Tamás; Grebogi, Celso
1993-08-01
The method of stabilizing unstable periodic orbits in chaotic dynamical systems by Ott, Grebogi, and Yorke (OGY) is applied to control chaotic scattering in Hamiltonian systems. In particular, we consider the case of nonhyperbolic chaotic scattering, where there exist Kolmogorov-Arnold-Moser (KAM) surfaces in the scattering region. It is found that for short unstable periodic orbits not close to the KAM surfaces, both the probability that a particle can be controlled and the average time to achieve control are determined by the initial exponential decay rate of particles in the hyperbolic component. For periodic orbits near the KAM surfaces, due to the stickiness effect of the KAM surfaces on particle trajectories, the average time to achieve control can greatly exceed that determined by the hyperbolic component. The applicability of the OGY method to stabilize intermediate complexes of classical scattering systems is suggested.
Neutron Brillouin scattering in dense fluids
Energy Technology Data Exchange (ETDEWEB)
Verkerk, P. [Technische Univ. Delft (Netherlands); FINGO Collaboration
1997-04-01
Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).
Scattering Theory for Lindblad Master Equations
Falconi, Marco; Faupin, Jérémy; Fröhlich, Jürg; Schubnel, Baptiste
2017-03-01
We study scattering theory for a quantum-mechanical system consisting of a particle scattered off a dynamical target that occupies a compact region in position space. After taking a trace over the degrees of freedom of the target, the dynamics of the particle is generated by a Lindbladian acting on the space of trace-class operators. We study scattering theory for a general class of Lindbladians with bounded interaction terms. First, we consider models where a particle approaching the target is always re-emitted by the target. Then we study models where the particle may be captured by the target. An important ingredient of our analysis is a scattering theory for dissipative operators on Hilbert space.
Nanostructures: Scattering beyond the Born approximation
Grigoriev, S. V.; Syromyatnikov, A. V.; Chumakov, A. P.; Grigoryeva, N. A.; Napolskii, K. S.; Roslyakov, I. V.; Eliseev, A. A.; Petukhov, A. V.; Eckerlebe, H.
2010-03-01
The neutron scattering on a two-dimensional ordered nanostructure with the third nonperiodic dimension can go beyond the Born approximation. In our model supported by the exact theoretical solution a well-correlated hexagonal porous structure of anodic aluminum oxide films acts as a peculiar two-dimensional grating for the coherent neutron wave. The thickness of the film L (length of pores) plays important role in the transition from the weak to the strong scattering regimes. It is shown that the coherency of the standard small-angle neutron scattering setups suits to the geometry of the studied objects and often affects the intensity of scattering. The proposed theoretical solution can be applied in the small-angle neutron diffraction experiments with flux lines in superconductors, periodic arrays of magnetic or superconducting nanowires, as well as in small-angle diffraction experiments on synchrotron radiation.
High Efficiency Low Scatter Echelle Grating Project
National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...
Improving Pulsar Distances by Modelling Interstellar Scattering
Deshpande, A A
1998-01-01
We present here a method to study the distribution of electron density fluctuations in pulsar directions as well as to estimate pulsar distances. The method, based on a simple two-component model of the scattering medium discussed by Gwinn et al. (1993), uses scintillation & proper motion data in addition to the measurements of angular broadening & temporal broadening to solve for the model parameters, namely, the fractional distance to a discrete scatterer and the ascociated relative scattering strength. We show how this method can be used to estimate pulsar distances reliably, when the location of a discrete scatterer (e.g. an HII region), if any, is known. Considering the specific example of PSR B0736-40, we illustrate how a simple characterization of the Gum nebula region (using the data on the Vela pulsar) is possible and can be used along with the temporal broadening measurements to estimate pulsar distances.
Conformal Bootstrap, Universality and Gravitational Scattering
Jackson, Steven; Verlinde, Herman
2014-01-01
We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large $c$, a sparse light spectrum and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles) between two heavy states (BTZ black holes). We find that the operator algebra in this regime is (i) universal and identical to that of Liouville CFT, and (ii) takes the form of an exchange algebra, specified by an R-matrix that exactly matches with the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.
On Born approximation in black hole scattering
Energy Technology Data Exchange (ETDEWEB)
Batic, D. [University of West Indies, Department of Mathematics, Kingston (Jamaica); Kelkar, N.G.; Nowakowski, M. [Universidad de los Andes, Departamento de Fisica, Bogota (Colombia)
2011-12-15
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordstroem and Reissner-Nordstroem-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes. (orig.)
Scattering by interstellar graphite dust analog
Ahmed, Gazi A.; Gogoi, Ankur
2014-10-01
The analysis of optical scattering data of interstellar carbonaceous graphite dust analog at 543.5 nm, 594.5 nm and 632.8 nm laser wavelengths by using an original laboratory light scattering setup is presented. The setup primarily consisted of a laser source, optical units, aerosol sprayer, data acquisition system and associated instrumentation. The instrument measured scattered light signals from 10° to 170° in steps of 1°. The results of the measurements of the volume scattering function β(θ) and degree of linear polarization P(θ) of the carbonaceous graphite dust particles that were sprayed in front of the laser beam by using an aerosol sprayer were subsequently compared with theoretically generated Mie plots with estimated parameters.
Cloaking through cancellation of diffusive wave scattering
Farhat, Mohamed
2016-08-10
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.
Scattered Radiation Emission Imaging: Principles and Applications
Directory of Open Access Journals (Sweden)
M. K. Nguyen
2011-01-01
Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.
Scatter integration with right triangular fields.
Siddon, R L; Dewyngaert, J K; Bjärngard, B E
1985-01-01
The concept of the equivalent field is used extensively in radiotherapy dose calculation algorithms. The rationale for using equivalent fields is to allow dose calculations for a wide variety of field shapes, while maintaining dose calculational data for only a few, very regularly shaped fields. A common example is the table of equivalent squares of rectangular fields presented by Day in the British Journal of Radiology. Recently, in searching for fast dose calculation algorithms for irregular fields, we introduced the concept of the equivalent square of a right triangular field. It is shown that an arbitrary irregular field of N vertices may be decomposed into 2N right triangular fields, each with a precalculated equivalent square. The scatter at the point of calculation due to the irregular field is then obtained as a sum of the scatter contributions from the equivalent squares. The scatter integration with right triangles is compared with scatter integration using program IRREG.
Microlocal properties of scattering matrices for Schr\\"odinger equations on scattering manifolds
Ito, Kenichi
2011-01-01
Let $M$ be a scattering manifold, i.e., a Riemannian manifold with asymptotically conic structure, and let $H$ be a Schr\\"odinger operator on $M$. We can construct a natural time-dependent scattering theory for $H$ with a suitable reference system, and the scattering matrix is defined accordingly. We here show the scattering matrices are Fourier integral operators associated to a canonical transform on the boundary manifold generated by the geodesic flow. In particular, we learn that the wave front sets are mapped according to the canonical transform. These results are generalizations of a theorem by Melrose and Zworski, but the framework and the proof are quite different. These results may be considered as generalizations or refinements of the classical off-diagonal smoothness of the scattering matrix for 2-body quantum scattering on Euclidean spaces.
American Conference on Neutron Scattering 2014
Energy Technology Data Exchange (ETDEWEB)
Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)
2014-12-31
Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.
Energy Technology Data Exchange (ETDEWEB)
Wilson, David J. [Old Dominion University, Norfolk, VA
2014-06-23
We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).
Compton scatter correction for planner scintigraphic imaging
Energy Technology Data Exchange (ETDEWEB)
Vaan Steelandt, E.; Dobbeleir, A.; Vanregemorter, J. [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy
1995-12-01
A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.
Photon-photon scattering: a tutorial
Liang, Yi
2011-01-01
Long-established results for the low-energy photon-photon scattering, gamma gamma --> gamma gamma, have recently been questioned. We analyze that claim and demonstrate that it is inconsistent with experience. We demonstrate that the mistake originates from an erroneous manipulation of divergent integrals and discuss the connection with another recent claim about the Higgs decay into two photons. We show a simple way of correctly computing the low-energy gamma gamma scattering.
Inverse Scattering in a Multipath Environment
Directory of Open Access Journals (Sweden)
A. Cuccaro
2016-09-01
Full Text Available In this contribution an inverse scattering problem is ad- dressed in a multipath environment. In particular, multipath is created by known ”extra” point-like scatterers (passive elements expressely deployed between the scene under in- vestigation and the source/measurement domains. Through a back-projection imaging scheme, the role of the passive elements on the achievable performance is shown and com- pared to the free-space case.
Multiple light scattering in porous gallium phosphide
Bret, Boris Paul Jean
2005-01-01
This thesis presents an experimental study on multiple light scattering, with the necessary introductions: theoretical background and sample preparation. The emphasis is put on the effects of the multiple scattering of waves, i.e., where interference effects exist and are significant, in the search for Anderson localization. In ensemble-averaged random media, there exists a cone of light, superimposed on the diffuse background, in the exact backscattering direction, due to the constructive in...
Using Compton scattering for random coincidence rejection
Kolstein, M.; Chmeissani, M.
2016-12-01
The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.
Novel Acoustic Scattering Processes for Target Discrimination
2014-12-31
Scattering Processes for Target Discrimination 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141010093 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Marston...10-1-0093 December 2014 Novel Acoustic Scattering Processes for Target Discrimination Philip L. Marston, Principal Investigator Physics and...Target Discrimination (2010) Philip L. Marston Physics and Astronomy Dept., Washington State University, Pullman, WA 99164-2814 phone: (509) 335
Critical Magnetic Scattering of Neutrons in Iron
DEFF Research Database (Denmark)
Passell, L.; Blinowski, K.; Brun, T.;
1965-01-01
Measurements of the angular and energy distributions of 4.28 Å neutrons scattered at small angles from iron at temperatures above the Curie temperature are described. The results are interpreted in terms of Van Hove's theory of critical magnetic scattering and yield information on the range of spin...... to the existence of long-range couplings within the spin system. Details of certain recent modifications of the theory of critical systems are discussed and compared with the experimental results....
Neutron scattering studies in the actinide region
Energy Technology Data Exchange (ETDEWEB)
Beghian, L.E.; Kegel, G.H.R.
1991-08-01
During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on {sup 14}N, {sup 181}Ta, {sup 232}Th, {sup 238}U and {sup 239}Pu; Prompt fission spectra for {sup 232}Th, {sup 235}U, {sup 238}U and {sup 239}Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus.
Bistatic Forward Scattering Radar Detection and Imaging
Directory of Open Access Journals (Sweden)
Hu Cheng
2016-06-01
Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.
New developments in classical chaotic scattering.
Seoane, Jesús M; Sanjuán, Miguel A F
2013-01-01
Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described.
Institute of Scientific and Technical Information of China (English)
LUO Guang; ZHOU Shang-Qi; HAN Zhong; CHEN Shuang-Kou
2007-01-01
Compton scattering saline solution was researched.Firstly according to the Compton scattering theory the linear relationship between the concentration and the scattered photon counts was obtained.And then it was proved by Compton scattering experiments for some solutions.According to those experiments, it was found that the slope was decreased when the atomic number of the cation was increased for alkali metal chloride solutions and alkaline-earth metal chloride solutions.Based on those relationships,a new method was promoted with which to measure the concentration of saline solution untouched the measured solution.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Polarimetric scattering from inhomogeneous random media of non-spherical scatterers under a pulse incidence is studied. The time-dependent Mueller matrix solution of vector radiative transfer for layering random media is derived. Co-polarized and cross-polarized bistatic and back-scattering are numerically simulated. The shape and intensity of polarized echoes well depict the inhomogeneous fraction profile of random scatterers. Its functional dependence upon the fraction profile, layering thickness, and other parameters are discussed. This technique is applicable to reconstruction of inhomogeneous fraction profile and inversion of the media thickness.
Survey of background scattering from materials found in small-angle neutron scattering
Barker, J. G.; Mildner, D. F. R.
2015-01-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Generalizations of Karp's theorem to elastic scattering theory
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Automatically identifying scatter in fluorescence data using robust techniques
DEFF Research Database (Denmark)
Engelen, S.; Frosch, Stina; Hubert, M.
2007-01-01
First and second order Rayleigh and Raman scatter is a common problem when fitting Parallel Factor Analysis (PARAFAC) to fluorescence excitation-emission data (EEM). The scatter does not contain any relevant chemical information and does not conform to the low-rank trilinear model. The scatter...... is developed based on robust statistical methods. The method does not demand any visual inspection of the data prior to modeling, and can handle first and second order Rayleigh scatter as well as Raman scatter in various types of EEM data. The results of the automated scatter identification method were used...... as input data for three different PARAFAC methods. Firstly inserting missing values in the scatter regions are tested, secondly an interpolation of the scatter regions is performed and finally the scatter regions are down-weighted. These results show that the PARAFAC method to choose after scatter...
Tissue scattering parameter estimation through scattering phase function measurements by goniometer
Institute of Scientific and Technical Information of China (English)
Ying Zhu; Zhihua Ding; Martial Geiser
2007-01-01
@@ An automated optical system is built up to perform goniometric measurement of scattering phase function.Measurements of typical samples including monodisperse polystyrene micro-spheres solution, and mutlidisperse polystyrene micro-spheres solution are carried out in a dark room. The possibility of estimating the average particle size of phantom through analyzing its scattering phase function is demonstrated.
Kouri, Donald J; Vijay, Amrendra
2003-04-01
The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it is well known that the Born-Neumann series for the Volterra integral equations in quantum scattering are absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transformation of the Lippmann-Schwinger equation from a Fredholm to a Volterra structure by renormalization has been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper, we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic scattering series, proving that this series also converges absolutely in the entire complex plane of coupling constant and frequency values. The present results are for acoustic scattering in one dimension, but the method is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic scattering.
Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface
Kokhanovsky, Alexander A
2012-01-01
This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.
Scattering by a long-range potential
Hod, Shahar
2013-01-01
The phenomenon of wave tails has attracted much attention over the years from both physicists and mathematicians. However, our understanding of this fascinating phenomenon is not complete yet. In particular, most former studies of the tail phenomenon have focused on scattering potentials which approach zero asymptotically ($x\\to\\infty$) faster than $x^{-2}$. It is well-known that for these (rapidly decaying) scattering potentials the late-time tails are determined by the first Born approximation and are therefore {\\it linear} in the amplitudes of the scattering potentials (there are, however, some exceptional cases in which the first Born approximation vanishes and one has to consider higher orders of the scattering problem). In the present study we analyze in detail the late-time dynamics of the Klein-Gordon wave equation with a ({\\it slowly} decaying) Coulomb-like scattering potential: $V(x\\to\\infty)=\\alpha/x$. In particular, we write down an explicit solution (that is, an exact analytic solution which is n...
German neutron scattering conference. Programme and abstracts
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas (ed.)
2012-07-01
The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.
Quantitative phase imaging through scattering media
Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim
2015-03-01
Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.
Metastable neon collisions: anisotropy and scattering length
Mogendorff, V P; Verhaar, B J; Beijerinck, H C W
2003-01-01
In this paper we investigate the effective scattering length $a$ of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of $a$ as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of $a$ is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that th...
Nonlinear X-ray Compton Scattering
Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A
2015-01-01
X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...
Scattered light mapping of protoplanetary disks
Stolker, T; Min, M; Garufi, A; Mulders, G D; Avenhaus, H
2016-01-01
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R'-ban...
Progress report on neutron scattering at JAERI
Energy Technology Data Exchange (ETDEWEB)
Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-10-01
In the first half of fiscal year 1997, JRR-3M was operated for 97 days followed by a long term shut down for its annual maintenance. Three days were lost out of 100 scheduled operation days, due to a trouble in irradiation facility. Neutron scattering research activities at the JRR-3M have been extended from that of fiscal year 1996. In the Research Group for Quantum Condensed Matter System, experimental study under high pressures, low temperatures and high fields as well as coupling of these conditions were planned to find new quantum condensed matter systems. And, obtained experimental results were immediately provided to theorists for their investigations. In cooperation with new group, Research Group for Neutron Scattering of Strongly Correlated Electron Systems and Research Group for Neutron Scattering at Ultralow Temperatures were carrying neutron scattering experiments at JRR-3M. Research Group for Neutron Crystallography in Biology had opened a way for investigating biomatter neutron diffraction research with high experimental accuracy by growing a millimeter-class large single crystal. In fiscal year 1997, 39 research projects were conducted by these four groups and other staffs in JAERI, 27 projects collaborated with university researchers and 3 projects collaborated with private enterprises were also conducted as complementary researches. 2117 days of machine times were requested to use 8 neutron scattering instruments this year, which corresponded to 1.51 times larger than those planned at its beginning. (G.K.)
Broadband Brillouin Scatter from CO2-Laser-Target Interactions
Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.
1982-05-01
Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.
Introduction to neutron scattering. Lecture notes of the introductory course
Energy Technology Data Exchange (ETDEWEB)
Furrer, A. [ed.
1996-12-31
These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS `96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs.
Isospin breaking in pion-deuteron scattering and the pion-nucleon scattering lengths
Hoferichter, Martin; Hanhart, Christoph; Kubis, Bastian; Nogga, Andreas; Phillips, Daniel R
2012-01-01
In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
Scattered antiproton polarization in pp elastic scattering at 220 MeV in bubble chamber
Ohsugi, T
1973-01-01
The polarization of antiproton scattering in pp elastic collision has been measured in the four intervals of the CM scattering angle theta /sup */ less than 90 degrees by means of double scattering in a bubble chamber. The analysis has been performed on the basis of 999 double elastic events which have been found in about 100K pictures of the 81- cm Saclay hydrogen bubble chamber exposed to a 0.7 GeV/c antiproton beam from the CERN PS. The obtained values of polarization show the maximum value 0.52+or-0.19 at theta /sup */=56 degrees . The polarization for pp scattering seems to be larger than that for pp scattering. The results are also compared with the potential model by Bryan and Phillips (1968) and with the modified diffraction model by Frahn and Venter (1964). Possible systematic errors in the present experiment are discussed in detail. (17 refs).
Theory of Thomson scattering in inhomogeneous media
Kozlowski, P M; Gericke, D O; Regan, S P; Gregori, G
2016-01-01
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is partic- ularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may even lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous ...
High energy scattering in gravity and supergravity
DEFF Research Database (Denmark)
B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz
2010-01-01
We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....
Light-like scattering in quantum gravity
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2016-11-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1/2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Modified Scattering for the Boson Star Equation
Pusateri, Fabio
2014-12-01
We consider the question of scattering for the boson star equation in three space dimensions. This is a semi-relativistic Klein-Gordon equation with a cubic nonlinearity of Hartree type. We combine weighted estimates, obtained by exploiting a special null structure present in the equation, and a refined asymptotic analysis performed in Fourier space, to obtain global solutions evolving from small and localized Cauchy data. We describe the behavior of such solutions at infinity by identifying a suitable nonlinear asymptotic correction to scattering. As a byproduct of the weighted energy estimates alone, we also obtain global existence and (linear) scattering for solutions of semi-relativistic Hartree equations with potentials decaying faster than Coulomb.
Peripheral scattering of nucleons by isoscalar targets
Energy Technology Data Exchange (ETDEWEB)
Higa, R. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas Elementares e Teoria Nuclear]. E-mail: higa@if.usp.br
2001-07-01
As is well known, the exchange of a single pion does not contribute to scattering of nucleons by isoscalar targets, since the pion is an isovector. This simple idea were employed in a recent work in order to probe the next layer of NN interaction and we showed that a clear dependence of phase shifts on the NN potential is obtained. As N{alpha} scattering data is still not free of ambiguity, few conclusions can be extracted. Motivated by more precise Nd scattering data recently available, we began a new study of Nd system. This give us more information about the intermediate region of NN potential, but first we need to study the techniques involved in extracting phase shifts and mixing parameters. (author)
The Proton Radius from Electron Scattering Data
Higinbotham, Douglas W; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2015-01-01
In an attempt to understand the discrepancy between the proton radius determined the muonic hydrogen Lamb shift and elastic electron-proton scattering measurements, we carefully review two classic, high precision electron scattering charge form factor, ${G_E}$, results. Upon examination, it was noted that the covariance matrices of common three parameter fits show large parameter correlations. Thus, we reanalyzed the classic data guided by statistical constraints and found low $q^2$, two-parameter fits were actually consistent with muonic hydrogen results. By subsequently including the highest measured values of ${G_E}(q^2)$ in the fits, we found that a dipole function, $G_E(q^2) = ( 1 + q^2/0.66[\\rm{GeV}^2])^{-2}$, with the muonic hydrogen radius, 0.84087(39) fm, not only describes the low $q^2$ electron scattering data, but also describes the highest measured $q^2$ $G_E$ values.
Some general bounds for 1-D scattering
Visser, M
1999-01-01
One-dimensional scattering problems are of wide physical interest and are encountered in many diverse applications. In this article I establish some very general bounds for reflection and transmission coefficients for one-dimensional potential scattering. Equivalently, these results may be phrased as general bounds on the Bogolubov coefficients, or statements about the transfer matrix. A similar analysis can be provided for the parametric change of frequency of a harmonic oscillator. A number of specific examples are discussed---in particular I provide a general proof that sharp step function potentials always scatter more effectively than the corresponding smoothed potentials. The analysis also serves to collect together and unify what would otherwise appear to be quite unrelated results.
Microscopic optical potentials for $^4$He scattering
Egashira, Kei; Toyokawa, Masakazu; Matsumoto, Takuma; Yahiro, Masanobu
2014-01-01
We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne $g$-matrix. For $^{4}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide range of incident energies from 20~MeV/nucleon to 200~MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the $^{4}$He density.
Inverse Scattering Approach to Improving Pattern Recognition
Energy Technology Data Exchange (ETDEWEB)
Chapline, G; Fu, C
2005-02-15
The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.
Theory of Thomson scattering in inhomogeneous media
Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.
2016-04-01
Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors.
BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION
Energy Technology Data Exchange (ETDEWEB)
Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL
2008-10-01
In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron
Scattering and; Delay, Scale, and Sum Migration
Energy Technology Data Exchange (ETDEWEB)
Lehman, S K
2011-07-06
How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine
Scattering and interference in epitaxial graphene.
Rutter, G M; Crain, J N; Guisinger, N P; Li, T; First, P N; Stroscio, J A
2007-07-13
A single sheet of carbon, graphene, exhibits unexpected electronic properties that arise from quantum state symmetries, which restrict the scattering of its charge carriers. Understanding the role of defects in the transport properties of graphene is central to realizing future electronics based on carbon. Scanning tunneling spectroscopy was used to measure quasiparticle interference patterns in epitaxial graphene grown on SiC(0001). Energy-resolved maps of the local density of states reveal modulations on two different length scales, reflecting both intravalley and intervalley scattering. Although such scattering in graphene can be suppressed because of the symmetries of the Dirac quasiparticles, we show that, when its source is atomic-scale lattice defects, wave functions of different symmetries can mix.
Single-scattering properties of droxtals
Ping, Y; Heymsfield, A J; Hu, Y X; Huang, H L; Tsay, S C; Ackerman, S
2003-01-01
Small ice crystals have been found to occur in high concentrations in polar stratospheric clouds and the upper portion of cirrus clouds, where temperatures are extremely low (often less than -50 deg. C). The scattering properties of these small crystals are important to space-borne remote sensing, especially for the retrieval of cirrus properties using visible and near-infrared channels. Previous research has shown that the commonly used spherical and 'quasi-spherical' approximations for these ice crystals can lead to significant errors in light scattering and radiative transfer calculations. We suggest that droxtals more accurately represent the shape of these small ice crystals. The single-scattering properties of ice droxtals have been computed at visible and infrared wavelengths using the finite-difference time domain method for size parameters smaller than 20. Further study of the optical properties of larger droxtals (size parameter greater than 20) will be carried out using an improved geometric optics...
Light-like Scattering in Quantum Gravity
Bjerrum-Bohr, N E J; Holstein, Barry R; Plante, Ludovic; Vanhove, Pierre
2016-01-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-1/2, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum hbar dependent terms using the same eikonal method.
Correlations in neutrino-nucleus scattering
Van Cuyck, Tom; Jachowicz, Natalie; González-Jiménez, Raul; Martini, Marco; Ryckebusch, Jan; Van Dessel, Nils
2016-01-01
We present a detailed study of charged-current quasielastic neutrino-nucleus scattering and of the influence of correlations on one- and two-nucleon knockout processes. The quasielastic neutrino-nucleus scattering cross sections, including the influence of long-range correlations, are evaluated within a continuum random phase approximation approach. The short-range correlation formalism is implemented in the impulse approximation by shifting the complexity induced by the correlations from the wave functions to the operators. The model is validated by confronting $(e,e^\\prime)$ cross-section predictions with electron scattering data in the kinematic region where the quasielastic channel is expected to dominate. Further, the $^{12}$C$(\
All Photons Imaging Through Volumetric Scattering
Satat, Guy; Heshmat, Barmak; Raviv, Dan; Raskar, Ramesh
2016-01-01
Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis. PMID:27683065
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Sound scattering in dense granular media
Institute of Scientific and Technical Information of China (English)
JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V
2009-01-01
The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.
Scattering by a draining bathtub vortex
Dolan, Sam R.; Oliveira, Ednilton S.
2013-06-01
We present an analysis of scattering by a fluid-mechanical “black hole analogue,” known as the draining bathtub vortex: a two-dimensional flow that possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular “orbiting” oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulas for both effects and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex and highlight the prospects for experimental investigation.
Scattering by a draining bathtub vortex
Dolan, Sam R
2013-01-01
We present an analysis of scattering by a fluid-mechanical `black hole analogue', known as the draining bathtub (DBT) vortex: a two-dimensional flow which possesses both a sonic horizon and an ergoregion. We consider the scattering of a plane wave of fixed frequency impinging upon the vortex. At low frequency, we encounter a modified Aharonov-Bohm effect. At high frequencies, we observe regular `orbiting' oscillations in the scattering length, due to interference between contra-orbiting rays. We present approximate formulae for both effects, and a selection of numerical results obtained by summing partial-wave series. Finally, we examine interference patterns in the vicinity of the vortex, and highlight the prospects for experimental investigation.
The Thomson Scattering System at DANTE
DEFF Research Database (Denmark)
Gadeberg, M.
This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge.......This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge....
Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.
1995-12-31
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.
Quark model for kaon nucleon scattering
Indian Academy of Sciences (India)
Ahmed Osman
2011-12-01
Kaon nucleon elastic scattering is studied using chiral (3) quark model including antiquarks. Parameters of the present model are essentially based on nucleon–nucleon and nucleon–hyperon interactions. The mass of the scalar meson is taken as 635 MeV. Using this model, the phase shifts of the and partial waves of the kaon nucleon elastic scattering are investigated for isospins 0 and 1. The results of the numerical calculations of different partial waves are in good agreement with experimental data.
Neutrino scattering and flavor transformation in supernovae
Cherry, John F; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey
2012-01-01
We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times, but could be inadequate in the crucial shock revival/explosion epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new paradigm in supernova modeling.
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared; /SLAC
2012-02-14
We show that suitably regulated multi-trace primary states in large N CFTs behave like 'in' and 'out' scattering states in the flat-space limit of AdS. Their transition matrix elements approach the exact scattering amplitudes for the bulk theory, providing a natural CFT definition of the flat space S-Matrix. We study corrections resulting from the AdS curvature and particle propagation far from the center of AdS, and show that AdS simply provides an IR regulator that disappears in the flat space limit.
Quantum Chromodynamics and Deep Inelastic Scattering
Keith Ellis, R
2016-01-01
This article first describes the parton model which was the precursor of the QCD description of hard scattering processes. After the discovery of QCD and asymptotic freedom, the first successful applications were to Deep Inelastic lepton-hadron scattering. The subsequent application of QCD to processes with two initial state hadrons required the understanding and proof of factorization. To take the fledgling theory and turn it into the robust calculational engine it has become today, required a number of technical and conceptual developments which will be described. Prospects for higher loop calculations are also reviewed.
Magnetic neutrino scattering on atomic electrons revisited
Kouzakov, Konstantin A
2010-01-01
We reexamine the role of electron binding effects in the inelastic neutrino-atom scattering induced by the neutrino magnetic moment. The differential cross section of the process is presented as a sum of the longitudinal and transverse components, according to whether the force that the neutrino magnetic moment exerts on electrons is parallel or perpendicular to momentum transfer. The atomic electrons are treated nonrelativistically. On this basis, it is shown that the recently published theoretical studies devoted to the magnetic neutrino scattering on atoms are deficient. Numerical calculations are performed for ionization of a hydrogenlike Ge$^{+31}$ ion by neutrino impact.
DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.
Energy Technology Data Exchange (ETDEWEB)
VENUGOPALAN, R.
2001-09-14
In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].
Quantum Chromodynamics and Deep Inelastic Scattering
Ellis, R. Keith
2016-10-01
This article first describes the parton model which was the precursor of the QCD description of hard scattering processes. After the discovery of QCD and asymptotic freedom, the first successful applications were to Deep Inelastic lepton-hadron scattering. The subsequent application of QCD to processes with two initial state hadrons required the understanding and proof of factorization. To take the fledgling theory and turn it into the robust calculational engine it has become today, required a number of technical and conceptual developments which will be described. Prospects for higher loop calculations are also reviewed.
Finite volume corrections to pi pi scattering
Energy Technology Data Exchange (ETDEWEB)
Sato, Ikuro; Bedaque, Paulo F.; Walker-Loud, Andre
2006-01-13
Lattice QCD studies of hadron-hadron interactions are performed by computing the energy levels of the system in a finite box. The shifts in energy levels proportional to inverse powers of the volume are related to scattering parameters in a model independent way. In addition, there are non-universal exponentially suppressed corrections that distort this relation. These terms are proportional to e-m{sub pi} L and become relevant as the chiral limit is approached. In this paper we report on a one-loop chiral perturbation theory calculation of the leading exponential corrections in the case of I=2 pi pi scattering near threshold.
Resonance scattering spectroscopy of gold nanoparticle
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.
Scattering resonances in a degenerate Fermi gas
DEFF Research Database (Denmark)
Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus
2009-01-01
We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas and a configur......We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...
Positron scattering from noble gases future prospects
Energy Technology Data Exchange (ETDEWEB)
Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)
2009-11-01
Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.
HADRONIC SCATTERING IN THE COLOR GLASS CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
VENUGOPALAN, R.
2005-05-15
Multi-particle production in QCD is dominated by higher twist contributions. The operator product expansion is not very effective here because the number of relevant operators grow rapidly with increasing twist. The Color Glass Condensate (CGC) provides a framework in QCD to systematically discuss ''classical'' (multiple scattering) and ''quantum'' evolution (shadowing) effects in multi-particle production. The apparently insuperable problem of nucleus-nucleus scattering in QCD simplifies greatly in the CGC. A few examples are discussed with emphasis on open problems.
Observation of Parity Nonconservation in Moller Scattering
Anthony, P L; Arroyo, C; Baird, K G; Bega, K; Biesiada, J; Bosted, P E; Breuer, M; Carr, R; Cates, G D; Chen, J P; Chudakov, E; Cooke, M; Decker, Franz Josef; Decowski, P; Deur, A; Emam, W; Erickson, R; Fieguth, T; Field, C; Gao, J; Gustafsson, K K; Hicks, R S; Holmes, R; Hughes, E W; Humensky, T B; Jones, G M; Kaufman, L J; Kolomensky, Yu G; Kumar, K S; Lhuillier, D; Lombard-Nelsen, R M; Mastromarino, P; Mayer, B; McKeown, R D; Michaels, R; Olson, M; Paschke, K D; Peterson, G A; Pitthan, R; Pope, K; Relyea, D; Rock, S E; Saxton, O; Shapiro, G; Singh, J; Souder, P A; Szalata, Z M; Tobias, W A; Tonguc, B T; Turner, J; Tweedie, B; Vacheret, A; Walz, D; Weber, T; Weisend, J; Whittum, D H; Woods, M; Younus, I
2003-01-01
We report a measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -175 +/- 30 (stat.) +/- 20 (syst.) parts per billion. This first direct observation of parity nonconservation in Moller scattering leads to a measurement of the electron's weak charge at low energy Q^e_W = -0.059 +/- 0.012. This is consistent with the Standard Model expectation at the current level of precision: sin^2\\theta_W(M_Z)_MSbar = 0.2279 +/- 0.0026 (stat.) +/- 0.0018 (syst.) +/- 0.0006 (theory).
Compton scattering and nonforward parton distributions
Radyushkin, A V
1998-01-01
The hard exclusive electroproduction processes provide new information about hadronic structure accumulated in nonforward parton distributions. The NFPD's are universal hybrid functions having the properties of parton densities, hadronic form factors and distribution amplitudes. They give a unified description of various hard exclusive and inclusive reactions. The basic supplier of information about nonforward parton distributions is deeply virtual Compton scattering which offers a remarkable example of Bjorken scaling phenomena in exclusive processes. Wide-angle real Compton scattering is an ideal tool to test angle-dependent scaling laws characteristic for soft overlap mechanism. Hard meson electroproduction is the best candidate to see pQCD hard gluon exchange in exclusive reactions.
Inverse scattering of dispersive stratified structures
Skaar, Johannes
2012-01-01
We consider the inverse scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for e.g. THz technology.
2016 American Conference on Neutron Scattering (ACNS)
Energy Technology Data Exchange (ETDEWEB)
Woodward, Patrick [Materials Research Society, Warrendale, PA (United States)
2017-02-09
The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years he Materials Research Society assisted with planning, logistics and operation of the conference.
Neutron Scattering in Biology Techniques and Applications
Fitter, Jörg; Katsaras, John
2006-01-01
The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.
Relativistic analysis of proton elastic scattering
El Nohy, N. A.; El-Hammamy, M. N.; Yoseph, S. I.; Abdel-Moneim, A. M.
2015-04-01
The Dirac equation as the relevant wave equation, is used in modified DWUCK4 program to calculate the elastic scattering cross section throughout the energy range suitable for relativistic treatment of proton elastic scattering by nuclei 40Ca, 58Ni, 90Zr and 208Pb. A good fit to the experimental data is presented. The real and imaginary potentials are well determined and behave regularly with energy. The behaviour of the real central effective potential shows the development of a "wine-bottle" shape in the transition energy region and the persistence of a small attractive potential in the nuclear surface region, even at 800 MeV.
Simple Riemannian surfaces are scattering rigid
Wen, Haomin
2015-01-01
Scattering rigidity of a Riemannian manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at the boundary. Lens rigidity allows one to tell the metric of a manifold with boundary from the same information plus the length of geodesics. There are a variety of results about lens rigidity but very little is known for scattering rigidity. We will discuss the subtle difference between these two types of rigidities and prove that they are equiva...
Scattering theory with localized non-Hermiticities
Znojil, Miloslav
2008-01-01
In the context of the recent interest in solvable models of scattering mediated by non-Hermitian Hamiltonians (cf. H. F. Jones, Phys. Rev. D 76, 125003 (2007)) we show that and how the well known variability of our ad hoc choice of the metric $\\Theta$ which defines the physical Hilbert space of states can help us to clarify several apparent paradoxes. We argue that with a suitable $\\Theta$ a fully plausible physical picture of the scattering is recovered. Quantitatively, our new recipe is illustrated on an exactly solvable toy model.
Chaotic scattering off a rotating target
Energy Technology Data Exchange (ETDEWEB)
Meyer, N.; Benet, L.; Lipp, C.; Trautmann, D.; Jung, C.; Seligman, T.H. [Inst. fuer Theor. Phys., Basel Univ. (Switzerland)
1995-05-07
We study the classical scattering of a point particle from one and two rotating hard discs in a plane, as an idealization of the scattering off a rotating target. The system displays regular or chaotic behaviour depending on the value of the only constant of motion: the Jacobi integral. We present results on the transition between regular and chaotic behaviour in terms of the periodic orbits of the system. For certain ranges of the Jacobi integral the dynamics is fully hyperbolic. The number of symbols needed to characterize the invariant set is different in each of those intervals and may become arbitrarily high. (author)
Circular polarization memory in polydisperse scattering media
Macdonald, Callum M; Meglinski, Igor
2015-01-01
We investigate the survival of circularly polarized light in random scattering media. The surprising persistence of this form of polarization has a known dependence on the size and refractive index of scattering particles, however a general description regarding polydisperse media is lacking. Through analysis of Mie theory, we present a means of calculating the magnitude of circular polarization memory in complex media, with total generality in the distribution of particle sizes and refractive indices. Quantification of this memory effect enables an alternate pathway towards recovering particle size distribution, based on measurements of diffusing circularly polarized light.
Complex Magnetic Systems Studied with Neutron Scattering
DEFF Research Database (Denmark)
Jacobsen, Henrik
analytically and compared with neutron scattering experiments on 8 nm and 16 nm particles, validating the theory and determining the magnitude of the anisotropy constants. In addition, the temperature dependence of the excitations and of the superparamagnetism are explored using numerical simulations. Through...... dynamics of GAG as function of applied magnetic eld were measured using inelastic neutron scattering. The data showed the existence of a low energy mode in zero eld, similar to what was discovered in GGG earlier. An applied magnetic eld was found to sharpen the excitations, nally inducing a gap when...
Positronium Formation in Positron-Lithium Scattering
Institute of Scientific and Technical Information of China (English)
程勇军; 周雅君; 刘芳
2011-01-01
The positronium formation process in positron scattering with atomic lithium is investigated using the coupledchannel optical method.The cross sections of positronium formation into the n =1 and n =2 levels from 2 to 60 e V are reported.The present results show reasonable agreement with the available experimental measurements and theoretical calculations.%The positronium formation process in positron scattering with atomic lithium is investigated using the coupled-channel optical method. The cross sections of positronium formation into the n = 1 and n = 2 levels from 2 to 60 e V are reported. The present results show reasonable agreement with the available experimental measurements and theoretical calculations.
Alpha resonant scattering for astrophysical reaction studies
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)
2014-05-02
Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.
Semiempirical potentials for positron scattering by atoms
Energy Technology Data Exchange (ETDEWEB)
Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe; Dutra, Adriano; Mohallem, J. R. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, ES (Brazil); Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, SC (Brazil); Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)
2011-08-15
We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.
The theory of deeply inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, J.
2012-08-31
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
Polarimetric scattering and SAR information retrieval
Jin, Ya-Qiu
2013-01-01
Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app
Elimination and recursions in the scattering equations
Directory of Open Access Journals (Sweden)
Carlos Cardona
2016-05-01
Full Text Available We use the elimination theory to explicitly construct the (n−3! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3! or a determinant of Bézout type of dimension (n−4!. We present a recursive formula for the Sylvester determinant. Expansion of the determinants yields expressions in terms of Plücker coordinates. Elimination of the rest of the variables of the scattering equations is also presented.
Flow in small systems from parton scatterings
Ma, Guo-Liang; Bzdak, Adam
2016-12-01
We show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton-parton cross-section of σ = 1.5- 3 mb, naturally explains the long-range two-particle azimuthal correlations as observed in p+Pb collisions at the LHC. The elliptic, v2, and triangular, v3, Fourier coefficients are in good agreement with the CMS data. An escape mechanism was proposed recently to explain the AMPT results. We demonstrate that parton scatterings are directly responsible for generating the azimuthal anisotropy.
Energy Technology Data Exchange (ETDEWEB)
Yao, Jie, E-mail: yjie2@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Lesage, Anne-Cécile; Hussain, Fazle [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Bodmann, Bernhard G. [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States); Kouri, Donald J. [Department of Physics, University of Houston, Houston, Texas 77204 (United States)
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.
Scattering Correction For Image Reconstruction In Flash Radiography
Energy Technology Data Exchange (ETDEWEB)
Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)
2013-08-15
Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.
Seismic scatterers in the mid-lower mantle
Kaneshima, Satoshi
2016-08-01
Recent seismological studies have revealed that rocks with significantly different elastic properties are juxtaposed in the mid-lower mantle and often scatter seismic waves efficiently enough to be detected by seismic array analyses. Seismic networks all over the world with various aperture and geometry have been utilized for detecting scattered waves. A large number of objects that act as scatterers in the mid-lower mantle have been mapped out by analyzing several different types of scattered waves, mostly of short period: S-to-P scattering, P-to-P scattering prior to PP waves, P-to-P scattering prior to P‧P‧, P-to-P scattering in P coda waves, and P-to-P scattering prior to PKP. The scatterers have a lesser size that is smaller than the wavelengths (∼10 km), and probably extend several tens of kilometers at least. The mid-mantle scatterers are most likely to represent basaltic rocks that subducted into the lower mantle. Revealing the elastic properties relative to the surrounding rocks and the geometry of the individual scatterers, as well as the global distribution of the scatterers, should shed new light on the style of mantle convection. Relevant observations of mid-lower mantle scatterers are reviewed, and the directions of future progress are suggested.
Multiple scattering and energy loss in semi-inclusive deeply inelastic eA scattering
Guo, Xiaofeng
2007-01-01
We calculate the multiple scattering effect on single hadron production in semi-inclusive lepton-nucleus deeply inelastic scattering. We show that the quantum interference of multiple scattering amplitudes leads to suppression in hadron productions. At the leading power in medium length, the suppression can be approximately expressed in terms of a shift in $z$ of the fragmentation function $D(z)$, and could be therefore interpreted as the collisional energy loss. We compare our calculation with existing experimental data. We also discuss the effect of quark mass on the suppression. Our approach can be extended to other observables in hadronic collisions.
Giant scattering cones in obscured quasars
Obied, Georges; Wylezalek, Dominika; Liu, Guilin
2015-01-01
We analyze Hubble Space Telescope observations of scattering regions in 20 luminous obscured quasars at $0.24
The Whiteness of Things and Light Scattering
Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.
2009-01-01
We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…
Scattering by coupled resonating elements in air
Krynkin, Anton; Chong, Alvin Y B; Taherzadeh, Shahram; Attenborough, Keith
2011-01-01
Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the o...
Direct methods of analyzing diffuse scattering
Energy Technology Data Exchange (ETDEWEB)
Georgopoulos, P.; Cohen, J.B.
1979-07-01
Methods of analysis of diffuse scattering have now reached the stage where thee are well tested and documented standard procedures for a variety of materials, and software, for both x-rays and neutrons. These methods and their meaning Are briefly reviewed.
Multiple Scattering of Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
fluctuations [3]. Only recently focus has reached the combination of quantum optics and multiple scattering, see e.g. references [4–7] and references therein. The experimental realization of strongly enhanced light-matter interaction in disordered photonic crystal waveguides, enabling cavity quantum...
Scattering Matrices and Conductances of Leaky Tori
Pnueli, A.
1994-04-01
Leaky tori are two-dimensional surfaces that extend to infinity but which have finite area. It is a tempting idea to regard them as models of mesoscopic systems connected to very long leads. Because of this analogy-scattering matrices on leaky tori are potentially interesting, and indeed-the scattering matrix on one such object-"the" leaky torus-was studied by M. Gutzwiller, who showed that it has chaotic behavior. M. Antoine, A. Comtet and S. Ouvry generalized Gutzwiller‧s result by calculating the scattering matrix in the presence of a constant magnetic field B perpendicular to the surface. Motivated by these results-we generalize them further. We define scattering matrices for spinless electrons on a general leaky torus in the presence of a constant magnetic field "perpendicular" to the surface. From the properties of these matrices we show the following: (a) For integer values of B, Tij (the transition probability from cusp i to cusp j), and hence also the Büttiker conductances of the surfaces, are B-independent (this cannot be interpreted as a kind of Aharonov-Bohm effect since a magnetic force is acting on the electrons). (b) The Wigner time-delay is a monotonically increasing function of B.
Supersymmetric integrable scattering theories with unstable particles
Fring, A
2005-01-01
We propose scattering matrices for N=1 supersymmetric integrable quantum field theories in 1+1 dimensions which involve unstable particles in their spectra. By means of the thermodynamic Bethe ansatz we analyze the ultraviolet behaviour of some of these theories and identify the effective Virasoro central charge of the underlying conformal field theories.
Studies of double parton scattering in ATLAS
Lobodzinska, Ewelina Maria; The ATLAS collaboration
2017-01-01
In this contribution, Double Parton Scattering processes observed with the ATLAS detector at LHC are discussed. Results of five analyses are presented: production of W boson in association with 2 jets, production of $J/\\psi$ meson in association with W boson, $J/\\psi$ production with Z boson, $J/\\psi$ pair production and four jet events.
Optical switching by stimulated thermal Rayleigh scattering
Peterson, Lauren M.
1986-06-01
Preliminary experiments were conducted whose ultimate goal is to develop all-optical control functions useful in an all-optical or optical-electronic hybrid digital computer or for optical interconnects. Stimulated thermal Rayleigh scattering (STRS) based upon generator experiments was pursued for scattering angles of 90 deg and 180 deg (backscattering). A pulsed nitrogen laser pumped dye laser served as the radiation source and the interaction medium was a liquid to which an absorbing dye was added. STRS amplifier experiments were successful and gain was observed and studied parametrically using eosine dye in ethanol. The gain was found to increase (although the gain coefficient decreased) with increasing pump power and the gain was found to be a maximum at an absorption coefficient of about 2.6 per cm. The generator experiments did not lead to stimulated scattering due to the limited output power of the laser and its multi-longitudinal spectral mode content. These studies will be continued along with analytical modeling in order to characterize the interaction and to enable the optimization of the scattering process.
Quantum transport velocity in strongly scattering media
Malfliet, R
1998-01-01
Based on the Kadanoff-Baym equations of quantum transport: theory, an approach is proposed which goes beyond the usual quasiparticle approximation. It allows one to deduct the correct transport velocity for propagation in strongly scattering media, a quantity of great importance for localization phe
Neutron scattering applications in hydrocarbon materials
Energy Technology Data Exchange (ETDEWEB)
Lin, Min Y.; Peiffer, Dennis G. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Zhang, Yimin; Rafailovich, Miriam [Dept. of Materials Sci. and Eng., State University of New York, NY (United States)
2001-03-01
Neutron scattering methods are a powerful probe to complex fluids, soft matters as well as solid materials of nano- and micro-structures and their related dynamic properties. They complement other microstructural probing tools, such as microscopes, x-ray and light scattering techniques. Because neutron does not carry charges, it interacts only with nuclei of the matter, therefore not only can it penetrate a longer length into matters, it can also see' many features other methods can't due to their lack of proper contrast or heavy absorption. One of the largest contrasts in neutron methods is from hydrogen/deuterium (H/D) difference. Therefore, hydrocarbons can be easily studied by neutrons when H/D isotope substitution is applied. Here at National Institute of Standards and Technology's Center for Neutron Research (NCNR) in Gaithersburg, Maryland, one of the USA's premier neutron scattering facilities, we have been using neutron scattering techniques to study microstructures of asphaltenes, waxes, gas hydrates, porous media, surfactant solutions, engine oils, polymers, nanocomposites, fuel cell element and other hydrocarbon materials. With the completion of a new Neutron Spin Echo instrument, we can also look at the dynamics of the above mentioned systems. (author)
ITER Fast Ion Collective Thomson Scattering
DEFF Research Database (Denmark)
Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando;
2005-01-01
velocities with good spatial and temporal resolution. The present report, which is a continuation of this work, presents a detailed CATIA design of the two antennae systems, modified and extended calculations on beam overlap and scattering, measurements and calculations of the beam transmission through...
Indirect processes in electron-ion scattering
Energy Technology Data Exchange (ETDEWEB)
Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.
1983-10-01
A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination.
Efficient Fixed-Offset GPR Scattering Analysis
DEFF Research Database (Denmark)
Meincke, Peter; Chen, Xianyao
2004-01-01
in the scattering calculation the correct radiation patterns of the ground penetrating radar antennas by using their plane-wave transmitting and receiving spectra. Finally, we derive an efficient FFT-based method to analyze a fixed-offset configuration in which the location of the transmitting antenna is different...
Enhanced Raman Scattering by Molecular Nanoaggregates
Directory of Open Access Journals (Sweden)
Daniel L. Akins
2014-02-01
Full Text Available The formation of a molecular aggregate in a confined, nanodimensioned region of space leads to what might be termed a ‘molecular nanoaggregate’. The present review deals with a theoretical formulation termed ‘aggregation-enhanced Raman scattering’ (AERS, and its use in discussion of relative Raman band intensities and selection rules for nanoaggregates. AERs represents a concept for discussion of nanoaggregates that is different from those provided by resonance Raman scattering, surface-enhanced Raman scattering and Mie scattering, all of which ignore the impact of aggregation of molecules on Raman scattering. Beyond the theoretical formulation behind the AERS phenomenon, also outlined in this review are representative samples of the publications of other authors and researchers using AERS to provide explanations for experimental findings. In addition to clarifying issues regarding the use of nanocomposites involving aggregated molecules, it is found that increasing use of AERS concepts is being made to rationalize Raman spectral observations in a range of other disciplines that fall in both the physical sciences and the medical fields.
Transparent alumina: A light scattering model
Apetz, R.; Van Bruggen, P.B.
2003-01-01
A model based on Rayleigh-Gans-Debye light scattering theory has been developed to describe the light transmission properties of fine-grained, fully dense polycrystalline ceramics consisting of birefringent crystals. This model extends light transmission models based on geometrical optics, which are
Research News -- Meson scattering at high precision
Ananthanarayan, B
2007-01-01
A fascinating new generation of experiments has determined certain meson scattering parameters at high precision. A confluence of highly sophisticated theory as well as new experimental ideas have led to this state of affairs, which sheds important light on the properties of the strong interactions. A brief review of the experiments and the theory is presented.
Lidar measured vertical atmospheric scattering profiles
Kunz, G.J.
1985-01-01
The vertical structure of the atmosphere, which is of invaluable interest to meteorologists, geo-physicists and environmental researchers, can be measured with LIDAR. A method has been proposed and applied to invert lidar signals from vertical soundings to height resolved scattering coefficients. In
Positron elastic scattering from alkaline earth targets
Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.
2016-07-01
A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y
Self-pulsing effect in chaotic scattering
Energy Technology Data Exchange (ETDEWEB)
Jung, C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); MejIa-Monasterio, C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); Merlo, O [Institut fuer Physik der Universitaet Basel, Basel (Switzerland); Seligman, T H [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)
2004-05-01
We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in situations for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. Such situations are quite common as they correspond typically to the near-integrable domain in the transition from integrable to chaotic scattering. Both classical and quantum dynamics are analysed and in both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one-dimensional models and in open billiards.
Parity violation in deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Souder, P. [Syracuse Univ., NY (United States)
1994-04-01
AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.
Proton Tomography Through Deeply Virtual Compton Scattering
Ji, Xiangdong
2016-01-01
In this prize talk, I recall some of the history surrounding the discovery of deeply virtual Compton scattering, and explain why it is an exciting experimental tool to obtain novel tomographic pictures of the nucleons at Jefferson Lab 12 GeV facility and the planned Electron-Ion Collider in the United States.
Lorentz violation and deep inelastic scattering
Kostelecky, Alan; Vieira, A R
2016-01-01
The effects of quark-sector Lorentz violation on deep inelastic electron-proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
Light scattering studies of an electrorheological fluid
Energy Technology Data Exchange (ETDEWEB)
Martin, J.E.; Odinek, J.
1993-08-01
We report real-time, two-dimensional light scattering studies of the evolution of structure in an electrorheological fluid in the quiescent state and under shear. We find that when an electric field is applied to the quiescent fluid, particles chain along the electric field lines and cause strong light scattering lobes to appear at a finite scattering wavevector q orthogonal to the field lines. These lobes then brighten as they move to q=O, indicating the existence of an unstable concentration fluctuation that signifies the segregation of chains into columns. In fact, the observed power law growth kinetics of the characteristic length, as well as the form of the structure factor, are qualitatively similar to two-dimensional spinodal decomposition in a system with a conserved order parameter. When the sample is subjected to shear, we find that the scattering pattern approaches a steady state, with lobes that are rotated in the direction of fluid vorticity. The angle of rotation is found to increase as the cube root of the shear rate, in agreement with a theoretical prediction of the steady state structure of fragmenting particle chains.
Multiple Scatters in Single Site Gamma Backgrounds
Energy Technology Data Exchange (ETDEWEB)
Brodsky, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-16
nEXO aims to reduce its gamma backgrounds by taking advantage of the fact that a large number of gammas that would otherwise be backgrounds will undergo multiple compton scattering in the TPC and produce spatially distinct signals. These multi-sited (MS) events can be excluded from the 0νββ search.
Elastic proton-proton scattering at RHIC
Energy Technology Data Exchange (ETDEWEB)
Yip, K.
2011-09-03
Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.
Isospin violation in pion-kaon scattering
Kubis, B; Kubis, Bastian; Mei{\\ss}ner, Ulf-G.
2002-01-01
We consider strong and electromagnetic isospin violation in near-threshold pion-kaon scattering. At tree level, such effects are small for all physical channels. We work out the complete one-loop corrections to the process pi^- K^+ -> pi^0 K^0. They come out rather small. We also show that the corresponding radiative cross section is highly suppressed at threshold.
Dissociation coloured quarks and inclusive scattering
Bartelski, J
1974-01-01
A simple parton model of the nucleon built up of three-triplet quarks dissociated into the Gell-Mann-Zweig quarks and 'coloured' gluons is considered. It is shown that the model is consistent with SLAC-MIT and CERN data for inclusive scattering. (21 refs).
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
DEFF Research Database (Denmark)
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
Creation of Magnetic Monopoles in Classical Scattering
Vachaspati, Tanmay
2016-01-01
We consider the creation of 't Hooft-Polyakov magnetic monopoles by scattering classical wave packets of gauge fields. An example with eight clearly separated magnetic poles created with parity violating helical initial conditions is shown. No clear separation of topological charge is observed with corresponding parity symmetric initial conditions.
Surface roughness scattering in multisubband accumulation layers
Fu, Han; Reich, K. V.; Shklovskii, B. I.
2016-06-01
Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.
Nonelastic electron scattering in mercury telluride
Malik, O P
2002-01-01
By exact solution of the Boltzmann equation, the nonequilibrium charge carrier distribution function is obtained. In the temperature range 4.2 - 300 K, main electron scattering mechanisms are considered by taking into account the nonelastic electron interaction with optical vibrations of the crystal lattice.
Diffusion and scattering in multifractal clouds
Energy Technology Data Exchange (ETDEWEB)
Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others
1996-04-01
This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.
Seafloor Scattering in Shallow Water Environments
2013-03-18
altogether. This work was primarily concerned with accurately modeling scattering at close range . However, mud volcanoes are also demonstrated sources of...Topographical information for the seabed was obtained by Anthony Lyons using the NURC photogrammetry system [5], where surface height fields for an...acoustic backscatter was derived. Photographs captured using the NURC photogrammetry system were calibrated and processed according to standard
Scattering for Infinite Dimensional Port Hamiltonian Systems
Macchelli, Alessandro; Stramigioli, Stefano; Schaft, Arjan van der; Melchiorri, Claudio
2002-01-01
In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian system is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-
Cooperativity in light scattering by cold atoms
Bienaime, Tom; Piovella, Nicola; Kaiser, Robin
2012-01-01
A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.
Investigation on acoustic holography reconstruction of scattering field of target
Institute of Scientific and Technical Information of China (English)
BAO Xuemei; HE Zuoyong
2000-01-01
The BEM-based (Boundary EIement Method) scattering near field acoustic holography technique, which can be used to reconstruct the scattering sound field on the surface of a target and predict the whole scattering field from measured scattering near field, is described.First, the fundamental equations of this method and the related separation method for scattering field are brought forward. Then the problems such as the affect of different hologram to reconstructed result, the availability of singular value filter method and the applicability of separation method for scattering field are analyzed by means of numerical simulation.
Sound scattering at fluid-fluid rough surface
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Extinction theorem was used to deduce the first order scattering cross-section including the double scattering effects for the fluid-fluid rough surface. If the double scattering effects are neglected in the present method, the scattering cross-section agrees with the result obtained by the perturbation method based on Rayleigh hypothesis. Calculations of scattering strength were carried out, and comparisons with the first-order perturbation method based on Rayleigh hypothesis were also done. The results show that double scattering effects are obvious with the increase of the root mean square of surface height and the grazing angle when the valid condition k1h < 1 is satisfied.
The contribution of specific organelles to side scatter
Mourant, Judith R.; Marina, Oana C.; Sanders, Claire K.
2013-02-01
Knowledge of which cellular structures scatter light is needed to fully utilize the information available from light scattering measurements of cells and tissues. To determine how specific organelles contribute to light scattering, wide angle side scattering was imaged simultaneously with fluorescence from specific organelles for thousands of cells using flow cytometry. Images were obtained with different depth of field conditions and analyzed with different assumptions. Both sets of data demonstrated that mitochondria and lysosomes, contribute similarly to side scatter. The nucleus contributes as much or more light scatter than either the mitochondria or the lysosomes.
Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter
Whelan, Colm T
2005-01-01
Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.
Robust Optical Richness Estimation with Reduced Scatter
Energy Technology Data Exchange (ETDEWEB)
Rykoff, E.S.; /LBL, Berkeley; Koester, B.P.; /Chicago U. /Chicago U., KICP; Rozo, E.; /Chicago U. /Chicago U., KICP; Annis, J.; /Fermilab; Evrard, A.E.; /Michigan U. /Michigan U., MCTP; Hansen, S.M.; /Lick Observ.; Hao, J.; /Fermilab; Johnston, D.E.; /Fermilab; McKay, T.A.; /Michigan U. /Michigan U., MCTP; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC
2012-06-07
Reducing the scatter between cluster mass and optical richness is a key goal for cluster cosmology from photometric catalogs. We consider various modifications to the red-sequence matched filter richness estimator of Rozo et al. (2009b), and evaluate their impact on the scatter in X-ray luminosity at fixed richness. Most significantly, we find that deeper luminosity cuts can reduce the recovered scatter, finding that {sigma}{sub ln L{sub X}|{lambda}} = 0.63 {+-} 0.02 for clusters with M{sub 500c} {approx}> 1.6 x 10{sup 14} h{sub 70}{sup -1} M{sub {circle_dot}}. The corresponding scatter in mass at fixed richness is {sigma}{sub ln M|{lambda}} {approx} 0.2-0.3 depending on the richness, comparable to that for total X-ray luminosity. We find that including blue galaxies in the richness estimate increases the scatter, as does weighting galaxies by their optical luminosity. We further demonstrate that our richness estimator is very robust. Specifically, the filter employed when estimating richness can be calibrated directly from the data, without requiring a-priori calibrations of the red-sequence. We also demonstrate that the recovered richness is robust to up to 50% uncertainties in the galaxy background, as well as to the choice of photometric filter employed, so long as the filters span the 4000 {angstrom} break of red-sequence galaxies. Consequently, our richness estimator can be used to compare richness estimates of different clusters, even if they do not share the same photometric data. Appendix A includes 'easy-bake' instructions for implementing our optimal richness estimator, and we are releasing an implementation of the code that works with SDSS data, as well as an augmented maxBCG catalog with the {lambda} richness measured for each cluster.
Completing electron scattering studies with the inert gas column:e - Rn scattering and Ionization
Joshi, Foram M; Chaudhari, Asha S; Modi, Hitesh S; Pindaria, Manish J
2016-01-01
Interest in the inert or noble- gas atoms in general arises because they are ideal as test systems for various theoretical models of electron scattering and also since their interaction processes serve as reference for the determination of instrumental responses in electron scattering experiments. The ionization cross section data of ground state inert gas atoms He through Xe are considered to be benchmark data. Our aim in this paper is to provide theoretical results on electron scattering with Radon atoms, as it would complete the studies on the entire inert gas column. That is possible with this particular column only, in view of the preceding literature on He through Xe . Inert gas radon is radioactive, and would be a difficult target for electron scattering experiments. In the present calculations, the complications arising from radioactivity are not considered. We provide hitherto unavailable cross sections on atomic radon, and also provide opportunity of the comparison of electron impact cross sections ...
Scattering and absorption differential cross sections for double photon Compton scattering
Indian Academy of Sciences (India)
B S Sandhu; M B Saddi; B Singh; B S Ghumman
2001-10-01
The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent ﬁnal photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.
Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications
Institute of Scientific and Technical Information of China (English)
XU Sheng-Hua; SUN Zhi-Wei
2007-01-01
The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.
Kang, Sungsam; Kang, Pilsung; Yang, Taeseok D; Ahn, Joonmo; Song, Kyungdeok; Choi, Wonshik
2016-01-01
Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultaneously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.
Deharak, B. A.; Savich, J. L.; Roberts, H. M.; Brown, E. G.; McGill, M. R.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.
2016-05-01
We have conducted a series of Monte Carlo simulations of laser assisted free-free scattering experiments. The simulations make use of Kroll-Watson approximation to account for the effects of the laser field on the scattering process. The parameters for these simulations are believed to mimic the experimental conditions of the work reported by Wallbank and Holmes, particularly the target number density. The simulations account for the effects multiple scattering (i.e., the scattering of a single incident electron from multiple target atoms). We present a comparison of the results of these simulations to the experimental results of Wallbank and Holmes. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM) and PHY-1402899 (BAd).
Compton scattering of twisted light: angular distribution and polarization of scattered photons
Stock, S; Fritzsche, S; Seipt, D
2015-01-01
Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.
Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering
Energy Technology Data Exchange (ETDEWEB)
Khanal, D. R.; Levander, A. X.; Wu, J. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, K. M.; Liliental-Weber, Z.; Walukiewicz, W. [Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E. [Department of Ingenieria Electronica-ISOM, Universidad Politecnica, Ciudad Universitaria, 28040 Madrid (Spain)
2011-08-01
We demonstrate the isolation of two free carrier scattering mechanisms as a function of radial band bending in InN nanowires via universal mobility analysis, where effective carrier mobility is measured as a function of effective electric field in a nanowire field-effect transistor. Our results show that Coulomb scattering limits effective mobility at most effective fields, while surface roughness scattering only limits mobility under very high internal electric fields. High-energy {alpha} particle irradiation is used to vary the ionized donor concentration, and the observed decrease in mobility and increase in donor concentration are compared to Hall effect results of high-quality InN thin films. Our results show that for nanowires with relatively high doping and large diameters, controlling Coulomb scattering from ionized dopants should be given precedence over surface engineering when seeking to maximize nanowire mobility.
Bienaime, Tom; Chabe, Julien; Rouabah, Mohamed-Taha; Bellando, Louis; Courteille, Philippe W; Piovella, Nicola; Kaiser, Robin
2013-01-01
The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.
Multiwavelength multistatic optical scattering for aerosol characterization
Brown, Andrea M.
The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and
Kiselev, A D; Reshetnyak, V Yu; Sluckin, T J
2002-05-01
We extend the T-matrix approach to light scattering by spherical particles to some simple cases in which the scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include radially and uniformly anisotropic layers. We find that in both cases the T-matrix theory can be formulated using a modified T-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive these modes by relating the wave packet representation and expansions of electromagnetic field over spherical harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inapplicable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light and the optical axis, and for larger droplets this dependence is nonmonotonic.
Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering.
Zheng, Xing; Hemmady, Sameer; Antonsen, Thomas M; Anlage, Steven M; Ott, Edward
2006-04-01
In wave chaotic scattering, statistical fluctuations of the scattering matrix S and the impedance matrix Z depend both on universal properties and on nonuniversal details of how the scatterer is coupled to external channels. This paper considers the impedance and scattering variance ratios, Xi(z) and Xi(s), where Xi(z) = Var[Z(ij)]/{Var[Z(ii)]Var[Z(jj)]}1/2, Xi(s) = Var[S(ij)]/{Var[S(ii)]Var[S(jj)]}1/2, and Var[.] denotes variance. Xi(z) is shown to be a universal function of distributed losses within the scatterer. That is, Xi(z) is independent of nonuniversal coupling details. This contrasts with s for which universality applies only in the large loss limit. Explicit results are given for Xi(z) for time reversal symmetric and broken time reversal symmetric systems. Experimental tests of the theory are presented using data taken from scattering measurements on a chaotic microwave cavity.
Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation
Syshchenko, V. V.
2016-07-01
The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.
Incoherent x-ray scattering in single molecule imaging
Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin
2014-01-01
Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...
Generalized parton distributions and wide-angle exclusive scattering
Kroll, P
2004-01-01
The handbag mechanism for wide-angle exlusive scattering reactions is discussed and compared with other theoretical approaches. Its application to Compton scattering, meson photoproduction and two-photon annihilations into pairs of hadrons is reviewed.
Scattering of sound waves by a compressible vortex
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
A sparse scattering model for nanoparticles on rough substrates
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Hansen, Poul-Erik; Wriedt, Thomas
2013-01-01
We present and validate an efficient forward scattering model for nanoparticles on rough contaminated substrates.......We present and validate an efficient forward scattering model for nanoparticles on rough contaminated substrates....
An algorithm to determine backscattering ratio and single scattering albedo
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.
Algorithms to determine the inherent optical properties of water, backscattering probability and single scattering albedo at 490 and 676 nm from the apparent optical property, remote sensing reflectance are presented here. The measured scattering...
Raman scattering in the atmospheres of the major planets
Cochran, W. D.; Trafton, L. M.
1978-01-01
A technique is developed to calculate the detailed effects of Raman scattering in an inhomogeneous anisotropically scattering atmosphere. The technique is applied to evaluations of Raman scattering by H2 in the atmosphere of the major planets. It is noted that Raman scattering produces an insufficient decrease in the blue and ultraviolet regions to explain the albedos of all planets investigated. For all major planets, the filling-in of solar line cores and the generation of the Raman-shifted ghosts of the Fraunhofer spectrum are observed. With regard to Uranus and Neptune, Raman scattering is seen to exert a major influence on the formation and profile of strong red and near infrared CH4 bands, and Raman scattering by H2 explains the residual intensity in the cores of these bands. Raman scattering by H2 must also be taken into account in the scattering of photons into the cores of saturated absorption bands.
Noncommutative QED Threshold Energy versus Optimum Collision Energy
Institute of Scientific and Technical Information of China (English)
SHENG Zheng-Mao; FU Yong-Ming; YU Hai-Bo
2005-01-01
@@ M(o)11er scattering and Bhabha scattering on noncommutative (NC) space-time is restudied. It is shown that the NC correction of scattering sections is not monotonic enhancement with total energy of colliding electrons, that there is an optimum collision energy to perform the greatest NC correction.
Experimental demonstration of spatial quantum correlations in multiple scattering media
DEFF Research Database (Denmark)
Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund;
2009-01-01
We demonstrate that spatial quantum correlations are induced by multiple scattering of squeezed light. The correlation relates multiple scattered photons at different spatial positions, and is tunable by varying photon fluctuations of the illuminating beam.......We demonstrate that spatial quantum correlations are induced by multiple scattering of squeezed light. The correlation relates multiple scattered photons at different spatial positions, and is tunable by varying photon fluctuations of the illuminating beam....
Quantum Interference of Multiple Beams Induced by Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging.......We report on quantum interference induced by the transmission of quantized light through a multiple-scattering medium. We show that entangled states can be created by multiple-scattering and that quantum interference survives disorder averaging....
Scattering Induced Quantum Interference of Multiple Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....
The transmission coefficient distribution of highly scattering sparse random media
Jin, Curtis; Nadakuditi, Raj Rao; Michielssen, Eric
2015-01-01
We consider the distribution of the transmission coefficients, i.e. the singular values of the modal transmission matrix, for 2D random media with periodic boundary conditions composed of a large number of point-like non-absorbing scatterers. The scatterers are placed at random locations in the medium and have random refractive indices that are drawn from an arbitrary, known distribution. We construct a randomized model for the scattering matrix that retains scatterer dependent properties ess...
Scattering of light by a system of anisotropic particles.
Du, Xinyue; Zhao, Daomu
2010-05-15
The cross-spectral density function of the scattered field that is produced by scattering of a coherent plane light wave incident on a collection of different types of anisotropic particles is derived. We show the phenomena of interference of the fields scattered by each of the particles in the system. Numerical results indicate that the information about the shape, the distance, and the relative orientation of the particles may be obtained from far-zone measurements of the scattered field.
Can different media generate scattered field with identical spectral coherence?
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-03-01
The possibility for different media to generate scattered field with identical spectral coherence is discussed. It is shown that two random media, with different characters of correlation function, may generate scattered field with identical spectral coherence property. An example of light waves on scattering from Gaussian-Schell model media is discussed, and a condition for identical spectral coherence of the far-zone scattered field is obtained.
Scattering series in the mobility problem for suspensions
Makuch, Karol
2012-11-01
The mobility problem for suspensions of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.
Magnetic Dynamics of Fine Particles Studied by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen;
2000-01-01
We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferro......We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted...
Entangled mixed-state generation by twin-photon scattering
Puentes, G; Voigt, D; Woerdman, J P
2006-01-01
We report novel experimental results on mixed-state generation by multi-mode scattering of polarization-entangled photons. By using a large variety of scattering media we obtain two markedly different classes of scattered states; namely Werner-like and sub-Werner-like states. Our experimental findings are in excellent agreement with a phenomenological model based upon the description of a scattering process as a quantum map.
Multiscale analysis of the acoustic scattering by many scatterers of impedance type
Challa, Durga Prasad; Sini, Mourad
2016-06-01
We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.
Entanglement creation in low-energy scattering
Energy Technology Data Exchange (ETDEWEB)
Weder, Ricardo [Institut National de Recherche en Informatique et en Automatique Paris-Rocquencourt, Projet POEMS, Domaine de Voluceau-Rocquencourt, BP 105, F-78153, Le Chesnay Cedex (France)
2011-12-15
We study the entanglement creation in the low-energy scattering of two particles in three dimensions, for a general class of interaction potentials that are not required to be spherically symmetric. The incoming asymptotic state, before the collision, is a product of two normalized Gaussian states. After the scattering, the particles are entangled. We take as a measure of the entanglement the purity of one of them. We provide a rigorous explicit computation, with error bound, of the leading order of the purity at low energy. The entanglement depends strongly on the difference of the masses. It takes its minimum when the masses are equal, and it increases rapidly with the difference of the masses. It is quite remarkable that the anisotropy of the potential gives no contribution to the leading order of the purity, in spite of the fact that entanglement is a second-order effect.
Zeno: Critical Fluid Light Scattering Experiment
Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen
1996-01-01
The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.
Scattering theory some old and new problems
Yafaev, Dmitri R
2000-01-01
Scattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, such as asymptotic completeness for the Schrödinger operator with long-range and multiparticle potentials, as well as open problems, are discussed. Potentials for which asymptotic completeness is violated are also constructed. This corresponds to a new class of asymptotic solutions of the time-dependent Schrödinger equation. Special attention is paid to the properties of the scattering matrix, which is the main observable of the theory. The book is addressed to readers interested in a deeper study of the subject.