WorldWideScience

Sample records for bgc-lurgi slagging process

  1. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  2. A novel process for comprehensive utilization of vanadium slag

    Science.gov (United States)

    Liu, Li-ying; Du, Tao; Tan, Wen-jun; Zhang, Xin-pu; Yang, Fan

    2016-02-01

    Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

  3. An alternative approach for reusing slags from a plasma vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Y.-M. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China)], E-mail: yiming@mail.hwai.edu.tw; Tseng, H.-J. [Department of Foundry Engineering, National Tainan Industrial Vocational High School, Tainan 71075, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, J.-W.; Wang, C.-T. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China); Chen, H.-T. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2008-08-15

    Vitrification is widely applied to transform hazardous materials into inert slags. Raising the value of the recycled slag is an important issue from an economic point of view. In this study, an alternative approach for mixing a plasma slag with unsaturated polyester resin for making the dough-like molding composites is proposed. Physical properties, including ultimate tensile strength, Rockwell hardness, and the elongation at break, were measured to evaluate the characteristics of the composites. A scanning electron microscope and an X-ray diffractometer were used to examine the micro characteristics of the specimens. The chemical stability of the composites was estimated using the toxicity characteristic leaching procedure and a hot water bathing process. In an optimal slag loading (mass ratio of slag to unsaturated polyester resin) ranged from 0.1 to 0.2, the slag powder improved the physical properties of the composites. With an increased slag loading, excess slag powder weakened the structure of the resin, reducing the ultimate tensile strength and Rockwell hardness. The acid and water bathing tests indicated that the resin is decomposed in a hot environment. However, the slag was not destructed nor were the hazardous metals leached out. The results show that the molding method is an effective technology to recycle the slag.

  4. Effects of Carbo-Nitridation Process of Ti-Bearing Blast Furnace Slag on Iron Content

    Science.gov (United States)

    Shi, Z.; Zhang, X. M.; Xu, Y.

    In order to prepare corrosion-resistant refractory material, experiment chooses Ti-bearing Blast Furnace Slag as raw materials which were treated by the method of carbo-nitridation. Finally, the corrosion resistance properties of the material can be improved by this method. The carbo-nitridation process affects the iron content of the slag in the study, which have a beneficial effect on the synthesis of Ti (C. N). The results indicated that the iron content of the slag significantly increased in process of Ti (C. N) synthesis: and the iron content of slag showed an upward trend with the increase of holding time.

  5. Effect of Fine Steel Slag Powder on the Early Hydration Process of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hydration heat evolution, non-evaporative water, setting time and SEM tests were performed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism.The results show that the effect of fine steel slag powder on the hydration process of Portland cement is closely related to its chemical composition, mineral phases, fineness, etc.Fine steel slag powder retards the hydration of portland cement at early age.The major reason for this phenomenon is the relative high content of MgO , MnO2, P2 O5in steel slag, and MgO solid solved in C3 S contained in steel slag.

  6. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes

    Science.gov (United States)

    Kang, Jin Gyu; Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun

    2017-03-01

    Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and

  7. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  8. Statistical modeling of copper losses in the silicate slag of the sulfide concentrate smelting process

    OpenAIRE

    2015-01-01

    This article presents the results of the statistical modeling of copper losses in the silicate slag of the sulfide concentrates smelting process. The aim of this study was to define the correlation dependence of the degree of copper losses in the silicate slag on the following parameters of technological processes: SiO2, FeO, Fe3O4, CaO and Al2O3 content in the slag and copper content in the matte. Multiple linear regression analysis (MLRA), artificial neural networks (ANNs) and adaptive netw...

  9. Synthesis and Characterization of Titanium Slag from Ilmenite by Thermal Plasma Processing

    Science.gov (United States)

    Samal, Sneha

    2016-09-01

    Titanium rich slag has emerged as a raw material for alternative titanium source. Ilmenite contains 42-50% TiO2 as the mineralogical composition depending on the geographical resources. Application of titanium in paper, plastic, pigment and other various industries is increasing day by day. Due to the scarcity of natural raw mineral rutile (TiO2), ilmenite is considered as precursor for the extraction of TiO2. Ilmenite is reduced at the initial stage for the conversion of complex iron oxide into simpler form. Therefore, pre-reduction of ilmenite concentrate is essential to minimize the energy consumption during thermal plasma process. Thermal plasma processing of ilmenite for the production of titania rich slag is considered to be the direct route to meet the current demand of industrial needs of titanium. Titania rich slag contains 70-80% TiO2 as the major component with some other minor impurities, like oxide phases of Si, Al, Cr, Mg, Mn, Ca, etc. Usually titanium is present in tetravalent forms with globular metallic iron in the slag. Titania rich slag undergoes leaching for the removal of iron and transforming the slag into synthetic rutile having 85-95% of TiO2.

  10. The Concept of Slag Decopperisation in the Flash Furnace Process by Use of Complex Reagents

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-04-01

    Full Text Available The article presents an outline of the new technology of pyrometallurgical processing of slag in the direct-to-blister process. The analysis is based on the example of the production process of KGHM Polish Copper SA. A new way of implementing the technology of recovery of copper from the flash furnace slag by means of different feedstocks has been proposed. The method of controlling the processes is another innovation discussed in the paper. The presented concept intensify the reduction reactions, using the Carbo-N-Ox method, of copper compounds to forms of metallic phases in the slag. The processes of coagulation are accelerated and the processes crystallization of metallic phases are under control.

  11. Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag

    Science.gov (United States)

    Zhang, Wu; Zhang, Li; Li, Yuhai; Li, Xin

    2016-09-01

    The aim of the present work is to elucidate crystallization and growing process of rutile crystals in Ti-bearing blast furnace slag. The samples were taken from the liquid slag and quenched at once at elevated temperatures in order to analyze phase transaction of titanium and grain size of rutile crystals. Crystallization and growing kinetics of rutile crystals under elevated temperature conditions were calculated, and the crystallization process of rutile crystals under isothermal conditions was expressed by Avrami equation. The effects of experimental parameters, such as experimental temperatures, SiO2 addition, cooling rate, crystal seed addition and oxygen flow, were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the optimal conditions for rutile crystals to grow up were obtained. Distribution and movement state of rutile crystals in the slag were analyzed.

  12. Statistical modeling of copper losses in the silicate slag of the sulfide concentrate smelting process

    Directory of Open Access Journals (Sweden)

    Savic Marija V.

    2015-09-01

    Full Text Available This article presents the results of the statistical modeling of copper losses in the silicate slag of the sulfide concentrates smelting process. The aim of this study was to define the correlation dependence of the degree of copper losses in the silicate slag on the following parameters of technological processes: SiO2, FeO, Fe3O4, CaO and Al2O3 content in the slag and copper content in the matte. Multiple linear regression analysis (MLRA, artificial neural networks (ANNs and adaptive network based fuzzy inference system (ANFIS were used as tools for mathematical analysis of the indicated problem. The best correlation coefficient (R2 = 0.719 of the final model was obtained using the ANFIS modeling approach.

  13. Sulfate digestion process for high purity TiO2 from titania slag

    Institute of Scientific and Technical Information of China (English)

    T. A. LASHEEN

    2009-01-01

    A titania slag product of Rosetta ilmenite assaying 72% Tio2 is treated by the sulfate process option of the pigmentary TiO2 manufacture. The relevant factors of acid concentration, particle size, slag/acid ratio besides the reaction temperature, and time have been studied. After dissolving the cured mass in dilute acid and clarification, the obtained solution was subjected to hydrolysis of its titanium content. The final product was bleached under reducing conditions to redissolve the residual coloring impurities before being dewatered and calcinated. The obtained results indicated that a leaching efficiency of about 92% was realized due to the presence of some refractory components in the working slag material, namely, rutile and magnesium iron titanate. The obtained white pigment assay attained up to 99.85% TiO2, while the analyzed impurities involve 77ppm Mn and only 14 and 7 ppm of total iron and V, respectively.

  14. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment.

  15. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  16. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    Science.gov (United States)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  17. Thermodynamics calculation on the oxidation and sulfur removal abilities of slag in EAF dust pellet reduction process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The valuable metals in the dust can be recycled by mixing it with reducing agent carbon and lignosulfonate as the binder to make pellets, then returning the pellets to electric arc furnace (EAF) and adding ferro-silicon. Part of valuable metals in the dust is reduced by carbon and part of them reduced by ferro-silicon for the economical consideration. The reduced metals get into the steel in the stainless steel or special steel production. But the sulfur in the lignosulfonate may affect the quality of produced steel, which is dependent on the status of the smelting slag. The experiments were conducted in the way of changing the ratio of start iron, pellets, ferro-silicon and lime. The content of the slag was checked by XRF for the calculation thermodynamics study. The active concentrations of materials in the slag, the slag abilities of oxidation and sulfur removal in EAF dust reduction process were determined by thermodynamics calculation study on CaO-MgO-FeO-Fe2O3-SiO2-S slag at 1 550 ℃. The oxidation ability of slag can be expressed as N(FetO)=N(FeO)+6N(Fe2O3)+8N(Fe3O4). The sulfur removal ability is dependent on the amount of added ferro-silicon and the basicity of the slag. The calculation thermodynamics model was set up and it could be applied to the practical production.

  18. Reaction Process of Chromium Slag Reduced by Industrial Waste in Solid Phase

    Institute of Scientific and Technical Information of China (English)

    SHI Yu-min; DU Xing-hong; MENG Qing-jia; SONG Shi-wei; SUI Zhi-tong

    2007-01-01

    M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr (Ⅵ) of Na2CrO4 borne in the chromium slag to Cr (Ⅲ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, which was endothermic. Under the experimental condition, the apparent activation energy was 4.41 kJ·mol-1, the apparent order of reaction for Na2CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330 ℃.

  19. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  20. Isothermal precipitation and growth process of perovskite phase in oxidized titanium bearing slag

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-yu; WANG Xue-wen; HE Yue-hui; LOU Tai-ping; SUI Zhi-tong

    2008-01-01

    The isothermal precipitating behavior of perovskite phase in oxidized titanium bearing slag was studied by quenching method. The kinetics of precipitating process and crystal growth of perovskite phase was analyzed. The results show that the precipitating and growth of perovskite are non-equilibrium process at the beginning of isothermal treatment. There are two factors influencing the growth rate of perovskite phase on non-equilibrium condition, one is the supersaturation concentration of perovskite and the other is the coarsening arising from the growth of larger perovskite at the expense of smaller ones. The precipitation kinetics of perovskite phase can be nearly described by the JMAK equation.

  1. ATMOSPHERE POLLUTION AT STORAGE OF SLAGS OF ALUMINIUM SECONDARY PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Panasyugin

    2013-01-01

    Full Text Available Thermodynamic probability of the processes of the formation of compounds of aluminum (which release in the environment by hydrolysis ammonia, acetylene, propane and hydrogen sulfide is determined. In the article the economic loss from irrecoverable waste of aluminum and fines for emissions of air pollutants is estimated.

  2. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  3. Processing of copper converter slag for metal reclamation. Part I: Extraction and recovery of copper and cobalt.

    Science.gov (United States)

    Deng, Tong; Ling, Yunhan

    2007-10-01

    Clean processing of copper converter slag to reclaim cobalt and copper could be a challenge. An innovative and environmentally sound approach for recovering valuable metals from such a slag has been developed in the present study. Curing the slag with strong sulphuric acid, without re-smelting or roasting as practiced currently in the industry, render it accessible to leaching, and more than 95% of cobalt and up to 90% of copper was extracted together with iron by water leaching, leaving silica behind in a residue. The copper in the leach liquor was recovered by cementation with iron and the dissolved iron crystallized as ferrous sulphate monohydrate. The cobalt in the mother-liquor rich in iron was recovered by either cementation or sulphide precipitation. Operation variables in the new process were also investigated and optimized.

  4. Alkaline-sulphate activation processes of a Spanish blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández Jiménez, A.

    1996-03-01

    Full Text Available Alkaline-sulphate activation processes of a Spanish granulated blast furnace slag (Avilés, Ensidesa have been studied. Activator solutions used were: deionized water (as reference solution, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N at 25ºC. The influence of the nature of alkaline or sulphate solution cation on slag activation process was verified. Sodium solutions decrease the induction period while calcium solutions increase it. Slag reaction degree was also determined, likewise the nature of the different reaction products formed as a function of the activator solution nature.

    Se han estudiado los procesos de activación alcalinosulfáticos de una escoria granulada de alto horno española (Avilés, Ensidesa. Las disoluciones activantes utilizadas fueron: H2O desionizada (como disolución de referencia, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N a 25ºC. Se ha comprobado la influencia de la naturaleza del catión de la disolución alcalina o sulfática sobre el proceso de activación de la escoria. Las disoluciones sódicas disminuyen el período de inducción, mientras que las disoluciones cálcicas lo incrementan. También se determinó el grado de reacción de la escoria, así como la naturaleza de los distintos productos de reacción formados, en función de la naturaleza de la disolución activante.

  5. Research and Industrial Application of a Process for Direct Reduction of Molten High-Lead Smelting Slag

    Science.gov (United States)

    Li, Weifeng; Zhan, Jing; Fan, Yanqing; Wei, Chang; Zhang, Chuanfu; Hwang, Jiann-Yang

    2017-01-01

    A pyrometallurgical process for the direct reduction of molten high-lead smelting slag obtained by the Shuikoushan (SKS) method was reported in this article using solid anthracite as the fuel and reductant. The chemical composition, the lead phase composition, and the physical properties of the molten high-lead slag were examined. The effects of the process parameters on the recovery rate of valued metals were investigated in the laboratory. According to the experimental results, a new efficient bottom blow reduction furnace was employed in the pilot-scale test for high-lead slag reduction. The results showed the average recovery rate of lead was more than 96.0% with lower Pb and high Zn content of the reducing slag under the condition of reduction temperature 1100-1200°C, coal ratio 5.5-7.5%, reduction time 90-150 min, CaO/SiO2 ratio 0.35-0.45, and FeO/SiO2 ratio 1.4-1.55. Moreover, nearly 250 kg of standard coal per ton of crude Pb output was reduced compared with the blast furnace reduction process.

  6. Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process

    Institute of Scientific and Technical Information of China (English)

    Ying-yi Zhang; Wei L; Yuan-hong Qi; Zong-shu Zou

    2016-01-01

    A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/w(SiO2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al2O3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recov-ery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca2SiO4 and Ca12Al14O33, with small amounts of FeAl2O4, CaAl2O4, and Ca2Al2SiO7.

  7. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  8. PHOSPHORUS REMOVAL USING STEEL SLAG

    Institute of Scientific and Technical Information of China (English)

    Y.Z. Lan; S. Zhang; J.K. Wang; R. W. Smith

    2006-01-01

    Steel slag is a byproduct produced in large amounts in the steel-making process. It is an important resource that can be effectively utilized. An experiment was described in which steel slag was tested as an adsorbent for the removal of phosphorus from waste water. Phosphorus removal depended on the amount of steel slag added, the pH value, the contact time, and the initial concentration. Under laboratory conditions when the added slag was 7.5g/L, the contact time 2h, and the pH value was equivalent to 6.5, over 99% of the phosphorus was removed; the experimental data on steel slag adsorption of phosphorus in the water fitted the Freundlich isotherm model. Steel slag was found to be very effective in adsorbing phosphorus.

  9. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  10. Influence Of Temperature On The Rate Of Copper Recovery From The Slag Of The Flash Direct-To-Blister Process By A Solid Carbon Reducer

    Directory of Open Access Journals (Sweden)

    Madej P.

    2015-09-01

    Full Text Available The aim of the work was to investigate the influence of temperature on the rate of copper removal from the obtained slag from the flash direct-to-blister process by means of a carbon reducer. The slag used in this work was taken from the direct-to-blister Outokumpu flash furnace at the smelter in Głogów, and graphite penetrators were used as the slag reducers. The experiment was carried out at 1573 K, 1623 K and 1673 K. It was found that the rate of the de-coppering process of the “Głogów” slag increased with the increase of temperature.

  11. Refractories Utilizability for Slagging Gasifiers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining's life of slagging gasifiers is one of the most critical factors for a cost -effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.

  12. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  13. Coal Slag Attack-A Review

    Institute of Scientific and Technical Information of China (English)

    GUO Zongqi

    2004-01-01

    Although slagging coal gasifiers have served the commercial systems of electricity and chemical fertilizer productions for more than ten years, refractory service life still is a critical factor for gasifier availability. Some investigations were attracted, focusing on coal slag attack on high chromia refractories. A general introduction is made in order to have further understanding about slag corrosion in coal gasification environment. Microstructural deterioration and wear process of high chromia refractory in slagging gasifiers are discussed.

  14. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  15. Analysis Of Separation Mechanism Of The Metallic Phase Of Slag In The Direct-To-Blister Process

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available The article discusses the structure of the slag in the liquid state, the properties and interactions within the slag. The analysis of structures occurring in slag suspension were presented with regard to differences in chemical composition in micro-areas. Two different mechanisms for formation of precipitates in Cu-Fe-Pb alloys during extraction were showed.

  16. 熔融钒渣直接提钒新工艺%New Process of Vanadium Extraction from Molten Vanadium Slag

    Institute of Scientific and Technical Information of China (English)

    宋文臣; 李宏; 李昆; 郑权

    2013-01-01

    现行钒渣焙烧工艺中的钒渣高温物理热被浪费,对“熔融钒渣直接氧化钠化提钒”新工艺的可行性进行分析,并进行实验室模拟试验.结果表明,新工艺条件下,试验过程中熔融钒渣流动性良好,焙烧后钒渣水浸率为50%~80%,焙烧后钒渣中的钒主要以偏钒酸钠的形式存在.新工艺是合理可行的,具有工业生产价值.%A new process of extracting vanadium from molten vanadium slag by direct oxidation and sodium salt roasting method was introduced,with the aim to address heat waste of vanadium slag existing in vanadium extraction process through vanadium slag roasting.The feasibility of the new process was analyzed,and the simulation test was carried out in laboratory.The results show that under the new process condition,molten vanadium slag can be kept with good fluidity.Water leaching rate of vanadium is 50 % ~80 %.Vanadium in roasted slag exists in form of sodium metavanadate.To conclude,the new process is feasible and can meet industrial production requirement.

  17. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  18. Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide

    Directory of Open Access Journals (Sweden)

    Sebastian eTeir

    2016-02-01

    Full Text Available In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO2 emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride and ammonia, the product needs to be washed and hence filtered. In this work different separation processes, including washing, filtering and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO2 by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content and conductivity, and the filtrates by their residual solids content, chloride content and conductivity. Pressure filtration gave a high capacity (400-460 kg/m2h and a low cake residual moisture content (12-14 wt-%. Vacuum filtration gave slightly higher filtration rates (500-610 kg/m2h at the lowest residual chloride contents of the cakes, but the cake residual moisture also stayed higher (25-26 wt-%. As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered solids can be achieved

  19. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    Science.gov (United States)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  20. Viscosity and structure evolution of the SiO2-MgO-FeO-CaO-Al2O3 slag in ferronickel smelting process from laterite

    Directory of Open Access Journals (Sweden)

    Lv X.M.

    2017-01-01

    Full Text Available The SiO2 fractions in laterite-nickel ores are quite high, thus certain amount of lime should be used as fluxing material to achieve good fluidity and desulfurization capacity in industrial smelting process. However, this operation leads to an additional cost of lime. In addition, the increase of slag volume decreases the effective furnace volume. To avoid such problem, partial reduction of FeO has been suggested. Therefore, the high SiO2, low MgO and FeO and very little CaO slag is formed, which was less studied in the previous literature. Therefore, the viscosity and slag structure are investigated in the present study through FT-IR and Raman analysis methods. Experimental results show that the slag is a mixture of liquid and solid phases under the experimental temperature. The FT-IR and Raman spectra show that the fractions of the complex polymerization structure decrease significantly with the increase of FeO content and slag basicity, resulting in the decrease of apparent viscosity.

  1. Dissolution Behavior of Alumina-Based Inclusions in CaF2-Al2O3-CaO-MgO-SiO2 Slag Used for the Electroslag Metallurgy Process

    Directory of Open Access Journals (Sweden)

    Yanwu Dong

    2016-11-01

    Full Text Available Removal of non-metallic inclusions to CaF2-based slag is one of the most important functions of electroslag remelting. In this work, the dissolution behavior for alumina-based inclusions in CaF2-Al2O3-CaO-MgO-SiO2 slag has been investigated. Results indicate that the diffusion or permeability capacity of slag components into alumina particles is F−, Ca2+, Si4+, Mg2+, from strongest to weakest, for CaF2-Al2O3-CaO-MgO-SiO2 slag. Alumina inclusions react with F− in liquid slag at first and then react with CaO to form xCaO-yAl2O3 system. Subsequently, MgO substitutes for CaO to form a MgO-Al2O3 system layer surrounding the other product and reactant, and then enters the liquid slag. CaF2 can improve the dissolution capacity of slag to alumina inclusions. A complex region was formed between alumina-based particles and the slag, with different areas dominated by CaF2, CaO-Al2O3, CaO-SiO2 and MgO-Al2O3. The dissolution process of alumina particles in slag is different from the formation of compound inclusions originated from the Al-O deoxidization reaction.

  2. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    Science.gov (United States)

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  3. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  4. Processing of TiO2 from titanium-bearing blast furnace slag as titanium source

    Directory of Open Access Journals (Sweden)

    X. Li

    2016-07-01

    Full Text Available The titanium dioxide(TiO2 was prepared by efficient decomposition of titanium- bearing blast furnace slag (TBBFS in molten salt system. The as-prepared TiO2 were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Almost complete leaching of Ti was achieved when TBBFS was carried out at 500 °C for about 3 h with NaOH/TBBFS mass ratio of 3:1 and NaOH to NaF molar ratio of 3:1. The XRD pattern showed that the containing titanium product obtained under optimal conditions was Na2TiO3. The average size of the rutile TiO2 obtained was about 1.0μm and the content was up to 99,23 %.

  5. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    Energy Technology Data Exchange (ETDEWEB)

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel' yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  6. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  7. A Sulfide Capacity Prediction Model of CaO-SiO2-MgO-FeO-MnO-Al2O3 Slags during the LF Refining Process Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-Min; Zhang, Meng; Shi, Cheng-Bin; Chai, Guo-Ming; Zhang, Jian

    2012-04-01

    A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2-) and (Mn2+ + O2-) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2-) and (Mg2+ + O2-) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]-[O] equilibrium, and the oxygen activity of molten steel at the slag-metal interface is controlled by the (FeO)-[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag-metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The

  8. Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process.

    Science.gov (United States)

    Tian, Sicong; Jiang, Jianguo; Hosseini, Davood; Kierzkowska, Agnieszka M; Imtiaz, Qasim; Broda, Marcin; Müller, Christoph R

    2015-11-01

    We propose a new class of autothermal CO2 -capture process that relies on the integration of chemical looping combustion (CLC) into calcium looping (CaL). In the new process, the heat released during the oxidation of a reduced metallic oxide is utilized to drive the endothermic calcination of CaCO3 (the regeneration step in CaL). Such a process is potentially very attractive (both economically and technically) as it can be applied to a variety of oxygen carriers and CaO is not in direct contact with coal (and the impurities associated with it) in the calciner (regeneration step). To demonstrate the practical feasibility of the process, we developed a low-cost, steel-slag-based, Fe-functionalized CO2 sorbent. Using this material, we confirm experimentally the feasibility to heat-integrate CaCO3 calcination with a Fe(II)/Fe(III) redox cycle (with regards to the heat of reaction and kinetics). The autothermal calcination of CaCO3 could be achieved for a material that contained a Ca/Fe ratio of 5:4. The uniform distribution of Ca and Fe in a solid matrix provides excellent heat transfer characteristics. The cyclic CO2 uptake and redox stability of the material is good, but there is room for further improvement.

  9. Mineral Processing Experiment on Copper Smelting Slag%某铜冶炼渣铜选矿试验研究

    Institute of Scientific and Technical Information of China (English)

    陈杜娟; 李福兰

    2016-01-01

    针对甘肃某公司所属的铜冶炼渣成分复杂、嵌布粒度不均匀的性质特点采用优先快速浮选出一部分易浮铜矿物得到合格的铜精矿1,优先浮选尾矿经一次粗选、三次精选、一次扫选获得合格的铜精矿2,一次精选中矿及扫选中矿返回球磨机再磨的工艺流程,铜粗选二采用针对该铜冶炼渣性质研制的新型捕收起泡剂酯-11,闭路试验获得了铜品位为29.69%,铜回收率为85.62%的总铜精矿,试验指标良好,为现场工艺改进提供了技术依据。%In view of the characteristic of composition complex, uneven disseminated extent of copper smelting slag in a Gansu enterprise, the following flowsheet was adopted:a part of copper content of easy floatation was floated with rapid se⁃lective⁃flotation to acquire copper concentrate 1, then the qualified copper concentrate. 2 was acquired by once roughing, triple refined concentration and once scavenging from the preferential flotation tailings, the middings of once concentrating and scavenging was returned to ball mill. The new collecting foaming agent ester⁃11 which was developed aiming at the char⁃acteristic of this slag was adopted in the second copper roughing. Closed⁃circuit test obtained the total copper content with copper grade 29.69%, copper recovery 85.62%, the indexes was well, which provides technical basis for process improve⁃ment.

  10. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    Science.gov (United States)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  11. Cobalt Recovery by Hydrometallurgy Process from Copper Converter Slag%铜转炉渣湿法回收钴

    Institute of Scientific and Technical Information of China (English)

    刘红斌; 蒋伟; 蒋训雄; 汪胜东; 范艳青

    2012-01-01

    通过对铜转炉渣的多元素、物相分析,提出湿法处理工艺.考察物料粒度、初始酸浓度、温度、液固比、浸出时间、搅拌速度、通气速度等因素对铜、钴浸出率的影响.结果表明,采用先筛选粗粒度铜精矿后再硫酸浸出,有利于提高铜回收率,铜的累计回收率达到95%左右,钴与铁的累计回收率达到98%以上.%Cobalt and copper were recovered by hydrometallurgy process from copper converter slag after multielement and phase analysis. The effects of particle size, initial sulfuric acid concentration, temperature, ratio of liquid to solid, time, stirring speed, ventilation speed and other factors on leaching rate of copper and cobalt were examined. The results show that with sulfuric acid leaching after screening of coarse copper concentrate, total copper recovery rate is over 95%, total recovery rate of cobalt and iron is over 98%.

  12. Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lukáš Kalina

    2016-05-01

    Full Text Available In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.

  13. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-03-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  14. Research and development of blasting abrasive made of steelmaking slag

    Institute of Scientific and Technical Information of China (English)

    TANG Oujing

    2015-01-01

    This study focuses on the development of a new type of nonmetallic steelmaking slag abrasive.The performance,processing,and application of steelmaking slag as a nonmetallic abrasive are introduced.The chemical composition,hardness,crushing value,and particle gradation of steelmaking slag are analyzed.A processing method for steelmaking slag as a blasting abrasive is suggested and evaluated.Compared with conventional abrasives such as copper ore sand and cast iron shot,processed steelmaking slag exhibits similar performance and can satisfy abrasive technical requirements.The derusting effect provided by steelmaking slag for a ship deck can reach the Sa2.0 level,and its recyclability is higher than that of copper ore sand.The derusting performance of steelmaking slag is similar to that of copper ore,and it can thus be used in repairing ship decks.

  15. Picture analysing method of slag foaming behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Juhart, M.; Peter, M.; Koch, K. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Metallurgy; Lamut, J. [Faculty of Natural Science and Technology, Univ. Ljubljana, Ljubljana (Slovenia)

    2001-03-01

    Hot tests of foaming behaviour of steelmaking slags were conducted on a laboratory scale up to 1760 C using a Tammann furnace. The foaming behaviour of the slags was quantified on the basis of a new measuring method. The volume increase and the progress of the foaming process can be continuously observed and calculated by means of picture analysis. The gas content of foaming slags was compared with the results of the measurements performed in steel plants. The influence of the magnesia content on the foaming behaviour is investigated. The chemical composition of the slag is beside the CO evolution the decisive factor influencing slag foaming behaviour. The highest volume increase values observed lie in the region of 2500% in relation to the initial volume. (orig.)

  16. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    1997-06-01

    Full Text Available The influence of activator solution concentration on hydration kinetics of an alkaline activated blast furnace slag has been studied. The alkaline activator used was a mix of waterglass (Na2SiO3∙nH2O and NaOH solution (of variable concentration. Final activator concentrations were 3,4 and 5 % Na2O wt. with respect to the slag total weight. Degree of reaction (α was determined from hydration heat values obtained through isothermal conduction calorimetry. From the results obtained it is deduced that a treshold value of 4 % Na2O wt. exists. For those concentrations and at test temperatures (except for 25ºC and 3 % Na2O wt., the mechanism controlling hydration reaction for a values higher than 0.5, is a diffusion process. This process is described by .Jander equation [D3=(1-(1-α1/32=(k/r2t=0,0426(t/t0,5]. The activation energy obtained for that process is of approximately 50-58 Kj/mol.

    Se ha estudiado la influencia de la concentración de la disolución activante en la cinética de hidratación de una escoria granulada de alto horno, activada alcalinamente a distintas temperaturas. El activador alcalino utilizado fue una mezcla de water glass (Na2SiO3∙nH2O con una disolución de NaOH (de concentración variable. Las concentraciones finales del activador alcalino fueron: 3, 4 y 5 % en peso de Na2O respecto a la masa total de escoria. El grado de reacción (α se determinó a partir de valores de calor de hidratación obtenidos por calorimetría de conducción isotérmica. De los resultados obtenidos se deduce que existe un valor umbral de concentraciones en torno al 4 % en peso de Na2O. También para dichas concentraciones y a las temperaturas de ensayo (excepto a 25ºC con un 3 % en peso de Na2O, el mecanismo que controla la reacción de hidrataci

  17. Separation of Iron Droplets From Titania Bearing Slag

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-yu; LOU Tai-ping; ZHANG Li; SUI Zhi-tong

    2008-01-01

    Owing to smelting vanadium-titanium magnetite ore, the amount of iron entrainment in slag as droplets is far higher than that in conventional BF slag. However, the iron droplets can be easily settled by blowing air into the molten slag. The results show that more than 80% of iron droplets in titania bearing slag can be settled and separated after treatment. The temperature rise of molten slag during the oxidizing process and the decreased viscosity caused by the component change of slag as well as air stirring in slag both accelerate the iron droplets settling. The vanadium content in the settled iron droplets and the original iron droplets was obtained by chemical analysis. The possible reason for the increased vanadium in the settled iron droplets was discussed by thermodynamic principles.

  18. Research on the process mineralogy of certain slag from gold extraction%某提金尾渣工艺矿物学研究

    Institute of Scientific and Technical Information of China (English)

    黄海辉; 王玲; 王云; 李云; 孙留根; 常耀超

    2016-01-01

    After one gold concentrate is treated by a roasting pretreatment-acid leaching-cyanidation process, the tailings slag obtained has a high gold grade of near 10 g/t.Therefore,research on the process mineralogy is con-ducted of the slag from gold extraction to find out why the gold concentrates have a low gold recovery rate.Through the investigation on the chemical composition of the tailings slag,the relative mineral content,the disseminated characteris-tics of major minerals,the size distribution of gold particles,and the occurrence state of gold etc.,the paper finally pointed out that the main influencing factors of gold recovery,providing basic information for improving gold recovery rate.%某金精矿经焙烧预处理—酸浸—氰化浸金后,其提金尾渣金品位较高,在10 g/t左右。为查明该金精矿金回收率低的原因,对其提金尾渣进行了工艺矿物学研究。通过对提金尾渣的化学组成、相对矿物含量、主要矿物嵌布特征、金的粒级分布及赋存状态等的考察分析,指出了影响金回收率的主要因素,为金回收率的提高提供基础资料。

  19. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  20. Developing Process of Debris Flow on Slope of Engineening Slag%工程弃渣型坡面泥石流形成过程试验

    Institute of Scientific and Technical Information of China (English)

    刘菲; 唐红梅

    2011-01-01

    In view of test model, test materials, test equipment and testing content, one test plan of debris flow on slope of engineering slag was established. Meanwhile, the test schedule was clarified as that the rainfall duration is 16 ~ 18 hours, of which 0-13 hours was the previous rainfall stage and rainfall intensity was 6. 8 mm/10min completed in 4 times. And each rainfall and pause durations were 1 hour and 2 hours separately. It was the stage of the heavy rainfall of short duration after 13 hours during which rainfall intensity was 16. 7 mm/10min. The physical and mechanical properties of the formation processes of debris flow on slope of engineering slag were demonstrated through the analysis of the change of moisture content, pore water pressure and surface displacement elevation with rainfall duration of engineering slag on slope.%从试验模型、试验材料、试验装置及测试内容等方面制定了工程弃渣型坡面泥石流试验方案,拟定了模型试验过程,降雨历时16-18 h,其中0~13h属于前期降雨阶段,降雨强度控制在6.8 mm/( 10 min),分4次完成,每次降1h,停2h;13h以后属于短历时强降雨阶段,降雨强度控制在16.7 mm/(10 min);分析了坡面渣体含水量、孔隙水压力和地表位移高程随降雨历时的变化,揭示了工程弃渣型坡面泥石流形成过程的物理力学特性.

  1. 电石渣在电镀废水处理中的应用%Carbide Slag in Electroplating Waste Water Processing Application

    Institute of Scientific and Technical Information of China (English)

    潘燕锋

    2012-01-01

    文章介绍了一种以废治废的新工艺,该工艺利用电石渣代替烧碱作为中和沉淀剂处理电镀废水,不仅可以节约处理成本,而且使电石渣得到了综合利用,减轻环境污染,达到"以废治废"的目的,环境效益及经济效益显著。%The paper introduced a new technology of treating waste by waste,the process utilized the electric stone slag instead of caustic soda as precipitation agent in electroplating wastewater treatment,not only can save the cost of processing,and the comprehensive utilization of carbide slag by,reduce environmental pollution,to achieve the purpose of treating waste by waste,environmental benefits and economic benefits significantly.

  2. Electroreduction Kinetics for Molten Oxide Slags

    Institute of Scientific and Technical Information of China (English)

    GAO Yun-ming; CHOU Kuo-chih; GUO Xing-min; WANG Wei

    2007-01-01

    The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [O]Fe-C saturated|ZrO2(MgO)|Cu(l)+(FeO)(slag), and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreduction. It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.

  3. Understanding Slag Freeze Linings

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-09-01

    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

  4. Sulfide capacities of fayalite-base slags

    Science.gov (United States)

    Simeonov, S. R.; Sridhar, R.; Toguri, J. M.

    1995-04-01

    The sulfide capacities of fayalite-base slags were measured by a gas-slag equilibration technique under controlled oxygen and sulfur potentials similar to those encountered in the pyrometallurgical processing of nonferrous metals. The oxygen pressure range was from 10-9.5 to 10-11 MPa and the sulfur pressure range from 10-3 to 10-4.5 MPa, over a temperature range of 1473 to 1623 K. The slags studied were FeO-SiO2 at silica saturation and those with addition of CaO, MgO, and Al2O3 to determine their effect on sulfide capacities. For these slags, the sulfide capacities were found to vary from 10-3.3 to 10-5. The sulfide capacities increased with increasing temperature from 1473 to 1623 K. A comparison of the reported plant data on sulfur content of industrial slags shows good agreement with the present experimental results. The present data will be useful in estimating metal losses in slag due to metal sulfide entrainment in nonferrous smelters.

  5. The Explosion Mechanism Analysis and Control Measures in Hot Closed Pot Slag Techndogy Process%热闷渣工艺过程中的爆炸机理分析与控制措施

    Institute of Scientific and Technical Information of China (English)

    梁军

    2013-01-01

    热闷渣处理工艺中间,响爆现象频繁,就响爆的机理和控制措施做一简述.%During hot closed pot slag treatment technology process,the ringing explosion phenomenon is very frequent,thus the tinging explosion mechanism and control measures are discribed in brief.

  6. Process Study on Separation of Nickel and Cobalt in Converter Slag Lixivium%转炉渣富钴镍浸出液镍钴分离工艺研究

    Institute of Scientific and Technical Information of China (English)

    王玉华; 朱纪念; 刘同银

    2013-01-01

    以某厂镍电解生产净化工序氯气除钴产生的钴渣为氧化剂,除去转炉渣浸出液电积脱铜后液中的钴,实现转炉渣富钴镍浸出液中镍钴分离.结果表明,在钴渣含三价镍与钴量摩尔比为4~5,反应温度70~80℃,反应时间120min,终点pH 4.8~5的条件下,分离富集钴后的二次钴渣镍钴比可降为1~1.5,可用于生产钴产品.除钴后液可直接并人镍电解系统.%In order to separate cobalt from cobalt-rich nickel leaching solution of converter slag, cobalt slag produced from nickel electrolysis purification process of cobalt removing with chlorine was applied as oxidizing agent to remove the cobalt from copper removal solution of converter slag lixivium.The results show that mole ratio of nickel and cobalt in secondary cobalt slag is decreased to 1~1.5 under the following conditions including original mole ratio of nickel and cobalt in cobalt slag of 4~5, reaction temperature of 70~ 80 ℃ , reaction time of 120 min, and pH value of endpoint of 4.8~5.The secondary cobalt slag is used as the raw materials of cobalt product, and cobalt removal solution is returned to nickel electrolysis system.

  7. Chemical, Mineralogical, and Morphological Properties of Steel Slag

    Directory of Open Access Journals (Sweden)

    Irem Zeynep Yildirim

    2011-01-01

    Full Text Available Steel slag is a byproduct of the steelmaking and steel refining processes. This paper provides an overview of the different types of steel slag that are generated from basic-oxygen-furnace (BOF steelmaking, electric-arc-furnace (EAF steelmaking, and ladle-furnace steel refining processes. The mineralogical and morphological properties of BOF and electric-arc-furnace-ladle [EAF(L] slag samples generated from two steel plants in Indiana were determined through X-Ray Diffraction (XRD analyses and Scanning Electron Microscopy (SEM studies. The XRD patterns of both BOF and EAF(L slag samples were very complex, with several overlapping peaks resulting from the many minerals present in these samples. The XRD analyses indicated the presence of free MgO and CaO in both the BOF and EAF(L slag samples. SEM micrographs showed that the majority of the sand-size steel slag particles had subangular to angular shapes. Very rough surface textures with distinct crystal structures were observed on the sand-size particles of BOF and EAF(L slag samples under SEM. The characteristics of the steel slag samples considered in this study are discussed in the context of a detailed review of steel slag properties.

  8. APT铜钼渣回收工艺过程及环境影响分析%Environmental Impacts of APT Copper Molybdenum Slag Recycling Process

    Institute of Scientific and Technical Information of China (English)

    孙铭; 王嘉; 江英英; 杨林锋

    2012-01-01

    In addition to the introduction of molybdenum section of copper and molybdenum slag recycling business, raw materials, production processes, through a use of APT (ammonium paratungstate) quantitative analysis of waste gas, waste water, solid waste generation, proposed measures to mitigate the environmental impact. Copper and molybdenum slag recycling process of major air pollutants of S02 through the turbulent tower lye purification, can exhaust pollutants discharge standards; the production process of metal ions from wastewater by ion exchange column for recycling can be achieved wastewater discharge standards; all equipment noise to take the appropriate damping, noise reduction measures, the noise at boundary of the discharge standards; solid waste comprehensive utilization.%通过某利用APT(仲钨酸铵)除钼工段铜钼渣回收再利用企业的原料、生产工艺的介绍,定量地分析了废气、废水、固体废物的产生量,提出了减缓环境影响的措旅。铜钼渣回收利用过程产生的主要大气污染物是SO2,通过湍球塔碱液净化.可使废气污染物达标排放;生产过程产生的含金属离子废水通过离子交换柱进行回收利用,可做到废水达标排放;备设备噪声采取相应减震、减噪措施,厂界噪声可达标排放:固体废物可综合利用。

  9. The hydraulic potential of high iron bearing steel slags

    Science.gov (United States)

    Ionescu, Denisa Virginia

    The incorporation of additives to the clinker or to the raw materials stream is a common practice in cement manufacture. However, steel slag, unlike its ironmaking parent the blast furnace slag, it is not a conventional admixture for cement. Currently most steel slags are slow cooled rendering stable crystalline compounds with minor hydraulic value. Nevertheless, if steel slags would be quenched and granulated, the resulting glassy product might display increased hydration and strength development potential. The use of steel slag in cement could contribute to important savings for both cement and steelmaking industries and provide a solution for the environmental problems linked to CO2 emissions and costs of transport and disposal. The purpose of this research is to explore the thermodynamics and kinetics of steel slag hydration in an effort to produce a cement additive, or a more promising material of near Portland cement composition. An important criteria used in the assessment of slags as potential cements is the presence of a glassy phase. At present, it is not very clear why glass enhances the hydration process. However, it is known that the free energy of formation for glasses is less than for crystals so that glasses are easier to hydrate compared to crystalline materials. In the particular case of steel slag, the glassy phase would have to contain high amounts of iron. Steel slags are known to display iron levels approximately 10 times higher than Portland cement and commonly used blast furnace slags. However, the effect of high Fe2O3 levels on the setting and strengthening of cement paste is not clearly understood due to the fact that most cement additives do not present this characteristic. The present work looks at the progress made in recycling steel slag as cement additive, the complexity of the hydration process in slags, the possibilities of improving the hydration potential of slags at laboratory and industrial level, and the problems that still

  10. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Science.gov (United States)

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  11. Recycling and valorisation of stainless steel slags

    Energy Technology Data Exchange (ETDEWEB)

    Van Dessel, J. [Belgian Building Research Institute, Brussels (Belgium)

    2001-07-01

    The project described in this paper involves the collaboration of eleven partners. The project aims to create a value-added product by recovering usable non-ferrous metals from the production of stainless steel and use the recycled slag as a secondary material for road construction and concrete applications. The objective of the project is to return the metal contained in the slag to stainless steel production, and to treat the non-metallic slag, perhaps by a metallurgical process based upon direct plasma technology, prior to use in a variety of processes. The project also aims to investigate the environmental characteristics of the slag, which is essential for it to be used as secondary material. The major challenge appears to be the development of an improved process for separating the slag from the metallic particles in order to avoid the frequent breakdowns and significant repairs associated with use of the material. It is expected that using magnetic and density-based separation processes will reduce the cost of maintenance by about 20 per cent. Results achieved to date, and economic factors impacting on feasibility, are also discussed. 2 tabs., 3 figs.

  12. Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization

    Science.gov (United States)

    Liu, Chunwei; Huang, Shuigen; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2017-03-01

    Basic oxygen furnace (BOF) steel slag is a main byproduct in steelmaking, and its valorization is therefore of considerable interest, from a metal-recovery perspective and from a residue-utilization perspective. In the present study, the carbothermic reduction of BOF slag was investigated systematically. The reductions of Fe- and P-containing phases (i.e., oxide and compounds) are discussed. Effects of Al2O3 and SiO2 additions on the solidification microstructure and mineralogy associated with the reduction processes were also investigated. The formation and growth of the extracted metallic phase are discussed, and the mineralogy of the residue slag is determined. We conclude that by controlling the additions under a rapid cooling condition, it is possible to extract metallic iron as high-grade metal and simultaneously to utilize the remaining slag for construction applications.

  13. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  14. Use of slag for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, K.R.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1998-09-01

    Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the present study investigates dye removal characteristics of slag from colored waters. Aqueous solutions prepared from commercial grade acid, basic, and disperse dyes were used in this study, and batch pH, kinetic, and isotherm studies were undertaken on a laboratory scale. The data were evaluated for applicability to the Langmuir, Freundlich, and BET isotherm models, and the removal capacity of slag was compared with that of granular activated carbon. Results indicated approximately 94% removal of the disperse dye by slag, compared with a removal of approximately 49% achieved by activated carbon. Removal of acid dyes (dyes containing anionic groups) was reasonably good (approximately 47 and 74%), though not as good as obtained using activated carbon (approximately 100%). Column studies were conducted with a disperse dye (nonionic, slightly soluble in water), and analysis of data showed a sorption capacity of 1.3 mg of disperse dye per gram of slag. However, effluent dye concentrations were found to be higher than the permissible levels for discharge to receiving waters.

  15. Microstructure characterisation of freeze linings formed in a copper slag cleaning slag

    Directory of Open Access Journals (Sweden)

    Jansson J.

    2015-01-01

    Full Text Available The initial growth rate of freeze linings on water-cooled elements submerged in molten iron silicate slag is fast. The freeze lining microstructure forming on water cooled steel surface in a high-silica, slag cleaning furnace slag of a direct-to-blister copper smelter is mostly glassy or amorphous. It contains 5-30 μm magnetite crystals, very small and larger copper droplets as well as small magnetite and silicate nuclei embedded in the glassy silica-rich matrix. Chemically the formed freeze linings are more silica-rich than the slag from which they were generated. Magnetite (spinel is the primary phase of the solidifying SCF slag but it does not form a continuous network through the freeze lining. Its strength is given by the intergranular silica-rich phase which initially is glassy or microcrystalline. Due to only partial slag reduction in the SCF process, large magnetite crystals are present in the freeze lining and seem to interact physically with copper droplets.

  16. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  17. 熔融钒渣直接氧化钠化提钒新工艺研究%A New Process for Vanadium Extraction from Molten Vanadium Slag by Direct Oxidation and Sodium Activating Method

    Institute of Scientific and Technical Information of China (English)

    宋文臣; 李宏

    2012-01-01

    To address the problem of heat waste of vanadium slag in the existing vanadium extraction process, a new process is proposed in this paper to extract vanadium from molten vanadium slag by direct oxidation and sodium activating method. On the basis of current vanadium extraction process, the new process was verified by thermodynamic and kinetic calculation and analysis, and then simulation tests were carried out in the laboratory. The results show that with enough heat, vanadium slag can be kept in molten state during the vanadium extraction process. The dynamic conditions of the new process are noticeably better than the existing process. The oxidization rate of vanadium slag is about 90% and vanadium leaching rate can reach 82% or above with enough oxygen and Na2CO3 content at 20% ~ 30% of vanadium slag' weight. Thus, the feasibility of the new process is confirmed by the results.%针对现行钒渣焙烧工艺中存在的钒渣高温物理热的浪费问题,提出“熔融钒渣直接氧化钠化提钒”新工艺.在现行工艺基础上,对新工艺进行了热力学和动力学的计算与分析,最后进行了新工艺的实验室模拟试验.研究结果表明:新工艺条件下,钒渣在反应过程中热量充足会保持良好的熔融状态;新工艺的动力学条件明显优越于现行工艺;实验室试验结果验证了新工艺的可行性,在供氧充足,Na2CO3用量为20%~30%的条件下,钒渣氧化率约为90%,钒浸出率在82%以上.

  18. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    Science.gov (United States)

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  19. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    Science.gov (United States)

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  20. 湿法排渣磷石膏的取用技术%Taking out technology of phosphogypsum by wet-process slag discharge

    Institute of Scientific and Technical Information of China (English)

    王顺平

    2012-01-01

    The existing problems in taking out of phosphogypsum by wet-process slag discharge in existing phosphoric acid plant are analyzed. A low cost technology is put forward that phosphogypsum slurry is concentrated by swirler and separated by high-frequency vibrating screen, phosphogypsum withw(H2O) of 25% is obtained to produce building materials products for downstream enterprises. The technology has the advantages of low investment, less land occupation, convenient implementation, saving transportation cost of 10 RMB Yuan per ton dry phosphogypsum.%分析现有磷酸装置湿法排渣工艺取用磷石膏综合利用存在的问题,提出了一种低成本磷石膏取用技术。将磷石膏渣浆旋流提浓后再经高频振动筛分,得到w(H2O)约25%的磷石膏,供下游企业综合利用生产石膏建材制品。该技术投资省,占地少,实施方便,每吨干基磷石膏可以节约运输成本10元。

  1. Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2014-05-01

    Full Text Available The present paper investigated the process of the slag wool fabrication using high temperature blast furnace (BF slag modified by coal ash (CA. The liquidus temperature and viscosity of the slag system with different mass ratios of BF slag and CA were measured through an inner cylinder rotation method. The approximate mass ratio used to fabricate the slag wool was therefore determined and slag wool was then successfully prepared with a high-speed air injection method in the laboratory. The effect of mBF/m ratio, slag temperature for injection and air pressure on the preparation of slag wool was systematically investigated. The mechanical and thermal properties were also studied to confirm the long-term working conditions of the slag wool. An industry-scale slag wool production application was established. The energy consumption and the pollutant generation, were analyzed and compared with the traditional production method, which indicated a 70% reduction in energy consumption and a 90% pollution emission decrease.

  2. Critical Assessment of P2O5 Activity Coefficients in CaO-based Slags during Dephosphorization Process of Iron-based Melts

    Science.gov (United States)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-Ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in the CaO-based slags has been determined using the calculated comprehensive mass action concentration N_{{{{Fe}}t {{O}}}}{} of iron oxides by the ion and molecule coexistence theory (IMCT) for representing the reaction ability of Fe t O, i.e., activity of a_{{{{Fe}}t {{O}}}}{} . The collected ten models from the literature for predicting activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags have been evaluated based on the determined activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 by the IMCT as the criterion. The collected ten models of activity coefficient γ_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags can be described in the form of a linear function as log γ_{{{{P}}_{ 2} {{O}}_{ 5} }} ≡ y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results. Thus, a general approach for obtaining good prediction results of activity a_{{{{P}}_{ 2} {{O}}_{ 5} }} of P2O5 in CaO-based slags is proposed by revising the constant term in intercept c0 for the collected ten models. The better models with an ideal revising possibility or flexibility in the collected ten models have been selected and recommended.

  3. Study of decomposing carbonyl slag

    Institute of Scientific and Technical Information of China (English)

    CHEN Ai-liang; SUN Pei-mei; ZHAO Zhong-wei; LI Hong-gui; CHEN Xing-yu

    2006-01-01

    A new technology was put forward to deal with the carbonyl slag at low acidity and low oxygen pressure in the kettle.With the orthogonal experiments for analyzing the sequence of four factors and some single factor experiments for the best conditions. The best conditions are used for extracting nickel, cobalt and copper and enriching precious metals: the cupric ion concentration is 5 g/L; and pH=6; the sulfur coefficient is 1.4; the oxygen pressure is 0.08 MPa; the time bubbling oxygen is 20 min;the ratio of liquid to solid is 8:1; the leaching time is 2 h; the heating time is 2.5 h. The leaching rates of nickel and cobalt are more than 98% and that of copper is above 97%. Nickel and cobalt can be separated efficiently from copper and precious metals from the carbonyl slag. Moreover, its leaching liquor has less copper. Nickel and cobalt can be reclaimed only once. During the whole process,the leaching rates of Au and Ag are more than 99.9%, while other precious metals are still in the residue without any loss.

  4. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  5. Slag Composition Control in Soft-Killed Process for Ultra-Low Carbon Steel%超低碳钢弱脱氧工艺下炉渣组分的控制

    Institute of Scientific and Technical Information of China (English)

    张国兴; 王谦; 何生平; 曾建华

    2011-01-01

    Based on the soft-killed process for ultra-low carbon steel, the relationship between oxidizability of top slag and oxygen activity in steel was calculated using software Factsage, and then the effect of components of top slag on sulphur distribution ratio was also calculated. The results indicated that for ultra-low carbon steel making,ω(FeO+ MnO) in top slag should be controlled below 15 % at least, and ω(CaO)/ω(Al2O3 ) should be controlled 2.5-4.0. Industrial test showed that after the ω(FeO+ MnO) is controlled below 15% through the slag property changing treatment, the resulfurization can be avoidable, the sulfur content of products is controlled lower than 0.005 %, and the requirements for the steel can be met.%针对采用弱脱氧工艺冶炼超低碳钢,利用Factsage软件计算了顶渣氧化性与钢水氧活度之间的关系,进而计算了炉渣各组元对硫分配比的影响.结果表明,对于超低碳钢的生产,顶渣中w(FeO+MnO)至少应控制在15%以下,w(CaO)/w(A12O3)控制在2.5~4.0.工业试验表明,通过顶渣改性将w(FeO+MnO)控制在15%以下可避免回硫现象的发生,成品硫质量分数小于0.005%,达到了钢种要求.

  6. 高炉熔渣余热回收技术发展过程及趋势%Development Process and Trend of the Waste Heat Recovery Technique of the Molten Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    齐渊洪; 干磊; 王海风; 张春霞; 严定鎏

    2012-01-01

    The development process and characteristic of the blast furnace slag waste heat recovery technique were analyzed from the end of nineteen seventies.The low exergy efficiency is the main limiting factor of commercial operation.The development trend of the blast furnace slag waste heat recovery technique is to improve the recovery efficiency,to optimize the utilization of waste heat and to develop the high value-added slag products.%系统分析了从20世纪70年代末以来高炉熔渣余热回收技术的发展历程及各个时期的特点,通过分析可知,目前高炉熔渣余热回收的效率很低,限制了其商业化运行。提高余热回收效率,优化余热利用方式,开发高附加值的炉渣副产品已成为熔渣余热回收技术发展的趋势。

  7. 液态高铅渣直接还原工艺数值模拟研究%Numerical Simulation of Liquid High-Lead Slag Direct Reduction Process

    Institute of Scientific and Technical Information of China (English)

    易操; 朱荣; 李智铮; 乔保东

    2011-01-01

    Based on the relevant parameters of liquid high-lead slag direct reduction cold test, a numerical simulation was conducted on the cold test by using CFX software.The study showed that penetration velocity increased gradually with the increasing of coke size but decreased with the increase of the melting viscosity.The trend of the penetration speed by CFX numerical simulation was the same as cold test, which verified the creditability about the numerical simulation of liquid lead slag test in direct reduction.It served as a reference for the parameter optimization in liquid lead slag direct reduction process.%基于液态高铅渣直接还原冷态试验相关参数,利用CFX数值模拟软件对冷态试验进行数值模拟.研究发现:随着焦炭粒度的增加,熔体穿透速度逐渐增加;随着熔体黏度的增加,穿透速度逐渐减小.CFX数值模拟的熔体穿透速度与实测速度变化趋势基本一致,验证了数值模拟应用于液态铅渣直接还原试验的可信性.为液态铅渣直接还原工艺参数优化提供参考.

  8. Behavior of slag foaming caused by blowing gas in molten slags

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.

    2000-10-01

    The relationship between the height of foaming slag and blowing gas flow rate has been investigated at different temperature and with additives such as coal, coke, graphite and CaO, in order to understand the foaming phenomenon in most metallurgical processes comprehensively. On the basis of experimental results, the regressed foam behavior equations ({delta}=b(center dot)V{sup m}) were obtained. Those correlation coefficients were in range from 0.995 to 0.999. It means that the foam behavior equation can be used to describe foaming ability of the slag foaming caused by blowing gas quantitatively. The foaming index {sigma} is only a limited case for of the foam behavior equation and can be used only at high temperature and without additives for the foaming phenomenon caused by blowing gas. It was found also that the large carbonaceous particles could decrease the height of foaming slag, however the fine carbonaceous and CaO powder could increase it. The basicity of the slag affects the height of foaming slag. (author)

  9. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  10. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  11. 某含金汞冶炼渣浮选试验%Flotation Process of a Gold-bearing Mercury Smelting Slag

    Institute of Scientific and Technical Information of China (English)

    傅开彬; 涂昌能; 王维清; 冯启明; 黄阳

    2013-01-01

    某含金1.85 g/t的汞冶炼渣中金主要以游离微细金和硫化物包裹金的形式存在,对该二次资源进行了浮选回收金的试验研究.结果表明,在磨矿细度为-0.074 mm占80%的情况下,采用1粗2精2扫、中矿顺序返回流程处理该试样,可以获得金品位为28.65 g/t、回收率为68.45%的金精矿,导致金回收率不高的主要原因是金颗粒微细和被碳酸盐、褐铁矿、石英和硅酸盐等矿物包裹.%Gold exists in the form of free fine gold and gold-wrapped sulfide in mercury smelting slag with gold bearing of 1. 85 g/t. Research on recovering gold by flotation from the secondary resources was carried out. The research results showed that under grinding fineness of — 0. 074 mm 80% , gold concentrate with gold grade of 28. 65 g/t, and recovery of 68. 45% was obtained by the flow sheet of one-roughing, two-cleaning, three-scavenging and middles back to the process in order. The main reasons resulting in low gold recovery are that gold occurs in ultra-fine particles or was wrapped by carbonates, limonite, quartz and silicate.

  12. Reduction and foaming of FeO containing slag

    Energy Technology Data Exchange (ETDEWEB)

    Galgali, R.K.; Datta, P.; Ray, A.K.; Prasad, K.K.; Ray, H.S. [Regional Research Lab., Orissa (India)

    2001-07-01

    Smelting reduction processes being developed for producing liquid iron using coal and oxygen are attractive because they allow the use of ore fines directly and do not depend on coke. This paper presents a brief review of some aspects of smelting reduction and some results of an experimental investigation carried out on the reduction of 5-20 wt-% FeO in a synthetically prepared slag by various reductants in a plasma reactor. Some results of a simulation of the smelting reduction process by carrying out post-combustion with oxygen lancing over the slag surface are also presented. It has been possible to achieve a steady state condition, namely, 1-2 wt-% FeO in the slag with a slag height of 4-5 cm during periodic addition of a charge consisting of iron ore, coal, and flux. A kinetic analysis of FeO reduction with various reductants is presented in detail.

  13. 还原熔炼法从谦比希铜冶炼厂转炉渣中回收钴%Recovery of cobalt from converter slag of Chambishi Copper Smelter using reduction smelting process

    Institute of Scientific and Technical Information of China (English)

    翟秀静; 李乃军; 张旭; 符岩; 姜澜

    2011-01-01

    The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied.The effects of reducing agent dosage,smelting temperature and time and the addition of slag modifiers(CaO and TiO2)were investigated.In addition,the depleted slag and cobalt-beating alloy were characterized by X-ray diffraction,scanning electron microscopy and energy dispersive spectroscopy.Under the determined conditions,94.02% Co,95.76% Cu and less than 18% Fe in the converter slag were recovered.It was found that the main phases of depleted slag were fayalite and hercynite; and the cobalt-bearing alloy mainly contained metallic copper,Fe-Co-Cu alloys and a small amount of sulfide.%研究从赞比亚谦比希铜冶炼厂转炉渣中回收钴的还原熔炼过程.实验考察还原剂用量、熔炼温度、保温时间及渣型改善剂CaO和TiO2的添加对还原熔炼金属回收率的影响.采用X射线衍射、扫描电子显微镜及能谱分析对所得贫化渣和含钴合金进行表征.结果表明,在优化条件下,转炉渣中钴、铜、铁的回收率分别为94.02%,95.76%和小于18%;贫化渣的主要物相组成为铁橄榄石和铁尖晶石,含钴合金中主要含有金属铜、含钴铜的铁合金和少量的硫化物.

  14. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification.

    Science.gov (United States)

    Wang, Yunyan; Yang, Zhihui; Chai, Liyuan; Zhao, Kun

    2009-09-30

    An electrochemical method was used to determine the diffusion coefficient of chromium(VI) in chromium-containing slag. A slag plate was prepared from the original slag or the detoxified slag by Achromobacter sp. CH-1. The results revealed that the apparent diffusion coefficient of Cr(VI) was 4.4 x 10(-9)m(2)s(-1) in original slag and 2.62 x 10(-8)m(2)s(-1) in detoxified slag. The results implied that detoxification of chromium-containing slag by Achromobacter sp. CH-1 could enhance Cr(VI) release. Meanwhile, the results of laboratory experiment showed that the residual total Cr(VI) in slag decreased from an initial value of 6.8 mg g(-1) to 0.338 mg g(-1) at the end of the detoxification process. The Cr(VI) released from slag was also reduced by Achromobacter sp. CH-1 strain since water soluble Cr(VI) in the leachate was not detected after 4 days. Therefore, Achromobacter sp. CH-1 has potential application for the bio-detoxification of chromium-containing slag.

  15. The behavior of sulfur in industrial pyrometallurgical slags

    Science.gov (United States)

    Nagamori, Meguru

    1994-08-01

    Dissolution of sulfur in industrial slags, even at such a low level as 1 mass% S or so, increases the solubility of certain valuable metals by an order of magnitude. The phenomenon is accounted for in terms of Flood-Førland-Grjotheim's model for dianionic salt solutions, whereas its rigorous analysis requires the digaseous Gibbs-Duhem integration. In the research described here, the distribution of sulfur among gas, slag, and metallic iron phases in the bath smelting of iron ore was computer-simulated based on a two-sites model coupled with sulfide capacity data. The solubilities of Ag, Cu, Co, and Ni in industrial slags are reviewed by applying the sulfidic-oxidic dissolution model to copper-matte smelting, nickel-slag cleaning (Falconbridge, Canada), and the imperial smelting process for zinc and lead (Hachinohe, Japan).

  16. Experimental Investigation and Modeling of Copper Smelting Slags

    Science.gov (United States)

    Starodub, Konstantin; Kuminova, Yaroslava; Dinsdale, Alan; Cheverikin, Vladimir; Filichkina, Vera; Saynazarov, Abdukahhar; Khvan, Alexandra; Kondratiev, Alex

    2016-10-01

    Effective extraction of copper from sulfide ores requires careful operation of a copper smelter, which in turn depends very much on chemistry of the feed and resulted slag and matte. For example, chemical composition of copper smelting slags has to be in a certain range to ensure that their properties are within specific limits. Disobeying these rules may lead to complications in smelting operation, poor quality of the copper products, and premature shutdown of the copper smelter. In the present paper the microstructure and phase composition of slags from the Almalyk copper flash smelter were investigated experimentally and then modeled thermodynamically to evaluate potential ways of improvement and optimization of the copper smelting process and its products. The slag samples were taken at different stages of the copper smelting process: on slag tapping, after slag transportation to a deposition site, and at the site. Experimental investigation included the XRD, XRF, and SEM techniques, which were also confirmed by the traditional wet chemistry analysis. Thermodynamic modeling was carried out using thermochemical software package MTDATA, which enables thermodynamic and physical properties of the matte, slag, and gas phases to be calculated in a wide range of temperatures, pressures, and chemical compositions. In addition, slag viscosities and corresponding matte settling rates were estimated using the modified Urbain and Utigard-Warczok models, and the Hadamard-Rybczynski equation, respectively. It was found that the copper content in the slags may vary significantly depending on the location of slag sampling. Cu was found to be present as sulfide particles, almost no Cu was found to be dissolved in the slag. Analysis of microstructure and phase composition showed that major phase found in the samples is fayalite, while other phases are complex spinels (based on magnetite), different sulfides, and a glass-like phase. Thermodynamic calculations demonstrated the

  17. Technological progress on detoxification and comprehensive utilization of chromium-containing slag

    Institute of Scientific and Technical Information of China (English)

    柴立元; 何德文; 于霞; 刘恢; 闵小波; 陈为亮

    2002-01-01

    Chromium salt is an important industrial material, but vast waste slag containing chrome(Ⅵ) is brought out in the process of its production. The slag is seriously harmful to environments and human health. The technologies on detoxification and comprehensive utilization of chromium-containing slag were summarized abroad and at home. And various methods were also described for the detoxification mechanism, technology process, and practical application effects in detail. A new concept for detoxification of chromium-containing slag, furthermore, was put forward by using microorganism.

  18. 铅渣中提取硫工艺条件的研究%Lead Slag Extracted Sulfide Process Conditions

    Institute of Scientific and Technical Information of China (English)

    蒋兴荣; 任兴丽; 朱复跃; 魏红军

    2012-01-01

    This paper studies the sodium sulfide leaching elemental sulfur, hunting lead residue extracted sulfur optimum process conditions. The results showed that: sodium sulfide leaching the optimum conditions for sulfur liquid to solid ratio 3 " 1, the concentration of Na2S, 140g / I, sodium sulfide dosage of the theoretical amount of 120%, the leaching time of 20 minutes.%研究硫化钠浸取单质硫,探求铅渣中提取硫最佳工艺条件。结果表明:硫化钠浸取单质硫最佳工艺条件是液固比为3:1,Na2S溶液浓度140g/1,硫化钠用量为理论量120%,浸出时间20分钟。

  19. 工艺条件对钢铁废渣玻璃陶瓷 显微结构的影响%Effects of Processing Conditions on the Microstructure s of Glass-ceramics Prepared from Iron and Steel Slag

    Institute of Scientific and Technical Information of China (English)

    肖汉宁; 邓春明; 彭文琴

    2001-01-01

    By means of materials design in compositi on and microstructure,a glass-ceramics was prepared with iron and steel slag up to 55~60 mass %.The material showed a bending strength more than 300 MPa,a V ickers hardness up to 12 GPa and a wear resistance as 26 times as that of GCr15 steel.The effects of processing conditions on the microstructures and properties of the slag glass-ceramics were investigated.The crystal phase in the glass-c eramics can reach 90 % and is in the form of augite and diopside with pillar-li ke particles in a size of 0.1~0.3 μm when the process conditions are suitable. The slag glass-ceramics is good in properties and low in cost,so it is a promis ing material for wear resistance applications.%通过对材料组成和结构的设计,获得了高炉渣和钢渣 用量为55 %~60 %,抗弯强度大于300MPa,显微硬度达12GPa,耐磨性比GCr15钢高26倍的玻璃陶瓷。探讨了微晶化工艺条件对钢铁废渣玻璃陶瓷的显微结构和性能的影响,在一定工艺条件下所制备的玻璃陶瓷的晶相含量可达90%以上,晶粒大小仅0.1~0.3μ m,多为等轴柱状晶,以辉石类为主晶相

  20. Chloride ion transport performance in slag mortar under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    WANG CaiHui; SUN Wei; JIANG JinYang; HAN JianDe; YE BangTu

    2012-01-01

    The transport performance of chloride ion in slag cement mortar was investigated experimentally.In the self-designed experiment,fatigue loading was coupled simultaneously with ion transportation process,the diffusion law of chloride ion was obtained by titration and the AE (acoustic emission) technique was employed to detect the real-time damage distribution in the mortar specimen.The results for fatigue stress levels of 0.3,0.4 and 0.5 and slag contents of 0,10%,30% and 50% showed that fatigue loading accelerated the diffusion of chloride ion in mortar and the acceleration effect increased with the increase in stress levels.Slag addition was found to improve anti-chloride ion erosion performance effectively with the best substitution level at 30%,because the inhibition effect of slag on chloride ion diffusion diminished when the slag content exceeded 30%.The comparative experiments indicated that dynamic load has a significant effect on the transport performance of chloride ion in slag cement mortar.

  1. TRW Advanced Slagging Coal Combustor Utility Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  2. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  3. Structure and properties of the slags of continuous converting of copper nickel-containing mattes and concentrates: II. Effect of the SiO2/CaO ratio on the structure and liquidus temperature of the slags

    Science.gov (United States)

    Pigarev, S. P.; Tsymbulov, L. B.; Selivanov, E. N.; Chumarev, V. M.

    2012-03-01

    The structure and liquidus temperature of the SiO2-CaO-Al2O3-FeO x -Cu2O-NiO slags that form during continuous converting of copper mattes and concentrates into blister copper are analyzed. The slag melt compositions are varied over a wide SiO2/CaO range. The slags are studied by X-ray diffraction, scanning electron microscopy, and electron-probe microanalysis. The liquidus temperature of the slags is determined by differential thermal analysis. It is found that, depending on the SiO2/CaO ratio, the structure and liquidus temperature of the slags change and the forms of copper in a slag also change. The SiO2/CaO range in a slag is recommended for the process of continuous converting of a copper nickel-containing sulfide raw materials.

  4. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  5. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2013-02-01

    Full Text Available The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  6. A Thermodynamic Model for Predicting Phosphorus Partition between CaO-based Slags and Hot Metal during Hot Metal Dephosphorization Pretreatment Process Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on

  7. Use of steel slag as a granular material: volume expansion prediction and usability criteria.

    Science.gov (United States)

    Wang, George; Wang, Yuhong; Gao, Zhili

    2010-12-15

    The theoretical equation for predicting volume expansion of steel slag is deduced based on both chemical reaction and physical changes of free lime in steel slag during the hydration process. Laboratory volume expansion testing is conducted to compare the results with the theoretical volume expansion. It is proved that they correlated well. It is furthermore experimentally proved that certain volume expansion of steel slag can be absorbed internally by the void volume in bulk steel slag under external surcharge weight making the apparent volume expansion equal zero. The minimum (lowest) absorbable void volume is approximately 7.5%, which is unrelated to the free lime content. A usability criterion is then developed based on the volume expansion of steel slag (%) and the minimum percentage of the volume that can take the volume expansion of steel slag (%). Eventually the criterion (relationship) is established based on the free lime content, the specific gravity and bulk relative gravity of a specific steel slag sample. The criteria can be used as guidance and specification for the use of steel slag and other expansion-prone nonferrous slags, copper, nickel for instance as a granular material in highway construction.

  8. Use of copper slag in glass-epoxy composites for improved wear resistance.

    Science.gov (United States)

    Biswas, Sandhyarani; Satapathy, Alok

    2010-07-01

    Copper slag is a by-product obtained during matte smelting and refining of copper. The common management options for copper slag are recycling, recovery of metal and production of value-added products. In the present study using copper slag as a filler in glass-epoxy composites, the tensile modulus increased from 8.77 GPa to 9.64 GPa when using up to 10 wt% of copper slag but on further addition of copper slag (up to 20 wt%), the tensile modulus started to decrease down to 7.11 GPa. Similar trends were observed in the case of flexural strength and interlaminar shear strength. With the incorporation of copper slag particles, the impact strength increased about 10-15%. This work includes the processing, characterization and study of the erosion behaviour of a class of such copper slag filled glass-epoxy composites based on Taguchi's experimental approach to characterise erosion behaviour. The results show that peak erosion takes place at an impingement angle of 60 degrees for the unfilled composites whereas for the copper slag filled glass-epoxy composites it occurs at a 45 degrees impingement angle. This paper considers the possible utilisation of copper slag as filler material for the preparation of composite materials and preparation of added-value products such as abrasive tools, cutting tools and railroad ballast.

  9. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  10. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  11. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    Science.gov (United States)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  12. Vanadium removal from LD converter slag using bacteria and fungi.

    Science.gov (United States)

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days.

  13. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    Directory of Open Access Journals (Sweden)

    Yungang Wang

    2015-02-01

    Full Text Available The slagging and fouling characteristics of the heat recovery steam generator (HRSG for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF, X-ray powder diffraction (XRD and scanning electron microscope (SEM were used to analyze the ash samples. The results show that low melting point salt Na2SO4 and composite salts Na (AlSi3O8 and 3K2SO4·CaSO4 deposit on the superheater tube walls in aerosol form and solidify to form the initial slag layer. With the continuous deposition of the low melting point compounds, more and more ash particles in the flue gas adhere to the slag surface to form a thicker slag. Low melting point composite salt NaO·Al2O3·SiO2 is absorbed on the evaporator tube walls in aerosol form. With the deposition of NaO·Al2O3·SiO2, more and more ash particles are absorbed to form the fouling. Since there is less space between pin-finned tubes, the large iron-rich slag particles are easily deposited on tube walls and fin surfaces, which is advantageous to the fouling process. There are large quantities of superfine ash particles in the flue gas that easily adhere to other particles or tube walls, which facilitates the slagging and fouling process.

  14. Developments in gold and silver recovery through flotation in processing of gold ore slags; Avances en la recuperacion de oro y plata mediante flotacion en escorias de procesamiento de menas de oro

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, N.; Diaz, A.; Bazan, V.; Sarquis, P.

    2015-07-01

    The aim of this work is to recover and improve the extraction of gold and silver present in smelting slags through various mineralogical processes applicable in gold ores. The slag was concentrated in a Knelson type centrifuge, two concentrates (C1 and C2 and a tailing T1) being obtained. In order to improve the recovery, three series of rougher flotation tests were conducted on the tailing T1. The variables analyzed were: particle size, type of collectors (xanthates, di-monothiophosphate) and flotation time. It was deduced that by applying gravity concentration, the recovery of Au and Ag (Knelson centrifuge) is 42.0% and 13.7%, respectively. Au recovery is improved by 87.7% through the flotation of the centrifuge separation tailings, whereas that for Ag is 47.4%. The optimum conditions were: particle size 200 mesh, collectors: PAX (15.8 g/t), F-C5439 (18.75 g/t), MIBC frother (12.5g/t) and 8.5 minutes of flotation time. (Author)

  15. Molybdate adsorption from steel slag eluates by subsoils.

    Science.gov (United States)

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils.

  16. 攀钢含钛高炉渣湿法提钛工艺%Hydrometallurgical process for recovering titanium from titanium-bearing blast furnace slag in Panzhihua Steel Plant

    Institute of Scientific and Technical Information of China (English)

    王浩然; 张延玲; 安卓卿; 赵世强

    2016-01-01

    酸浸法提钛工艺可以获得较高TiO2含量的产物,但是该工艺所产生的酸浸液存在难回收的问题。采用碱浸法可以避免酸浸液回收的问题,但是该工艺流程比较复杂,钠盐的回收成本较高。酸碱法在理论上可以将含钛高炉渣转化为富钛料,然而该工艺流程相对复杂,工业应用还需要不断深入研究与完善。针对采用湿法工艺从攀钢含钛高炉渣中提钛的各项技术,从技术、经济、环保等方面进行对比分析,指出需要将湿法工艺与火法工艺联合,同时将一些外场冶金技术引入到含钛高炉渣的提钛分离过程中,从而有望高效、综合利用攀钢含钛高炉渣。%High purity TiO2-containing product is prepared by acid leaching method. However, the pickle liquor recycling remains a difficult problem, which can be avoided by using the alkaline leaching method, but this process is complex and the recovering cost of sodium salt is a bit high. The acid-alkali method can change the Ti-bearing blast-furnace slag into rich-titanium material theoretically, while this process is complex too, which needs further study and perfection. A variety of pyrometallurgy technologies to recover titanium from ti-tanium bearing blast furnace slag are comprehensively reviewed and a comparative analysis is made from as-pect of technological, economic and environmental protection. It is pointed out that efficient and comprehen-sive utilization of titanium bearing blast furnace slag requires combining pyrometallurgy with hydro metallur-gical process, as well as some external field metallurgy technology.

  17. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  18. Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag.

    Science.gov (United States)

    Han, Chong; Wang, Zhen; Yang, He; Xue, Xiangxin

    2015-04-01

    Removal kinetics of phosphorus through use of basic oxygen furnace slag (BOF-slag) was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial pH, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant (kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial pH, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage. A linear dependence of kobs on total removed phosphorus (TRP) was established with kobs=(3.51±0.11)×10(-4)×TRP. Finally, it was suggested that the Langmuir-Rideal (L-R) or Langmuir-Hinshelwood (L-H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.

  19. Viscosity estimation for slags containing calcium fluoride

    Institute of Scientific and Technical Information of China (English)

    Qifeng Shu; Jiayun Zhang

    2005-01-01

    Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.

  20. Melting Behaviour of Ferronickel Slags

    Science.gov (United States)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine

    2016-12-01

    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  1. Pyrometallurgical slags as a potential source of selected metals recovery

    Directory of Open Access Journals (Sweden)

    K. Nowińska

    2014-10-01

    Full Text Available Complex analysis of concentration and form of occurrence such metals as Zn, Pb, Fe and Cu in slags formed during a current zinc production in the Imperial Smelting Process (ISP is a possible basis for development of optimal recovery technology. For this purpose studies of slags from the current production of the Shaft Furnace Unit and of the Lead Refining of the “Miasteczko Śląskie” Zinc Smelting Plant were carried out. The studies results show that slags includes high concentrations of: Zn from 0,064 % to 1,680 %, Pb from 10,56 % to 50,71 %, Fe from 0,015 % to 2,576 %, Cu from 7,48 % to 64,95 %, and change in a broad range. This slags show significant heterogeneity, caused by intermetallic phases (Zn - Pb, Cu - Zn, Cu - Pb formed on the surface thereof. It is so possible that slag can be a potential source of this metals recovery.

  2. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  3. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    Science.gov (United States)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  4. EFFECT OF USING STEEL SLAG AGGREGATE ON MECHANICAL PROPERTIES OF CONCRETE

    Directory of Open Access Journals (Sweden)

    Sultan A. Tarawneh

    2014-01-01

    Full Text Available This study presents an evaluation of the physical and mechanical properties and characteristics of steel slag aggregate concrete in comparison with the typical crushed limestone stone aggregate concrete. Hardened concrete consist of more than 70% aggregate due to the high demand in building construction and the increase of the amount of disposed waste material, suppliers and researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional concrete mixes. Steel slag which is mainly consists of calcium carbonate is produced as a by-product during the oxidation process in steel industry. Steel slag was selected due to its characteristics, which are almost similar to conventional aggregates and the fact that it is easily obtainable as a by-product of the steel industry. As a result, utilization of steel slag will save natural resources and clean environment. Furthermore, results have shown that slag aggregate has better abrasion factor and impact value than conventional aggregate. Thorough investigation of the results have indicated that the amount of increase in compressive strength at age of 7 days are much more than that of age 28 days for all types of aggregate replacement. This indicates that the added slag could work as accelerator at early age while at 28 days age, the effect is reduced. The fine slag replacement scores the highest effect.

  5. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  6. Rapid Dissolution of Quicklime into Molten Slag by Internally Formed Gas

    Science.gov (United States)

    Maruoka, Nobuhiro; Nogami, Hiroshi

    2017-02-01

    In steelmaking process, quicklime is used to produce CaO-based slag. Although rapid dissolution of quicklime is required for high-efficiency refining, it is known that the rate decreases when dicalcium silicate (C2S) layer forms around the quicklime by reacting with slag. The equation that driving force is the difference of CaO content between in slag and a liquid phase of slag saturated by C2S has been often used for estimating the dissolution rate of lime, in which this saturated value is thermodynamically determined. The authors, however, revealed that the quicklime used in actual operation showed much faster dissolving rate than that of completely calcined lime that is covered by C2S layer during dissolution into slag. This was caused by a gas formation due to a thermal decomposition of residual limestone existed in quicklime. In this study, the dissolution rate of quicklime with the gas formation is quantitatively investigated.

  7. PS转炉吹炼造渣期冷量及其影响因素的研究%Investigation of the residual heat and its affecting factors during the slag making process in PS converter

    Institute of Scientific and Technical Information of China (English)

    贺慧敏; 廖胜明; 刘骁浚; 南剑

    2014-01-01

    Based on the fundamentals of mass balance , energy balance and reaction dynamics , a dy-namic model was established to calculate the residual heat during the slag making process in PS con -verter.The effects of different operating parameters on the residual heat were analyzed by using the or -thogonal test method and variance analysis method .The results show that the oxygen enrichment rate , matte grade and blast velocity have significant effects on the residual heat , in which the matte grade have the biggest effect while the oxygen enrichment rate have the smallest effect .This research can be used as a reference to optimize the addition of scraps during the slag making process to reach the pur -pose of energy saving .%基于物料守恒、能量守恒和反应动力学原理,建立了PS转炉铜锍吹炼造渣期冷量的动态计算模型。研究了造渣过程中各组分质量和能量分项的变化规律,利用正交试验法和方差分析法分析了主要生产因素对冷量大小的影响。研究表明,富氧率、冰铜品位、鼓风速度对造渣期冷量生成有显著的影响,其中冰铜品位影响最大,富氧率影响最小。研究结果对优化冷料添加进而实现节能降耗具有指导意义。

  8. Kinetics of the dissolution of zinc sulfide in an oxidizing slag

    Science.gov (United States)

    Gupta, Suresh K.

    1990-10-01

    A new concept has been developed for the production of zinc from zinc and complex zinc concentrates. It is a two-stage process involving oxidation of zinc sulfide to oxide and dissolution into slag and the fuming of zinc from the slag by injecting carbonaceous materials into it to produce zinc vapors which can be subsequently condensed in a lead-splash condenser such as those used in the Imperial Smelting Process (ISP). In this paper, the effects of the quantity of air, temperature, and concentrate feed rate have been discussed on the production of zinc-rich slag, which is the first stage of the proposed process.

  9. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  10. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  11. Difference in BOF Slag Splashing in US and China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some differences in slag splashing between BOF steel works in USand China were investigated. The slag composition, melting point, and mineralogical phases of final slags from both countries were studied. The control of slag superheat is important to an effective slag coating.

  12. Aluminium salt slag characterization and utilization--a review.

    Science.gov (United States)

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue.

  13. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  14. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-05

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  15. Life Cycle Assessment of Internal Recycling Options of Steel Slag in Chinese Iron and Steel Industry%Life Cycle Assessment of Internal Recycling Options of Steel Slag in Chinese Iron and Steel Industry

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; YANG Jian-xin; OUYANG Zhi-yun

    2011-01-01

    The internal recycling process of BOF slag which is one of the huge solid wastes from iron and steel indus try was emphasized. Based on the four scenarios of different internal recycling strategies for BOF slag, life cycle assessment (LCA) as a valuable t

  16. Late Bronze age metallurgy in the Italian Eastern Alps: copper smelting slags and mine exploitation

    OpenAIRE

    2013-01-01

    At the end of the second millennium B.C., the extractive metallurgy of copper in Trentino (Italy) achieved a peak of technological efficiency and mass production, as evidenced by the large number of metallurgical sites and the huge amount of slags resulting from the smelting activities. Though different scholars proposed several smelting process models, so far an agreed interpretation of the whole process is lacking. Over 70 slags from the Luserna, Transacqua and Segonzano sites (all l...

  17. Comparative and preliminary study of the conventional soil conditions and the Conox process slags for the agricultural; Estudio preliminar comparativo entre los acondicionadores de suelos convencionales y las escorias del proceso Conox para uso agricola

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, O. [Instituto Tecnologico de Morelia. Mexico (Mexico); Flores, L. [Tubos de Acero de Mexico (Mexico); Barrera, G. [Instituto Tecnologico Agropecuario. Mexico (Mexico); Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain)

    1998-12-31

    The object of this preliminary study is the measurement of the physical-chemistry and structural properties of commercial conditioners used in agricultural soils at the North of Michoacan, Mexico. These materials were compared to the Conox slags used for the same purpose. The results showed that the first materials changed the chemical character of the soil, however the slags in the soil increase the digest elements concentration more than commercial conditioners. (Author) 49 refs.

  18. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  19. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    Science.gov (United States)

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  20. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  1. Thermodynamic and Experimental Investigations of High-Temperature Refractory Corrosion by Molten Slags

    Science.gov (United States)

    Wagner, Christoph; Wenzl, Christine; Gregurek, Dean; Kreuzer, Daniel; Luidold, Stefan; Schnideritsch, Holger

    2017-02-01

    Corrosion mechanisms between MgO refractory substrates and FeNi slags were investigated. The FeNi slags taken into consideration represent a simple synthetically mixed slag with specific oxides and a real slag from a ferroalloy producer. The MgO refractory substrates with the specimens of FeNi slag were heated in a hot-stage microscope at 10 K/min from room temperature to three different temperatures 1573 K, 1723 K, and 1923 K (1300 °C, 1450 °C, and 1650 °C). The experiments were carried out under a controlled gas atmosphere that simulates the relevant process conditions. The corrosion mechanisms of each system were followed by scanning electron microscope analyses. The results obtained showed that slag corrosion dominates, with a pronounced partial dissolution of refractory fines forming Mg-silicates of type forsterite. It was also observed that iron oxide present in the slag diffused into the coarse refractory grains forming magnesiowustite. Finally, the results obtained were compared with those predicted by FACTSAGE software to understand the corrosion mechanisms and draw implications for improving the refractory performance and lifetime.

  2. Thermodynamic and Experimental Investigations of High-Temperature Refractory Corrosion by Molten Slags

    Science.gov (United States)

    Wagner, Christoph; Wenzl, Christine; Gregurek, Dean; Kreuzer, Daniel; Luidold, Stefan; Schnideritsch, Holger

    2016-12-01

    Corrosion mechanisms between MgO refractory substrates and FeNi slags were investigated. The FeNi slags taken into consideration represent a simple synthetically mixed slag with specific oxides and a real slag from a ferroalloy producer. The MgO refractory substrates with the specimens of FeNi slag were heated in a hot-stage microscope at 10 K/min from room temperature to three different temperatures 1573 K, 1723 K, and 1923 K (1300 °C, 1450 °C, and 1650 °C). The experiments were carried out under a controlled gas atmosphere that simulates the relevant process conditions. The corrosion mechanisms of each system were followed by scanning electron microscope analyses. The results obtained showed that slag corrosion dominates, with a pronounced partial dissolution of refractory fines forming Mg-silicates of type forsterite. It was also observed that iron oxide present in the slag diffused into the coarse refractory grains forming magnesiowustite. Finally, the results obtained were compared with those predicted by FACTSAGE software to understand the corrosion mechanisms and draw implications for improving the refractory performance and lifetime.

  3. The Sulfide Capacity of Iron Oxide-Rich Slags

    Science.gov (United States)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  4. Study on the Process of Removing Arsenic from Chlorin Washing Water and Arsenic Slag Beneficiation%洗氯水除砷及砷渣富集工艺研究

    Institute of Scientific and Technical Information of China (English)

    李显华

    2012-01-01

    含砷洗氯水可采用盐酸中和,石灰和硫酸铁两段除砷的方法处理,溶液中的砷能降至0.5mg/L以下,达到国家规定的工业污水砷排放标准。一段砷渣可采用二次富集方法提高渣含砷。%Chlorin washing water can be neutralized with hydrochloric acid,and then remove arsenic by two stage process(adding lime in the first stage process and adding ferric sulfate in the second stage process to remove arsenic). After such treament, the content of arsenic in chlorin washing water can drop below 0.5mg/L, which reaches the state industrial sewage arsenic emissions standards. The content of arsenic in the first stage slag can be increased by secondary beneficiation.

  5. [Study on quantificational analysis method for the non-crystalline content in blast furnace slag].

    Science.gov (United States)

    Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian

    2008-02-01

    Quantificational analysis method for the non-crystalline and crystalline contents in blast furnace slag was studied by means of X-ray diffraction. The process of quantificational analysis method includes standard samples preparation, samples preparation, X-ray diffraction measurement and data treatment. The data treatment includes integration areas of non-crystalline curve and crystalline peaks in certain diffraction angle range, linear fitting and quantificational coefficient determination. The preparation methods of standard samples for X-ray diffraction of blast furnace slag were proposed, including 100% crystalline sample and 100% non-crystalline sample. The 100% crystalline sample can be obtained by heating blast furnace slag for 12 h at 1 000-1 200 degrees C, and the 100% non-crystalline sample can be obtained by quenching the molten slag with enough water. The X-ray diffraction method of quantificational analysis of non-crystalline content in blast furnace slag was proposed with the 100% non-crystalline and 100% crystalline standard samples, and the quantificational coefficient can be obtained by linear regression on the integration areas of non-crystalline curve and crystalline peaks of X-ray diffraction in the 2-theta range 20 degrees-40 degrees. This method is suitable for the blast furnace slag with the non-crystalline content over 80%. The non-crystalline and crystalline contents of original blast furnace slag are obtained by combining the X-ray diffraction results and mathematical treatment, and this method is suitable for the blast furnace slag with the non-crystalline content over 90%, whose process includes preparing the 100% crystalline standard sample by heating blast furnace slag for 12 h at 1000-1200 degrees C, samples preparation with the 0.02 interval in the 0-0.1 mass ratio range of 100% crystalline to original slag, X-ray diffraction measurement of the samples prepared and data treatment using iterative linear regression. The

  6. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  7. 低品位钒渣在碳酸钠存在下的氧化过程%Oxidation process of low-grade vanadium slag in presence of Na2CO3

    Institute of Scientific and Technical Information of China (English)

    李新生; 谢兵; 王广恩; 李晓军

    2011-01-01

    The oxidation process of low-grade vanadium slag in the presence of Na2CO3 was investigated by XRD,SEM/EDS and TG-DSC techniques.The results show that the vanadium slag is oxidized in a temperature range from 273 to 700 ℃.Olivine phases and spinel phases are completely decomposed at 500 and 600 ℃,respectively.Most of water-soluble sodium vanadates are formed between 500 and 600 ℃.When roasting temperature reaches above 700 ℃,the vanadium-rich phases of sodium vanadates can be obviously observed.However,at temperature above 800 ℃,the samples are sintered.Most of the vanadium is enwrapped by glassy phase compounds which lead to the decrease of the leaching rate of vanadium.At the same time,the effect of roasting temperature on extraction of vanadium and characterization of leach residues were discussed.%利用XRD,SEM/EDS和TG-DSC等手段对低品位钒渣在Na2CO3存在条件下的氧化过程进行检测.结果表明:钒渣的氧化温度范围为273至700℃,橄榄石相与尖晶石相彻底分解的温度分别是500和600℃,大部分水溶性的钒酸盐在500与600℃之间形成.当温度达到700℃以上时,钒酸盐富集相明显可见,但焙烧温度在800℃以上时,样品发生烧结,并且钒被形成的玻璃相包裹,导致其浸出率下降.同时,研究不同焙烧温度对钒浸出率的影响,并对浸出残渣进行分析.

  8. Maximum availability and mineralogical control of chromium released from AOD slag.

    Science.gov (United States)

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming; Gao, Zhiyuan

    2017-03-01

    AOD (argon oxygen decarburization) slag is the by-product in the stainless steel refining process. Chromium existing in AOD slag can leach out and probably poses a serious threat to the environment. To assess the leaching toxicity of chromium released from AOD slag, the temperature-dependent maximum availability leaching test was performed. To determine the controlling mineralogical phases of chromium released from AOD slag, a Visual MINTEQ simulation was established based on Vminteq30 and the FactSage 7.0 database. The leaching tests indicated that the leaching availability of chromium was slight and mainly consisted of trivalent chromium. Aging of AOD slag under the atmosphere can oxidize trivalent chromium to hexavalent chromium, which could be leached out by rainwater. According to the simulation, the chromium concentration in leachates was controlled by the freely soluble pseudo-binary phases in the pH = 7.0 leaching process and controlled by the Cr2O3 phase in the pH = 4.0 leaching process. Chromium concentrations were underestimated when the controlling phases were determined to be FeCr2O4 and MgCr2O4. Facilitating the generation of the insoluble spinel-like phases during the cooling and disposal process of the molten slag could be an effective approach to decreasing the leaching concentration of chromium and its environmental risk.

  9. The Revovery of Copper and Cobalt from Oxidized Copper Ore and Converter Slag

    OpenAIRE

    ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    1999-01-01

    The aim of this study was to develop a method for obtaining copper and cobalt from oxidized copper ore and converter slag. In order to convert the copper and cobalt into sulfate compounds the main step was to roast the samples obtained by sulfurization and transfer the samples into solution. First the oxidized copper ore was roasted, followed by the mixture of converter slag and oxidized copper ore. Since the levels of copper and cobalt were low, the sulfurization process was carri...

  10. A Laboratory Study of the Treatability of Synthetic Stormwater Under Varying Conditions Using Electric Arc Furnace Steel Slag

    Directory of Open Access Journals (Sweden)

    Nnaemeka C. Okochi

    2012-03-01

    Full Text Available The investigation of electric arc furnace (EAF steel slag as a viable add-on technology to existing stormwater systems for the removal of dissolved phosphorus (P was extended to explore the effects of varying environmental and treatment system conditions. Parameters such as stormwater composition, P concentration, metal concentration, pH, temperature, slag mass and slag particle size were varied. Observations relating to the method of P removal via EAF slag were also carefully considered to explain removal mechanisms involved. Results demonstrated that, although physisorption contributed to P reduction, it was not the key P removal mechanism. Instead, precipitation was observed to be a key removal pathway as evidenced by the correlation between the loss of iron (Fe from slag and the amount of P removed from solution. The reduced removal of P by slag in a copper-dominant stormwater solution was attributed to the formation of a stable complex formed by the interaction of copper with the slag via the ion-exchange surface model. The stability of this complex inhibits the loss of Fe from the EAF slag and, consequently, P removal by means of precipitation. In terms of the effect of changing environmental and treatment system conditions on the P removal process, stormwater composition, P concentration, metal concentration, pH, temperature, slag mass and slag particle size were found to significantly influence the effectiveness of EAF slag in removing P from a given stormwater system. It was also established that a number of combinations of these factors influence P uptake differently.

  11. Silver Recovery from Acid Leaching Slag of Zinc Smelting with Hydrometallurgical Process%全湿法工艺回收锌冶炼酸浸渣中的银

    Institute of Scientific and Technical Information of China (English)

    王康柱; 王正民; 周熙; 周玺

    2013-01-01

    锌冶炼酸浸渣先浮选再用硫脲富集获得粗银绵,粗银绵经化学法提纯后经过电解产出纯度达99.95%以上的成品银,全流程银回收率达到70%以上.还可同时回收金和铜,含锌液返回锌冶炼系统,且无三废产生.%Crude silver powder was obtained by flotation and thiourea enrichment from acid leaching slag of zinc smelting.Crude silver powder was purified by chemical method and electrolyzed to produce silver product with purity of 99.95% plus.The silver recovery rate is more than 70%.Gold and copper are recovered simultaneously and zinc is returned to zinc smelting system.There are no three wastes in the whole process.

  12. Study on the Process Conditions Extraction of Sulphur from Lead Slag Using Ammonium sulfide%硫化铵提取铅渣中硫工艺条件的研究

    Institute of Scientific and Technical Information of China (English)

    蒋兴荣; 任兴丽; 朱复跃; 魏红军

    2012-01-01

    To study leaching of sulfur using ammonium sulphate,and explore the optimum process conditions of extracting sulfur from lead slag.The results showed that the optimum conditions were liquid to solid ratio was 3∶1,concentration of ammonium sulphate was 140 g/L,molar ratio of sulfur and ammonium sulfide was 1∶0.4,leaching time was 25 minutes.%研究硫化铵浸取单质硫,探求铅渣中提取硫最佳工艺条件。结果表明:硫化铵浸取单质硫最佳工艺条件是液固比为3∶1,硫化铵溶液浓度为140g/L,硫与硫化铵的摩尔比为1∶0.4,浸出时间为25min,硫的浸出率达到98%。

  13. Methods for Improving Volume Stability of Steel Slag as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    LUN Yunxia; ZilOU Mingkai; CAI Xiao; XU Fang

    2008-01-01

    Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 Mpa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80 ℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.

  14. 黄磷炉渣废热利用新工艺与实验研究%New processes and experimental study on yellow phosphorus slag of waste heat utilization

    Institute of Scientific and Technical Information of China (English)

    马立; 魏代晓; 龙恩深; 田向伟

    2013-01-01

    The need for waste heat recovery from molten yellow phosphorus slag is analyzed. The difficulties of yellow phosphorus slag heat recovery are explained in detail. Based on the field investigation, thermal analysis and experimental research,a new designing scheme of slag heat recovering and reuse system in yellow phosphorus slag is provided. The system structure and gain of energy-saving and environmental protection of slag waste heat recovery kiln are introduced and proved.%分析了黄磷炉渣废热回收利用的必要性,详细阐述了黄磷炉渣热回收存在的难点,通过现场调研、热工分析及试验研究,提出了利用炉渣废热回收窑对黄磷炉渣废热进行回收与再利用的新工艺,介绍了该工艺的系统结构,验证了该工艺的节能减排效果.

  15. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  16. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  17. Dissolution Kinetics of Magnesitic-Dolomite and Magnesite-Chrome Refractories in Secondary Steelmaking Slags

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhaoyou; WU Xuezhen; YE Fangbao

    2007-01-01

    Dissolution kinetics of magnesitic-dolomite and magnesite-chrome refractories in secondary steelmaking slags was studied by means of the rotating cylinder method under forced convection. Materials investigated include four magnesitic-dolomite samples (MgO content 40% to 93% ) and two magnesite-chrome samples ( co-clinkered and semi-rebonded ). Synthetic slags simulative of VOD and AOD slags with varying basicity (0. 6-2. 68) are used. The experiments are carried out in Ar atmosphere at different temperatures (1 600 ℃-1 750 ℃ ) and revolumicrostructure of specimens (before and after slag tests)are studied by optical microscopy, SEM and EPMA.Based on our experimental results the mechanism and kinetics of the dissolution process are discussed.

  18. Study on the Kinetics of Aluminum Removal from Liquid Silicon to Slag with Mechanical Stirring

    Science.gov (United States)

    Lee, Jaewoo; White, Jesse F.; Hildal, Kjetil; Sichen, Du

    2016-12-01

    The kinetics of aluminum removal from silicon melt to CaO-SiO2-Al2O3 slag was studied. A recently designed experimental setup using mechanical stirring was employed to focus the study on the chemical reaction. The slag and metal were found to reach chemical equilibrium in 300 seconds. A simple model could reproduce the experimental data satisfactorily. Both the experimental results and the model prediction further confirmed that the process was controlled by the chemical reaction, since the reaction rate constant was found to be independent of the amount of slag and the initial slag composition. The experimental data at equilibrium were compared with the model calculations. The discrepancy between the model calculations and the experimental data strongly suggests the need for careful thermodynamic measurements.

  19. Decomposition of acid dissolved titanium slag from Australia by sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    FENG Yang; WANG Jinggang; WANG Lina; QI Tao; XUE Tianyan; CHU Jinglong

    2009-01-01

    The kinetics of the decomposition of acid dissolved titanium slag with a sodium hydroxide system under atmospheric pressure was studied. The effect of reaction temperature, particle size and NaOH-to-slag mass ratio on titanium extraction was investigated. The results show that temperature and particle size have significant influence on titanium extraction. The experimental data of titanium extraction show that the shrinking core model with chemical reaction controlled process is most applicable for the decomposition of slag, with an apparent activation energy of 62.4 kJ·mol~(-1). Approximately 85 wt.%-90 wt.% of the titanium can be extracted from the slag under the optimal conditions. In addition, the purity of titanium dioxide obtained in the product is up to 98.5 wt.%.

  20. Smelting chlorination method applied to removal of copper from copper slags

    Institute of Scientific and Technical Information of China (English)

    李磊; 王华; 胡建杭

    2015-01-01

    In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However, the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34%is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, CaCl2 addition amount of 0.1 (mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.

  1. Effect of Al2O3, MgO, and CuOx on the dissolution behavior of rhodium in the Na2O-SiO2 slags

    Directory of Open Access Journals (Sweden)

    Wiraseranee C.

    2013-01-01

    Full Text Available Aiming to optimize rhodium recovery in the high temperature recycling process by minimizing rhodium loss into slags in an oxidizing atmosphere by controlling slag composition, the effects of representative slag components, such as Al2O3, MgO, and CuOx, on the dissolution behavior of rhodium into the Na2O-SiO2 slags was investigated. The solubility of rhodium was measured by equilibrating the sodium silicate based slags with pure solid rhodium at 1473 K in air. Considering that rhodium dissolved into slags as RhO1.5, the effect of the oxide addition on the activity coefficient of RhO1.5 in slags was determined. The dissolution of rhodium in slags was suppressed by the addition of Al2O3 and MgO, where Al2O3 behaved as an acidic oxide and MgO behaved as a diluent of slag basicity at a fixed Na2O/SiO2 ratio of 0.97. The content of copper in solid rhodium equilibrated with the CuOx bearing slags slightly increased with increasing content of CuOx, and CuOx was found to slightly enhance the dissolution of rhodium. Rhodate capacity of all slag systems increased with increasing optical basicity, suggesting that the correlation between rhodate capacity and the optical basicity enables the estimation of the content of rhodium in slags of which thermodynamic properties of rhodium are not clarified.

  2. Leaching of heavy metals from steelmaking slags

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. F. P.; Pino, C. G.

    2006-07-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs.

  3. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.

    Science.gov (United States)

    Hocheng, Hong; Su, Cheer; Jadhav, Umesh U

    2014-12-01

    The generation of 300–500 kg of slag per ton of the steel produced is a formidable amount of solid waste available for treatment. They usually contain considerable quantities of valuable metals. In this sense, they may become either important secondary resource if processed in eco-friendly manner for secured supply of contained metals or potential pollutants, if not treated properly. It is possible to recover metals from steel slag by applying bioleaching process. Electric arc furnace (EAF) slag sample was used for bioleaching of metals. In the present study, before bioleaching experiment water washing of an EAF slag was carried out. This reduced slag pH from 11.2 to 8.3. Culture supernatants of Acidithiobacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. At. thiooxidans culture supernatant containing 0.016 M sulfuric acid was found most effective for bioleaching of metals from an EAF slag. Maximum metal extraction was found for Mg (28%), while it was least for Mo (0.1%) in six days. Repeated bioleaching cycles increased metal recovery from 28% to 75%, from 14% to 60% and from 11% to 27%, for Mg, Zn and Cu respectively.

  4. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate.

  5. Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag

    Science.gov (United States)

    Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang

    2016-04-01

    In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.

  6. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  7. Theoretical and Experimental on Carbon Dioxide Sequestration Degree of Steel Slag

    Institute of Scientific and Technical Information of China (English)

    LI Jian-li; ZHANG Hui-ning; XU An-jun; CUI Jian; HE Dong-feng; TIAN Nai-yuan

    2012-01-01

    The limitation and experimental CO2 sequestration degree of steel slag is the focus. The theoretical and the practical COe sequestration degree was assessed under mild operating conditions. After calculation in theory, it can be found that the CO2 sequestration limitation degree for every kilogram steel slag is about 442 g when taking magne- sium into consideration, and the experimental CO2 sequestration degree for every kilogram slag is about 77 g, under the conditions that the liquid to solid ratio is 50 L/kg, CO2 flow is 0.5 L/min and the temperature of reaction is the ambient temperature. When solution NH4Cl and CHa COOH for experiments and other conditions keep the same, the actual potential CO2 sequestration for every kilogram slag is 69.3 g and 31.20 g respectively. Thus, optimization of process parameters like granularity of slag is necessary to enhance the carbon dioxide sequestration degree for steel slag.

  8. LATS refining ladle slag modifying with CaO-CaF2

    Institute of Scientific and Technical Information of China (English)

    Hongming Wang; Guirong Li; Zhongming Ren; Bo Li; Xuejun Zhang; Guomin Shi

    2007-01-01

    To reduce the slag sticking onto the snorkel of the ladle during the ladle alloying treatment station (LATS) process, CaO-CaF2 (the mass ratio of CaO/CaF2 is 1:1) was employed as the modifier of the LATS refining ladle slag. The effect of CaO-CaF2 on the melting point, viscosity, and desulfurizing capability of the ladle slag was investigated. The melting point of the unmodified ladle slag is 1439°C. When adding 20wt% CaO-CaF2, the melting point is decreased to 1327°C. At 1500°C, the viscosity of the unmodified ladle slag is 6.5 Pa·s, which can be decreased lower than 2 Pa·s by adding more than 10wt% CaO-CaF2. The experimental results of desulfurization of the melts show that the desulfurizing power of the ladle slag can be enhanced by adding CaO-CaF2.

  9. Reduction of molybdenum oxide from steelmaking slags by pure liquid iron

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2012-01-01

    Full Text Available The effects of reaction temperature, slag basicity and FeO concentration on the reduction of molybdenum oxide from steelmaking slags by pure liquid iron were investigated experimently. The reduction kinetics of molybdenum oxide by liquid iron was analysed. The reaction models were developed based on the condition that diffusion of [Mo] in liquid iron and CaMoO4 in slag is the control steps, respectively. These reaction models were tested using data from a series of experiments. The results indicate that under the present experimental conditions, the temperature and the FeO content, other than slag basicity, have some effects on the reduction of molybdenum oxide from steelmaking slags by pure liquid iron. Both the molybdenum oxide reduction rate and final reduction ratio increase with an increase of temperature and a decrease of FeO content. The diffusion of CaMoO4 in slag which dominated overall reduction process is the only one ratecontrolling step with its apparent activation energy 294 kJ/mol. The reduction of molybdenum oxide used directly as alloy additive can be further enhanced by strong stirring in the converter practice.

  10. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    Directory of Open Access Journals (Sweden)

    C. L. Beh

    2010-01-01

    Full Text Available Problem statement: Steel making slag from Electric Arc Furnace (EAF is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption kinetics and isotherm studies were carried out at 28°C and ten grams of EAF slag was added into 1 L manganese solution of various concentrations of 10, 25, 50, 75, 100 and 120 mg L-1. All these different mixtures were stirred and sampled at various desired times and centrifuged. The supernatant solutions were then collected for chemical analysis. Results: It was found that the EAF slag adsorption kinetics can be described well by the pseudo-2nd order kinetic model with fairly high correlation coefficients. The adsorption process obeyed the Langmuir isotherm model and the maximum uptake of the manganese from the solution is 2.31 mg L-1 g-1 of EAF slag used. Conclusion: From the study, it was concluded that the EAF slag can be an efficient adsorbent to remove manganese from both the solution and waste water.

  11. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  12. Coexistence Theory of Slag Structure and Its Application to Calculation of Oxidizing Capability of Slag Melts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by NFetO=NFeO+6NFe2O3, while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as NFetO=NFeO+6NFe2O3+8NFe3O4.

  13. Refractory-Slag-Metal-Inclusion Multiphase Reactions Modeling Using Computational Thermodynamics: Kinetic Model for Prediction of Inclusion Evolution in Molten Steel

    Science.gov (United States)

    Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun

    2017-02-01

    The refractory-slag-metal-inclusion multiphase reaction model was developed by integrating the refractory-slag, slag-metal, and metal-inclusion elementary reactions in order to predict the evolution of inclusions during the secondary refining processes. The mass transfer coefficient in the metal and slag phase, and the mass transfer coefficient of MgO in the slag were employed in the present multiphase reactions modeling. The "Effective Equilibrium Reaction Zone (EERZ) Model" was basically employed. In this model, the reaction zone volume per unit step for metal and slag phase, which is dependent on the `effective reaction zone depth' in each phase, should be defined. Thus, we evaluated the effective reaction zone depth from the mass transfer coefficient in metal and slag phase at 1873 K (1600 °C) for the desulfurization reaction which was measured in the present study. Because the dissolution rate of MgO from the refractory to slag phase is one of the key factors affecting the slag composition, the mass transfer coefficient of MgO in the ladle slag was also experimentally determined. The calculated results for the variation of the composition of slag and molten steel as a function of reaction time were in good agreement with the experimental results. The MgAl2O4 spinel inclusion was observed at the early to middle stage of the reaction, whereas the liquid oxide inclusion was mainly observed at the final stage of the refining reaction. The content of CaO sharply increased, and the SiO2 content increased mildly with the increasing reaction time, while the content of Al2O3 in the inclusion drastically decreased. Even though there is slight difference between the calculated and measured results, the refractory-slag-metal multiphase reaction model constructed in the present study exhibited a good predictability of the inclusion evolution during ladle refining process.

  14. Effect of Superfine Slag Powder on HPC Properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), replacing part ofthe mass of normal Portland cement. The effects of the SP on the workability, mechanical and crack self-healingproperties of HPC were studied. The hydration process and microstructure characteristics were investigated by X-raydiffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The crack self-healing capacitywas evaluated by Brazilian test. The test results indicate that the SP has especially supplementary effect on waterreducing and excellent property of better control of slump loss. The concrete flowability increases remarkably withthe increase of SP replacement level in the range of 20% to 50%. The compressive and splitting tensile strengthsof HPC containing SP are higher than the corresponding strength of the control concrete at all ages. The crackself-healing ability is highly dependent on SP content of HPC.

  15. Alkali based slagging: a case study from Leigh Creek

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Creelman; J. Bamberry; L.A. Juniper; C. Ward [University of Western Sydney, Penrith South, NSW (Australia)

    2003-07-01

    A systematic study was undertaken at NRG Port Augusta Power station in South Australia to determine the cause of ash deposition (slagging) in the boilers. Conventional wisdom suggests that iron in the ash is generally a major player in furnace ash deposition; however, mineralogical and chemical analyses of the deposits showed that the binding phase was plagioclase feldspar, dominated by the sodic feldspar albite. The study resulted in recognition that the cause of the formation of ash deposits in the North Flinders furnaces was the result of the ingestion of sodium and calcium into the melt that bound the deposits. This finding was a breakthrough in understanding the deposition process within these furnaces, and emphasises that not all slagging is iron related and that systematic studies of deposits, coal and ash make fundamental contributions to understanding the ash deposition mechanisms. 9 refs., 5 figs., 2 tabs.

  16. Study on arsenic removal from acid-leaching solution of zinc smelter slag with sulfide precipitation process%锌冶炼废渣浸出液硫化法除砷的研究

    Institute of Scientific and Technical Information of China (English)

    高峰; 贾永忠; 孙进贺; 景燕

    2011-01-01

    A method of using Na2S as precipitation reagent for eliminating arsenic from leaching solution of zinc smelter slag was studied. The effects of acidity, dosages of Na2S, reaction time and so on were investigated.The results indicated that the optimum conductions were as follows: the dosages of Na2S, 16.1 g/L( acid-leaching solution); H2SO4, 3 mol/L; reaction time, 30 min. The arsenic removal rate could reach 99.3% , so the method could prevent AsH3 gas efficiently in the process of extracting of indium.%以硫化钠为沉淀剂,将锌冶炼废渣浸出液中的砷以硫化砷的形式沉淀析出,实验考察了浸出液酸度、硫化钠加入量、反应时间等因素对除砷效率的影响.实验结果表明,当浸出液中游离H2SO4浓度为3 mol/L,Na2S·9H2O投加量为16.1 g/L(浸出液),反应时间为30 min时,浸出液中的砷去除率达到99.3%,较好地解决了在浸出液提铟过程中AsH3气体对环境的污染问题.

  17. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    Science.gov (United States)

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process.

  18. Settling of copper drops in molten slags

    Science.gov (United States)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  19. Blast furnace slags as sorbents of phosphate from water solutions.

    Science.gov (United States)

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj

    2005-05-01

    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  20. Study on the preparation of high early strength slag Portland cement with high dosage of finely ground slag%用矿渣微粉配制高掺量早强矿渣水泥的研究

    Institute of Scientific and Technical Information of China (English)

    蒋永惠; 汪小东; 陈伟; 孙谋远; 王家军

    2001-01-01

    通过正交试验研究了不同细度、掺量的矿渣微粉和熟料对矿渣水泥性能的影响。试验发现,影响矿渣水泥 3d、 28d强度的主次因素不同, 3d强度主要受矿渣细度的影响, 28d强度则主要受矿渣掺量影响。采用分别粉磨后混合的生产工艺,用一定细度的矿渣微粉可以生产出掺量较高、早强性能好的矿渣水泥。%Effect of the fineness and dosage of finely ground slag and clinker on the performance of cement was studied through cross experiment. It was found that different factors exerted varying effect on the 3d and 28d strength of the slag cement, the 3d strength was mainly affected by the fineness of slag, while the 28d strength was dominated by the content of slag addition. The adoption of mixing after separate grinding process and the addition of finely ground slag with certain fineness can ensure the production of high early strength slag Portland cement with high dosage of finely ground slag.

  1. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  2. Calculation of sulfide capacities of multicomponent slags

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio

    1993-10-01

    The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.

  3. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  4. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  5. Phosphorus partitioning and recovery of low-phosphorus iron-rich compounds through physical separation of Linz-Donawitz slag

    Science.gov (United States)

    Makhija, Dilip; Rath, Rajendra Kumar; Chakravarty, Kaushik; Patra, Abhay Shankar; Mukherjee, Asim Kumar; Dubey, Akhilesh Kumar

    2016-07-01

    The Linz-Donawitz (LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction (XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron (Fe)-ore sintering. However, the presence of 1.2wt% phosphorus (P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis (EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases (i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.

  6. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  7. A New Electrolytic Process of Copper Slag Produced in Refining Tin and Its Application%锡精炼除铜渣直接电解新工艺研究及工业实践

    Institute of Scientific and Technical Information of China (English)

    廖亚龙

    2001-01-01

    研究了锡精炼除铜渣电解时电解周期、物料粒度、添加剂等因素对电解过程的影响。针对锡精炼铜渣难于处理、技术经济指标差的实际情况,提出了在铜渣直接电解过程中加入添加剂的方法。结果,电解主要经济指标得到了大幅度提高。%The copper slag produced in refining tin by adding sulfur isdifficult to treat,but economic indexs can be increased by adding additive in copper slag during direct electrolysis.The effects of electrolytic period,sample particle and additive on electrolysis are examined.

  8. Transformation of RO Phase in Steel Slag During Modification Process at High Temperature%钢渣高温重构中RO相的转变规律

    Institute of Scientific and Technical Information of China (English)

    李建新; 余其俊; 韦江雄

    2012-01-01

    对韶钢转炉钢渣进行高温重构,采用化学萃取、XRD分析、化学分析等检测手段分析重构钢渣中C/S对RO相(MgO·FeO)转变的影响.结果显示:当C/S大于2.3时,高温重构促使钢渣中RO相分离,产生游离氧化镁(f-MgO);当C/S介于1.8~2.3时,钢渣中大部分RO相转变为镁铁尖晶石(Mg(O·Fe2O3),少数RO相保持稳定;当C/S小于1.8时,钢渣中RO相保持稳定.%This paper investigates the transformation of RO phase during modification process at high temperature. Chemical analysis, analytical extraction and XRD were used to determine the effect of C/S on the transformation of RO phase. The results show that when the value of C/S is greater than 2. 3, RO phase is discomposed to be f-MgO; While the value of C/S is in the range of 1.8~2. 3, most of RO phase is transformed to be magnesioferrite, and while the value of C/S is less than 1.8, RO phase remains unchanged.

  9. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-09-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  10. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    Science.gov (United States)

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill.

  11. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    Science.gov (United States)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-09-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  12. SYNTHESIS OF ZEOLITES FROM INCINERATION ASH AND SLAG

    Directory of Open Access Journals (Sweden)

    Michał Łach

    2017-02-01

    Full Text Available The work concerns the possibility of the use of secondary waste from waste incineration processes for the production of zeolites. The study used fly ash and slag from national waste incineration plants. The test materials were subjected to hydrothermal alkaline activation in aqueous solution of sodium hydroxide, the molar concentrations of the various variants. The research revealed the usefulness of this type of material for the synthesis of zeolites –obtained sodalite. Presents the results of analyzes of the SEM / EDS and XRD for the most efficient synthesis processes.

  13. 改进硫脲法浸出含硫铁矿炼锌渣中银的工艺%Leaching process of silver from zinc-smelting slag of sulfur-bearing pyrite by modified thiourea method

    Institute of Scientific and Technical Information of China (English)

    张玉; 苏静; 龙云飞; 吕小艳; 文衍宣

    2013-01-01

    采用硫脲为络合剂、双氧水为氧化剂,研究了在硝酸介质中浸出含硫铁矿炼锌渣中银的工艺.考察了搅拌速率、反应时间、反应温度、硝酸初始浓度、双氧水浓度、硫脲浓度等因素对银浸出率的影响.结果表明,银的浸出率随着搅拌速率的增大和反应时间的延长先增大然后保持不变,随反应温度、硫脲浓度、双氧水浓度和硝酸初始浓度的增加先增大后减小.当搅拌速率为200 r/min、硝酸浓度为4.11 mol/L、双氧水浓度为0.82 mol/L、硫脲浓度为3.25 mol/L、反应温度为50℃、反应时间为lh时,银浸出率可达82.0%.%The leaching process of silver from zinc-smelting slag of sulfur-bearing pyrite with thiourea as chelating agent and H2O2 as oxidant in HNO3 was studied.The effects of stirring speed,reaction time,reaction temperature,HNO3 initial concentration,H2O2 concentration,and thiourea concentration etc.on the leaching efficiency of silver were investigated.Results showed that the leaching ratio of silver first increased and then kept constant with the increase of the stirring speed and the reaction time,while it first increased and then decreased with the increase of reaction temperature,HNO3 initial concentration,H2O2 concentration,and thiourea concentration.The optimal conditions for leaching of silver with thiourea were found as follows:the stirring speed was 200 r/min,HNO3 initial concentration was 4.11 mol/L,H2O2 concentration was 0.82 mol/L,thiourea concentration was 3.25 mol/L,reaction temperature was 50 ℃,and reaction time was 1.0 h.Under these conditions,the leaching ratio of silver was up to 82.0%.

  14. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  15. Strength development, hydration reaction and pore structure of autoclaved slag cement with added silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Y. [China Building Materials Academy, Beijing (China); Siemer, D.D. [LITCO, Idaho Falls, ID (United States); Scheetz, B.E. [Pennsylvania State Univ., University Park, PA (United States). Materials Research Lab.

    1997-01-01

    Under continuous hydrothermal treatment the strength of portland cement paste decreases with curing time and the pore structure coarsens. It was found in this study that the compressive strength of slag cement paste containing 67.5 wt.% ggbfs also decreases with time after 24 hour hydrothermal processing, but with a small addition of silica fume to the slag cement, the cement strength increases and the pore structure densifies when processed under comparable conditions. Based on observations XRD and SEM, these changes are attributed to: (1) changes in the hydration reactions and products by highly reactive silica fume, such that amorphous products dominate and the strength reducing phase {alpha}-C{sub 2}SH does not form; (2) slower hydration of slag, partially caused by the decreased pH of the pore solution, favors the formation of a dense pore structure; and (3) the space filling properties of the micro particles of silica fume.

  16. Osmundiron, cleaved iron bars and slags (Osmundjern, kloder og kalotslagger)

    DEFF Research Database (Denmark)

    Buchwald, Vagn Fabritius

    1996-01-01

    Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages.......Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages....

  17. Heat Flux Through Slag Film and Its Crystallization Behavior

    Institute of Scientific and Technical Information of China (English)

    TANG Ping; XU Chu-shao; WEN Guang-hua; ZHAO Yan-hong; QI Xin

    2008-01-01

    An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior.The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film.With increasing the binary hasicity,the heat flux of slag film decreases at first,reaches the minimum at the basicity of 1.4,and then increases,indicating that the maximum binary basicity is about 1.4 for selecting"mild cooling"mold powder.The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film.Reerystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.

  18. 真空碳热还原酸浸含钛高炉渣制备 TiC 分析%Preparation of TiC by carbothermal reduction in vacuum and acid leaching process using titanium bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    胡蒙均; 尹方庆; 魏瑞瑞; 邓青宇; 扈玫珑

    2015-01-01

    含钛高炉渣中含有20%~30%的 TiO2,是一种附加值较高的二次资源,但在综合利用过程中存在氧化物还原难度大,硅钛难分离,二次污染严重等问题。基于热力学理论基础,采用真空碳热还原联合酸浸工艺处理含钛高炉渣制备 TiC。结果表明:真空有助于钛氧化物彻底还原,可实现渣中硅钛彻底分离,减少酸耗量,降低二次污染。真空碳热还原联合酸浸工艺处理含钛高炉渣(TiO2含量23%左右)制备 TiC 的最佳条件为:炉渣粒度200目,还原温度1673 K,渣碳质量比100∶38。%Titanium bearing blast furnace slag with 20%-30% titanium dioxide is a valuable second resource.The main problems to utilize the resource are the reduction of the titanium oxides,the separation of titanium and silicon and the second pollution.The main aim of the research is to prepare TiC by the united process of carbothermal reduction in vacuum and acid leaching based on the thermodynamics calculation.The results show that decreasing pressure of the system is helpful for the reduction of the titanium oxides.Titanium and silicon in slag can be separated completely.The second pollution decreases due to evaporation of Mg and SiO produced in vacuum condition.The optimum conditions for the united process to prepare TiC are slag size of 200 mesh,temperature of 1 673 K,and the mass ratio of slag to reductant of 100∶38.

  19. Biofouling on mortar mixed with steel slags in a laboratory biofilm reactor

    Science.gov (United States)

    Sano, K.; Masuda, T.; Kanematsu, H.; Yokoyama, S.; Hirai, N.; Ogawa, A.; Kougo, T.; Yamazaki, K.; Tanaka, T.

    2017-01-01

    The slag produced as by-product in steel-making processes is utilized for various purpose due to its special qualities. Bacteria or other microorganisms generally form the biofilm. They are formed at the interface between materials and water environment by the action of bacteria. Biofilm can cause various problems. Therefore, the control of biofilm formation is needed. In this study, we focused on the application of slag to marine environments and carried out a research on biofouling of mortars mixed with various iron/steel slags through marine immersion and laboratory scale experiments. In this research, we dealt with various mortars. In some cases, iron/steel slags were mixed into mortars. In the laboratory scale research, we observed biofilm formation at the surfaces of sample specimens. As for marine immersion, we carried out the field experiments in summer and winter. Both results were compared. As for laboratory scale experiment, the tap water and artificial sea-water were used. And after the immersion, the specimens were measured and observed by a low vacuum SEM-EDX and the anti-fouling properties were analyzed and discussed. From these results, we confirmed that the biofouling became remarkable with the dissolved iron. Therefore, biofilm formation can be controlled by the concentration of iron/steel slags.

  20. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    Science.gov (United States)

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  1. Effect of Additives on Melting Point of LATS Refining Ladle Slag

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-ming; LI Gui-rong; DING Zhen-tao; DAI Qi-xun; LI Bo

    2007-01-01

    To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, and CaO were used to decrease the melting point of the ladle slag. The melting point was measured using the hemisphere method. The results show that the addition of Al2O3 to the ladle slag increases the melting point. The fluxing action is not remarkable if only CaF2 or CaO is used as the additive. The fluxing action of the composite additive obtained by the mixing of CaO and CaF2 in the mass proportion of wCaO∶wCaF2=2∶1 is preferred. The fluxing action of B2O3 is also notable. When the B2O3 content in mass percent is in the range from 2% to 10%, the corresponding melting point is 1 380 ℃ to 1 290 ℃. The fluxing action of Li2O is the most remarkable. When the Li2O content is up to 5%, the melting point of the slag is lower than 1 300 ℃.

  2. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  3. Primary Phases and Natural Weathering of Smelting Slag at an Abandoned Mine Site in Southwest Japan

    Directory of Open Access Journals (Sweden)

    Yuri Sueoka

    2013-12-01

    Full Text Available Artisanal metallurgical slag produced more than 50 years ago at a mine site in southwest Japan is rich in toxic metals and metalloids. Some of the slag remains on a waste dump and could contaminate the surrounding area through the dissolution of heavy metals and metalloids during weathering. To assess this risk, this study has investigated the behavior of the toxic elements in the smelting slag during weathering. Most of the potentially toxic elements are contained in willemite and/or matte drops. Maximum metal and metalloid concentrations in the slag are 28.1 wt % Fe, 22.7 wt % Zn, 1.63 wt % Cu, 3450 mg/kg Sn, 826 mg/kg Pb, 780 mg/kg As, and 116 mg/kg Cd. Zn is mainly contained in willemite, whereas other metals and metalloids are mainly concentrated in matte drops. The willemite and matte drops are converted to Fe-hydroxides during weathering, indicating that potentially toxic metals and metalloids contained in these phases are released by weathering processes. Therefore, weathering of the artisanal metallurgical slag, containing large amounts of willemite and matte drops, may pollute the surrounding environment.

  4. X-ray fluoroscopic observation of slag foaming; Slag no awadachi gensho no x sen toshi kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y.; Tokumitsu, N. [Nippon Steel Corp., Tokyo (Japan)

    2001-01-01

    Slag foaming caused by slag/metal reaction in a graphite crucible was observed with X-ray fluoroscopic apparatus in order to make clear the effect of bubble size on the foam height and the distribution of bubbles in slag. It was observed that the foam layer was formed when CO bubbles evolved at slag/metal interface became less than approximately 2mm in diameter. The foam height increased with the decrease of bubble size even in case of almost the same gas evolution rate. The size of bubbles decreased with the increase of iron oxide Content in slag and the decrease of sulphur content. It is considered that the bubbles become smaller when slag is wettable with metal. Therefore, the physical properties of slag/metal interface also affect the foam height besides the surface tension or viscosity of slag because they change the bubble size. (author)

  5. Surface tension of expanded slag from steel manufacturing in electrical furnace

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2011-07-01

    Full Text Available In the article a research on the surface tension of slag was conducted from the process of obtaining steel in the electric furnace. Melting in the graphite melting crucible caused the slag to foam. The measurement of the surface tension is being conducted with method of rejection. They make the measurement of maximum power needed for the liquid to reject the working element of the apparatus from the surface. The research was conducted in the temperature of 1 673 – 1 723 K. The results of the measurements allowed to determine the surface tension of slag, which in the analysed scope of the temperature is being changed from 454 to 345 mN•m-1.

  6. Valorization of electric arc furnace primary steelmaking slags for cement applications.

    Science.gov (United States)

    Kim, Hyung-Seok; Kim, Kee-Seok; Jung, Sung Suk; Hwang, Jin Ill; Choi, Jae-Seok; Sohn, Il

    2015-07-01

    To produce supplementary cementitious materials from electric arc furnace (EAF) slags, FeO was reduced using a two-stage reduction process that included an Al-dross reduction reaction followed by direct carbon reduction. A decrease in FeO was observed on tapping after the first-stage reduction, and further reduction with a stirred carbon rod in the second-stage reduction resulted in final FeO content below 5wt%, which is compatible with cement clinker applications. The reduced electric arc furnace slags (REAFS) mixed with cement at a unit ratio exhibited physical properties comparable to those of commercialized ground granulated blast furnace slags (GGBFS). Confocal laser scanning microscopy (CLSM) was used to obtain fundamental information on the cooling characteristics and conditions required to obtain amorphous REAFS. REAFS can be applied in cement mixtures to achieve the hydraulic properties needed for commercial use.

  7. Using a direct-current arc furnace to recover cobalt from slags

    Science.gov (United States)

    Jones, R. T.; Deneys, A. C.

    1998-10-01

    Cobalt can be recovered from a variety of slags by treatment with a carbonaceous reducing agent in a direct-current arc furnace at around 1,500°C. The principal materials suitable for treatment using this technology are primary smelter slags, which typically originate from the processing of sulfide concentrates. The technology has been tested using copper, nickel-copper, and lead smelting slags. In all cases studied, cobalt is recovered as a valuable by-product to help improve overall plant profitability. Pilot-plant tests have demonstrated a cobalt recovery of more than 80 percent at power levels up to 600 kW. Very high recoveries of other valuable elements, such as nickel and copper, have also been achieved.

  8. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN; Yulan; ZHANG; Guohua; CHOU; Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by acid. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 k J/mol. Furthermore, the main products are TiC and SiO2 after leaching.

  9. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  10. Electrochemistry of oxygen ion transport in slag

    Institute of Scientific and Technical Information of China (English)

    鲁雄刚; 丁伟中; 李福燊; 李丽芬; 周国治

    2002-01-01

    A systematic experiment relating to the electrochemistry of oxygen ion transport in slag has been studied in lab.An equivalent circuit has been used to describe ion transfer between metal and slag in this paper and a kinetic model with electrochemical characteristic representing oxygen ion immigration has been worked out.The different experimental phenomena can be explained generally by this model.It can be seen that the theoretical results are in good agreement with experiments.The comparison of experimental data with model calculation proved that the electrochemical model is right.

  11. 活性炭/钢渣吸附-微波氧化法皂化废水处理研究%Study on Activated Carbon/Slag Adsorption-microwave Induced Oxidation Process for Treatment of Saponification Wastewater

    Institute of Scientific and Technical Information of China (English)

    于淑萍; 崔晓雪

    2015-01-01

    以活性炭/钢渣为吸附剂,采用微波诱导氧化法对环氧氯丙烷皂化废水进行降解,考察了活性炭-钢渣用量、 pH值、微波辐射温度、时间、功率等因素对处理效果的影响。结果表明,最佳处理条件为废水:活性炭:钢渣用量固液比为20:1:1,微波辐射功率为850 W,加热温度为100℃,加热时间为25 min, pH值为13。通过正交实验得出pH值对废水处理效果的影响最为显著。在最佳条件下对皂化废水进行连续化处理,去除效果良好。%An effective method of treating saponification wastewater was presented. The technology of microwave radiation with activated carbon and slag adsorbent was used to treat the wastewater. The effective factors such as dosage of activated carbon and slag, pH, and temperature, time and power of microwave radiation were studied. The most optimum treating conditions were as follows: microwave radiation time was 25 min, radiation power was 850 W, pH was 13, wastewater:activated carbon:slag=20:1:1. The pH treatment efficiency was the most obvious based on orthogonal experiments. Its removal efficiency was good under the optimal conditions.

  12. Limitation of Sulfide Capacity Concept for Molten Slags

    Science.gov (United States)

    Jung, In-Ho; Moosavi-Khoonsari, Elmira

    2016-04-01

    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  13. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  14. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  15. Experimental Studies on the Sulfide Capacities of CaO-SiO2-CrOx Slags

    Science.gov (United States)

    Wang, Lijun; Seetharaman, Seshadri

    2010-04-01

    To understand the desulfurization process during the refining of Cr-containing steel grades, this work was initiated to study the reactions between Cr-sulfur and chromium-containing slags. The sulfide capacities of CaO-SiO2-CrOx pseudo-ternary slags were measured using the traditional gas-slag equilibration technique between 1823 K and 1923 K. Sixteen different slag compositions were examined, and two different equilibrium oxygen partial pressures were used to understand the impact of the varying valence of Cr on the sulfide capacities. The results showed that log10 Cs varied linearly with the reciprocal T, and the slope was higher than the corresponding value reported for the binary CaO-SiO2 of corresponding composition. It was difficult to isolate the relative effects of the bi- and trivalent Cr in the slags because the Cr2+/Cr3+ ratio was influenced by the basicity of the slag. By using the equation developed by these authors earlier that related Cr2+/Cr3+ with basicity, oxygen partial pressure, and temperature, it was possible to obtain an approximate trend of the CrO effect on the sulfide capacities; viz. the sulfide shows a decreasing trend as Cr2+ replaces Ca2+ in the slag. With a continued increase of Cr2+ content, indications of the occurrence of a minimum point were observed; beyond which the sulfide capacities showed a slight increasing trend. The latter was attributed, based on slag-structure analysis by Gaskell et al., to the increasing extent of the polymerization reaction releasing oxygen ions for sulfide reactions.

  16. Investigation of Bubble-Slag Layer Behaviors with Hybrid Eulerian-Lagrangian Modeling and Large Eddy Simulation

    Science.gov (United States)

    Li, Linmin; Li, Baokuan

    2016-08-01

    In ladle metallurgy, bubble-liquid interaction leads to complex phase structures. Gas bubble behavior, as well as the induced slag layer behavior, plays a significant role in the refining process and the steel quality. In the present work, a mathematical model using the large eddy simulation (LES) is developed to investigate the bubble transport and slag layer behavior in a water model of an argon-stirred ladle. The Eulerian volume of fluid model is adopted to track the liquid steel-slag-air free surfaces while the Lagrangian discrete phase model is used for tracking and handling the dynamics of discrete bubbles. The bubble coalescence is considered using O'Rourke's algorithm to solve the bubble diameter redistribution and bubbles are removed after leaving the air-liquid interface. The turbulent liquid flow that is induced by bubble-liquid interaction is solved by LES. The slag layer fluactuation, slag droplet entrainment and spout eye open-close phenomenon are well revealed. The bubble diameter distribution and the spout eye size are compared with the experiment. The results show that the hybrid Eulerian-Lagrangian-LES model provides a valid modeling framework to predict the unsteady gas bubble-slag layer coupled behaviors.

  17. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags.

  18. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    Directory of Open Access Journals (Sweden)

    Kawecka-Cebula E.

    2016-03-01

    Full Text Available The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composition of the liquid and the solid phase while cooling the slags from 1673K to 298K was computed using FactSage 6.2 software. The performed equilibrium computations indicated that the slags were not entirely liquid at those temperatures. The addition of cryolite causes a substantial increase of the liquid phase of the slag. It also has a favourable effect on the dephosphorization grade of hot metal. The obtained results were statistically processed and presented in the form of regression equations.

  19. Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We report the adsorption of phosphate and discuss the mechanisms of phosphate removal from aqueous solution by burst furnace slag (BFS) and steel furnace slag (SFS). The results show that the adsorption of phosphate on the slag was rapid and the majority of adsorption was completed in 5~10 min. The adsorption capacity of phosphate by the slag was reduced dramatically by acid treatment. The relative contribution of adsorption to the total removal of phosphate was 26%~28%. Phosphate adsorption on BFS and SFS follows the Freundlich isotherm, with the related constants ofk 6.372 and 1/n 1.739 for BFS, and ofk 1.705 and 1/n 1.718 for SFS. The pH and Ca2+ concentration were decreased with the addition of phosphate, suggesting the formation of calcium phosphate precipitation. At pH 2.93 and 6.93, phosphate was desorbed by about 36%~43% and 9%~11%, respectively.These results indicate that the P adsorption on the slag is not completely reversible and that the bond between the slag particles and adsorbed phosphate is strong. The X-ray diffraction (XRD) patterns of BFS and SFS before and after phosphate adsorption verify SFS is related to the formation of phosphate calcium precipitation and the adsorption on hydroxylated oxides. The results show that BFS and SFS removed phosphate nearly 100%, indicating they are promising adsorbents for the phosphate removal in wastewater treatment and pollution control.

  20. Study of cryolite preparation from fluoride-containing acid slag in aluminium industry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new process of cryolite preparation is studied in this work by selecting a proper system of reaction and weeding impurity technology. The quality of artifial cryolite reaches and exceeds the first level of national standard. The utilization efficient of fluoride-containing acid slag is above 99.5%. It brings considerable economic benefit, and the environment is improved.

  1. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  2. Nieuwe wapens in de slag om groen

    NARCIS (Netherlands)

    Vreke, J.

    2010-01-01

    Groen verliest in en rond steden vaak de slag. Burgers vinden groene gebieden belangrijk, ze stimuleren beweging, bevorderen de integratie en maken huizen meer waard. Toch kiezen bestuurders uiteindelijk vaak toch voor ‘rood’ omdat dat geld en prestige oplevert. In deze bijdrage wordt verslag gedaan

  3. Investigation of Freeze-Linings in Copper-Containing Slag Systems: Part I. Preliminary Experiments

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2013-06-01

    Slag freeze-linings are increasingly used in industrial pyrometallurgical processes to insure that furnace integrity is maintained in aggressive high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat-transfer models. The focus of the present research is to determine the impact of slag chemistry and local process conditions on the microstructures, thickness, stability, and heat-transfer characteristics of the frozen deposit at steady-state conditions. The formation of the freeze-linings is studied under controlled laboratory conditions using an air-cooled "cold-finger" technique for Cu-Fe-Si-Al-O slag at equilibrium with metallic copper relevant to the industrial copper smelting processes. The phase assemblages and microstructures of the deposits formed in the cold-finger experiments differ significantly from those expected from phase equilibrium considerations. The freeze-lining deposits have been found, in general, to consist of several layers. Starting from the cold finger, these layers consist of glass; glass with microcrystalline precipitates; closed crystalline layer; and open crystalline layer. Even at steady-state conditions, there was no primary phase sealing layer of delafossite [Cu2O · (Al, Fe)2O3] present at the deposit/liquid interface—these observations differ markedly from those expected from phase equilibrium considerations. The findings have significant practical implications, and potential for the improved design and operation of industrial metallurgical furnaces.

  4. A Model for Dissolution of Lime in Steelmaking Slags

    Science.gov (United States)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-08-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate

  5. Quantification and Modelling of Fugitive Dust Emissions From Nickel Slag

    Science.gov (United States)

    Sanderson, R. S.; McKenna Neuman, C.

    2009-05-01

    Mining and smelting operations in Northern Ontario, and indeed worldwide, introduce a number of unique sources of fugitive dust and other aerosol pollutants into the surrounding environment from smokestacks, tailings, and slag dumps exposed to wind erosion. Fugitive dust represents a potential health hazard, and as such, mining companies are required to maintain inventories of dust emissions associated with their operations. The purpose of this study was to fully characterize the wind-induced fugitive dust emission rates of nickel slag collected from a slag dump at a smelting facility in Northern Ontario, as dependent on wind speed, surface roughness, duration of weathering, effects of mechanical disturbance, and exposure to rain. PM10 flux rates were measured through combined field monitoring and wind tunnel simulation. In both settings, airborne dust concentrations downwind of the source were measured using four vertically distributed DustTrak aerosol monitors. Wind speed was measured in the wind tunnel using a micro-pitot tube mounted on a programmable traversing slide, and in the field, using five vertically distributed cup anemometers mounted on a mast. The profiles of PM10 and wind speed were used to compute the vertical emission rate (Fv) using a finite difference method. The PM10 emission rates simulated in the laboratory were found to directly overlap those measured on site at the smelting facility over a range of wind speeds, suggesting that Fv values measured in wind tunnel simulations can be used in dispersion modelling with a reasonable degree of confidence. Although showing a strong positive correlation with wind speed, PM10 emissions from nickel slag were found to demonstrate an exponential, temporal decay immediately following any form of mechanical disturbance that resulted in exposure of the silt fraction of the material. Winnowing of this fraction left behind an armoured surface of coarse, non-erodible clasts. It was further determined that

  6. 含钛电炉熔分渣碱熔过程中 Ti元素的选择性富集及MgAl2O4的物相转化规律%Selective enrichment of Ti element and phase transformation of MgAl2 O4 in titanium-containing electric furnace molten slag during the alkali fusion process

    Institute of Scientific and Technical Information of China (English)

    杨洋; 李杨; 郭敏; 张梅

    2015-01-01

    this alkali fusion slag obtained under the optimum conditions as raw materials, potassium hexatitanate nanowhiskers can be successfully synthesized by subsequent processing at 850℃.

  7. Improvement of environmentally relevant qualities of slags from waste-to-energy plants; Verbesserung der umweltrelevanten Qualitaeten von Schlacken aus Abfallverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Alwast, Holger [Prognos AG, Berlin (Germany); Riemann, Axel [RSP GmbH, Herne (Germany)

    2010-10-15

    This expert opinion describes options for improving slag quality (further measures for processing slag, as well as improvements of grate firing in terms of firing-technology), to ensure a slag recovery that is as sustainable as possible. In the context of this project, the term ''slag'' serves as a synonym for solid incineration residues that are generated during the incineration of wastes or of refuse derived fuels and that are separated there (e.g. from the deslagger). The term ''slags'' is also used as a synonym for grate ashes. The main focus of this expertise is on resource and climate protection issues with respect to slag processing. Resource protection refers to the saving of resources and natural raw materials, such as, for example, water and metal ores. Climate protection in this context means CO{sub 2} mitigation through a high specific net energy generation in waste incineration plants, as well as a reduced energy use due to avoided new production of metals, which can be recycled from slag processing. The main measure for improving climate and resource protection in slag processing consists therefore of separating as much metal as possible from slags. By recycling those separated slags, the energy that is needed for the extraction from ores and the raw material ore itself can be saved. This advantage in terms of energy, however, can be partially compensated by the energy use potentially needed for the improvement of slag processing. Further important aspects include the protection of water and soils, as well as the suitability of processed slag for an adequate recovery. These last criteria, however, are not central for this expertise. Currently, 69 municipal solid waste incinerators, hereinafter referred to as Waste-to-Energy (WTE) plants, and 23 refuse derived fuel (RDF) power plants with grate firing are in operation in Germany. Their total capacity amounts to more than 21 million Mg per year. Another 13 RDF

  8. Recent advances in understanding physical properties of metallurgical slags

    Science.gov (United States)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  9. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    Science.gov (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  10. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    Science.gov (United States)

    Shi, Cheng-bin; Cho, Jung-wook; Zheng, Ding-li; Li, Jing

    2016-06-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2-CaO-Al2O3-(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  11. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    Institute of Scientific and Technical Information of China (English)

    Cheng-bin Shi; Jung-wook Cho; Ding-li Zheng; Jing Li

    2016-01-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  12. Activity Calculation in Complex Metallurgical Molten Slag Systems Based on Regular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.

  13. Producing fired bricks using coal slag from a gasification plant in indiana

    Science.gov (United States)

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  14. [Transformation of inorganic nitrogen in slag-wetland during the start-up period].

    Science.gov (United States)

    Sun, Shu-Ming; Shan, Bao-Qing; Peng, Wan-Jiang

    2009-05-15

    Lab-scale subsurface flow slag-wetlands were constructed to study the removal efficiency and transformation processes of low-concentration inorganic N during the start-up period. As for ammonium-dominated wastewater, the removal rates of total nitrogen (TN), ammonium nitrogen (NH4(+)-N), nitrate nitrogen (NO3(-)-N) and nitrite nitrogen (NO2(-)-N) were 0.12 g x (m2 x d)(-1), 0.07 g x (m2 x d)(-1), 0.10 g x (m2 x d)(-1) and 0.04 g x (m2 x d)(-1), respectively. Nitrifying bacteria was not detected by fluorescence in situ hybridization (FISH) on the slag. NH3 volatilization is the main contribution for N removal resulting from high pH (> 10) and surface soil absorbed most of NH3. For nitrate-dominated wastewater, the removal rates of TN and NO3(-)-N were 0.23 g x (m2 x d)(-1) and 0.48 g x (m2 x d)(-1), and NO2(-)-N accumulated by 0.22 g x (m2 x d)(-1) during the process of denitrification. Removal efficiency of inorganic N for nitrate-dominated wastewater was higher than that for ammonium-dominated wastewater during the start-up period of slag-wetlands, so steel slag can be used as a substrate in constructed wetlands for extensive treatment of nitrate pollution.

  15. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  16. Reduction Kinetics of Electric Arc Furnace Oxidizing Slag by Al-Fe Alloy

    Science.gov (United States)

    Lee, Jaehong; Oh, Joon Seok; Lee, Joonho

    2016-09-01

    Effects of temperature and slag basicity on the reduction rate of iron oxide in molten synthetic electric arc furnace oxidizing slag by Al-40 wt.%Fe alloy was investigated. An alloy sample was dropped into molten slag in an MgO crucible. When the initial slag temperature was 1723 K, there was no reduction. However, when the initial slag temperature was 1773 K and the slag basicity was 1.1, the reduction was initiated and the temperature of the slag rapidly increased. When the slag basicity was 1.1, increasing the initial slag temperature from 1773 K to 1823 K increases the reaction rate. As the slag basicity increased from 1.1 to 1.4 at 1773 K, the reaction rate increased. From SEM analysis, it was found that an Al2O3 or a spinel phase at the slag-metal interface inhibited the reaction at a lower temperature and a lower slag basicity.

  17. Optimization of Blended Mortars Using Steel Slag Sand

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum,clinker and steel slag sand (<4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1:1 and the amount of gypsum was 4% by weight while the dosage of clinker ranged from 0% to 24%. The optimization formulation of such mortar was studied. The content of steel slag sand should be less than 50% according to the volume stability of blended mortar, and the dosage of clinker is about 10% based on the strength development.Besides strength, the hydration heat, pore structure and micro pattern of blended mortar were also determined.The experimental results show the application of steel slag sand may reduce the dosage of cement clinker and increase the content of industrial waste product such as GGBFS, and the clinker is also a better admixture for blended mortar using steel slag sand.

  18. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  19. Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Jansson, Jani; Taskinen, Pekka; Hayes, Peter C.; Jak, Evgueni

    2014-06-01

    Pyrometallurgical coppermaking processes are operated under intensive reaction conditions; high process temperatures and vigorous bath agitation is used to increase the kinetics of reactions and to achieve high smelter throughput. Slag freeze-lining reactor wall protection is a widely used technology in coppermaking processes, such as flash smelting and converting reactors. Freeze-linings mitigate and resist the effects of thermal and chemical attack by aggressive slags. In this laboratory-based study, a water-cooled probe "cold finger" technique has been used to investigate freeze-lining formation with calcium ferrite slags in equilibrium with metallic copper; the slag composition reflects that used in the industrial copper flash converting furnace of Rio Tinto—Kennecott Utah Copper. The effects of probe immersion times on the thickness and microstructures in the freeze-lining deposits have been investigated. A range of complex oxide solutions and copper-containing phases have been found in the deposits. The phase assemblages formed from the industrial calcium ferrite slag in the steady-state deposit are very complex and information on the phase equilibria of the multi-component systems with addition of minor elements may not be available. Subsolidus and subliquidus phase equilibria in the Cu-Ca-Fe-O system at metallic copper saturation along with interpolated temperature across the deposit, microstructural changes and compositional trends in the phases in the deposit have been used to understand the formation and characteristics of the phases in the steady-state freeze-lining. Also, it has been shown that under steady-state conditions a dense sealing layer consisting primarily of the spinel primary phase is formed at the deposit/liquid interface; however, the interface temperature is below the liquidus temperature. The findings of the study have potentially important implications for the operation of the converting furnace and the design of freeze linings in

  20. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed.

    Science.gov (United States)

    Pan, Shu-Yuan; Chiang, Pen-Chi; Chen, Yi-Hung; Tan, Chung-Sung; Chang, E-E

    2013-04-01

    Both basic oxygen furnace (BOF) slag and cold-rolling wastewater (CRW) exhibiting highly alkaline characteristics require stabilization and neutralization prior to utilization and/or final disposal. Using CO2 from flue gases as the stabilizing and neutralizing agents could also diminish CO2 emissions. In this investigation, ex situ hot stove gas containing 30 vol% CO2 in the steelmaking process was captured by accelerated carbonation of BOF slag coupled with CRW in a rotating packed bed (RPB). The developed RPB process exhibits superior results, with significant CO2 removal efficiency (η) of 96-99% in flue gas achieved within a short reaction time of 1 min at 25 °C and 1 atm. Calcite (CaCO3) was identified as the main product according to XRD and SEM-XEDS observations. In addition, the elimination of lime and Ca(OH)2 in the BOF slag during carbonation is beneficial to its further use as construction material. Consequently, the developed RPB process could capture the CO2 from the flue gas, neutralize the CRW, and demonstrate the utilization potential for BOF slag. It was also concluded that carbonation of BOF slag coupled with CRW in an RPB is a viable method for CO2 capture due to its higher mass transfer rate and CO2 removal efficiency in a short reaction time.

  1. Electrochemical Method to Accelerate Metal-Slag Reaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrochemical nature of reaction between melt and slag in a closed system was worked out. Experimental results demonstrated that both the rate and reaction extent increase when the electronic conductor or voltage was applied between melt and slag. The bigger the contact area of the conductor with melts is, the faster the reaction rate is. With the increase of applied voltage which is beneficial for electron's migration between metal and slags, the rate and extent of reaction increase.

  2. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  3. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  4. Copper recovery from slag by indirect bio leaching; Recuperacion de cobre en escorias mediante biolixiviacion indirecta

    Energy Technology Data Exchange (ETDEWEB)

    Mazuelos, A.; Iglesias, N.; Romero, R.; Forcat, O.; Carranza, F.

    2009-07-01

    The main source of copper loss from a smelter is copper in discard slag. Slag can contain Cu in concentrations very much higher than those of many ores. Cu is present in slag entrained in very small drops of matte, white metal and blister copper occluded in fayalitic phase. In this work, the technical viability of the BRISA process, that is based on the indirect bio leaching, for this residue has been proved. A sample of slag, containing 2 % of copper, has been chemical, granulometric and metallographic characterized and it has been leached with ferric sulphate solutions in agitated reactors. The influence of several variables have been investigated. Once the best operating conditions had been selecting and an economic estimation had been done (with very really attractive results), the leaching stage has been designed for a plant of 30 tonnes per hour capacity. Cu extractions higher than 70% can be achieved with a residence time of only five hours. Despite of Cu(II) concentration in fed is as high as 30 g/l, bio oxidation stage can supply Fe(III) demanded by ferric leaching stage. (Author) 17 refs.

  5. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    Science.gov (United States)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  6. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-06-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  7. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-01-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  8. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  9. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, Marc A. [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada); Macchi, Arturo [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); Lu, Dennis Y.; Hughes, Robin W.; McCalden, David; Anthony, Edward J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada)

    2010-08-15

    Threshold slag viscosity heuristics are often used for the initial assessment of coal gasification projects. Slag viscosity predictions are also required for advanced combustion and gasification models. Due to unsatisfactory performance of theoretical equations, an artificial neural network model was developed to predict slag viscosity over a broad range of temperatures and slag compositions. This model outperforms other slag viscosity models, resulting in an average error factor of 5.05 which is lower than the best obtained with other available models. Genesee coal ash viscosity predictions were made to investigate the effect of adding Canadian limestone and dolomite. The results indicate that magnesium in the fluxing agent provides a greater viscosity reduction than calcium for the threshold slag tapping temperature range. (author)

  10. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  11. THE INFLUENCE OF JOINT GRINDING OF CEMENT AND COOPER SLAG ON MORTAR PROPERTIES

    Directory of Open Access Journals (Sweden)

    Kravtsov Aleksey Vladimirovich

    2016-08-01

    Full Text Available The problem of applying copper manufacturing waste locating in the Chelyabinsk region as a component of mixed is considered in this article. Application of mixed binder with superplasticizers, based on esters with carboxyl groups, have not sufficiently been studied by the present time due to the diversity of species and complexity of the chemical structure. This trend is current for today’s science because of the growing rates and scales of building production, in particular, of concrete works. Copper slag dumps located in the Ural Federal district haven’t been widely used in building production or in other industrial production by the present time. Efficient utilization of copper production waste materials will help to solve ecological problems in many regions of Russia. Structure formation period of cement stone based on mixed binder made of Portland cement and granulated cooper slag with application of superplasticizer is studied in the article. The authors present a thermal variation diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag in the process of 21 hours of hardening under normal conditions and the results of ultrasound investigation of concrete structure formation period during 5 hours of hardening. The strength development process diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag for 28 days of hardening under normal conditions and the research results of the compressive strength of concrete samples are shown in this article. The obtained characteristics don’t confirm the prospects of applying joint grinding for mortar with the observed kind of non-ferrous metallurgy waste. Also, the obtained results allow us to make a conclusion about little advantages of using this method of binder production. Copper slag can be more effectively used as a component of complex organic and mineral admixture for building production with different purposes and fields

  12. Dissolution Behavior of Rhodium in the Na2O-SiO2 and CaO-SiO2 Slags

    Science.gov (United States)

    Wiraseranee, Chompunoot; Okabe, Toru H.; Morita, Kazuki

    2013-06-01

    To understand the behavior of rhodium during its recovery process, the dissolution behaviors of rhodium in Na2O-SiO2 and in CaO-SiO2 slags at temperatures ranging from 1423 K to 1623 K (from 1150 °C to 1350 °C) and from 1773 K to 1873 K (from 1500 °C to 1600 °C), respectively, in an oxidizing atmosphere were investigated. The solubility of rhodium in the slags was found to increase with increasing oxygen partial pressure, temperature, and the basic oxide content. The correlation between the solubility of rhodium and the oxygen partial pressure suggested that rhodium dissolved into the slags as RhO1.5. The dissolution of rhodium was slightly endothermic: the enthalpy change of the dissolution of solid rhodium was determined to be 50 ± 10 kJ/mol for the 50(mass pct)Na2O-50SiO2; and 188 ± 94 kJ/mol for the 56(mass pct)CaO-44SiO2 slag systems. The increase in the solubility of rhodium with the basic oxide content indicated that rhodium exhibits acidic behavior in slags. The correlation between the solubility of rhodium and the sulfide capacity of the slags suggested that the ionic species of rhodium in slags is the rhodate ion, RhO{2/-}. The rhodate capacity of the slags was defined, and its application to estimate the possible rhodium content in various slag systems was proposed.

  13. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  14. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  15. Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2014-03-01

    Full Text Available This paper presents a significant method and a basic idea of waste heat recovery from high temperature slags based on Time Temperature Transformation (TTT curves. Three samples with a fixed CaO/SiO2 ratio of 1.05 and different levels of Al2O3 were designed and isothermal experiments were performed using a Single Hot Thermocouple Technique (SHTT. The TTT curves established through SHTT experiments described well the variation of slag properties during isothermal processes. In this study, we propose a multi-stage control method for waste heat recovery from high temperature slags, in which the whole temperature range from 1500 °C to 25 °C was divided into three regions, i.e., Liquid region, Crystallization region and Solid region, based on the TTT curves. Accordingly, we put forward an industrial prototype plant for the purpose of waste heat recovery and the potential of waste heat recovery was then calculated. The multi-stage control method provided not only a significant prototype, but also a basic idea to simultaneously extract high quality waste heat and obtain glassy phases on high temperature slags, which may fill the gap between slag properties and practical waste heat recovery processes.

  16. Byproduct aggregate. Copper slag aggregate, ferronickel slag aggregate; Fukusan kotsuzai. Do suragu kotsuzai, fuero nikkeru suragu kotsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, Toshitaka

    1998-08-10

    Copper slag aggregate and ferronickel slag aggregate has not only usual substitute of sand or crushed sand but many features unlike sand or unlike crushed sand. It has many features unlike sand or crushed sand. It seems that especially, behavior of the particulates minute is features of deserving in addition, the examination in future. Of course, one feature also consists on the merit on the demerit by the use. And, copper slag aggregate, ferronickel slag aggregate have also limited the production place at the output of about 2 million annual production tons. These features are utilized, and in addition, wants to teach and want to receive the wider usage. (NEDO)

  17. Steel mill slags energy potential: the case of the steel factory of Arcelor-Mittal in Asturias (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Alvarez, Eduardo; Trashorras, Antonio J.G.; Xiberta Bernat, Jorge [University of Oviedo, Energy Department, Oviedo, Asturias (Spain); Suarez Cuesta, Jose Manuel [Arcelor-Mittal Asturias, Aviles, Asturias (Spain)

    2012-10-15

    Slag accounts for most of the residuals or by-products of the steel manufacturing process and represents a not inconsiderable amount of energy waste and CO{sub 2} emissions. Energy recovery from steel mill slags is not actually performed because of the difficulty of the industrial implementation, but the actual demand and the incentives for new electricity generation plants based on renewable energies and on industrial waste heat recovery offer a new opportunity to evaluate the feasibility of this process. This article presents a review of the slag energy potential on a global scale, and a proposal for a recovery plant in the factories of Arcelor-Mittal in Asturias (Spain), based on a steam Rankine cycle for electricity production in a turbine. The plant production and viability have been analyzed using the typical technical and economic values for this kind of plant. Also, a parametric study has been performed on the heat recuperator efficiency and investment rate. (orig.)

  18. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    OpenAIRE

    Sun-Woo Kim; Seok-Joon Jang; Dae-Hyun Kang; Kyung-Lim Ahn; Hyun-Do Yun

    2015-01-01

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This p...

  19. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control

    Directory of Open Access Journals (Sweden)

    Elie Kamseu

    2016-05-01

    Full Text Available Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS and white (WSS steel slag to prepare alkali-activated (AAS mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol % the pore network of B compared to W samples (~16 vol %. However, W series remained with the higher cumulative pore volume (0.18 mL/g compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity.

  20. Corrosion of steel bars in cracked concrete made with ordinary portland, slag and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. The performance of these cements was then examined for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. The specimens were 100 x 100 x 600 mm prisms of different types of cement. Water-to-cement ratios were 0.45 and 0.55. Both tap water and seawater were used as mixing water. The samples were exposed in tidal pools for 15 years to evaluate the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 19 tabs., 13 figs.

  1. Investigation of Copper Ammonia Leaching from Smelter Slags: Characterization, Leaching and Kinetics

    Science.gov (United States)

    Bidari, Ehsan; Aghazadeh, Valeh

    2015-10-01

    Although ammonia leaching of copper from slags has been reported generally as a part of copper slag utilization methods, but no detailed studies have been reported in the literature. In this research, we tried to investigate the effect of different parameters on ammonia leaching of copper from copper smelting slag by identifying different copper-bearing phases and following them during leaching time. Mineralogical characterization of the smelting slag (1.7 pct Cu) was done using X-ray fluorescence, X-ray diffraction, optical microscopy, diagnostic leaching tests, and scanning electron microscopy. The characterization studies indicated that main copper-bearing species are soluble copper oxides and chalcocite along with minor amount of covellite, bornite, blister copper particles, and chalcopyrite. It was also found that only approximately 0.2 pct Cu was present in the insoluble bulk silicate phases. These results suggest that approximately 88 pct of the total copper of slag could be extracted by ammonia sulfide leaching. Leaching tests were carried out and the effects of various parameters, namely pH, ammonia concentration, temperature, presence of oxygen, stirring speed, and pulp density were examined on copper leaching. The temperature and stirring speed had the most pronounced effect on the copper leaching, whereas ammonia affected the leaching yield at low concentrations of ammonia. It was found that 78 pct of Cu could be extracted within 4 hours and under optimum conditions: T = 343 K (70 °C), 2M ammonia, pH 10.5, stirring speed = 900 rpm, pulp density = 10 pct ( w s/ v). The kinetic data were analyzed with the shrinking core models, and it was found that the leaching process is controlled by both the interfacial transfer and diffusion across the product layer and the activation energy is calculated to be 49.4 kJ mol-1.

  2. On the Comprehensive Utilization of Blast Furnace Slag%浅析高炉矿渣的综合利用

    Institute of Scientific and Technical Information of China (English)

    张国忠; 李广军; 司有宝; 郑秀梅; 冯砚; 刘继梅

    2014-01-01

    Blast furnace slag is the solid waste produced in the steelmaking process, and it has a high value in use. It is mainly used in building construction, in which the slag cement, slag concrete, slag and refractory brick road, railway projects are more common. But now, the study of slag is not deep enough, so this paper proposes to increase research efforts, so that it can be better used in more areas.%高炉矿渣是炼钢过程中产生的固体废弃物,具有很高的利用价值。主要应用于建筑工程中,其中在矿渣水泥、矿渣混凝土、矿渣耐火砖及道路、铁道工程中比较常见。但目前,对矿渣的研究不够深入,建议加大研究力度,使其能更好的应用于更多领域。

  3. Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-04-01

    Full Text Available The rheological properties of liquid and semi-solid systems of slag and hot metal in a blast furnace are extremely important from the perspective of their dripping in the unit. The rheological nature and the values of the dynamic viscosity coefficient of liquid and semi-solid phases - slag and hot metal - determine the permeability of the zones in which those systems exist. The modelling of dripping processes and e.g. static and dynamic holding/retention of liquid in the bed, requires an accurate description of the rheological behaviour of slag and iron systems. Determining the liquid flow through the lump bed of the blast furnace is based on the assumption that liquids in the unit in the whole range of their occurrence are similar to a Newtonian ideal liquid. This study presents an analysis of the findings of high-temperature rheometric measurements of CaO-SiO2-Al2O3-MgO systems, liquid, semi-solid slags of the blast furnace type doped with TiO2 and solids in the form of TiN. The tests were performed within a temperature range of 1310-1490°C. Also measurement results for glycerol solutions with concentrations of 86% and 100% at the ambient temperature, simulating blast furnace slags with various contents of solids - PC, anthracite - are presented.

  4. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper

    Science.gov (United States)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.

    2016-10-01

    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  5. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.

    2017-01-01

    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  6. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    Science.gov (United States)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  7. Refractory Degradation by Slag Attack in Coal Gasification

    Science.gov (United States)

    2009-02-01

    REFRACTORY DEGRADATION BY SLAG ATTACK IN COAL GASIFICATION Jinichiro Nakano 1,2 , Sridhar Seetharaman 1,2 , James Bennett 3 , Kyei-Sing...00-2009 4. TITLE AND SUBTITLE Refractory Degradation by Slag Attack in Coal Gasification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  8. China Customs Removed the Import Tax on Titanium Slag

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The long waited solution to the problem relating to the import of titanium slag has finally resolved. According to China Customs report, the import of titanium slag no longer requires tax payment as from January 1, 2007. This decision will help with the healthy development of China’s titanium industry and increase China’s competitiveness in the international marketplace.

  9. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  10. Micronutrient availability from steel slag amendment in pine bark substrates

    Science.gov (United States)

    Steel slag is a byproduct of the steel industry that can be used as a liming agent, but also has a high mineral nutrient content. While micronutrients are present in steel slag, it is not known if the mineral form of the micronutrients would render them available for plant uptake. The objective of...

  11. Phase analytical studies of industrial copper smelting slags. Part I: Silicate slags

    Science.gov (United States)

    Rüffler, R.; Dávalos, J.

    1998-12-01

    The pyrometallurgical extraction of copper from sulfide ore concentrates is determined by the behaviour of the associated iron during smelting. Hence, 57Fe Mössbauer spectroscopy is an attractive tool for studying the phases in silicate slags from German and Chilean smelting plants. Other methods used were ore microscopy, electron microprobe analysis, and X-ray powder diffraction.

  12. Roles of Mineralogical Phases in Aqueous Carbonation of Steelmaking Slag

    Directory of Open Access Journals (Sweden)

    Huining Zhang

    2016-05-01

    Full Text Available Mineralogical phases of steelmaking slags have significant influences on the carbonation of the slags. In this paper, the effects of temperature and reaction time on the conversion of calcium-related phases and the carbonation degree of a slag sample were studied. The experimental conditions were a liquid-to-solid ratio of 20 mL/g, a carbon dioxide flow rate of 1 L/min and a slag particle size of 38–75 μm. The results show that the optimum carbonation temperature and reaction time are 60 °C and 90 min, respectively, and calcite phase content is about 26.78% while the conversion rates of Ca3Al2O6, CaSiO3, Ca2SiO4 and free CaO are about 40%, 42.46%, 51% and 100%, respectively, and the carbon dioxide sequestration efficiency is about 170 g/kg slag.

  13. Slag-Resistance of MgAlON Spinel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The slag-resistance and microstructural changes after the slag tests of MgAlON spinel containing different amount of nitrogen were studied by means of crucible slag-resistant experiment, SEM and EDS in the work. The results show that the slag-resistance of MgAlON is dependent on the nitrogen content, and the optimum amount is 2.88%. The structure is not changed although the grains have been permeated by some silicon, calcium and iron. A glass phase which contained nitrogen formed in the metamorphic layer. The glass can improve the ability of the slag-resistance of MgAlON because of its higher viscosity.

  14. Chemical and mineralogical characterizations of a copper converter slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A copper converter slag was examined chemically and mineralogically to determine its existing phases, in particular those containing Co and Cu. The slag consists predominantly of fayalite and magnetite, together with some glass,chalcocite, and metallic copper. Copper is entrapped in the slag mostly as chalcocite and metallic copper, as well as trace copper oxide. There was no indication of any independent Co mineral in the slag, but Co was found to be enriched in fayalite and megnetite as solid solution, although Co was detected in all the phases of the slag by SEM-EDX (scanning electron microscopy equipped with model EDAX-9100 energy dispersive spectrometer) and WDS (model WDX-2A X-ray wave-length dispersive spectrometer).

  15. Modeling and control of copper loss in smelting slag

    Science.gov (United States)

    Tan, Pengfu

    2011-12-01

    A series of technical improvements have been implemented to address the issue of high copper losses in rotary holding furnace (RHF) slag, which were experienced at the Xstrata Copper Smelter at Mount Isa in 2007 and 2008. The copper losses in smelting slag in the RHF were more than 3% in 2006 and 2007. Thermodynamic models and viscosity models have been applied in the operation of Xstrata Copper Smelter in Australia. The theory of RHF key performance indicators has also been developed to reduce the copper losses in RHF slag. The RHF KPIs Theory has been applied in Mount Isa Copper Smelter. The copper losses in RHF slag dropped from 3.1% in 2007 to 0.76% in April 2009. The average copper loss in RHF slag in 2009 and 2010 was about 0.9%.

  16. Effect of Ce2O3 on Structure, Viscosity, and Crystalline Phase of CaO-Al2O3-Li2O-Ce2O3 Slags

    Science.gov (United States)

    Qi, Jie; Liu, Chengjun; Zhang, Chi; Jiang, Maofa

    2017-02-01

    Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.

  17. Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing.

    Science.gov (United States)

    Acosta, A; Iglesias, I; Aineto, M; Romero, M; Rincón, J Ma

    2002-01-01

    The subject of this study is the application to the construction of soft mud bricks (also known as pressed bricks), both green and heat-treated bodies, built from raw materials from Santa Cruz de Mudela, Ciudad Real, and IGCC slag from the power central of Puertollano (Ciudad Real, Spain). For this purpose, industrial level tests have been performed: the production of these kind of bricks from mixes of waste from ores of construction clays and to significant fraction of different ratios and clay granulometries mixed with IGCC slag. The results of this experimentation suggests that not only can IGCC slag be applied to a ceramic process, but also its use gives several advantages, as water and energy savings, as well as improvements on the final properties of products.

  18. Catalysts derived from waste slag for transesterification

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Zhang; Wei Huang

    2011-01-01

    MgO-CaO/SiO2 solid catalysts derived from waste slag (WS) of metal magnesium plant were prepared.The catalytic performances were evaluated in the transesterification of rapeseed oil with methanol to biodiesel in a 500 mL three-necked reactor under atmospheric pressure.The basic strengh of the catalyst reached 22.0 measured by indicators accroding to Hammett scale.The results show that the MgO-CaO/SiO2 is an excellent catalyst for transesterification, and the conversion of rapeseed oil reach 98% under the optimum condition.

  19. A Novel Conversion of Ti-Bearing Blast-Furnace Slag into Water Splitting Photocatalyst with Visible-Light-Response

    Science.gov (United States)

    Lü, Huihong; Li, Ning; Wu, Xingrong; Li, Liaosha; Gao, Zhifang; Shen, Xingmei

    2013-12-01

    A novel visible-light-response photocatalyst was prepared through the heat treatment of Ti-bearing blast-furnace slag with sodium nitrate and subsequently leaching processes in which most of the SiO2, Al2O3, and MgO in Ti-slag (TS) have been separated. The photocatalytic activity of the TTS was studied by observing the evolution of H2 under the UV-Vis and visible light. Compared with the TS and commercial perovskite CaTiO3, the sample prepared exhibited an exclusive visible-light-response activity and enhanced H2 evolution.

  20. Cu-Zn slags from Røros (Norway): a case study of rapid cooling and crystal nucleation

    Science.gov (United States)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of Røros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. Røros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. Røros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material

  1. Cu-Zn Slags from R⊘ros (Norway): A Case Study of Rapid Cooling and Crystal Nucleation

    Science.gov (United States)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of R⊘ros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. R⊘ros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. R⊘ros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material.

  2. Characteristics of Anorthite-Pyroxene Ceramics Made from Hot-Poured Steelmaking Slag

    Science.gov (United States)

    Li, Bowen; He, Mingsheng; Hwang, Jiann-Yang; Gan, Wangui

    2017-02-01

    Steelmaking slag is an alkaline byproduct generated from the steelmaking process. It consists mainly of oxides of calcium, iron, silicon, magnesium, and aluminum. It has a volumetric production in the steelmaking industry which has made a great impact on environment remediation. In this study, anorthite-pyroxene ceramic was prepared with hot-poured steelmaking slag, kaolin, and quartz with a sintering process. The ceramic products can be well sintered by heating at 1200°C, but they melted at 1300°C. The major mineral phases were anorthite, pyroxene, and spinel when sintering at 1150°C, while the characteristic peaks of belite, alite, and quartz in raw materials disappeared. The major mineral components of the ceramic become anorthite and pyroxene at 1200°C. The additional mixed wollastonite was involved in a sintering reaction when the temperature increased to 1200°C. The newly crystalized grains were uniformly formed and distributed.

  3. Processing of Gold-containing Slag from Sulfuric Acid Production Using Sulfatizing Roasting Followed by Chlorine Leaching%含金硫酸渣硫酸盐化焙烧-氯化浸金研究

    Institute of Scientific and Technical Information of China (English)

    尤大海; 张亚辉; 隆岗; 涂博; 黄俊玮

    2014-01-01

    针对难处理含金硫酸渣进行了硫酸盐化焙烧-氯化(氯酸钠-氯盐)浸出试验研究,考察了氯酸钠用量、氯化钠用量、液固比、浸出时间、浸出温度、焙烧预处理等因素对金浸出率的影响。研究结果表明,在优化的试验条件:氯化钠用量为80 kg/t,氯酸钠100 kg/t,反应温度80℃,液固比为3,反应时间为4 h下,处理该含金硫酸渣可以得到91.44%的金浸出率。%Sulfatizing roasting and chlorine leaching of refractory gold-containing slag from sulfuric acid production have been investigated. The effects of sodium chlorate dosage, sodium chloride dosage, liquid-solid ratio, leaching time, reaction temperature and pretreatment condition on leaching recovery of gold have been studied. The results show that the leaching rate can reach as high as 91.44% under the optimum conditions that the addition of NaClO3 is 100 kg/t, the addition of NaCl is 80 kg/t, the liquid-solid ratio is 3, the leaching temperature is 80℃ and the leaching time is 4.0 h.

  4. Corrosion Effects on the Strength Properties of Steel Fibre Reinforced Concrete Containing Slag and Corrosion Inhibitor

    OpenAIRE

    Sivakumar Anandan; Sounthararajan Vallarasu Manoharan; Thirumurugan Sengottian

    2014-01-01

    Corrosion in steel can be detrimental in any steel rebar reinforced concrete as well as in the case of steel fibre reinforced concrete. The process of corrosion occurring in steel fibre incorporated concrete subjected to corrosive environment was systematically evaluated in this study. Concrete specimens were prepared with steel fibre inclusions at 1.5% Vf (volume fraction) of concrete and were added in slag based concrete (containing manufactured sand) and replaced with cement at 20%, 40%, ...

  5. Production of Welding Fluxes Using Waste Slag Formed in Silicomanganese Smelting

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Kozyreva, O. E.; Lipatova, U. I.; Filonov, A. V.

    2016-04-01

    The possibility in principle of using slag, which is formed in the silicon-manganese smelting process, in producing welding fluxes is shown. The composition of and technology used for a new fused flux has been designed. A comparative evaluation of the new flux and the widely used AN-348 type flux was done. It has been proved that the new flux has high strength properties.

  6. Dissolution Kinetics of SiO2 into CaO-Fe2O3-SiO2 Slag

    Science.gov (United States)

    Yu, Bin; Lv, Xuewei; Xiang, Shenglin; Xu, Jian

    2016-06-01

    High-basicity sinter is the predominant Fe-bearing material used in blast furnace process in East Asia. The dissolution of SiO2 into molten calcium ferrite influences the assimilation process. In this study, a rotating cylinder method was used to explore the dissolution kinetics of SiO2 into CaO-Fe2O3-SiO2 slag. The influencing factors, including temperature, rotating time and speed, and initial composition of the slag, were considered. Results showed that the dissolution rate increased with increasing rotation speed and temperature, whereas the increase in ω(SiO2) or ω(Fe2O3)/ ω(CaO) ratio in the initial slag composition decreased the dissolution rate. The diffusion coefficient and activation energy of SiO2 during the dissolution process ranged from 2.09 × 10-6 to 6.40 × 10-6 cm2 s-1 and 106.62 to 248.20 kJ mol-1, respectively. Concentration difference between the boundary layer and bulk phase was the primary driving force of the dissolution process; however, this process was also influenced by the slag viscosity and ion diffusivity.

  7. Alkaline activated slag cements. Determination of reaction degree

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2001-03-01

    Full Text Available The aim of the present work was to evaluate the validity of non-calorimetric different methods, used in the determination of reaction degree of alkaline activated slag pastes. The methods used were: (a chemical separation by methanol-salicylic acid; (b determination of the weight loss mass between 100-600°C in TG curves, associated to chemically combined water; (c quantification of the -74 ppm signal in 29Si MAS-NMR spectra. The parameters considered in the process were: nature of the alkaline activator (Waterglass, Na2CO3 and NaOH, activator concentration (4% and 3% Na2O in mass with respect to the slag, curing temperature (25 and 45°C, slag specific surface (460 and 900 m2/kg and time of reaction (from 7 days to 18 months. The results obtained indicate that none of the three methods is definitive but complementary and they provide to follow the reactive evolution of the alkaline activated slag cements. The method based on the quantification of the -74 ppm signal in the 29Si MAS NMR is the most suitable method.

    El objetivo del presente trabajo fue evaluar la validez de diferentes métodos, no calorimétricos, utilizados en la determinación del grado de reacción de pastas de escoria activada alcalinamente. Los métodos utilizados fueron: (a método de separación química por disolución en metanol ácido-salicílico; (b determinación de las pérdidas de masa entre 100-600°C en las curvas de TG, pérdidas asociadas a la cantidad de agua químicamente combinada: (c cuantificación de la señal de -74 ppm de los espectros de 29Si RMN MAS. Las variables consideradas en el proceso fueron: naturaleza del activador alcalino (Waterglass, Na2CO3 y NaOH, concentración del activador (4% y 3% de Na2O en masa respecto a la escoria, temperatura de curado (25 y 45°C, superficie específica de la escoria (460 y 900 m2/kg y

  8. Melting features and viscosity of SiO2-CaO-MgO-Al2O3-FeO nickel slag in laterite metallurgy

    Directory of Open Access Journals (Sweden)

    Pan C.

    2013-01-01

    Full Text Available Physic-chemical properties of slag at high temperature were very important for the production of ferronickel alloy by pyrometallurgical process. It determines the operation efficiency, metal recovery ratio, energy consumption and the distribution of elements (like S and P between the slag and metal. In the present work, the effect of slag basicity on melting features and viscosity of the slag was investigated. The basicity of the SiO2-CaO-MgO-Al2O3-FeO quinary slag system varied from 0.76 to 0.99. The results showed that: 1 all the slag samples began to soften at the same temperature; 2 the softening temperature, melting temperature and flowing temperature decreased with the increase of basicity from 0.76 to 0.92, after that, the temperatures would increase sharply. 3 the inflection point temperature of viscosity-temperature curve became larger and larger with the increase of basicity within 0.76 ~ 0.99.

  9. A Preliminary Research of Slag Excavated at Shuzhuangtai, Zhenghan Ancient City Site%郑韩故城梳妆台出土炉渣初步研究

    Institute of Scientific and Technical Information of China (English)

    李延祥; 刘海宇; 杜宁; 蔡全法

    2012-01-01

    The slag samples from Shuzhuangtai at Zhenghan ancient city site, Xinzheng, Henan province have been examined and analyzed using scanning electron microscope with energy-dispersive spectrometry (SEM-EDS). Results indicate that slag from this site can be divided into three categories: slag from copper smelting, slag from lead smelting and slag from bronze melting. The slag is identified with good density, degree of silication, melting point and liquidity and low metal content. Furthermore, this paper gives a preliminary discussion of the smelting process and products.%本文运用扫描电子显微镜及能谱分析(SEM—EDS)等研究方法,对郑韩故城的炉渣样品进行科学分析。结果表明,炉渣可分三类,第一类炉渣为冶炼红铜产生的,第二类炉渣为冶炼金属铅产生的,第三类炉渣为熔炼锡青铜产生的。炉渣有合适的密度、硅酸度、熔点及良好的流动性,渣中金属量较低,熔炼的还原气氛较好。在此基础上,本文对冶炼工序及产品进行了分析和推断。

  10. Characterization of chilean copper slag smelting nineteenth century

    Directory of Open Access Journals (Sweden)

    Amin Nazer

    2016-12-01

    Full Text Available The aim of this work is to characterize four copper smelters slag nineteenth century, from abandoned landfills in Atacama Region - Chile, using the techniques of X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM, particle analysis by laser diffraction (ADL, Fourier Transform Infrared Spectroscopy (FTIR and thermogravimetric analysis (TGA. Copper slags studied were chemically classified as acidic slags, this slags presented higher SiO2 content (38–49% than Fe2O3 (18–37% and a significant amount of CaO (8–26% and Al2O3 (8.5%. Mineralogy and structure was varied, presenting one of them an amorphous structure and the remaining three, a crystalline structure with partially amorphous character. The majority mineral phases presented in the copper slag were diopside, fayalite, magnetite, cristobalite and clinoferrosilita. Calcium levels indicate that the slags could have cementitious properties for use as a binder in construction materials. Moreover, the significant amount of slag available and CuO content (0.6–1.2% show that may be of interest as raw material for metal recovery.

  11. Vanadium bioavailability in soils amended with blast furnace slag.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  12. On the Dissolution Behavior of Sulfur in Ternary Silicate Slags

    Science.gov (United States)

    Kang, Youn-Bae; Park, Joo Hyun

    2011-12-01

    Sulfur dissolution behavior, in terms of sulfide capacity ( C S), in ternary silicate slags (molten oxide slags composed of MO - NO - SiO2, where M and N are Ca, Mn, Fe, and Mg), is discussed based on available experimental data. Composition dependence of the sulfur dissolution, at least in the dilute region of sulfur, may be explained by taking into account the cation-anion first-nearest-neighbor (FNN) interaction (stability of sulfide) and the cation-cation second-nearest-neighbor (SNN) interaction over O anion (oxygen proportions in silicate slags). When the Gibbs energy of a reciprocal reaction MO + NS = MS + NO is positive, the sulfide capacity of slags with virtually no SiO2 or low SiO2 concentration decreases as the concentration of MO increases. However, in some slags, as SiO2 concentration increases, replacing NO by MO at a constant SiO2 concentration may increase sulfide capacity when the basicity of NO is less than that of MO. This phenomenon is observed as rotation of iso- C S lines in ternary silicate slags, and it is explained by simultaneous consideration of the stability of sulfide and oxygen proportions in the silicate slags. It is suggested that a solution model for the prediction of sulfide capacity should be based on the actual dissolution mechanism of sulfur rather than on the simple empirical correlation.

  13. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  14. Ecological and economic solution for removing and dumping the slag and ash from coal-fired low capacity boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru Gardan; Laurentiu Maier; Nistor Bujdei; Maria Gardan [Institute of Power Studies and Design, Timisoara (Romania)

    2003-07-01

    The removal of ash and slags from fossil-fuel power plants and their transport to and storage on dumps are discussed. A new dense slurry ash removal process developed by IPSE and Termoelectrica is described. This was successfully tested at Timisoara coal-fired power plant, Romania. 2 figs., 1 tab.

  15. Slag Corrosion Resistance of β-Sialon-Al2O3 Composites-Part Ⅱ.Kinetics

    Institute of Scientific and Technical Information of China (English)

    LIYoufen; HONGYanruo; 等

    2001-01-01

    The kinetic process of slag corrosion for β-Sialon and β-Sialon-Al2O3 composites has been studied by means of dip method (static and self-rotating),The corrosion model is buitl and the formula of corrosion rate is deduced,which are in accordance with experimental results.

  16. OPTIMIZATION IN THE RECOVERY OF Au AND Ag VIA CYANIDATION OF FOUNDRY IN SLAG

    Directory of Open Access Journals (Sweden)

    Natalia Hidalgo

    2014-03-01

    Full Text Available This work aim was to recover and improvethe extraction of gold and silvercontained in the slag smelting, using the same metallurgical processes as in gold ores.The slag was concentrated in a centrifuge type Knelson, obtaining a(C1 concentrate and a (T1 tail. In order to optimize the recovery, an intensive T1 leaching was conducted. The variables used were: particle size, NaCN concentration (2000 to 4000 g/cm3 and aeration, with the residence time of 120 minutes. It is concluded that the recovery of Au, using gravity concentration (Knelson centrifuge is 83.6%, with Ag recovery of 52.5%. Au recovery is optimized to 90.4% by means of leaching tail centrifugal separation and 45.6% of Ag. The optimal conditions are: 4000 g/cm3of NaCN and artificial aeration, size [-14 # - # +35], in a lapse of 98 hours.

  17. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  18. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    Science.gov (United States)

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.

  19. Early Stage Hydration Process of Cementitious Material Prepared with Red Mud, Slag, Gypsum and Small Smounts of Cement Clinker%赤泥-矿渣-石膏-少熟料胶凝材料的初期水化过程

    Institute of Scientific and Technical Information of China (English)

    祝丽萍; 倪文; 高术杰; 王中杰; 张玉燕

    2012-01-01

    赤泥-矿渣-石膏-少熟料胶凝材料在胶结充填过程中表现出良好的保水性及早强、高强等性能,可以作为充填专用胶结剂.本文综合净浆试块的凝结时间、强度发展以及扫面电镜下的微观结构,分析了材料的初期水化过程,并采用XPS研究了不同元素之间旧组合分解和新组合的形成.结果表明水化3h时体系生成Ca(OH)2和凝胶类物质,这些水化产物使得浆体凝结硬化.4h后矿渣中的部分硅氧四面体参与反应,缩聚成了聚合度较高的硅酸盐矿物,净浆试块产生强度.水化6h后,S2 p3/2的结合能大幅增长,体系生成了较多的硫酸盐矿物,它们对强度的发展起到了较大作用.%The cementitious material prepared with red mud, ground granulated blast furnace slag ( GGBS) , flue gas desulfurization gypsum ( FGDG) and a small amount of cement clinker obtained good performances in water-retention, early strength and high strength when it used for cemented backfilling. This material can be used as special cement for backfilling. The early stage hydration of the material was analyzed through the setting time, strength development and microstructure. The decomposition of old system and the formation of the new mineral were also studied by X-ray photoelectron spectroscopy (XPS). Results show that Ca(0H)2 and gels formed at 3 h after hydration, resulting in the setting and hardening for the cement paste. The samples obtained strength at 4 h, which is attributed to the formation of silicates with higher polymerization degree, which condensed from oxygen-silicon tetrahedron. At 6 h, the binding energy of S2 p3/2 increased suddenly, and some sulfate minerals formed, which made a great contribution to the rise of strength.

  20. Study on Apparent Viscosity and Structure of Foaming Slag

    Science.gov (United States)

    Martinsson, Johan; Glaser, Björn; Sichen, Du

    2016-10-01

    Foaming slag was generated using induction heating. The foam was found non-Newtonian having much higher apparent viscosity compared to the dynamic viscosity of pure slag. Quenched foam was examined. The appearance of the foaming slag was very different from silicone oil-gas foam. The size of gas bubbles ranged from 0.1 to 4 mm (while in the case of silicone oil, 1 to 2 mm). The gas fraction in the foam was considerably lower than in the case of silicone oil.

  1. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  2. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    Science.gov (United States)

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo

    2012-01-01

    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  3. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  4. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    Science.gov (United States)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  5. Activity of Reducing Steel Slag of EAF

    Institute of Scientific and Technical Information of China (English)

    GUO Chinhsiang; HWANG Chaolung; LIN Tingyi

    2011-01-01

    Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF)steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for research tests. The chemical properties, compound compositions, activities and contents of main expansive compounds were tested. The results showed that the field sampled RSS had a very high crystallinity and hydraulicity with main chemical compositions close to those of Portland cement. It can be known from the study that in case of C/S ratio higher than 2.0, the main compound compositions are C2S, C3S, C2F and f-CaO. However, after the RSS was stored for six months, an obvious variation occurred with potential pre-hydration in RSS, where the SO3 content was slightly reduced and the compressive activity index was obviously higher than that at the 28th day.

  6. Properties of Industrial Slag as Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    A. Ananthi

    2015-04-01

    Full Text Available The main objective of this paper is to use the industrial waste such as bottom ash and Weld Slag (WS as the partial replacement for fine aggregates in concrete. This paper presents the chemical analysis and strength properties of industrial solid waste such as bottom ash, weld slag 1 (WS 1 and weld slag 2 (WS 2. Their chemical compositions were identified by X-ray powder diffraction (XRD analysis. The qualitative and quantitative elemental analysis of the bottom ash and weld slag was recognized by energy dispersive X-ray analysis and their morphology were studied by Scanning Electron Microscope (SEM. The compressive strength of concrete with 10% replacement of fine aggregate to the industrial waste shows higher strength than the normal concrete and hence this industrial waste can be used as fine aggregate in concrete.

  7. Removal of phosphate from aqueous solution with blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  8. Preparation of Glass Ceramic Based on Granulated Slag and Cullet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet.The content of granulated slag ranges from 50%-60%wt in the glass compositions. The samples were analyzed by DTA, SEM and XRD.The results show that the main crystal phase of the glass-ceramic is β-CaSiO3,Which is in scattering fiber or column form.The applying properties have also been measured.

  9. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    OpenAIRE

    2015-01-01

    The slagging and fouling characteristics of the heat recovery steam generator (HRSG) for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF), X-ray powder diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the ash samples. The results show that low melting point salt Na 2 SO 4 and composit...

  10. Desulfurization ability of refining slag with medium basicity

    Science.gov (United States)

    Yu, Hui-xiang; Wang, Xin-hua; Wang, Mao; Wang, Wan-jun

    2014-12-01

    The desulfurization ability of refining slag with relative lower basicity ( B) and Al2O3 content ( B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity ( C S) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution ( L S). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO ( a CaO), with no deterioration of C S compared with conventional desulfurization slag. The measured L S between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  11. Modelling chloride diffusion in concrete: Effect of fly ash and slag

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.D.A. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering; Bamforth, P.B. [Taywood Engineering Ltd., Southall (United Kingdom)

    1999-04-01

    The ability of concrete to resist the penetration of chloride ions is a critical parameter in determining the service life of steel-reinforced concrete structures exposed to deicing salts or marine environments. Data from long-term field and laboratory studies of concrete exposed to chloride environments were analyzed using a chloride transport model developed at the University of Toronto. The results show that the incorporation of fly ash and slag may have little impact on transport properties determined at early ages (e.g., 28 days), but can lead to order of magnitude improvements in the long term. This means that the rate of chloride penetration during the first 6 months or so of exposure is similar for concretes with and without these materials. However, after a few years of exposure, chloride ingress slows to a much-decreased rate in fly ash and slag concretes, leading to dramatic increases in the predicted service life. Predictive models and laboratory test methods for determining chloride ingress should take account of the time-dependent nature of the transport processes in concrete, especially when supplementary cementing materials, such as fly ash or slag, are used.

  12. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2005-01-01

    The kinetics of adsorption of PO(3-)(4) by blast furnace slag were found to be fast, reaching equilibrium in 20 min and following a pseudo-second-order rate equation. The adsorption behavior of PO(3-)(4) on blast furnace slag has been studied as a function of the solution agitation speed, pH, and temperature. Results have been analyzed by Freundlich, Langmuir, BET, and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption, 10.31 kJ mol(-1), was calculated from the D-R adsorption isotherm. The rate constants were calculated for 293, 298, 303, and 308 K using a pseudo-second-order rate equation and the activation energy (E(a)) was derived using the Arrhenius equation. Thermodynamic parameters such as DeltaH(0), DeltaS(0), and DeltaG(0) were calculated from the slope and intercept of linear plot of lnK(D) against 1/T. The DeltaH(0) and DeltaG(0) values of PO(3-)(4) adsorption on the blast furnace slag show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of PO(3-)(4) adsorption is favored at high temperatures.

  13. Selective Separation of Fe-Concentrates in EAF Slags Using Mechanical Dissimilarity of Solid Phases

    Science.gov (United States)

    Jung, Sung Suk; Jung, Keeyoung; Sohn, Il

    2017-02-01

    We sought to develop an optimized particle size-dependent separation method to lower the Fe content of pulverized glass-ceramic electric arc furnace (EAF) slag for its improved reclamation as construction materials by considering the structures and the mechanical behavior of the discrete solid phases. After an isothermal crystallization process to enhance the spinel growth, the Vickers hardness and fracture toughness were measured on the spinel and amorphous phases separately from the solidified slag using indentation methods. The characteristic differences in the hardness of the phases were magnified when this glass-ceramic composite was isothermally crystallized. The hardness of the spinel was observed to be lower in slags with higher FetO/Al2O3 mass ratios due to the triclinic unit cell expansion of the spinel, whereas the hardness of the amorphous phase decreased with increasing isothermal period because of the structural transformation into a silicate-dominant network. Fracture toughness could be calculated based on the hardness and crack length, where the Young's modulus was determined using nanoindentation. The amorphous phase with a lower Fe content and lower fracture toughness resulted in finer powder distribution after pulverization, allowing better separation of the primary crystalline spinel containing higher Fe content from the Fe-deficient amorphous phase according to the particle size.

  14. Growth promotion effect of steelmaking slag on Spirulina platensis

    Science.gov (United States)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  15. Recovery of copper and cobalt from ancient slag.

    Science.gov (United States)

    Bulut, Gülay

    2006-04-01

    About 2.5 million tonnes of copper smelter slag are available in Küre, northern part of Turkey. This slag contains large amounts of metallic values such as copper and cobalt. A representative slag sample containing 0.98% Cu, 0.49% Co and 51.47% Fe was used in the experimental studies. Two different methods, direct acid leaching and acid baking followed by hot water leaching were used for recovering Cu and Co from the slag. The effects of leaching time, temperature and acid concentration on Cu- and Co-dissolving efficiencies were investigated in the direct acid leaching tests. The optimum leaching conditions were found to be a leaching time of 2 h, acid concentration of 120 g L(-1), and temperature of 60 degrees C. Under these conditions, 78% Cu and 90% Co were extracted. In the acid baking + hot water leaching tests, 74% Co was dissolved after 1 h of roasting at 200 degrees C using a 3:1 acid:slag ratio, whereas the Cu-dissolving efficiency was 79% and the total slag weight loss was approximately 50%.

  16. Effect of factors on the extraction of boron from slags

    Science.gov (United States)

    Zhang, Peixin; Sui, Zhitong

    1995-04-01

    The effects of slag composition, additive agent, and heat treatment on the crystal morphologies, the crystallization behavior, and the efficiency of extraction of boron (EEB) from slags were investigated by chemical analysis, polarization microscope, and X-ray diffraction (XRD) as well as differential thermal analysis (DTA). The EEB varied with the slag composition. The farther the slag composition deviated from the line between 2MgO · B2O3 and 2MgO · SiO2 in the MgO-B2O3-SiO2 system, the lower the EEB. The EEB was directly related to the precipitating characteristics of the boron component in the slags. The EEB was high if the boron component existed in the form of a crystalline phase, otherwise the EEB was low when boron was in the form of an amorphous phase. The EEB from MgO-Al2O3-CaO-B2O3-SiO2 slag varied with the temperature of heat treatment; the highest EEB appeared at 1100 °C. The EEB and the crystallinities were increased by addition of TiO2 and MOx (M = Mg, Ca, Fe, Si). The effect of MOx was more notable than that of TiO2.

  17. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  18. The optimisation of the viscosity of lubricating slags used in the continuous casting of steel

    Science.gov (United States)

    Gheorghiu, Csaba Attila; Hepuť, Teodor; Popa, Erika

    2016-06-01

    In the steel continuous casting process, the mould lubrication has a very important technological role, with direct effects on the continuous cast blank quality. The lubrication process is directly influenced by the synthetic flux viscosity (slag thickness), which is determined on its turn by the chemical composition and the temperature. The researches made aimed to establish some correlation relationships between the viscosity, chemical composition and temperature, analytically and graphically expressed, by processing the data in the Matlab program. Based on these correlations the best chemical compositions of the lubrication fluxes are established.

  19. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  20. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    Science.gov (United States)

    Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya

    2017-01-01

    To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

  1. Desulfurization ability of refining slag with medium basicity

    Institute of Scientific and Technical Information of China (English)

    Hui-xiang Yu; Xin-hua Wang; Mao Wang; Wan-jun Wang

    2014-01-01

    The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B=3.5−5.0;20wt%−25wt%Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag−metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO−Al2O3−SiO2−MgO system with the basicity of about 3.5−5.0 and the Al2O3 content in the range of 20wt%−25wt%has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt%and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt%is 350 and 275, respectively. The new slag with a basicity of about 3.5−5.0 and an Al2O3 content of about 20wt%has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  2. Evaluation of Influence of Briquetted Synthetic Slags on Slag Regime and Process of Steel Desulphurization

    Directory of Open Access Journals (Sweden)

    Socha L.

    2014-06-01

    Full Text Available W pracy tej przedstawiono przemysłowe wyniki oceny efektywności zastosowania żużli syntetycznych podczas obróbki pozapiecowej stali w zakładzie VÍTKOVlCE HEAVY MACHINERY a.s. Celem badań był a ocena wpływu brykietówanych i spiekanych żużli syntetycznych opartych na AI2O3 - na przebieg odsiarczania stali i żużla podczas produkcji i obróbki stali 42CrMo4. zgodnie z technologią EAF → LF → VD. Podczas eksperymentów w zakładzie, monitorowano podstawowe parametry wpływające na odsiarczania stali i żużla: stopień odsiarczania, zasadowość, zawartość tlenków łatwo redukowałnych, stosunek CaO/Al2O3 oraz indeks Mannesniann’a. Uzyskane wyniki pozwoliły na porównanie stopnia odsiarczania stali w kontekście zastosowanych żużli. Wykazano, że syntetyczny żużel składający się z brykietowanej mieszaniny wtórnego korundu, może zastąpić syntetyczny żużel otrzymywany ze spieku mieszaniny surowców naturalnych.

  3. Steel treatment with calcium-aluminate synthetic slag and addition of titanium oxide

    Directory of Open Access Journals (Sweden)

    Putan, A.

    2013-02-01

    Full Text Available The paper introduces the results of the experiments on synthetic slag desulphurization and deoxidizing using slag belonging to the ternary system CaO-Al2O3-TiO2. The experiments have been done in a 10 kg induction furnace. In order to obtain the reducing slag we used a mixture of lime, alumina and titanium oxide, representing 2 % of the charge weight. The experiments were done on mechanical mixtures produced according to various recipes; for each experiment, the slag was sampled in order to determine its chemical composition and the steel was also sampled, in order to determine its contents in sulphur and oxygen. The resulting data have been processed in EXCEL, which gave the correlation equations between the desulphurization and deoxidizing output and the chemical composition of the synthetic slag, respectively the ratio and sum of the oxides.

    En el trabajo se presentan los resultados del experimento que se refiere a la desulfuración y desoxidación de las escorias sintéticas con escorias del sistema ternario CaO-Al2O3-TiO2.. Los experimentos se hicieron en un horno con inducción de 10 kg de capacidad. Para formar las escorias reductoras se ha utilizado una mezcla compuesta de cal, alúmina y óxido de titanio en porcentaje de 2 % del peso de la carga de acero más escoria sintética. Para los experimentos se usaron mezclas mecánicas producidas por varias recetas y de cada experimento se tomaron muestras de escorias para determinar la composición química y muestras de acero para determinar el contenido de azúfre y oxígeno. Los datos obtenidos fueron procesados en el programa de cálculo EXCEL, obteniéndose ecuaciones de correlación entre la eficiencia de la desulfuración y desoxidación y la composición química de la escoria sintética.

  4. Study on the Slag after Blast Furnace to KR of Chuanwei Steel Works%川威KR脱硫前渣研究

    Institute of Scientific and Technical Information of China (English)

    袁勇; 何运顺; 肖建华; 容水

    2012-01-01

    This paper studies the characteristics of hot metal and blast furnace slag of Chuanwei steel works and compares the deferent components of slag after blast furnace and right before KR desulfurization process.The changing characteristics and the changing reasons of the slag components from the blast furnace to KR process of Chuanwei steel works are analyzed.%通过对川威高炉铁水和高炉下渣的特性研究,比较铁水带渣和KR脱硫前渣的组成不同,分析从高炉下渣到川威KR前渣各组分的变化特征以及KR前渣各组分发生变化的原因。

  5. Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment

    Institute of Scientific and Technical Information of China (English)

    WANG Xian; CAI Qing-Sheng

    2006-01-01

    The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1)of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.

  6. Influence of Basicity and MgO on Fluidity and Desulfurization Ability of High Aluminum Slag

    Science.gov (United States)

    Wang, Ping; Meng, Qing-min; Long, Hong-ming; Li, Jia-xin

    2016-08-01

    The viscosity of experimental slag, which was mixed based on the composition of a practical blast furnace slag, was measured in this paper. The influence of Al2O3 and MgO content, basicity R2 = w(CaO)/w(SiO2) on the fluidity of slag was studied. The stepwise regression analysis in SPSS was used to reveal the relationship between sulfur distribution coefficient LS and slag composition as well as furnace temperature. The results show that increasing of MgO up to 12% can decrease the slag viscosity. The w(MgO) should be controlled below 8% when there is 20% Al2O3 in the slag. Temperature of hot metal and content of CaO in slag are the two dominant factors on the desulfurization capacity of slag.

  7. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu

    2016-09-01

    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  8. Marine durability of 15 year old concrete specimens made with ordinary portland, slag, and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. In addition, the performance of these cements was also examined in another study for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. Water-to-cement ratios were 0.45 and 0.55 and the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete were evaluated. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 18 tabs., 8 figs.

  9. Development of Glass Ceramics Made From Ferrous Tailings and Slag in China

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng-jun; SHI Pei-yang; ZHANG Da-yong; JIANG Mao-fa

    2007-01-01

    A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.

  10. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  11. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  12. Preparation of calcium silicate absorbent from iron blast furnace slag.

    Science.gov (United States)

    Brodnax, L F; Rochelle, G T

    2000-09-01

    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  13. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-12-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases ( i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  14. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-09-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases (i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  15. Experimental determination and numerical simulation of viscositites in slag-systems under gasification conditions; Experimentelle Bestimmung und numerische Simulation von Viskositaeten in Schlackesystemen unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Nentwig, Thomas

    2011-07-01

    Silica melts are reflected in many different industrial and natural processes such as slags in steel production and gasification of coal, glass in the glass making industry, lava in the volcanology and in lots of other fields. Rheological properties like the viscosity of this silica melts are really important in all of these processes. A general and good working viscosity model would help all scientists and engineers, who have to simulate and optimise these processes. First, it is important to have the possibility to measure viscosities of slags. As part of this PhD thesis a new high-temperature high-pressure rotational viscosimeter is developed for measurements up to {>=}1600 C and 20 bar. Particularly in relation to the coal gasification process this two parameters are really important, because coal gasification occurs under high temperatures and high pressures. With this new viscosimeter it is possible to measure slag viscosities under realistic gasification conditions. To show that the new viscosimeter works quite good viscosity measurements of four real slags have been done. The influence of pressure and atmosphere on viscosity have been examined. The measurements are also compared with different viscosity models. The Arrhenius- and Weymann-Equation have been determined and the correlation between viscosity and basicity of the slag has been evaluated. In the second part of the Phd thesis a new viscosity model is developed. The model is based on the structure inside the slag and consists in existing thermodynamic models. After a detailed literature research the model is developed for the SiO{sub 2}-Al{sub 2}O{sub 3}-Na{sub 2}O-K{sub 2}O system. The quality of this new model is estimated by comparing calculated viscosity values with measurements found during the literature research. The new model is also compared with other existing models for viscosity calculation.

  16. Effect of steel composition and slag properties on NMI in clean steel production

    Directory of Open Access Journals (Sweden)

    Elfawakhry Mohamed K

    2016-01-01

    Full Text Available The modern steel plants for clean steel production depend to large extent on the efficiency of the refining processes that applied for the production. Refining processes that applied for low alloy and alloyed steel production include degassing via vacuum or ladle and ladle furnace units. This technique could help in producing homogeneous steel with low gas content and minimum internal defects. In certain grades of steel for tools and penetration and impact resistance uses, non-metallic inclusions (NMI and sulphur content are the key factors for the steel performance and applications. ESR, Electro-salg refining (or remelting, is the technique that can efficiently produce clean steel with minimum content of NMI and sulphur due to the special nature and mechanism of this technique. In this study, the effect of initial chemical composition of steel and slag properties on the efficiency of ESR process in removal of NMI and sulphur from steel are evaluated. Different grades of steels were refined using ESR process. The efficiency of ESR in modifying and enhancing NMI shape, size and counts as well as removal of sulphur in different steel grades was evaluated at different slag composition and physical properties. The effect of chemical composition of steel on the efficiency of ESR process was studied. It was found that ESR process has a great effect in producing clean steel where both viscosity and initial composition of steel have influence on the final NMI status and sulphur content in the produced steel.

  17. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed.

  18. Effects of slag and fly ash in concrete in chloride environment

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    This paper addresses experience from The Netherlands with blast furnace slag and fly ash in concrete in chloride contaminated environments, both from the field and the laboratory. Use of slag produced in The Netherlands started in the 1930s and CEM III/B LH HS, with typically 70% slag, became the do

  19. 利用炼钢渣来增殖海藻的初探%Primary exploration to proliferation of algae based on slag

    Institute of Scientific and Technical Information of China (English)

    林瑛; 李远; 李宏

    2015-01-01

    在钢铁生产过程中产生大量的废渣、排放大量的 CO2;大气中 CO2气体的增多造成温室效应,使得全球气温升高。转炉渣中含有对藻类植物生长有益的营养元素,如果可以利用转炉渣作为营养源来增殖藻类固定 CO2,既利用了钢渣,又能够减少大气中的 CO2。研究用1号炉渣和2号转炉渣对于扁胞藻进行了一级培养和对螺旋藻进行了一级、二级培养。结果表明,加入转炉渣可以增殖扁胞藻和螺旋藻;在螺旋藻的一级培养中,1号转炉渣的最佳加入量为0.4 g/L,2号转炉渣为0.06 g/L;同时要考虑到加入转炉渣后透光度对海藻生长的影响。%It could produce lots of waste slag and CO2 during iron-steelmaking process,and the increase of CO2 con-tent in the atmosphere makes greenhouse effect and causes the globe temperature rise.There are some nutrition ele-ments for proliferation of which algae in slags.It not only utilizes slags,but also reduce the content of CO2 in the at-mosphere to use slag as the nutrient source to proliferate algae and fix CO2 .The first stag cultivation of platymonas and first and second stag cultivation of spirulina by No.1 and No.2 converter slag are studied.The results show that converter slag could proliferate algae.The optimum addition amount is 0.4 g/L and 0.06 g/L for No.1 converter slag and No.2 converter slag respectively during the first stage cultivation of spirulina.Meanwhile,the transmit-tance of the medium after adding slags is taken into consideration.

  20. Effects of slag fineness on durability of mortars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS)replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects,exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Consequently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.

  1. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  2. Structure and Vibrational Spectra of Slags Produced from Radioactive Waste

    Science.gov (United States)

    Malinina, G. A.; Stefanovsky, S. V.

    2014-05-01

    The structure of the anionic motif of aluminosilicate and aluminoborosilicate glasses containing simulated slags from a solid radioactive waste incinerator was studied by IR and Raman spectroscopy. Spectra of melted slag were consistent with Si-O tetrahedra with various numbers of bridging O ions and Al-O tetrahedra embedded in the Si-O network in the slag vitreous and crystalline phases (nepheline, nagelschmidtite). Vibrations of doubly and triply bound Si-O tetrahedra and Al-O tetrahedra embedded between them were mainly responsible for the spectra as the content of sodium disilicate fl ux and the glass fraction in the materials increased. Addition of sodium tetraborate fl ux caused the appearance of B-O vibrations of predominantly three-coordinate B and a tendency toward chemical differentiation preceding phase separation.

  3. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    Science.gov (United States)

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  4. Kinetics of Reduction of MnO in Molten Slag with Carbon Undersaturated Liquid Iron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reduction of MnO in molten slag with carbon undersaturated iron was studied. It was found that the process is affected by the carbon content of molten metal and the temperature. The higher the carbon content and the temperature, the faster both the reduction and the emerging of the hump on curve of ωFeO, the larger the difference betwe en ωFeO, max and ωFeO, e. The phenomena were explained with three-step reaction model.

  5. Physico-chemical characterization of slag waste coming from GICC thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Aineto, M.; Iglesias, I. [Laboratory of Applied Mineralogy, Universidad de Castilla-La Mancha, Ciudad Real Madrid (Spain); Romero, M.; Rincon, J.Ma. [The Glass-Ceramics Laboratory, Insituto Eduardo Torroja de Ciencias de la Construccion, CSIC, c/Serrano Galvache s/n, 28033, Madrid (Spain)

    2001-09-01

    The new gas installations of combined cycle (GICC) thermal power plants for production of electricity are more efficient than conventional thermal power plants, but they produce a high quantity of wastes in the form of slags and fly ashes. Nowadays, these by-products are stored within the production plants with, until now, no applications of recycling in other industrial processes. In order to evaluate the capability of these products for recycling in glass and ceramics inductory, an investigation for the full characterization has been made by usual physico-chemical methods such as: chemical analysis, mineralogical analysis by XRD, granulometry, BET, DTA/TG, heating microscopy and SEM/EDX.

  6. Corrosion of Refractory Alumina-Graphite and Alumina-Graphite-Zirconia in Slag Containing Titania

    Institute of Scientific and Technical Information of China (English)

    XU Yuan; LIU Qing-cai; BAI Chen-guang; CHEN Deng-fu; Joseph W Newkirk

    2004-01-01

    The corrosion of refractory alumina-graphite and alumina-graphite-zirconia in the slag containing titania was studied by immersion tests (quasi-static and dynamic tests). Combining direct observation with microscopic investigations, a mechanism for corrosion was proposed based on the oxidation of graphite and the dissolution of refractory components. During the corrosion process, there are some special phenomena and laws that can be explained by the relation between the corrosion rate and the TiO2 mass percent, the rotational refractory velocity and the morphology of the deteriorated layer.

  7. 激发水淬锰渣与钢渣的活性用作细掺料砂浆的试验研究%Study on Activated Water-granulation Manganese Slag and Steel Slag Used as Fine Mortar Mixture

    Institute of Scientific and Technical Information of China (English)

    刘荣进; 王英; 陈平; 覃定晓; 姚赟; 凌逢秒

    2011-01-01

    A great deal of water-granulation manganese slag and steel slag discharged by Guangxi metallurgy industry is studied to be used as fine mortar mixture. Through analysis of the basic properties of manganese slag and steel slag, it is found that activity index of manganese slag is only 70 % ~ 80 %, lower than the standard,so it must be activated. It is shown from research that the activator prepared by gypsum and lime mixed with fine flyash can effectively improve activity index of slag. The optimum process condition of activator and basic mixture is determined through test. Activated mineral fine mixture, i.e. manganese slag is prepared by separately grinding.%对广西冶金行业排放的大量水淬锰渣、钢渣开展了用作细掺料砂浆的研究.经对锰渣、钢渣的基本性质分析发现,锰渣活性指数仅为70%~80%,活性偏低,必须对活性进行激发.研究表明,以石膏、石灰自制的激发剂为活性激发剂,并掺入磨细粉煤灰,可有效提高渣料的活性指数.通过试验确定了激发剂与基础配料的较优工艺条件,并通过分别粉磨制备了活性矿物细掺料-锰渣矿粉.

  8. Modeling the service life of slag concrete exposed to chlorides

    Directory of Open Access Journals (Sweden)

    O.A. Hodhod

    2014-03-01

    A partial replacement of OPC with 50% WCS in OPC paste mixes resulted in an increase in the amount of calcium silicate hydrate (CSH by 57%, a decrease in the amount of calcium hydroxide (CH by 66%, and a decrease in the amount of capillary pores by 57%, compared to those in the pure OPC matrix. In addition, the research results demonstrate that increasing Cs from 1% to 5% resulted in dramatically decreasing the service life of OPC/slag concrete, where the amount of decreasing reaches about 71%. Also, the service life of concrete increases with increasing slag content.

  9. 钢渣处理与综合利用技术%Technologies of steel slag treatment and comprehensive utilization of resouces

    Institute of Scientific and Technical Information of China (English)

    任奇; 王颖杰; 李双林

    2012-01-01

    结合国内外钢渣处理与利用现状,分析评述了钢渣余热自解热闷工艺、浅盘热泼工艺、风淬工艺、水淬工艺、滚筒处理工艺等钢渣处理工艺,及钢渣作为钢铁冶炼熔剂、用作建筑材料、筑路材料、回收废钢、钢渣微粉等资源综合利用技术。建议在电炉氧化渣水淬工艺、高磷铁水冶炼脱磷处理及钢渣加工设备等方面加强研究和改进。%According to the present situation of steel slag treatment,some technologies of steel slag treatment and comprehensive utilization of resouces are reviewed in this paper.The steel slag treatment technologies include: hot water splash,air quenched,water quenched,roller processing,etc.The technologies of comprehensive utilization of resouces include:using steel slag as smelting flux,building materials,road construction materials,scrap recycling,micro powder,etc.The authors suggest to strengthen the investigation and improvements in the fields of disposal and utilization of water-quenched electric furnace oxidizing slag,dephosphrization treatment equipment and steel slag processing equipment for high phosphorus molten iron smelting.

  10. Researches on the influence of the slags formed in the installations on the hydrogen removal efficiency

    Directory of Open Access Journals (Sweden)

    Drǎgoi, F.

    2011-12-01

    Full Text Available Modern technology requires ever more high-quality steel and special steels, with properties corresponding to very different purposes. Because of the interdependence of the factors that determine the overall quality of the steel and those who determine the gas content, this is an issue of growing importance for the development, treatment and casting of steel. Slag plays an important part in the development phase no matter the process phase is. The influence of synthetic slags during LF treatment facility is examined based on the degree of removal of hydrogen. After processing the experimental data there has been established the optimal basicity variation on which one can determine the chemical composition of slag (CaO, SiO2, Al2O3, MgO for the secondary treatment of steel.

    La técnica moderna necesita cada vez más acero de calidad superior y aceros especiales, con propiedades adecuadas a unos propósitos muy amplios. Gracias a la interdependecia entre los factores que determinan el contenido de gases esta constituye un problema cada vez más importante para la elaboración, tratamiento y fundición de los aceros. Una gran importancia en el proceso de elaboración le corresponde a la escoria independientemente de la fase del proceso. Se analiza la influencia de la escoria sintética durante el tratamiento en la instalación LF sobre el grado de eliminación del hidrogeno. Después de procesar los datos experimentales se establecieron los campos óptimos de variación de la basicidad en base a la cual se puede determinar la composición química de la escoria (CaO, SiO2, Al2O3, MgO para el tratamiento secundario del acero.

  11. Future Resources for Eco-building Materials: I.Metallurgical Slag

    Institute of Scientific and Technical Information of China (English)

    XU Delong; LI Hui

    2009-01-01

    In order to make an effectivily recycle use of iron and steel slags that are main industrial wastes generated in Chinese metallurgical industry,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as preparing cement-steel slag blended cement with steel slag after metal recovery,using the fine powder of blast furnace slag (BFS)for manufacturing slag cement and high performance concrete.A further research on using these available resources more efficiently were discussed.

  12. Characterization of ancient Indian iron and entrapped slag inclusions using electron, photon and nuclear microprobes

    Indian Academy of Sciences (India)

    P Dillmann; R Balasubramaniam

    2001-06-01

    Compositional and structural information were obtained from an ancient 1600-year old Indian iron using microprobe techniques (EDS, XRD and PIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very heterogeneous. Lower P contents were observed in the regions near slag inclusions. This was correlated to the dephosphorization capacity of the slag. The crystallized phases identified in the slag inclusions were wüstite and fayalite. The compositions of the slag inclusions were relatively homogeneous.

  13. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials

    OpenAIRE

    María V. Borrachero; Jordi Payá; José Monzó; Lourdes Soriano; Mauro M. Tashima; José L.P. Melges; Jorge L. Akasaki; Vinícius N. Castaldelli

    2013-01-01

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part...

  14. The iron bars from the ‘Gresham Ship’: employing multivariate statistics to further slag inclusion analysis of ferrous objects

    DEFF Research Database (Denmark)

    Birch, Thomas; Martinón-Torres, Marcos

    2015-01-01

    statistical techniques to analyse slag inclusion data. Cluster analysis supplemented by principal components analysis revealed two groups of iron, probably originating from different smelting systems, which were compared to those observed macroscopically and through metallography. The analyses reveal...... that the bars were formed from raw blooms, and all were made with iron produced by the direct process. The outward uniformity of the bars is at odds with the variable quality of iron displayed within and between bars....

  15. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    Science.gov (United States)

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.

  16. Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An Industrial By Product

    Directory of Open Access Journals (Sweden)

    Dr. B. Krishna Rao

    2015-07-01

    Full Text Available The aim of the investigation is to replace natural fine aggregatewith Air Cooled Blast Furnace Slag in OPC concrete. At present, nearly million tons of slag is being produced in the steel plants, in India. The generation of slag would be dual problem in disposal difficulty and environmental pollution. Some strategies should be used to utilize the slag effectively. Considering physical properties of metallurgical slags and a series of possibilities for their use in the field of civil constructions, this report demonstrates the possibilities of using air cooled blast furnace slag as partial replacement of sand in concrete. A total of five concrete mixes, containing 0%, 12.5%, 25%, 37.5% and 50% partial replacement of regular sand with air cooled blast furnace slag are investigated in the laboratory. These mixes were tested to determine axial compressive strength, split tensile strength, and flexural strength for 7days, 28days, 56days and 90days.

  17. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  18. A Novel Process of Leaching the Converter Vanadium Slag with Titanium Dioxide Waste and Equipment Research%钛白废酸无焙烧直接浸出提钒短流程新工艺及装备研究

    Institute of Scientific and Technical Information of China (English)

    张廷安; 刘燕; 吕国志; 张伟光; 张国权

    2016-01-01

    As the major recourse for vanadium extraction, Vanadium-titanium magnetite is widely distributed in China Panzhihua, Chengde.area. The traditional technique of vanadium recovery from vanadium-containing minerals contains two key steps, roasting and water leaching. Meanwhile, low vanadium recovery and high energy consumption cause it can not be used in large-scale production. Currently, Sulfuric acid process is the main method for the production of titanium dioxide, during which the production of 1t titanium dioxide will generate 8~10 t waste sulfuric acid. In this study, the process of direct acid leaching without roasting, valuable elements separation, new pressurized continuous leaching reactor research, circulation of logistics system, leaching slag utilization and amplification technology have been researched. The results are as follow: (1)The process of atmospheric pressure leaching without roasting, none salt roasting with atmospheric pressure leaching and oxygen pressure leaching without roasting were researched. The results indicate that: compared with other process, the pressure acid leaching process has the advantage of respond quickly and efficiently characteristics. (2)The process of pressure leaching the vanadium slag by sulfate was research. It was found that spinel, fayalite and titanomagnetite are the main phase in the converter vanadium slag. The fayalite and spinel phase are gradually decomposed by sulfuric acid in the high pressure acid leaching process the unreacted silicon and titanium enrich in the leaching residue. (3)An enlarge experiment was researched. It was found that the leaching rate of vanadium increased with the acid concentration, and also increased with the liquid to solid ratio. Under the condition of 300g/L sulfuric acid, 300rpm, 90min, 8∶1 liquid-solid ratio, at 90min, the leaching rate of vanadium can reach 99.10% (4) At the experimental conditions of room temperature, the reducing agent 20g/L, the leaching solution pH=2

  19. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    Science.gov (United States)

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3).

  20. 直接还原含钛炉渣亚熔盐法制备钛白粉工艺研究%Study on Preparation of TiO2 Pigment with Sub-molten Salt Process from Titanium-bearing Slag Obtained in Direct-reduction Ironmaking

    Institute of Scientific and Technical Information of China (English)

    王淑奕; 金英杰; 初景龙; 齐涛

    2013-01-01

    Using titaniferous slag from the process of ‘ coal-based direct reduction in rotary hearth furnace -further reduction and smelting and separation in electric furnace’ as raw material,TiO2 Pigment with a content of titanium dioxide over 98% was produced by sub-molten salt process.The optimum testing conditions for the production were studied,aiming to find out the optimum reaction time,alkaline ratio,reaction temperature,and granularity of the raw material.After multistage solid-state ion exchange and removal of impurities,titaniferous solution (CTio2 =80 g/L,effective acid coefficient F =2.0) was prepared from the intermediate product sodium metatitantate.Through hydrolysis,metatitanic acid with a particle size of D (0.5) =.2 μn was obtained,and then it could be calcined to anatase TiO2 products.%以“转底炉煤基直接还原一电炉深还原、熔分工艺”得到的含钛炉渣为原料,经过亚熔盐法钛白工艺得到纯度在98%以上的二氧化钛产品.研究了亚熔盐法钛白工艺中反应最佳试验条件,得到最优的反应时间、碱矿比、反应温度、原料粒度;中间产物偏钛酸钠经多级固态离子交换、除杂制得钛液(CTio2=180 g/L、有效酸系数F=2.0);水解后制得偏钛酸粒度D(0.5)=1.2μm;经煅烧得到锐钛型二氧化钛产品.

  1. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  2. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  3. Micronutrient availability from steel slag amendment in peatmoss substrates

    Science.gov (United States)

    The objective of this research was to determine the suitability of a steel slag product for supplying micronutrients to container-grown floriculture crops. Geranium (Pelargonium xhortorum 'Maverick Red') and tomato (Solanum lycopersicon 'Megabite') were grown in 11.4 cm containers with a substrate ...

  4. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    Science.gov (United States)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  5. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.

    Science.gov (United States)

    Nehrenheim, Emma; Waara, Sylvia; Johansson Westholm, Lena

    2008-03-01

    Treatment of landfill leachate using blast furnace slag and pine bark as reactive sorbents was studied in an in situ column experiment at the Lilla Nyby landfill site in Eskilstuna, Sweden. The columns were filled with approximately 101 of each sorbent and leachate was supplied at three different flow rates during a period of 4 months. Samples of inflow and outflow were collected three times a week and were analyzed for physical and chemical parameters, including concentrations of some metals, and toxicity. It was found that pine bark removed metals more efficiently than did the blast furnace slags; that Zn was most efficiently retained in the filters and that both retention time and initial concentration played an important role in the sorption process. It was also observed that the pine bark column did not release COD. No toxicity of the untreated or the treated leachate was found with the test organisms and test responses used.

  6. Characterization of copper slag from impoverishment%贫化铜渣的特性分析

    Institute of Scientific and Technical Information of China (English)

    胡建杭; 王华; 赵鲁梅; 李磊; 刘慧利

    2011-01-01

    铜渣是有色金属火法炼铜过程中产出的固体废弃物.通过化学分析、XRD衍射、SEM-EDS和热重等分析铜渣的特性.铜渣主要成分是赤铁矿(α-Fe203)、铁橄榄石(Fe2SiO4)、磁铁矿(Fe3O4)和非晶态硅石,并含有铜及少量镍、钴等有价组分.铁橄榄石和磁铁矿约占总渣量的90%.冷却方式影响渣中铁橄榄石的形成,空冷渣中铁橄榄石的比例明显高于水淬铜渣中的铁橄榄石含量.磁铁矿以多边状、树枝状、放射状结构存在于硅酸盐基体中;铁橄榄石呈柱状、板状、树突状颗粒存在于炉渣基体中;铜矿物或被硅铁氧化物所包裹,或与铜铁矿物共同形成斑状结构及多矿物共生嵌于铁橄榄石基体中.铜渣中铁橄榄石组分首先在491~1 173℃之间氧化转变为赤铁矿和非晶态硅石,其次是磁铁矿发生Fe3O4→γ-Fe2O3→α-Fe2O3的晶型转变过程.加热可以使铁橄榄石、铜和铁的硫化物及磷化物发生氧化反应.%Copper slag is a type of solid waste that generated during pyrometallurgical production of copper. In this study, the quality of copper slag was characterized by chemical analysis, X-ray diffraction (XRD), SEM-EDS and thermogravimetric analysis. The results showed that copper slag has a amorphous structure and contained large amounts of magnetism ferric oxide( Fe2O3 ), fayalite( Fe2SiO4),magnetite(Fe3O4)and some trace elements like Cu, Ni and Co. The major constituents were magnetism ferric oxide and fayalite which comprised more than 90% of the mass. The fayalite content was varied under different cooling techniques. The compositional ratio of fayalite in the air-cooled slag was greater than water-cooled slag. Ferroferric oxide presented as arborized and radicalized shapes in the silicate body. Meanwhile, the shapes of fayalite were observed as column, wattle and dendritic granule in copper slag. Copper mineral was wrapped in silicon-ferric oxide or formed copper-iron ore in the

  7. 木薯渣发酵饲料的工艺筛选%Screening of technology in cassava slag fermentation feed

    Institute of Scientific and Technical Information of China (English)

    艾必燕; 刘长忠; 陈建康; 杨扬; 米本中; 黄倩妮; 樵星芳

    2012-01-01

    Using cassava slag as the main raw material, with aspergillus, trichoderma viride and rhizopus R2 for fermentation strains, the test is to optimize cassava slag fermentation technology producing tropina feed. The appropriate conditions of cassava slag fermentation are that adding amount of liquid spawn is 3%, adding amount of nitrogen source is 10%, fermentation temperature is 37 ℃, fermentation time is 4 days. Cassava slag is a mixture, its highest level of non-nitrogen compounds is 78.7%, main component is soluble starch compounds (such as monosaccharide and starch), but its crude protein content is very low, amino acid composition is extremely uneven, it has poor effect to feed cassava slag directly, so most of the cassava slag cannot be used, which not only causes the waste of resources, but also seriously pollutes environment. Processing cassava slag into feed materials can make full use of the waste in starch industry, it is favorable to the environment protection, and it also can significantly reduce the cost of feed, improve the utilization value and economic benefits of cassava slag.%以木薯生产中产生的废渣为主要原料,以黑曲霉、绿色木霉和根霉R2为发酵菌种,优化木薯渣发酵生产菌体蛋白饲料的工艺.初步确定了木薯渣发酵的适宜条件,即液体菌种添加量为3%,氮源添加量为20%,发酵温度37℃,发酵时间为4d,经试验验证,此发酵条件下发酵饲料中粗蛋白含量较高,可达到蛋白饲料对蛋白质含量的要求.通过处理木薯渣变为动物的饲料原料,不仅可充分利用淀粉工业的废弃物,有利于环境保护,而且可显著降低饲养成本,从而提高了木薯渣的利用价值和经济效益.

  8. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  9. Micronutrientes in the sugarcane irrigated: correction of the soil with siderurgical slag

    Directory of Open Access Journals (Sweden)

    Napoleão Esberard de Macêdo Beltrão

    2009-12-01

    Full Text Available The beneficial effects of manuring with siderurgical slag has been researched in several species, mainly among grassy such as sugarcane (Saccharum officinarum L.. The experiment was installed in the field, using one of the most representative sugarcane soils of Alagoas State, was cultivated in Dystrophic AGREY ARGISSOIL. The siderurgical slag source was containing 11% of soluble SiO2. The objective this research was quantify foliate micronutrients in the sugarcane and pH of soil due siderurgical slag application submitted the different irrigation water in São Sebastião city. For such the design was band of randomizered blocks, with five doses of siderurgical slags (band and five water (sub band and four repetitions. The analyzed variables were the micronutrients concentrations (Zn, Cu, Fe and Mn in the leaf. The slag application increased the concentrations significantly foliate of Zn while concentrations of Cu and Fe decreased. The foliate concentration of Mn, in the interaction of slag and irrigation water, it decreased in the cane plants and first it would beat, when the factor was slag inside of irrigation water however, when the factor was sheets inside of slag, there was increase of the concentration this element us of the cycles. The foliate concentration of Mn, due the interactive effect of slag and irrigation water, decreased in the first cut. However, when the factor was irrigation water inside of slag, there was increase of concentration of this in the two cycles.

  10. Study on Industrial Waste Materials as Coal Gangue Recycle Fe Deoxidized with High Grade from Steel Slag%利用工业废渣煤矸石高温还原回收钢渣中Fe的研究

    Institute of Scientific and Technical Information of China (English)

    杨曜; 殷素红; 徐创霞; 毛海勇

    2015-01-01

    The steel slag contains 4% ~35% FeOx , ap-proximately 3% ~10% about Fe. More than 100 million tons steel slag is discharged every year. A large amount of Fe within slag has been loosed and without recycled. If we can deoxidize the FeOx and recycle Fe from steel slag, a large number of iron resources will be recycled and it has more significance than only improve cementitious activity of steel slag. This paper utilizes waste materials as adjusting material of coal gangue with deoxidi-zing ability, and chose hot stuffy technology processed high al-kalinity and low aluminum steel slag from Shaoguan Iron. In the lab, we melt samples in 1 500 ℃, deoxidize the FeOx and recy-cle Fe, and simulate water quenching process form slag struc-ture. Recycle the Fe from steel slag. The results show that: u-sing coal gangue and low-quality fly ash smelting steel slag de-oxidizing the FeOx and recycle Fe in high temperature is practica-ble. The Fe content with recycled iron from the sample of steel slag of Shaoguan Iron mixed with 25. 7% coal gangue is 82. 45%.%钢渣中含有4%~35%的FeOx ,换算为金属铁含量为3%~10%。我国每年钢渣排放量超过1亿t,大量的Fe随着钢渣流失而未得到回收利用。若能将这部分铁元素还原回收,能够回收到大量的铁资源,且比仅考虑提高钢渣胶凝活性将其用于建材行业的低附加值利用具有更重要的意义。本文利用工业废渣煤矸石作为还原材料,选取热焖工艺高碱度低铝质韶钢钢渣,在试验室1500℃下高温熔融还原回收Fe。研究结果表明:利用煤矸石熔融还原回收钢渣中的Fe是可行的,掺25.7%煤矸石试样还原回收粗铁的品位高达82.45%。

  11. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.

    Science.gov (United States)

    Quijorna, N; de Pedro, M; Romero, M; Andrés, A

    2014-01-01

    Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions.

  12. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  13. Studying the Hydration of a Retarded Suspension of Ground Granulated Blast-Furnace Slag after Reactivation

    Directory of Open Access Journals (Sweden)

    Nick Schneider

    2016-11-01

    Full Text Available This article presents a combined use of a retarder (d-gluconic acid and an alkaline activator (sodium hydroxide in a binder system based on ground granulated blast-furnace slag. The properties of the retarder are extending the dormant hydration period and suppressing the generation of strength-giving phases. Different retarder concentrations between 0.25 and 1.00 wt.% regulate the intensity and the period of the retardation and also the characteristics of the strength development. The activator concentration of 30 and 50 wt.% regulates the overcoming of the dormant period and thereby the solution of the slag and hence the formation of the hydration products. The research objective is to produce a mineral binder system based on two separate liquid components. The highest concentration of retarder and activator generates the highest compressive strength and mass of hydration products—after 90 days of hydration a compressive strength of more than 50 N/mm2. The main phases are calcium silicate hydrate and hydrotalcite. Generally, the combination of retarder and activator shows a high potential in the performance increase of the hydration process.

  14. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    Science.gov (United States)

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test.

  15. Immobilisation of lead smelting slag within spent aluminate-fly ash based geopolymers.

    Science.gov (United States)

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2013-03-15

    This study presents the solidification/stabilisation and immobilisation of lead smelting slag (LSS) by its incorporation in coal fly ash - blast furnace slag based geopolymers. It also explores the use of a spent aluminium etching solution (AES) as geopolymer activator instead of the commonly used silicate solutions. The compressive strength of the geopolymers produced with the AES was lower than when applying a K-silicate solution as activator (100MPa versus 80MPa after 28 days). Compressive strength was not affected when up to 10% of the FA was replaced by LSS. NEN 12457-4, TCLP, SPLP and NEN 7375 leaching tests indicated that mobile Pb from LSS was highly immobilised. The diffusion leaching test NEN 7375 revealed exceeding of the Dutch Soil Quality Regulation threshold limits only for Se and Sb. On the condition that the remaining excess leaching can be reduced by further refinement of the mixture recipes, the proposed process will have the potential of producing waste-based construction materials that may be applied under controlled conditions in specific situations.

  16. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hua; GAI Guo-sheng; YANG Yu-fen; SUI Zhi-tong; LI Li; FU Jian-xia

    2008-01-01

    Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2. In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2, and the kinetics of that reaction, are described. Under laboratory conditions the rate is controlled by a chemical reaction. The leaching reaction is in accord with a shrinking un-reacted-core model. The apparent reaction order of the leaching reaction was 1.222 and the apparent activation energy was 87.01 kJ/mol. The model fits the observed data well until 90% of the TiO2 has be leached from the particles. The model disagrees with observations during later periods of the reaction because the solution becomes supersaturated with Ti ions, which precipitate as H2TiO4. The assumptions of constant reactant concentration and that there is no effect from the product layer on diffusion, also cause the model to deviate from the actual values.

  17. Sulphate removal over barium-modified blast-furnace-slag geopolymer.

    Science.gov (United States)

    Runtti, Hanna; Luukkonen, Tero; Niskanen, Mikko; Tuomikoski, Sari; Kangas, Teija; Tynjälä, Pekka; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-11-05

    Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.

  18. Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

    1997-12-01

    An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

  19. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively.

  20. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  1. Corrosion behavior of steel in concrete made with slag-blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Dehghanian, C. [Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering

    1999-03-01

    Concretes formulated with slag as a partial replacement for cement were used to evaluate the corrosion behavior of steel embedded in concrete, resistivity, and the compressive strength of the concrete. Corrosion rates and pitting corrosion of steel in concrete with up to 30% slag and exposed to sodium chloride (NaCl) solutions decreased. Slag-blended cement concrete increased concrete resistivity. A water-to-cement ratio <0.55 and submersion in water for a period of 18 days gave the best chloride (Cl{sup {minus}}) diffusion resistance from the external salt solutions. Compressive strength of the concrete decreased with addition of slag in the early ages of the concrete. After 5 months of age, compressive strength of the concrete increased with addition of slag. This trend continued with up to 30% slag addition.

  2. Recycling of industrial waste and performance of steel slag green concrete

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; YAO Yan; WANG Ling

    2009-01-01

    Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction (AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete, in addition, about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.

  3. PRECIPITATION AND GROWTH OF PEROVSKITE PHASE IN TITANIUM BEARING BLAST FURNACE SLAG

    Institute of Scientific and Technical Information of China (English)

    Z.Z. Guo; T.P. Lou; L. Zhang; L.N. Zhang; Z.T. Sui

    2007-01-01

    The effects of transformation of slag composition and additive agents on the morphology, the crystal in the Ti-bearing blast furnace slags were investigated. As the morphology of perovskite is dispersed in molten slags, the crystal growth mechanism of the melting of fine dendrites and the coarsening of large grains exist throughout the solidification of molten slags. With the increase of CaO and Fe2O3 content, VF of perovskite obviously increases. However, high basicity leads to the viscosity of slag, which results in the reduction of the average equivalent diameter (AED). The experimental results showed that the presence of the additives CaF2 and MnO efficiently decreased the viscosity of the slags, and obviously improved the morphology of perovskite and promoted its growth.

  4. Influence of Partial Pressure of Sulfur and Oxygen on Distribution of Fe and Mn between Liquid Fe-Mn Oxysulfide and Molten Slag

    Science.gov (United States)

    Kim, Sun-Joong; Shibata, Hiroyuki; Takekawa, Jun; Kitamura, Shin-Ya; Yamaguchi, Katsunori; Kang, Youn-Bae

    2012-10-01

    The authors proposed an innovative process for recovering Mn from steelmaking slag. The process starts with the sulfurization of steelmaking slag to separate P from Mn by the formation of a liquid sulfide phase (matte). Then, the obtained matte is weakly oxidized to make a Mn-rich oxide phase without P. High-purity Fe-Mn alloys can therefore be produced by the reduction of the Mn-rich oxide phase. However, to the authors' knowledge, the sulfurization of molten slag containing P and Mn has not been sufficiently investigated. It was recently found that P was not distributed to the matte in equilibrium with the molten slag. To gain knowledge of the process's development, it is important to investigate the influence of the partial pressures of sulfur and oxygen on the equilibrium distribution of Mn and Fe between the matte and the molten slag. In the current work, a mineralogical microstructure analysis of the matte revealed that the existence of the oxysulfide and metal phases was dependent on the partial pressure of sulfur and oxygen. The Mn content of the matte increased with partial pressure of sulfur while the O content of the matte decreased. In contrast, the ratio of Mn/Fe in the matte was constant when the metal phase of the matte was observed at a log P_{{{{O}}2 }} below -11. These results also corresponded to the relationship between the activity coefficient ratio of MnS/FeS and the mole fraction of MnS/FeS in the matte. The γ MnS/ γ FeS value decreased exponentially as the mole fraction of MnS/FeS increased.

  5. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae, including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  6. AISI/DOE Technology Roadmap Program: Removal of Residual Elements in The Steel Ladle by a Combination of Top Slag and Deep Injection Practice

    Energy Technology Data Exchange (ETDEWEB)

    S. Street; K.S. Coley; G.A. Iron

    2001-08-31

    The objective of this work was to determine if tin could be removed from liquid steel by a combination of deep injection of calcium and a reducing top-slag practice. The work was carried out in three stages: injection of Ca wire into 35 Kg heats in an induction furnace under laboratory condition; a fundamental study of the solubility of Sn in the slag as a function of oxygen potential, temperature and slag composition; and, two full-scale plant trials. During the first stage, it was found that 7 to 50% of the Sn was removed from initial Sn contents of 0.1%, using 8 to 16 Kg of calcium per tonne of steel. The Sn solubility study suggested that low oxygen potential, high basicity of the slag and lower temperature would aid Sn removal by deep injection of Ca in the bath. However, two full-scale trials at the LMF station in Dofasco's plant showed virtually no Sn removal, mainly because of very low Ca consumption rates used (0.5 to 1.1 Kg/tonne vs. 8 to 16 Kg/tonne used during the induction furnace study in the laboratory). Based on the current price of Ca, addition of 8 to 16 Kg/tonne of steel to remove Sn is too cost prohibitive, and therefore, it is not worthwhile to pursue this process further, even though it may be technically feasible.

  7. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

  8. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  9. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    Science.gov (United States)

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  10. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    Science.gov (United States)

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  11. Stabilization effects of surplus soft clay with cement and GBF slag

    Institute of Scientific and Technical Information of China (English)

    LU Jiang; Chirdchanin MODMOLTIN; Katsutada ONITSUKA

    2004-01-01

    Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.

  12. The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates

    Directory of Open Access Journals (Sweden)

    Živković Živan

    2009-01-01

    Full Text Available This paper presents the results of multi-linear regression analysis (MLRA of the slag composition (SiO2, FeO, Fe3O4, CaO, Al2O3 and the content of copper in the matte on resulting copper content in the slag during smelting of the sulfide concentrates in the reverberatory furnace. When comparing results obtained with MLRA model calculations with values measured at industrial level high degree of fitting is obtained (R2 = 0.974. This indicates that slag composition and content of copper in the matte influences the copper losses in the waste slag with the probability of 95 %.

  13. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  14. Heating and melting mechanism of stainless steelmaking dust pellet in liquid slag

    Institute of Scientific and Technical Information of China (English)

    PENG ji; TANG Mo-tang; PENG Bing; YU Di; J.A.KOZINSKl; TANG Chao-bo

    2007-01-01

    The heating and melting mechanisms of the pellets immersed in liquid slag were investigated. and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melring of reduced metals.The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell liretime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃.can obviously reduce the melting time. A higher slag temperature can also improvethe pellet melting and the melting time is reduced by l0-15 s when the slag temperature is increased from 1 450 to 1 550 ℃.The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.

  15. Alternative concrete based on alkali-activated slag

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2008-09-01

    Full Text Available This article reports the results of related to on the performance of concrete made with waterglass (Na2SiO3•nH2O + NaOH-activated Colombian granulated blast furnace slag. The mechanical strength and durability properties this alkali-activated slag concrete (AAS were compared to the properties of ordinary Portland cement concrete (OPC with the same proportion of binder, which ranged from 340 to 512 kg per m3 of concrete. The results indicated that increasing the proportion of slag led to improvements in the properties studied.El propósito de este artículo es dar a conocer los resultados de la evaluación del comportamiento de mezclas de hormigón producidas a partir de la activación con waterglass (Na2SiO3•nH2O + NaOH de una escoria siderúrgica granulada de alto horno colombiana. Las propiedades mecánicas y de durabilidad de los hormigones activados alcalinamente (AAS se comparan con las correspondientes mezclas de hormigón de cemento Portland (OPC producidas con igual proporción de ligante. Estas proporciones variaron entre 340 y 512 kg por m3 de hormigón. Los resultados obtenidos indican que incrementos en la proporción de la escoria contribuye a la mejora de las propiedades evaluadas.

  16. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  17. Simulation of past exposure in slag wool production.

    Science.gov (United States)

    Fallentin, B; Kamstrup, O

    1993-08-01

    A survey of the working conditions at a Danish slag wool production factory during the early technological phase in the 1940s is presented. No exposure data, however, are available for that period. So, a full-scale simulation of the past production of slag wool has been performed. Air monitoring was carried out in the working area around the cupola furnace. The aim was to measure exposure to air pollutants other than fibres. Such exposure might have confounded a possible association between lung cancer and exposure to fibres, in the early technological phase of slag wool production. The simulation experiment demonstrated exposure to PAH, a known lung carcinogen. The effect of other concurrent exposures is difficult to assess. Time-weighted average concentrations of particulate material ranged between 12.9 and 49.1 mg m-3 at the upper decks around the cupola. Corresponding concentrations of the dominant metals zinc and lead were 4.4-22.7 mg Zn m-3 and 0.9-4.7 mg Pb m-3. Significant concentrations of PAH up to 269 micrograms PAH m-3 (4 micrograms BaP m-3) occurred during ignition of the cupola furnace. The carbon monoxide level reached 270 ppm also during ignition.

  18. Speciation of copper in the thermally stabilized slag

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Y.-J. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chao, C.-C. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Tsai, C.-K. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-07-21

    The Taiwan universities laboratory hazardous wastes have been treated by incineration at the temperature range of 1173-1273 K. By X-ray absorption near edge structure (XANES) spectroscopy, mainly CuO and CuSO{sub 4} are found in the incineration bottom and fly ashes. The incineration fly ash can be stabilized thermally at 1773 K in the plasma melting reaction chamber (integrated with the incinerator), and converted to slag. The concentration of leachable copper in the slag is reduced significantly mainly due to the fact that copper is encapsulated in the SiO{sub 2} matrix. In addition, the refined extended X-ray adsorption fine structure (EXAFS) spectra of copper also indicate formation of the Cu-O-Si species in the slag as the bond distances of 1.95 A for Cu-O and 2.67 A for O-Si are observed. This work exemplifies utilization of the synchrotron X-ray absorption spectroscopy to facilitate the thermal stabilization treatments of the fly ash hazardous waste using the plasma melting method.

  19. Sulfide Capacity in Ladle Slag at Steelmaking Temperatures

    Science.gov (United States)

    Allertz, Carl; Sichen, Du

    2015-12-01

    Sulfide capacity measurements were conducted at 1823 K and 1873 K (1550 °C and 1600 °C) for the quaternary Al2O3-CaO-MgO-SiO2 system, for typical compositions used in the ladle in steelmaking. A copper-slag equilibrium was used under controlled oxygen and sulfur potentials. The sulfide capacity is strongly dependent on the composition and it was found to increase with the basic oxides, while it decreases with increase of the acidic components. It was found that CaO is more effective in holding sulfur in the slag compared to MgO when replacing SiO2. For the present slag compositions, Al2O3 and SiO2 behaved similar with respect to sulfur, and no considerable effect could be recorded when replacing one for the other. The sulfide capacity was also found to be strongly dependent on the temperature, increasing with temperature. The present results were compared with industrial data from the ladle, after vacuum treatment, and they were in good agreement.

  20. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  1. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  2. The Chloride Permeability of Persulphated Phosphogypsum-Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    HUANG Youqiang; LU Jianxin; CHEN Feixiang; SHUI Zhonghe

    2016-01-01

    The chloride permeability and microstructure of persulphated phosphogypsum-slag cement concrete (PPSCC), the Portland slag cement concrete (PSCC) and ordinary Portland cement concrete (OPCC) were investigated comparatively. Some test methods were used to evaluate the chloride permeability and explain the relationship between the permeability and microstructure of concrete. The results show that the resistance to chloride penetration in PPSCC is signiifcantly better than that in OPCC, the reasons are as follows: 1) the slag in PPSCC is activated by clinker (alkali activation) and phosphogypsum (sulfate activation), forming more low Ca/Si C-S-H gel and gel pores below 10 nm than OPCC, improving the resistance to chloride penetration; 2) the hydration products of PPSCC have a much stronger binding capacity for chloride ions; and 3) in the same mix proportion, PPSCC has a better workability without large crystals calcium hydroxide in the hydration products, the interfacial transition zone (ITZ) is smoother and denser, which can cut off the communicating pores between the pastes and aggregates.

  3. Review of the current situation of the production development of slag wool%矿渣棉生产发展现状的综述

    Institute of Scientific and Technical Information of China (English)

    王旭; 袁守谦; 李海潮

    2014-01-01

    The-application-and-the-specific-process-of-slag-wool-are-introduced.Specific-applications-include-length-slag-wool-fibers,slag-wool-and-phenolic-resins-general-slag-wool-products-can-be-used-for-heating-equipment-and-pip-ing;but-insulation-of-various-slag-wools-is-achieved-in-different-conditions;moreover,slag-wool-acoustic-board-can-be-widely-used-in-fields-such-as-construction-and-engineering-decoration.Raw-melting-technology-include-cupola-melting,furnace-melting,electric-arc-furnace-melting;fiber-injection-molding-process-include-injection,centrifuga-tion,centrifugal-blowing;Finally,it-illustrates-the-necessity-of-the-development-of-mineral-wool.%介绍了矿渣棉的应用和具体工艺。具体应用为:长纤维矿渣棉、普通矿渣棉和酚醛树脂矿渣棉制品均可用于热力设备和管道,但其不同矿渣棉是在不同条件下实现保温的,矿渣棉吸声板可广泛用于建筑、工程装饰等方面。原料融制工艺有冲天炉熔制、池窑熔制、电弧炉的熔制;纤维成型工艺有喷吹法、离心法、离心吹制;最后说明了发展矿渣棉的必要性。

  4. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, July 1--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1996-10-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Conventional slag and ash removal methods include the use of in situ blowing or jet-type devices such as air or steam soot blowers and water lances. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. Several tests have been performed with single shot detonation wave at University of Texas at Arlington to remove the slag deposit. To hold the slag deposit samples at the exit of detonation tube, two types of fixture was designed and fabricated. They are axial arrangement and triangular arrangement. The slag deposits from the utility boilers have been used to prepare the slag samples for the test. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer, and air-heater, i.e., relatively softer slags) and 30% of the reheater slag (which is harder) even at a distance of 6 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. The annual report discusses about the results obtained in effectively removing the slag.

  5. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    LI Yu; SUN HengHu; LIU XiaoMing; CUI ZengDi

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD, DTA and SEM technologies in combination with mechanical prop-erty experiment, the structure characteristics of samples were determined and their effects on cemen-titious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases, which mainly contributes to its grass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover, the amorphous samples possess hydrability which is affected by their formation process, since phase separation extends the range of possible Ca-rich crystalline phases.

  6. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD,DTA and SEM technologies in combination with mechanical property experiment,the structure characteristics of samples were determined and their effects on cementitious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases,which mainly contributes to its glass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover,the amorphous samples possess hydrability which is affected by their formation process,since phase separation extends the range of possible Ca-rich crystalline phases.

  7. Development of vibration style ladle slag detection methods and the key technologies

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP),which can effectively improve the casting blank quality,increase molten steel yield ratio,and protract the service life of tundish.The current SCDT realization methods and their application circumstance were summarized,and their main problems during the course of factual production were pointed out.The difficult technical points of detection principle,digital signal processing for vibration style SCDT development were described.To aim at the problems of vibration style SCDT,such as low recognition stability and long applied adjustment time,its key technologies including water model experimental platform establishment,two-phase sink vortex entrapment mechanism,forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply,and the corresponding research route and advices were given.

  8. Distribution of Phosphorus between CaO-CaF2 Slag and Fe-C-P Melt

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-xiang; ZHOU Jian-jian; DU Xiao-jian

    2005-01-01

    The equilibrium distribution ratio of phosphorus between CaO-CaF2 molten slag and Fe-C-P melt at 1450 ℃ was measured. The phosphate capacity of slag and the activity coefficient of phosphorus oxide were calculated.

  9. Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina-chromia refractory

    Institute of Scientific and Technical Information of China (English)

    Shi-xian Zhao; Bin-li Cai; Hong-gang Sun; Gang Wang; Hong-xia Li; and Xiao-yan Song

    2016-01-01

    The corrosion behavior of alumina–chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550°C was investigated via thermodynamic simulations. In the proposed simulation model, the initial slag first attacks the matrix and sur-face aggregates and subsequently attacks the inner aggregates. The simulation results indicate that the slag chemistry strongly affects the phase formation and corrosion behavior of the refractory brick. Greater amounts of alumina were dissolved and spinel solid phases formed when the brick interacted with iron smelting slag. These phenomena, as well as the calculated lower viscosity, may lead to much deeper penetration than that exhibited by coal slag and to more severe corrosion compared to that induced by coal slag. The thermodynamic calcula-tions well match the experimental observations, demonstrating the efficiency of the proposed simulation model for evaluating the corrosion behavior of alumina–chromia refractory.

  10. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics.

  11. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    Science.gov (United States)

    Van Ende, Marie-Aline; Jung, In-Ho

    2017-02-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  12. Preparation of Composite Cementitious Material for Building Artifical Reefs Concrete from Angang Steel Slag and Granulated High Furnace Slag%鞍钢钢渣矿渣制备人工鱼礁混凝土复合胶凝材料

    Institute of Scientific and Technical Information of China (English)

    李琳琳; 苏兴文; 李晓阳; 倪文; 王中杰; 李颖; 胡文

    2012-01-01

    81. 5% granulated high furnace slag, 5% steel slag and 12. 5% flue gas desulphurization ( FGD) gypsum was mixed with 1 % cement clinker. The compressive strength of the mixed cementitious material was 56.75 Mpa after cured for 28 d. The prepared cementitious material had low calcium content compared with normal P. 0. Cement and was suitable for producing artificial reel concrete. The effects of different ratios of steel slag and FGD gypsum on the strength of the mortar samples were also studied. The results showed that the strength of the mortar samples increased with increasing the content of steel slag, when the content of steel slag was less than 5% ,and the strength of the mortar samples decreased with increasing the content of seel slag when its content was more than 5% , while their strength droped sharply when the content of steel slag was more than 20%. The strength of the mortar samples was also prominently affected by the content of FGD gypsum. The compressive strength and flexural strength increased by 168% and 176% respectively compared with the samples without FGD gypsum when thecontent of FGD gypsum increased to 12.5%. Hydration processes of net slurry were analysized by XRD and SEM methods. The results showed that the early hydration products in the system were mainly Aft , and C-S-H gel. The strength growth was mainly contributed by these two phases.%以81.5%的矿渣、5%的钢渣、12.5%的脱硫石膏以及1%的水泥熟料,制备出了28 d抗压强度为56.75 MPa的低碱度胶凝材料,该胶凝材料可用于制备低碱度人工鱼礁混凝土.通过改变钢渣和脱硫石膏的掺量,研究了其掺量变化与试件强度的影响关系.实验结果表明:在该体系中,当钢渣掺量小于5%时,胶砂试块的强度随着钢渣的增加而提高;当钢渣掺量大于5%时,胶砂试块的强度随着钢渣掺量的增加而降低,并在钢渣掺基大于20%时快速下降.脱硫石膏的掺量对胶砂试块的强度

  13. Conditioning of spent ion-exchange resins followed by solidification in the alkali-slag long-lived matrix with an increased level of filling with resins

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolaevna Skomorokhova

    2015-12-01

    Full Text Available The possibility for spent ion-exchange resins (IER of intermediate specific activity to be solidified in alkali-slag (geocement water-resistant matrixes with an increased level of filling with resins was studied. Comparative tests of the IER immobilization process were done for justifying the most technologically effective matrix material. We used three different alkali-slag cementing systems and the prepared simulated pulps of IER with the specific activity of 3×108 Bq/L, saturated with 137Cs radionuclide. The manufactured samples of the alkali-slag compounds, filled with IER at the level of 24-27% by weight, meet the regulatory requirements set in NP-019-15 code and feature better working quality parameters (mechanical strength: 5-14 MPa, leaching rate of 137Cs, Na, Ca: <2×10-4 g/cm2∙day on the 7th-10th day, mechanical strength of compounds rises by the factor of 1.2-1.5 after immersion tests. The incorporation of the spent IER in the most technologically effective alkali-slag matrix makes it possible to decrease the cementing material consumption by the factor of 2.4 in comparison with Portland cement and by the factor of 1.3 in comparison with the known slag binders, while a compound with better quality parameters is produced. The research was done with the support of the Russian Ministry of Education and Science (unique identifier of the applied research studies - RFMEFI57915X0101 for justifying a new energy-efficient and resource-saving technology of reprocessing the spent IER-containing waste.

  14. Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

    Directory of Open Access Journals (Sweden)

    Renato eBaciocchi

    2016-01-01

    Full Text Available This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry phase (L/S=5 l/kg, T=100 °C and Ptot=10 bar and the thin film (L/S =0.3-0.4 l/kg, T=50 °C and Ptot=7-10 bar routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis the energy requirements associated to each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW. For the slurry phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a and 29.2% (BOF-b at 40% CO2 and 32.5% (BOF-a and 40.3% (BOF-b at 100% CO2. For the thin film route, maximum uptakes of 13% (BOF-c and 19.5% (BOF-d at 40% CO2, and 17.8% (BOF-c and 20.2% (BOF-d at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e. 1400-1600 MJ/t CO2 for the slurry phase and 2220-2550 MJ/t CO2 for the thin film route.

  15. Application analysis on slag of nonferrous metallurgy with higher ferric oxide and silica%有色冶金高铁高硅渣炼制生铁的应用探讨

    Institute of Scientific and Technical Information of China (English)

    路晓涛; 赵俊学; 王鹏飞; 高晓婷; 崔雅茹

    2012-01-01

    High ferric oxide-and silica-bearing slag is generally produced in the nonferrous metallurgical process.Its output is very large and it is difficult to handle,leading to waste of valuable metals and pollution of the environment.To recover the valuable elements and make recycling use of the slag,the chemical composition and properties of the slag,the possibility of using the slag as raw materials for ironmaking and steelmaking are evaluated.The current situation of extracting iron from nonferrous metallurgical slag and the iron product quality are analyzed,and some suggestions to its potential application in steelmaking are given.%有色金属火法冶炼过程普遍产生高铁高硅炉渣,其产量大、难处理的特点导致了金属资源的浪费,也造成了环境污染。结合有色冶金高铁炉渣化学成分,对其直接作为炼铁炉料做了资源性评价。分析了当前有色冶金渣提铁现状以及提铁产品质量,提出其在耐候钢、部分含铜不锈钢方面应用的新思路。

  16. The Effect of Solid Constituent Particle Size Distributions on TP-H1148 Propellant Slag

    Science.gov (United States)

    May, Douglas H.; Miles, William L.; Taylor, David S.; Rackham, Jon L.

    1997-01-01

    Special aluminum and ammonium perchlorate (AP) particle size distributions were prepared for a matrix of five-inch diameter, center-perforated (CP) motor tests to measure the aluminum oxide slag response in Space Shuttle Reusable Solid Rocket Motor (RSRM) propellant. Previous tests of TP-H1148 propellant in five-inch CP spin motors have shown a correlation between aluminum particle size and generated slag. The motors for this study were cast from thirteen five-gallon propellant mixes which used five particle size levels of aluminum powder, five of unground AP and three of ground AP. Aluminum had the greatest effect on slag formation, the more coarse fractions causing greater slag quantities and larger slag particles. Unground AP had about half the effect of aluminum with the coarser fractions again producing more and larger sized slag particles. The variation in ground AP did not have a significant effect on slag formation. Quench bomb tests showed the same trends as the spin motors, that is, larger aluminum and AP particle size distributions generated larger slag particles leaving the propellant surface. Cured propellant mechanical properties were also impacted by particle size variation.

  17. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  18. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    Science.gov (United States)

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  19. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  20. Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation

    Science.gov (United States)

    Shi, Huayue; Chen, Liugang; Malfliet, Annelies; Jones, Peter Tom; Blanpain, Bart; Guo, Muxing

    2016-10-01

    A ZnO-containing fayalite-based slag can be formed in copper smelting from secondary raw materials and its high viscosity is a common issue that hinders slag tapping. In this work, the crystallization behavior of the industrial slag was observed in situ by confocal laser scanning microscopy. Solid precipitation was found to be the major cause of the poor slag fluidity. The phase relations in the industrial slag system ZnO-"FeO"-SiO2-Al2O3-CaO (CaO/SiO2 = 0.05, Al2O3/SiO2 = 0.15) were investigated by quenching the samples after reaching equilibrium at 1423 K (1150 °C) under iron saturation. The equilibrium composition of the phases was determined with electron probe micro-analysis. The effect of individual components, such as FeO, ZnO, and CaO on the phase equilibrium of the slag system has been quantitatively studied. The relation between the solid-phase fraction and the chemical composition of the slag has been revealed. Suggestions to modify the slag composition toward low viscosity are provided.

  1. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.

    Science.gov (United States)

    Navarro, Carla; Díaz, Mario; Villa-García, María A

    2010-07-15

    The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage.

  2. Characterization and activation of the slag of El Hadjar's blast furnaces by clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Guetteche, M.N.; Houari, H. [Constantine Univ. (France)

    2001-07-01

    The El Hadjar steel plant in Algeria produces about 430,000 tons of slag annually. This paper presents a study in which the granular slag of El Hadjar's blast furnace was characterized using a variety of analytical methods that made it possible to calculate hydraulic indices. El Hadjar slag is being promoted in the construction industry in an effort to address environmental concerns regarding the production of portland cement which is very energy intensive and which contributes to major greenhouse gas emissions into the atmosphere. The use of slag as an addition to portland cement or the manufacturing of clinker free binder would make this waste into a valuable product. Chemical analysis, x-ray diffraction, differential thermal analysis, Fourier transformer infrared spectrometry and conductimetry were used to better understand the vitreous structure of the slag and its hydraulic reactivity. Prismatic test tubes were used for the mechanical tests which involved clinkers of various grinding rates of slag. The results showed that slag is reactive and that the evolution of mechanical resistance to grinding is very sensitive. It was also shown that long term mechanical performance of the slag based ingredients are of significant interest to the cement and concrete industry. 9 refs., 9 tabs., 5 figs.

  3. Microstructure and Composition of Hydration Products of Ordinary Portland Cement with Ground Steel-making Slag

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xin; CHEN Yi-min; ZHANG Hong-tao; HE Xing-yang; WEI Jiang-xiong; ZHANG Wen-sheng

    2003-01-01

    The effect of ground steel-making slag on microstructure and composition of hydration products of ordinary Portland cement (OPC) was investigated by mercury intrusion porosimetry ( MIP ), X- ray diffraction (XRD) and differential thermal analysis (DTA). Results show that ground steel-making slag is a kind of high activity mineral additives and it can raise the longer-age strength of OPC mortar. The total porosity and average pore diameter of OPC paste with groand steel-making slag increase with the increase of the amount of ground steelmaking slag replacing OPC at various ages, while after 28 days most pores in OPC paste with ground steel-making slag do not influeace the strength because the diameter of those pores is in the rang of 20 to 50nm. The hydration mechanism of ground steel-making slag is similar to that of OPC but different from that of fly ash and blast furnace slag. The hydration products of ground steel-making slag contain quite a lot of Ca( OH)2 in long age.

  4. Study on Adsorption Behaviors of Cr(Ⅵ) in Sewage by Lemon Slag%柠檬渣吸附污水中铬(Ⅵ)的工艺研究

    Institute of Scientific and Technical Information of China (English)

    冉敬; 黄秀丽; 汪阳平; 任沁; 沈王庆

    2015-01-01

    为了研究柠檬渣对污水中铬(Ⅵ)的吸收工艺,用10%的H2SO4对柠檬渣进行了改性,比较了改性柠檬渣与原柠檬渣的吸附性能,并利用单因素法,考察了吸附剂的量、反应时间、反应温度、溶液的pH和恒温振荡器的振速对吸附效果的影响。结果表明,改性柠檬渣的吸附性能要优于原柠檬渣;在一定条件下,改性柠檬渣与污水的适宜液固比为10 g/L;改性柠檬渣与原料柠檬渣的适宜反应时间为90 min;改性柠檬渣的反应温度为45℃;溶液的适宜pH为4;改性柠檬渣与原柠檬渣的恒温振荡器的振速分别取150 r/min和100 r/min。%To study the adsorption process of Cr(Ⅵ) in sewage, lemon slag was modified by 10% H2SO4, then the adsorp-tion capability of modified lemon slag and original lemon slag were compared. The effects of absorbent dosage, adsorption time, temperature, pH and oscillator vibration velocity were investigated by single factor method. The results showed that the adsorption properties of modified lemon slag were better than the original slag. Under certain conditions, the suitable ratio of solid to liquid ( m modified lemon slag to Vsewage ) was 10g/L. The best reaction time of the modified lemon slag and the original slag was both 90 min; and the oscillator vibration velocity was 150 r/min and 100 r/min,respectively. The best reac-tion temperature of the modified lemon slag was 45 ℃; and the pH of the liquor was 4.

  5. Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting

    Science.gov (United States)

    Jiang, Zhou-Hua; Hou, Dong; Dong, Yan-Wu; Cao, Yu-Long; Cao, Hai-Bo; Gong, Wei

    2016-04-01

    Many factors influence the chemical composition in electroslag remelting (ESR) steel, including atmosphere in crucible, melting rate, slag composition, deoxidation, and so on. Fluoride-based slag, which is exposed to liquid metal directly, influences the chemical composition of ESR ingots to a large extent. The present paper focuses on the effect of slag on the titanium, silicon, and aluminum contents in ingots based on the interaction of the slag and metal. In present work, superalloy of GH8825 and several slags containing different CaO contents have been employed for investigating the effect of slag on titanium, silicon, and aluminum contents in an electrical resistance furnace under argon atmosphere. Results indicate that the higher CaO content in slag has better capacity for avoiding loss of titanium caused by the reaction of titanium with silica in slag, especially in case of remelting superalloy with high titanium and low silicon content. The CaO has a great effect on the activities of TiO2, SiO2, and Al2O3. Thermodynamic analysis is applied to investigate the CaO behavior. Based on the ion and molecule coexistence theory of slag, activity model is established to calculate the activities of components containing titanium, silicon, and aluminum elements in a six-component slag consisting of CaO-CaF2-Al2O3-SiO2-TiO2-MgO. The components containing titanium, silicon, and aluminum in slag are mainly CaO·TiO2, 2CaO·SiO2, CaO·SiO2, CaO·Al2O3, and MgO·Al2O3. With the increase of CaO mass fraction in slag, the activity coefficient of SiO2 decreases significantly, whereas slightly change happens for Al2O3. As a result, the lg ({{γ_{{{{SiO}}2 }} } {/ {{{γ_{{{{SiO}}2 }} } {γ_{{{{TiO}}2 }} }}} {γ_{{{{TiO}}2 }} }}) decreases with increasing CaO content, which is better for preventing loss of titanium caused by the reaction of titanium with silica in slag. The slag with high CaO and appropriate TiO2 content is suitable for electroslag remelting of GH8825.

  6. Cementing properties of steel slag activated by sodium silicates and sodium hydroxide

    Institute of Scientific and Technical Information of China (English)

    Wen Ni; En Wang; Jianping Li; Han Sun

    2005-01-01

    Steel slag which is mainly composed of γ-CasSiO4 and other silicates or alumino-silicates is activated by sodium silicates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compressive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.

  7. Study on Mechanism of Reaction Between AOD Slag and Rebonded Magnesite—Chrome Brick

    Institute of Scientific and Technical Information of China (English)

    ZHAOYuxi; HEXiaoping

    2000-01-01

    The influence of the composition of AOD slag on the corrosion of rebonded magnesite-chrome brick has been studied by analyzing the residual bricks at the tuyere zone of AOD .It indicates that the corrosion degree increased with the increase of the basicity of slag and decreased with the increase of the content of MgO ,Cr2O3 and Al2O3 in slag.And the addition of refractories to slag up to satura-tion could decrease the corrosion abiliy of sag.It is important to make a resonable slagmaking rule and ensure the percentage of MgO in slag more than 11wt% for pro-longing the service life of lining.

  8. Laboratory Investigation of Fatigue Characteristics of Asphalt Mixtures with Steel Slag Aggregates

    Directory of Open Access Journals (Sweden)

    Hassan Ziari

    2015-01-01

    Full Text Available There are many steel-manufacturing factories in Iran. All of their byproducts, steel slag, are dumped randomly in open areas, causing many environmentally hazardous problems. This research is intended to study the effectiveness of using steel slag aggregate (SSA in improving the engineering properties, especially fatigue life of Asphalt Concrete (AC produced with steel slag. The research started by evaluating the physical properties of the steel slag aggregate. Then the 13 types of mixes which contain steel slag in portion of fine aggregates or in portion of coarse aggregates or in all portions of aggregates were tested. The effectiveness of the SSA was judged by the improvement in Marshall stability, indirect tensile strength, resilient modulus, and fatigue life of the AC samples. It was found that replacing the 50% of the limestone coarse or fine aggregate by SSA improved the mechanical properties of the AC mixes.

  9. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  10. The Effect of Oxygen Potential on the Sulfide Capacity for Slags Containing Multivalent Species

    Science.gov (United States)

    Allertz, Carl; Selleby, Malin; Sichen, Du

    2016-10-01

    The dependence of sulfide capacity on the oxygen partial pressure for slags containing multivalent species was investigated experimentally using a slag containing vanadium oxide. Copper-slag equilibration experiments were carried out at 1873 K (1600 °C) in the approximate oxygen partial pressure range 10-15.4 to 10-9 atm. The sulfide capacity was found to be strongly dependent on the oxygen potential in this slag system, increasing with the oxygen partial pressure. The sulfide capacity changed by more than two orders of magnitude over the oxygen partial pressure range. The effect of changing oxygen partial pressure was found to be much greater than the effect of changing slag composition at a fixed oxygen partial pressure.

  11. Mechanical property and hydration mechanism of slag blended magnesium phosphate cement%矿渣磷酸镁水泥的力学性能和水化机理

    Institute of Scientific and Technical Information of China (English)

    侯磊; 李金洪; 王浩林

    2011-01-01

    以高炉矿渣作为磷酸镁水泥(MPC)的活性混合材料,研究了MPC的凝固时间、力学性能、物相组成和显微结构,并探讨了矿渣MPC的作用机理.实验固定磷镁比为25%,硼镁比为7.5%,矿渣掺量分别为磷镁总质量的0%、10%、20%、30%和40%.结果表明,矿渣参与了水化反应并提高了MPC的胶凝性能,随着矿渣掺量增大,矿渣MPC的抗压强度提高,但矿渣水化产生的膨胀应力会破坏MPC的内部结构,因此其抗折强度随矿渣掺量增大而降低.矿渣MPC的主要水化产物为六水合磷酸镁铵(MgNH4PO4·6 H2O),矿渣的掺入使凝胶相增加,并有部分Ca2+进入MgNH4PO4·6 H2O品格,使水化产物的形貌、大小发生变化.样品中剩余较多死烧镁和矿渣颗粒,可起骨料作用.%Blast-furnace slag was used as an active addition of magnesium phosphate cement. The influence of blast-furnace slag on the setting time, mechanical property, mineral phase and microstucture of slag blended magnesium phosphate cement (MPC) was studied. The prescription was designed as follows: the ratio of monoammonium phosphate to magnesia was 25% in mass, the borax additive amount to magnesia was 7.5% , the additive amount of blast-furnace slag was 0% , 10%, 20%, 30% and 40% separately in the ratio of total amount of dead burned magnesia and monoammonium phosphate to MPC. The results show that slag might participate the hydration, which improves the bonding of MPC, and the compressive strength of slag-blended MPC is improved with the increasing additive amount of slag. However, slag might results in expansion stress during hydration process, which causes lattice disturbance in hardened MPC, so the flexual strength decreases with the increasing additive amount of slag at the same time. The main hydration product of slag blended MPC is struvite (MgNH4PO4·6 H2O), the content of amorphous phase might increase after being mixed with slag in MPC, and Ca2+ ions in slag can result

  12. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  13. Study on Behaviour of Concrete Mix Replaceing Fine Aggregate With Steel Slag At Different Properties

    Directory of Open Access Journals (Sweden)

    P.Sateesh Kumar

    2015-11-01

    Full Text Available This paper aims to study experimentally, the effect of partial replacement of fine aggregate by steel slag (ss, on the various strength and durability properties of concrete by using the mix designs .the optimum percentage of replacement of fine aggregate by steel slag is found. Workability of concrete gradually decreases, as the percentage of replacement increases which is found using slump test. Compressive strength, tensile strength, flexural strength and durability tests such as acid resistant’s, using HCL,H2SO4 and rapid chloride penetration, are experimentally investigated. The results indicate that for conventional concrete, partial replacement of concrete by steel slag improves the compressive, tensile, flexural strength. The mass loss in cubes after immersion in acids is found to be very low. Deflection in the RCC beams gradually increases, as the load on the beam increases, for the replacement. The degree of fluoride ion penetrability is assessed based on the limits given in ASTM C 1202. The viability of use of steel slag in concrete is found. Waste management is one of the most common and challenging problems in the world. The steel making industry has generated substantially solid waste. Steel slag is a residue obtained in steel making operation. This paper deals with the implementation of steel slag as an effective replacement for sand. Steel slag ,which is consider as the solid waste pollutant, can be used for road construction ,clinker raw materials, filling materials etc. In this work, steel slag used as replacement for sand, which is also major component concrete mixture. This method can be implement for producing hallow blocks, solid blocks, paver blocks, concrete structures etc. Accordingly, advantages can be achieved by using steel slag instead of natural aggregates this will also encourage other researchers to find another field of using steel slag.

  14. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.

    Science.gov (United States)

    Su, Tung-Hsin; Yang, Huai-Jen; Shau, Yen-Hong; Takazawa, Eiichi; Lee, Yu-Chen

    2016-03-01

    Basic-oxygen furnace slag (BOF-slag) contains >35% CaO, a potential component for CO2 sequestration. In this study, slag-water-CO2 reaction experiments were conducted with the longest reaction duration extending to 96hr under high CO2 pressures of 100-300kg/cm(2) to optimize BOF-slag carbonation conditions, to address carbonation mechanisms, and to evaluate the extents of V and Cr release from slag carbonation. The slag carbonation degree generally reached the maximum values after 24hr slag-water-CO2 reaction and was controlled by slag particle size and reaction temperature. The maximum carbonation degree of 71% was produced from the experiment using fine slag of ≤0.5mm under 100°C and a CO2 pressure of 250kg/cm(2) with a water/slag ratio of 5. Vanadium release from the slag to water was significantly enhanced (generally >2 orders) by slag carbonation. In contrast, slag carbonation did not promote chromium release until the reaction duration exceeded 24hr. However, the water chromium content was generally at least an order lower than the vanadium concentration, which decreased when the reaction duration exceeded 24hr. Therefore, long reaction durations of 48-96hr are proposed to reduce environmental impacts while keeping high carbonation degrees. Mineral textures and water compositions indicated that Mg-wüstite, in addition to CaO-containing minerals, can also be carbonated. Consequently, the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO2 sequestration capability of the BOF-slag by ~20%. Therefore, the BOF-slag is a better CO2 storage medium than that previously recognized.

  15. Sulfide capacities of MnO-SiO2 slags

    Science.gov (United States)

    Reddy, Ramana G.; Blander, Milton

    1989-04-01

    Sulfide capacities of binary MnO-SiO2 slags at 1773 and 1923 K were calculated thermodynamically. Only known data, such as the standard free energy of formation of MnO and MnS and activities of MnO in the melt, are used in making calculations based on fundamental concepts. Excellent agreement is found between our calculations and published experimental data. Correlations of sulfide capacities, based on optical basicity using Pauling electronegativities or empirically deduced optical basicities, differ from the experimental data in both magnitude and concentration dependence. Our method provides useful predictions of sulfide capacities a priori.

  16. Computer recognition of slag property diagrams in ternary systems

    Institute of Scientific and Technical Information of China (English)

    Jinxiong Lu; Li Wang; Jiongming Zhang; Xinhua Wang

    2004-01-01

    In order to take data information from the slag property diagram in a ternary system automatically and actually, a picture recognition and drawing software has been developed by Visual Basic 6.0 based on the image coding principle of computer system and the graphics programming method of VB. This software can transform the ternary system isopleth diagram from bitmap format to data file and establish a corresponding database which can be applied to rapidly retrieve a mass of data and make correlative thermodynamics or kinetics calculation. Besides, it still has the function of drawing the ternary system diagram which can draw different kinds of property parameters in the same diagram.

  17. 高温熔融钢渣热闷热平衡分析及余热回收利用%Analysis of heat balance and waste heat recovery and utilization for the high temperature molten slag by pyrolytic

    Institute of Scientific and Technical Information of China (English)

    张宇; 陈媛; 张天有; 张健; 韩自博; 刘银梅

    2014-01-01

    对钢渣热闷过程中的热量平衡进行了分析和计算,提出了余热回收方案,并对经济效益进行了分析,为钢渣余热回收的进一步研究和实践打下了基础。%The heat balance during the steel slag self -slaking process by pyrolytic was analyzed and calculated.Put forward the waste heat recovery scheme and analyzed the economic benefits .It lays a solid basis for the further research and practice of steel slag waste heat recovery .

  18. The Analysis of the Chloride and Fluoride Influences on the Reducer Refinement Processes (Carbo-N-Ox Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    A. W. Bydałek

    2013-07-01

    Full Text Available Slag refining slag with west materials was analysed used the DTA methods. In the paper a method of determining the reduction capability, with the Carbo-N-Ox method, of slag solutions was used. Some relations between the stimulators in the environment - slag - metal system allow to initiate mass exchange reactions in the process of slag refining.The presented in work course of behaviour permits on choice of basic composition of slaglite, the of necessary components stimulating quantities, as well as on accomplishment of opinion of ability refinement. The worked out programme Slag-Prop, after introduction of data with experiment, it allows on next corrections in composition of proposed mixtures also, should be put on properly elaborated factors of multistage reaction with essential usage of suitable stimulators.

  19. Selective enrichment of TiO2 and precipitation behavior of perovskite phase in titania bearing slag

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-yu; ZHANG Lin-nan; ZHANG Li; SUI Zhi-tong; TU Gan-feng

    2006-01-01

    The effects of additive agents and growth behavior of perovskite phase as well as temperature change of slag at semi industry scale test were studied. The results show that the increase of steel slag does good to titania enrichment, however, it isn't useful for the growth and coarsening of the perovskite phase. The additive Si-Fe powder can promote titania enrichment and make perovskite phase grow up easily. While air is blown into the molten slag, the reduced components in slag are oxidized and the released heat raises the temperature of slag.

  20. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih

    2016-03-01

    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  1. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Pathak

    2014-05-01

    Full Text Available Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS and this material is obtained from the blast furnace of cement plant, which is the byproduct of iron (from ACC plant, sindri. It is generally obtained in three shaped one is air cooled, foamed shaped and another is in granulated shaped. The use of by-product materials for stabilisation has environmental and economic benefits. Ground granulated blast furnace slag (GGBS material is used in the current work to stabilise soil (clay. The main objectives of this research were to investigate the effect of GGBS on the engineering property (optimum moisture content and maximum dry density, plastic limit, liquid limit, compaction, unconfined compressive strength, triaxial and California bearing ratio test of the soil and determine the engineering properties of the stabilised.

  2. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  3. Sliding Wear Properties of Hybrid Aluminium Composite Reinforced by Particles of Palm Shell Activated Carbon and Slag

    Directory of Open Access Journals (Sweden)

    Zamri Yusoff

    2011-09-01

    Full Text Available In present work, dry sliding wear tests were conducted on hybrid composite reinforced with natural carbon based particles such as palm shell activated carbon (PSAC and slag. Hybrid composites containing 5 -20 wt.% of both reinforcements with average particles sizes about 125μm were prepared by conventional powder metallurgy technique, which involves the steps of mixing, compacting and sintering. Dry sliding experiments were conducted in air at room temperature using a pin-on-disc self-built attach to polisher machine. The disc which acted as the mating surface material was made of mild steel (120 HV cut from commercial mild steel sheet (2 mm thickness into 100mm diameter. The influence of the applied load was investigated under a constant sliding velocity of 0.1m/s with the applied loads at 3N, 11N and 51N. The contribution of the reinforcement content and the applied load as well as the sliding distance on the wear process and the wear rate have been investigated. The contribution of synergic factors such as applied load, sliding distance and reinforcement content (wt.% have been studied using analysis of variance (ANOVA. All synergic factors contribute to the wear process of all tested composites. Among synergic factors, the applied load is the highest contribution to wear process on both composites (Al/PSAC and Al/Slag and hybrid composite. The degree of improvement of wear resistance of hybrid composite is strongly dependent on the reinforcement content.

  4. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  5. Investigation on the Copper Content of Matte Smelting Slag in Peirce-Smith Converter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper contents and its existing forms in the slags duri ng the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant trials with the corresponding thermodynamic calculation s and kinetic considerations. From the plant data, the total copper co ntent in the slags was in the range of 2% to 8 % (mass fraction). The mechanical entrainment of matte drops has been found to be the main ca use of the copper loss. The suspension index, defined as the ratio of the mass fraction of copper in suspended matte drops in the slag to th at in bulk of the matte phase, has been adopted to quantify the matte entrainment. The values of this parameter estimated in this work have been found mainly within a range of 2.5%€?.0%. The Fe3O4 content in t he slag has been estimated to be the most important factor, among othe rs, influencing the separation of slag with matte and, consequently, t he copper loss from the slag.

  6. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  7. A Proposal for a Novel Method to Measure the Diffusivity of Species in Slag

    Science.gov (United States)

    Muhmood, Luckman; Viswanathan, Nurni Neelakantan; Seetharaman, Seshadri

    2011-04-01

    The rate of reactions involved in steel-refining operations largely depend on the transport of species through the slag or metal phase at steel refining temperatures; the intrinsic reaction rates are expected to be high. Therefore, the study of diffusivity of species in slag is of great importance. The present work proposes a new methodology, in which experiments can be designed to determine the diffusivity of species in liquid slag. In this article, a mathematical description for the methodology is formulated and subsequently solved using numerical methods. This exercise will help in identifying appropriate bounds for experimental parameters for a desired accuracy. The proposed methodology is generic for any species in the liquid slag phase. However, diffusion of sulfur through slag has been illustrated as a case study. The order of magnitude for the diffusion coefficient for sulfur was taken from the classic works of Saito and Kawai, the sulfide capacity and sulfur partition ratio were retrieved from the works of Taniguchi et al., and the slag density was retrieved from earlier experimental results of the present authors. The slag density was obtained from earlier experimental results from the present group. The Henrian activity coefficients were retrieved from literature. Subsequent to the present work, the design of experiments and measurements carried out using the proposed methodology and the results obtained are presented as the second article on this subject.

  8. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.

    Science.gov (United States)

    Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie

    2009-08-30

    A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.

  9. Preparation and characteristics of a new kind of water quenched slag filter medium%一种新型水渣滤料的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    韩雯雯; 滕少香; 王全勇; 刘汝鹏

    2013-01-01

    以钢铁企业冶炼生铁时产生的高炉水渣为主要原料,添加黏结剂和成孔剂,制得一种轻质高强的新型水渣滤料.通过正交试验确定了水渣滤料制备的最佳配比和最佳工艺条件,制得的水渣滤料主要性能指标均能达到国家标准.将陶粒和水渣滤料分别填加到曝气生物滤池中进行生物挂膜实验,结果表明:运行两周后,水渣滤料对COD和氨氮的去除率分别达到80%和70%以上,且去除效果优于陶粒.%A kind of light-weight and high-strength water quenched slag filter medium has been prepared by using blast furnace water quenched slag produced by smelting pig iron in iron and steel works as main raw material and mixing with adhesives and pore-forming agent.By orthogonal tests,the best ratio and process conditions of water quenched slag filter medium preparation are determined.The main capability indexes of the water quenched slag produced can reach the national standard.The ceramic granules and water quenched slag filter medium are added respectively,to the BAF models for doing bio-film colonization experiments.The results show that after running for two weeks,the removing rates of COD and ammonia nitrogen with the water quenched slag filter medium are above 80% and 70%,respectively.Its removing efficacy is better than ceramic granules.

  10. 电炉氧化钢渣在水泥和混凝土中的应用研究%Investigation to application of electric fumace oxidizing slag being used in cement and concrete

    Institute of Scientific and Technical Information of China (English)

    刘智伟; 李宇; 苍大强

    2014-01-01

    电炉氧化钢渣(简称电炉钢渣)是电炉炼钢产生的副产品,具有较好的潜在胶凝活性,介绍了将活化处理后的电炉钢渣粉应用于水泥和混凝土中,研究了钢渣水泥的力学强度、标准稠度需水量、凝结时间、安定性和混凝土抗压强度、抗渗性等性能,研究表明:电炉钢渣粉可以用于生产42.5级钢渣硅酸盐水泥(简称,钢渣水泥)和C40混凝土,不仅拓宽电炉钢渣综合利用途径,还能实现良好的经济效益和环保效益。%Electric fumace oxidizing slag (electric fumace slag) is the byproduct in the process of metallurgy of electric fumace,which has preferable and potential gelation activity.Introduced that activated electric fumace slag powder was used in steel slag cement and concrete,investigated the mechanical strength,water requirement for normal consistency,setting time and invariability of cement,and the pressive strength,impermeability of concrete.The results showed that activated electric fumace slag powder could be used to produce 42.5 steel slag cement and C40 concrete,which not only widen its comprehensive utilization path,but achieve favorable economic and environmental benefits.

  11. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate

    Science.gov (United States)

    Permana, S.; Soedarsono, J. W.; Rustandi, A.; Maksum, A.

    2016-05-01

    Indonesia, as the second largest tin producer in the world, has a byproduct from the production of tin. This byproduct is in the forms of tin slag containing tantalum pentoxide (Ta2O5) and niobium pentoxide (Nb2O5). This study focuses on the recovery of tantalum pentoxide and niobium pentoxide from the tin slag. In the process, one part of the tin slag sample was sieved only (BTS), and the other was roasted at 900°C, water quenched and then sieved (BTS-RQS). Samples BTS and BTS-RQS were characterized by thermo gravimetric analysis (TGA) and X-ray flourence (XRF). One part of BTS-RQS sample was dissolved in hydrofluoric acid (HF) and the other was dissolved in hydrochloric acid (HCl), washed with distilled water, then dissolved into sodium hydroxide (NaOH). Each sample was characterized by using XRF. The BTS sample produced the highest recovery of 0.3807 and 0.6978% for Ta2O5 and Nb2O5, respectively, from the particle size of -1.00+0.71 and a fraction of 47.29%, while BTS-RQS produced the highest recovery of 0.3931 and 0.8994% for Ta2O5 and Nb2O5, respectively, on the particle size of -0.71+0350 and a fraction of 21%. BTS-RQS, dissolved with 8% hydro fluoride acid, yields tantalum pentoxide and niobium pentoxide with a ratio of 2.01 and 2.09, respectively. For the sample BTS-RQS dissolve first with 6M hydrochloric acid, washed with distilled water, then dissolved with sodium hydroxide 10M, the yield ratios are 1.60 and 1.84 for tantalum pentoxide and niobium pentoxide, respectively. In this study, it is found that the dissolution by using hydrofluoric acid 8% yields the best ratio.

  12. 基于相位一致性的转炉出钢下渣检测方法%Converter tapping slag detection method based on phase congruency

    Institute of Scientific and Technical Information of China (English)

    陈灵光; 李培玉; 孙大成; 夏军

    2013-01-01

    针对当前转炉出钢下渣检测系统检测准确性不高、使用寿命短、安装维护困难等问题,提出基于相位一致性的红外下渣检测方法.通过对转炉出钢下渣过程和钢水钢渣混流图像特征的研究,构造改进的相位一致性模型,并利用正交的log-Gabor滤波器组求解模型.该算法很好克服传统边缘检测方法容易受到亮度、对比度以及噪声影响的缺点,能够检测到清晰并且连续的钢渣边缘.工业现场试验结果表明,该方法在提高红外转炉出钢检测系统的检测准确率和控制钢包渣厚两方面效果明显.%In order to solve some problems of converter tapping slag detection system, such as low accuracy, short service life, inconvenient installation and maintenance, a new infrared slag detection method based on phase congruency was developed. Through analyzing the process details of converter tapping and the characteristics of the molten steel and slag mixed image, a new model with phase congruency was constructed and the model was calculated via log-Gabor filters in quadrature. The traditional edge detection methods are vulnerable to the brightness, contrast and noise, while this algorithm based on phase congruency can overcome such shortcomings and detect a clear and continuous edge of slag. Industrial test results show that the method is effective to improve accuracy of infrared slag detection system and control thickness of slag in ladle.

  13. 钢渣处理与余热回收技术的分析%Analysis of steel slag treatment technology and waste heat recovery technology

    Institute of Scientific and Technical Information of China (English)

    张宇; 张健; 张天有; 刘银梅; 韩自博

    2014-01-01

    the-steel-slag-treatment-and-waste-heat-recovery-technology-and-device-in-China-and-abroad-were-listed,-compared-and-analyzed-through-a-large-number-of-examples.Through-analysis-and-comparison,it-shows-that-the-heat-in-molten-slag-could-be-recycled-and-re-used-through-different-steel-slag-processing-combined-with-scientific,-economic,reasonable-waste-heat-recovery-technology,and-could-get-remarkable-achievements.At-the-same-time,it-was-pointed-out-that-due-to-the-inherent-characteristics-and-physicochemical-conditions-of-steel-slag,many-waste-heat-recovery-problems-need-researcher’s-continuing-research-to-solve.Finally,the-prospect-of-steel-slag-waste-heat-recovery-were-discussed-and-suggested-that-the-government-and-related-fields-should-give-enough-attention-and-sup-port-for-field-of-steel-slag-waste-recovery.%对国外和中国钢渣处理的余热回收技术和余热回收装置应用案例进行了大量地列举、系统地比较和分析。通过比较和分析表明:熔融钢渣中的余热可以通过各种不同的钢渣处理工艺,结合科学、经济、合理的热能回收技术将余热加以回收和利用,其成果十分显著。同时,指出了由于受钢渣固有特性和物化条件的制约,目前钢渣余热资源的回收存在着许多问题,有待于钢铁行业和热能开发领域的研究者继续探讨和解决。最后,对钢渣余热回收的前景进行了展望,建议政府和相关领域予以足够地重视和支持。

  14. 电石渣浆绿色治理与综合利用%Experience on green treatment and comprehensive utilization of carbide slag slurry

    Institute of Scientific and Technical Information of China (English)

    梅雪正

    2012-01-01

    介绍了太原化工股份有限公司氯碱分公司治理电石渣浆和巧妙实现工业污水零排放的经验,阐述了如何将电石渣浆变废品为资源的详细思路和实施过程。%The paper introduces the experience of management calcium carbide slag and zero discharge of industrial sewage for chlor-al- kali branch Co. , taiyuan chemical industry group Co. Ltd. , and expounds the detailed ideas and the implementation process how to make use of waste calcium carbide slag.

  15. Influence of Environmental Factors on the Volume Change of Blended Cement Containing Steel Slag

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the condition of 20 ℃, 5% sulfate liquor curing, standard tap water curing and 50% RH curing-three different curing environments, the volume change of steel slag blended cement influenced by environmental factors was studied. With steel slag addition 10%, 30%, 50%, from 90 days to 356 days, the relationship of shrinkage and three different curing environments is: dry curing environment>tap water curing environment>sulfate curing environment. But, the sample shrinkage in 28 days has much difference with the curing environment, which has no obvious orderliness. The different effects on blended cement containing steel slag in different environmental factors were analyzed using SEM.

  16. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles

    Indian Academy of Sciences (India)

    Ritwik Sarkar; Nar Singh; Swapan Kumar Das

    2010-06-01

    Steel melting through electric arc furnace route is gaining popularity due to its many advantages, but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only utilization. This slag has been tried to be value added and utilized to develop vitreous ceramic tiles. Slag, to the extent of 30–40 wt% with other conventional raw materials, were used for the development in the temperature range 1100–1150°C. The fired products showed relatively higher density with shorter firing range and good strength properties. Microstructural and EDAX studies were also done to evaluate the developed products.

  17. The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates

    OpenAIRE

    2009-01-01

    This paper presents the results of multi-linear regression analysis (MLRA) of the slag composition (SiO2, FeO, Fe3O4, CaO, Al2O3) and the content of copper in the matte on resulting copper content in the slag during smelting of the sulfide concentrates in the reverberatory furnace. When comparing results obtained with MLRA model calculations with values measured at industrial level high degree of fitting is obtained (R2 = 0.974). This indicates that slag composition and content of copper in t...

  18. 铜冶炼炉渣缓冷技术研究与生产实践%Copper Smelting Slag Slow Cooling Technology Research and Practice

    Institute of Scientific and Technical Information of China (English)

    王国红

    2014-01-01

    Slow cooling process is widely used to recycle copper from slag in domestic copper smelter, which can improve copper recovery rate and adaptability of smelting furnace to raw material. After slow cooling slag beneficiation, copper concentrates return to the smelting system, tailings is to be as the raw material for cement production. In this article, the slow cooling process of copper smel-ting slag and the main problem in production practice are described, s the reasons are analyzed and solutions are proposed.%国内铜冶炼厂广泛采用缓冷工艺回收炉渣中铜,该工艺可以提高冶炼厂铜回收率和冶炼炉对原料的适应性。缓冷炉渣经过选矿后,铜精矿返回冶炼系统,尾矿作为生产水泥的原料。介绍了铜冶炼炉渣缓冷工艺及生产实践中存在的主要问题,进行了原因分析并提出了解决措施。

  19. 独居石与独居石渣利用研究进展%Research Progress on the Utilization of Monazite and Monazite Slag

    Institute of Scientific and Technical Information of China (English)

    肖勇; 陈月华

    2016-01-01

    介绍了独居石精矿冶炼技术由浓硫酸分解法到液碱分解法的发展历程,对主流工艺液碱分解法的优化研究进行了总结,对独居石渣的形成进行分析.概括了处理独居石渣回收铀、钍与稀土的酸法工艺、碱法工艺和综合回收工艺的研究进展,并对综合回收工艺中的渣浸出、有价成分分离和尾矿处理等三个主流程进行了阐述.%This paper introduces the development process of monazite concentrate smelting methods from concentrated sulfuric acid technology to liquid alkali technology.The optimization on mainstream liquid alkali technology is summarized and the formed monazite slag is analyzed.The recent research review of recovering uranium,thorium and rare earth from monazite slag through acid technology,alkali technology and comprehensive technology is summarized.Furthermore,three main processes of comprehensive technology about slag leaching,valuable components separating and tailings disposing are also discussed.

  20. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    Science.gov (United States)

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.

  1. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  2. 高炉渣改性作为矿渣棉原料的试验%Experimental Research of Slag Wool Producing With Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    郭强; 袁守谦; 刘军; 李海潮

    2011-01-01

    研究了不同酸度条件下,随着高炉熔渣中主要成分的变化,其黏度和表面张力对高炉渣作为矿渣棉原料的影响,并对其影响机制进行了探讨。结果表明,Al2O3和SiO2增加时,黏度增加,表面张力也随之加大,利于制取较长的矿渣棉纤维。%In this paper,the effect of viscosity and surface tension of furnace slag as slag wool material is studied in different acidity coefficient,with changing of the blast furnace slag in the main component.The influence mechanism had also been discussed.The results show that the slag viscosity decreases with the increase of Al2O3 content,at the same time,surface tension decreases too which benefits to make longer slag wool fibers.

  3. Orgin of Slag from Early Medieval Age Furnaces in Nitra

    Directory of Open Access Journals (Sweden)

    Julius Dekan

    2005-01-01

    Full Text Available Two types of archaeological artefacts from remains of Early Medieval Age furnaces excavated in Nitra are analysed. They are supposed to originate from slag of glass and iron production. Employing Mossbauer spectrometry, iron crystallographic sites are identified and compared. In all samples, Fe2+ and Fe3+ structural positions were revealed. Some of the archeological artefacts including those that were supposed to originate from glass production show a presence of metallic iron and/or magnetic oxides. Based on the results of Mossbauer effect measurements performed at room temperature as well as 77 K (liquid nitrogen temperature analytical evidence is provided that the iron sites identified are not as those usually encountered in glasses. Consequently, a conclusion is proposed that neither of the investigated furnaces was used for glass production.

  4. PRODUCTION OF PAVING BLOCK AND KERB INCORPORATING BLASTFURNACE SLAG

    Directory of Open Access Journals (Sweden)

    İsa YÜKSEL

    2007-02-01

    Full Text Available This paper presents results of an experimental study about partial substitution of granulated blast-furnace slag (GBFS as fine aggregate in production of concrete paving blocks and kerbs. GBFS is replaced sand for different GBFS/sand ratios in concrete during production of kerb and paving block specimens. Some tests orienting towards strength and durability were applied on these specimens including control specimens that are produced with normal concrete. Then, the results of tested properties of GBFS-replaced specimens and control specimens were compared. GBFS decreases the compressive strength of paving blocks and kerbs according to the results. However, some durability properties which are more important than strength for these elements are improved with GBFS replacement. The most improved property was abrasion resistance. It is concluded that it is feasible to use GBFS in paving block and kerb production with an optimum replacement ratio for these specimens.

  5. Fluid Flow and Interfacial Phenomenon of Slag and Metal in Continuous Casting Tundish With Argon Blowing

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; ZHU Miao-yong; ZHOU Hai-bing; WANG Ying

    2008-01-01

    The fluid flow and the interracial phenomenon of slag and metal in tundish with gas blowing were studied with mathematical and physical modeling,and the effects of gas flowrate,the placement of porous beam for the generation of bubbles,and the combination of flow control devices on the flow and slag-metal interface were investigated.The results show that the position of gas bubbling has a significant effect on the flow in tundish,and the placement of porous beam and gas flowrate are the two main factors affecting the entrapment of slag in tundish.The closer the porous beam to the weir,the more reasonable is the flow,which is in favor of the control of slag entrapment in tundish.

  6. Improving the behavior of body roads by the use of gravel-slag mixture

    Science.gov (United States)

    Hadinane, Hocine; Oucief, Hocine; Merzoud, Mouloud

    2016-07-01

    The accumulation of wastes industrial stemming of the iron and steel industry has influenced negatively the environment. The adopted policy had for mission to eliminate these undesirable wastes by recycling them by their utilization in adequate areas. The objective of this work is to study the mechanical behavior of a gravel-slag based on crystallized and granulated slag, activated by lime. One will be interested in the study of resistance to punching and the bearing ratio of this slag through Proctor tests, CBR and by compression, tensile tests, for use in the layers of pavement (Foundation and base layers). The obtained result on gravel-slag show considerable performances, compared with natural aggregates point of resistance and thickness of the layers. Its utilization in the road area has allowed therefore the recycling these industrial wastes, to decrease the pollution, to use a minimum noble product requiring important exploitation energy and an economy on layers of surface realized with costly materials (bituminous concrete).

  7. Corrosion Resistance of MgO-C Based Refractory to Slag Containing Titania

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-cai; SUN Ya-li; DU Yun-gui; CHEN Deng-fu

    2004-01-01

    The interaction between the slag containing titanium oxides (TiO2 of 2.0 %-20.0 %) and a MgO-C based refractory was investigated by immersion test. The relationship between TiO2 content in slag and corrosion rate of the refractory was studied. The microstructure and compositions of the corroded refractory were analyzed by SEM and X-ray diffraction. The corrosion mechanism of MgO-C based refractory in the slag containing titanium was proposed, and the effects of TiO2 content, slag basicity (ωCaO/ωSiO2) and temperature in molten bath on the corrosion rate of the refractory were obtained.

  8. Study on Microstructure and Slag Corrosion Mechanism of High Chrome Bricks for Gasifier

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Research was focused on slag corrosion mechanism of high chrome bricks used for different types of gasifier by comparing the structure of high chrome bricks for petroleum coke gasifier and water-coal slurry gasifier with slag corroded testing brick and water coal slurry gasifier through Scanning Electron Microscope (SEM) examination and X-ray diffraction. Results show that for high chrome brick used for petroleum coke gasifier, corrosion is mainly caused by Cr2O3 in the brick and V2O5 in molten slag and liquid phase generation at low temperature; for high chrome brick used for water-coal slurry gasifier, corrosion is caused by dissolution of Cr2O3 in molten slag and corrosion of ZrO2. For LIRR-HK95 brick, it performs better petroleum coke corrosion resistance than the others due to the optimal composition and structure.

  9. Short review on the origin and countermeasure of biomass slagging in grate furnace

    Directory of Open Access Journals (Sweden)

    Yiming eZhu

    2014-02-01

    Full Text Available Given the increasing demand for energy consumption, biomass has been more and more important as a new type of clean renewable energy source. Biomass direct firing is the most mature and promising utilization method to date, while it allows a timely solution to slagging problems. Alkali metal elements in the biomass fuel and the ash fusion behavior, as the two major origins contributing to slagging during biomass combustion, are analyzed in this paper. The slag presents various layered structures affected by the different compositions of ash particles. Besides, the high-temperature molten material which provides a supporting effect on the skeletal structure in biomass ash was proposed to evaluate the ash fusion characteristics. In addition, numerous solutions to biomass slagging, such as additives, fuel pretreatment and biomass co-firing, were also discussed.

  10. Characteristics of blast furnace slag leachate produced under reduced and oxidized conditions.

    Science.gov (United States)

    Schwab, A P; Hickey, J; Hunter, J; Banks, M K

    2006-01-01

    A laboratory study was conducted to determine the environmental conditions necessary to reproduce leachates observed emerging from blast furnace slag acting as the foundation of highways in northwest Indiana. The leachates in the field are often highly alkaline with a pungent sulfur odor, a distinct green or milky-white in color, and sulfate concentrations exceeding 2,000 mg/L. Slag was equilibrated in the laboratory under both oxidized and anoxic environments and at various slag:water ratios. Constant anoxic conditions were required to produce to green colors in the slag, but high sulfate concentrations were observed only when the suspensions were fully oxidized. Leachate from the study site appears to form as a result of a series of complex chemical reactions including fluctuating oxidized and reduced conditions.

  11. Applicability of mass action law to sulphur distribution between slag melts and liquid iron

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the mass action law and the coexistence theory of slag structure, the calculating models of mass action concentration for CaO-MgO-FeO-Fe2O3-SiO2, CaO-MgO-MnO-FeO-Fe2O3-P2O5-SiO2 and CaO-MgO-MnO-FeO-Fe2O3-Al2O3-P2O5-SiO2 slag melts are formulated and sulphur distribution between the slag melts and liquid iron is treated. It is found that CaO, MnO and FeO promote desulphurization, while MgO is detrimental to desulphurization. In addition, the sulphur distribution coefficients between the slag melts and liquid iron are presented.

  12. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    Science.gov (United States)

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  13. Anisotropy of Expansion Coefficient and Slag Resistance of Spinel Carbon Bricks

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YUAN Shouqian; JIANG Mingxue; DONG Sunzhen; ZHAO Zijian

    2006-01-01

    Effects of the pressure direction on the thermal expansion and slag corrosion resistance were investigated and anisotropic microstructures of flaky graphite in spinel carbon bricks were examined. The experimental results show that slag corrosion velocities in the direction parallel to the pressure direction display a decrease of 34% compared to those in the vertical direction. Meantime, the linear expansion coefficient in the direction parallel to the pressure direction is 2.45 times as large as that in the vertical pressure direction. Slag corrosion velocities of spinel carbon bricks soaked in the AOD melting slag display a 46%-47% decrease compared to those of magnesia carbon bricks. The microstructure observation shows that spinel carbon bricks have a high degree of preferred orientation.

  14. Effect of the cooling rate on the phase composition and structure of copper matte converting slags

    Science.gov (United States)

    Selivanov, E. N.; Gulyaeva, R. I.; Udoeva, L. Yu.; Belyaev, V. V.; Pankratov, A. A.

    2009-08-01

    The effect of the cooling rate on the phase composition and microstructure of copper matte converting slags is studied by X-ray diffraction, combined thermogravimetry and calorimetry, mineragraphy, and electron-probe microanalysis. The compositions of oxide and sulfide phases are determined, and the forms of nonferrous metals in slags cooled at a rate of 0.3 and 900°C/s are revealed. At high cooling rates of the slags, iron silicate glass is shown to form apart from sulfide phases. Repeated heating of the slags leads to the development of devitrification, “cold” crystallization, and melting. A decrease in the cooling rate favors an increase in the grain sizes in oxides (magnetite, iron silicates) and sulfides (bornite-, sphalerite, and galena-based solid solutions).

  15. Synthesis of Calcium Silicate Hydrate based on Steel Slag with Various Alkalinities

    Institute of Scientific and Technical Information of China (English)

    WANG Shuping; PENG Xiaoqin; GENG Jianqiang; LI Bin; WANG Kaiyu

    2014-01-01

    This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The influence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with flocculent or fibrous pattern with a BET specific surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.

  16. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  17. Influence of the Mold Current on the Electroslag Remelting Process

    Science.gov (United States)

    Hugo, Mathilde; Dussoubs, Bernard; Jardy, Alain; Escaffre, Jessica; Poisson, Henri

    2016-08-01

    The electroslag remelting process is widely used to produce high value-added alloys. The use of numerical simulation has proven to be a valuable way to improve its understanding. In collaboration with Aubert & Duval, the Institute Jean Lamour has developed a numerical transient model of the process. The consumable electrode is remelted within a mold assumed to be electrically insulated by the solidified slag skin. However, this assumption has been challenged by some recent studies: the solidified slag skin may actually allow a part of the melting current to reach the mold. In this paper, the evolution of our model, in order to take into account this possibility, is presented and discussed. Numerical results are compared with experimental data, while several sensitivity studies show the influence of some slag properties and operating parameters on the quality of the ingot. Even, a weakly conductive solidified slag skin at the inner surface of the mold may be responsible for a non-negligible amount of current circulating between the slag and crucible, which in turn modifies the fluid flow and heat transfer in the slag and ingot liquid pool. The fraction of current concerned depends mainly on the electrical conductivities of both the liquid and solidified slag.

  18. Thermodynamics simulation on corrosion of high chrome bricks by gasifier slags%水煤浆气化炉煤渣对高铬砖侵蚀的热力学模拟

    Institute of Scientific and Technical Information of China (English)

    赵世贤; 蔡斌利; 孙红刚; 李鹏涛; 闫双志; 石干; 王刚

    2015-01-01

    为了研究水煤浆气化炉工作过程中煤渣对高铬砖的侵蚀机制,对不同性质气化炉渣对高铬砖的侵蚀进行了热力学模拟计算。结果表明,酸性渣和碱性渣对高铬砖具有不同的侵蚀机制:酸性渣与高铬砖作用生成FeCr2 O4相,且酸性渣不溶解砖中的 Al2 O3;碱性渣与高铬砖作用后同时生成 FeCr2 O4和 MgCr2 O4相,碱性渣能够溶解高铬砖中的部分 Al2 O3,可能增加碱性渣对高铬砖的渗入深度。同时,对在酸性渣中使用后的气化炉用高铬残砖进行了显微结构和相分析,证明与热力学模拟计算结果相吻合,说明热力学模拟计算能够对气化炉渣与耐火材料的相互作用机制、化学反应、复杂的物相形成进行评价和预测。%The corrosion of high chrome bricks by different gasifier slags was thermodynamically simulated in order to research the corrosion mechanism of high chrome bricks by slag during the operation of gasifi-er.The simulated results indicate acid slag and basic slag have different corrosion mechanisms to high chrome bricks.FeCr2 O4 forms in the reaction process between acid slag and high chrome bricks.Al2 O3 in the brick is not dissolved by the acid slag.However,FeCr2 O4 and MgCr2 O4 form simultaneously after basic slag reacts with high chrome bricks,and basic slag dissolves part of Al2 O3 in high chrome bricks,which may increase the penetration depth of basic slag in high chrome bricks.The microstructure and phase analysis of the used high chrome brick in acid slag are in accordance with the simulation calculation re-sults,which show thermodynamic simulation is an effective method to evaluate and predict the corrosion mechanism,reaction and phase formation in the reaction process between gasifier slags and refractories.

  19. Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting

    Science.gov (United States)

    Bartosinski, M.; Hassan-Pour, S.; Friedrich, B.; Ratiev, S.; Ryabtsev, A.

    2016-07-01

    This paper focuses on deoxidation of titanium alloys produced by aluminothermic reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting (VIM). The main goal of the performed research work is to outline the deoxidation limit during pressure electro slag remelting (PESR) of the described material. To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia (pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and alloying elements were analysed by XRF. Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in calcium-zirconate crucibles and approx. 1 - 1.2 wt.-% for the material produced by utilization of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated material is possible applying this method to a certain limit. Pilot scale trials showed a reduction of oxygen contents by 1500 - 3500 ppm. Oxygen levels in lab scale trials showed weaker deoxidation effects. In order to describe the achieved deoxidation effects in a quantitative way, the analyzed oxygen contents of the obtained ingots are compared with calculated data resulting from a mathematical kinetic model. The modelled datasets are in good agreement with experimental oxygen values.

  20. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    Science.gov (United States)

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  1. Use of copper slag in the manufacture of Portland cement

    Directory of Open Access Journals (Sweden)

    Aquilar Elguézabal, A.

    2006-03-01

    Full Text Available Given its chemical and mineralogical characteristics, copper slag, a solid industrial by-product, may serve as a partial substitute for silica and hematite in raw mixes used to manufacture Portland cement clinker. The benefits of such substitution include lower production costs and energy savings. The effect of slag-containing raw mixes on the reactivity of the CaO-Si02-Al203-Fe203 system was studied at three temperatures (1,350, 1,400 and 1,450ºC. Four mixes were used: M-1 and M-2 prepared with conventional prime materials and M-3 and M-4, in which ignimbrite and hematite were substituted for slag. In M-3 the slag replaced 45.54% of the ignimbrite and 100% of the hematite, and in M-4 100% of the mineral iron. The samples were clinkerized at 1,350, 1,400 and 1,450ºC. At 1,400ºC, clinker M-3 was found to have 10.7% less free lime than M-1, while the level in M-4 it was 15.93% lower than in M-2. The presence of the main clinker phases was confirmed by X-ray diffraction, which also showed that adding slag during c/inker manufacture slightly improves raw mix burnability without generating new unwanted phases. Consequently, recovery in cement kilns would appear to be an economically and environmentally feasible alternative to coprocessing such waste, although the industrial use of slag depends on its heavy metal content.En acuerdo con las características químicas y mineralógicas de la escoria de cobre, este residuo sólido industrial puede ser utilizado en el proceso de fabricación de clínker Portland como sustituto parcial de los minerales de sílice y hematita en la formación de mezclas crudas cuyos beneficios serían: disminución de los costos de producción de mezclas crudas y del consumo calorífico. El efecto de la adición de la escoria en las mezclas crudas sobre la reactividad del sistema CaO-Si02-Al203-Fe20 3 se estudió en tres niveles de temperatura (1.350, 1.400 Y 1.450ºC. Se trabajó con cuatro mezclas crudas, M-1 y M

  2. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    Science.gov (United States)

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D

    2016-09-15

    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions.

  3. Spatial distribution of chromium in soils contaminated by chromium-containing slag

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; XU You-ze; SU Chang-qing

    2009-01-01

    To evaluate the metal chromium (Cr) contamination of soil at a chromium-containing slag site by ferrochromium production, the contaminated sites, under slag heap, in the vicinity of slag heap and arable soils near the outlet of sewer channel, and unpolluted site 5 km away from one ferroalloy plant in Hunan Province, China, were selected. The concentrations of total Cr and water soluble Cr in bulk soil samples and profile depth samples were determined. The results show that the soils in the vicinity of slag heap have the highest total Cr content followed by the soils under the slag heap and near the outlet of sewer channel of the factory. The mean concentrations of total Cr in the top soils at above three contaminated locations exceed the critical level of Secondary Environmental Quality Standard for Soil in China by 3.5, 5.4 and 1.8 times. In most Cr polluted soils, total Cr has a relative accumulation in soil depth of 40-60 cm, but this trend is not found in unpolluted soils. The average concentrations of water soluble Cr (Ⅵ) in top soils under slag heap and in the vicinity of slag heap are 176.9 times and 52.7 times higher than that in the uncontaminated soils, respectively. However, water soluble Cr (Ⅵ) contents in soils near sewer channel are all low and the values are close to that in the uncontaminated soils. Although water soluble Cr (Ⅵ) content in soil profiles decreases with soil depths, it in soils under slag heap maintains a high level even at a depth of 100-150 cm. The results imply that the transportation of Cr (Ⅵ) can result in a potential risk of groundwater system in this area.

  4. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 1--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. This document summarizes the Phase 2 accomplishments to date along with the major accomplishments from Phase 1.

  5. Prediction of coal slag foaming under gasification conditions by thermodynamic equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.; Oh, M. [Hongik University, Seoul (Republic of Korea). School of Chemical Engineering

    2007-09-15

    In slagging gasifiers, slag foaming can cause serious operational problems, so there is a need for investigation into the conditions causing slag foaming. Viscosity experiments were carried out examining viscosity, extent of swelling and Fe formation. Although extensive swelling was not observed, FeO reduction was observed under an N{sub 2}/CO gas atmosphere, but not under CO{sub 2}/CO. In order to predict FeO reduction conditions in the gasifier, a model for an adiabatic equilibrium gasifier was developed. The gas composition, the amount of gas to slag, and PO{sub 2} were calculated for a slurry-feed gasifier, and the results of the calculation were used to predict the reduction of FeO in slag by using FactSage. Under typical gasification conditions for Denisovsky coal, the predicted -O{sub 2} in the gasifier was not low enough to cause FeO reduction. The FactSage simulation for the viscometer conditions predicted no FeO reduction under a CO/CO{sub 2} atmosphere, but did predict Fe formation under CO/N{sub 2} conditions. At a 20% CO concentration, FeO reduction starts at temperatures above 1,600{sup o}C. Since the slag has a low viscosity at 1,600{sup o}C, the oxygen bubble may have escaped as it formed. Therefore, slag foaming, caused by FeO reduction in the slag, can only occur when the right conditions of viscosity and oxygen partial pressure are met.

  6. Wettability of Silicon Carbide by CaO-SiO2 Slags

    Science.gov (United States)

    Safarian, Jafar; Tangstad, Merete

    2009-12-01

    The wettability of silicon carbide by liquid CaO-SiO2 slags that contain 47 to 60 wt pct SiO2 was studied using the sessile drop wettability technique. The experiments were carried out in Ar and CO atmospheres. A small piece of slag was melted on SiC substrates under different heating regimes up to 1600 °C. It was found that the wetting is not significantly dependent on the temperature and the heating rate. However, the wettability is relatively high, and the wetting is higher for slags that contain lower SiO2 concentrations. Moreover, the wettability between the slags and SiC is dependent on the gas phase composition, and it is higher in Ar than that in CO. When the SiO2 concentration changes from 47 pct wt to 60 pct wt, the wetting angle changes from 20 deg to 73 deg in Ar and from 58 deg to 87 deg in a CO atmosphere. The formation and bursting of gas bubbles also was observed after some contact time, which indicates that the wetting system is a reactive type. However, microscopic studies indicated that no metal phase exists at the slag/silicon-carbide interface. Therefore, it was concluded that chemical reactions between the slag and SiC take place and that SiO2 is slowly reduced to form CO and SiO gases. Based on the experimental data, the dependence of the Girifalco-Good coefficient on the slag composition and the relationship between the interfacial tension of CaO-SiO2 slags and SiC also were estimated.

  7. High Strength Artifical Reefs Concrete Made from Steel Slags%钢渣制备高强度人工鱼礁混凝土

    Institute of Scientific and Technical Information of China (English)

    李琳琳; 李晓阳; 苏兴文; 倪文; 王中杰

    2012-01-01

    79% granulated high furnace slag and 15% steel slag and 5% flue gas desulphurization ( FGD ) gypsum was mixed with 1 % cement clinker to produce a cementitious material. The ordinary portland cement can be totally substituted by such a mixed cementitious material with iron and steel slags as its major components in preparing the concrete for building high-strength artificial reefs. A concrete with a compressive strengh of 61 Mpa can be prepared by using such a mixture as a cementitious material and steel slag grains as its fine and coarse aggregats which have been stubilized by a hot-simmering method. The cement clinker content of the concrete was 0. 16% , and solid waste ratio reached over 99%. Hy-dration processes of net slurry were analysized by XRD and SEM methods. The results show that the early hydration products in the system are mainly Aft and C-S-H gel. The strength growth is mainly contributed by these two phases.%以79%的矿渣、15%的钢尾渣、5%的脱硫石膏以及1%的水泥熟料制备的胶凝材料代替水泥,以热闷法稳定化的钢尾渣为骨料,制备出了强度达到61 MPa的人工鱼礁混凝土.在该混凝土中,水泥熟料所占比例为0.16%,钢渣比例超过了99%.利用XRD和SEM方法分析净浆的水化过程,结果表明,体系水化主要生成AFt相和C -S-H凝胶,并对强度的增长起了主要作用.

  8. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    Science.gov (United States)

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry.

  9. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement.

  10. Direct Extraction of Ti and Ti Alloy from Ti-Bearing Dust Slag in Molten CaCl2

    Science.gov (United States)

    Chen, Chaoyi; Zhao, Chong; Li, Junqi; Yang, Shufeng

    2016-06-01

    Using process of solid oxygen-ion conducting membrane (SOM), titanium metal and its alloy can be prepared directly from Ti-bearing dust slag by immersing it in the molten CaCl2 at 1,100℃, which has been proposed by constant voltage of 3.5 V for 2-6 h. The dust slag was ball-milled and pressed into pellets, then employed as the cathode, while the liquid copper, which was saturated with graphite powder and encased in yttria-stabilized zirconia (YSZ) tube, acted as the anode. The effect of forming pressure and electrolytic time on products was analyzed. The results show that the content of titanium increased with electrolytic time and the characteristic morphology presents as granule. Ti-Fe alloy can be obtained from Ti-Fe residue by 6 h electrolysis. For titanium-rich residue, when the forming pressure of pellets decreased from 6 to 3 MPa, only electrolysis for more than 4 h can completely remove the oxygen, and pure titanium is obtained by 6 h electrolysis. Besides, there is an unprecedented finding that the porous cathode is conducive to the removal of impurity elements.

  11. The Dissolution Kinetics of MgO into CaO-MgO-Fe2O3 Slag

    Science.gov (United States)

    Wei, Ruirui; Lv, Xuewei; Yue, Zhiwen; Xiang, Shenglin

    2017-02-01

    Calcium ferrite is the main binding phase for high-basicity sinter. The production and structure of calcium ferrite greatly influence the quality of the sinter. With the change in gangue composition, MgO becomes an important factor in the generation of calcium ferrite. In this study, the rotating cylinder method was used to study the dissolution kinetics of MgO into CaO-MgO-Fe2O3 melt. The experimental variables included the temperature, the initial composition of the melt, the Fe2O3/CaO mass ratio, the rotation time, and the rotation speed. The results indicate that the dissolution rate increases with increasing dissolution time, temperature, and rotation speed but decreases with increasing MgO content and Fe2O3/CaO mass ratio in the initial slag. The dissolution rate was observed to increase and then decrease with the addition of SiO2 in the initial slag. The activation energy and diffusion coefficient for MgO dissolution were found to range from 117.31 to 234.24 kJ mol-1 and from 1.03 × 10-6 to 1.18 × 10-5 cm2 s-1, respectively. The concentration difference between the solid and liquid phases is the main driving force for dissolution, but the viscosity and magnesium ion diffusivity of the melt also affect the process.

  12. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  13. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    Science.gov (United States)

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  14. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    Science.gov (United States)

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale.

  15. [Removal of metal ions Cu2+, Cd+ and Pb+ from solutions by sorption on slag].

    Science.gov (United States)

    Chen, Xiao; Hou, Wen-hua; Wang, Qun-hui

    2009-10-15

    Batch experiments were carried out to investigate the adsorption kinetics and thermodynamic characteristics of heavy metal ions Cu2+, Cd2+ and Pb2+ on the electric are furnace (EAF) slag from Baoshan Steel Factory. Several kinds of techniques including XRD analysis, BET specific surface analysis and SEM/EDS analysis were employed to determine the physico-chemical and surface characteristics of slag. Results indicated that the adsorption rate of heavy metal ions on the EAF slag was relatively high, and the sorption rate followed the order Cd2+ > Pb2+ > Cu2+. The adsorption kinetics obeyed first-order kinetics model (R2 > 0.99). Adsorption isotherm experiment showed that adsorption isotherm of heavy metal ions on slag fitted Langmuir model, and the maximum adsorption capacity of Cu2+, Cd2+ and Pb2+ was 0.101, 0.058 and 0.120 mmol x g(-1), respectively. The adsorption of heavy metal ions on slag was a spontaneous reaction (deltaG0 0). The effect of enthopy was the main driving force of the spontaneous adsorption reaction. The analysis results of SEM/EDS revealed the changes of surface morphology and chemical proportion before and after adsorption. Due to low-cost and high-efficiency, electric are furnace slag showed great potential for the treatment of heavy metal polluted wastewaters.

  16. Effects of Steel Slag Powder on Workability and Durability of Concrete

    Institute of Scientific and Technical Information of China (English)

    GUO Xiaolu; SHI Huisheng; WU Kai

    2014-01-01

    The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag (GGBFS) alone or with a combined admixture of GGBFS-steel slag powder were investigated by X-ray diffraction (XRD). Furthermore, the mechanism of chemically activated steel slag powder was also studied. The experimental results showed that when steel slag powder was added to concrete, the slumps through the same time were lower. The initial and final setting times were slightly retarded. The dry shrinkages were lower, and the abrasion resistance was better. The chemically activated steel slag powder could improve compressive strengths, resistance to chloride permeation and water permeation, as well as carbonization resistance. XRD patterns indicated that the activators enhanced the formation of calcium silicate hydrate(C-S-H) gel and ettringite (AFt). This research contributes to sustainable disposal of wastes and has the potential to provide several important environmental benefits.

  17. Slagging characteristics of molten coal ash on silicon-aluminum combustion liners of boiler

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion,the slag samples on the surface of combustion liner were investigated by X-ray diffractometry,scan electron microscopy and energy dispersive X-ray analysis,and the transformation characteristics of the compositions and crystal phases were studied.The results show that the size of slag granules decreases as the slagging temperature increases;the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃,and that of the coal ash Ⅱ reduces to about 65% when the temperature is increased up to 1 500 ℃;the encroachment of molten coal ash to the combustion liner is strengthened.At the same time,the diffusion and the segregation of the compositions in combustion liners have selectivity,which is in favor of enhancing the content of crystal phases,weakening the conglutination among molten slag compositions and combustion liner,and avoiding yielding big clinkers.But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner,and makes the slag encroachment to the liner become more serious.

  18. An Overview of Use of Linz-Donawitz (LD Steel Slag in Agriculture

    Directory of Open Access Journals (Sweden)

    Sasmita Chand

    2015-12-01

    Full Text Available Slag generated from basic oxygen furnace (BOF or Linz-Donawitz (LD converter is one of the recyclable wastes in integrated steel plants. This paper deals with the present and possible use of LD slag in agriculture. At present, the amount of slag deposited in storage yard, leading to the occupation of farm land and serious pollution to the environment. Improving the slag utilization is an important way to resolve these problems. The physical and chemical characteristics of steel slag were analyzed and then the research progress of steel slag utilization in agriculture as fertilizer introduced. Due to increasing awareness of the environment, disposal, reuse of wastes without harming the environment has became a prime concern for the industry. The local availability of non conventional sources of plant nutrients and soil conditioners plays a vital role because of the non availability and higher price of environmental fertilizers. Therefore, this waste can be utilized for enhancing yield as well as solving the disposal problem and improve the environment.

  19. Basic Oxygen Furnace Slag as a Liming Agent for Paddy and Upland Field Soils

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Il [Pohang Research Institute of Industrial Science and Technology, Pohang(Korea)

    1998-03-31

    Basic oxygen furnace (BOF) slag, a by-product of the iron and steelmaking industry produced in large quantities in Korea, poses a substantial disposal challenge. The BOF slag used in this study was 1/3 CaCO{sub 3} in total neutralizing power and application of 7-8 Mgha{sup -1} was needed to bring soil pH to 6.5 from pH 5.0-5.5 in silty clay or clay loam soil contained about 10% organic matter. A field assay was conducted to study whether BOF slag could be used as a dolomitic liming agent for agricultural soils. Four slag rates (0, 4, 8, 12 Mgha{sup -1})were investigated for their effect on soil properties, mineral concentrations in leaf tissues of rice and soybean, and yield of the crops. Slag application at 8 Mgha{sup -1} rate in paddy field increased pH, Ca, Mg, P, Si and Fe content in soil and rice yield by 4.3-14.2% depending on the soil type. In upland field the 8 Mgha{sup -1} rate increased pH, Ca and Fe content in soil and soybean yield by 36.6%. Thus, BOF slag appears to be a useful liming material for correcting soil acidity on both paddy and upland field soils and for increasing Ca, Mg, P, Si, and Fe concentration in plants. (author). 27 refs., 7 tabs.

  20. EFFECT OF REACTIVE MAGNESIUM OXIDE ON PROPERTIES OF ALKALI ACTIVATED SLAG GEOPOLYMER CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    H. A. Abdel-Gawwad

    2015-03-01

    Full Text Available The effect of different proportions and different reactivities of MgO on the drying shrinkage and compressive strength of alkali activated slag pastes (AAS has been investigated. The slag was activated by 6 wt.% sodium hydroxide and liquid sodium silicate at ratio of 3:3 (wt.. The different reactivities of MgOs were produced from the calcination of hydromagnesite at different temperatures (550, 1000, 1250 C. The results showed that the reactivity of magnesium oxide decreases with increasing the calcination temperature. Also, the drying shrinkage of AAS was reduced by the replacement of slag with MgOs. The highly reactive MgO accelerated the hydration of AAS at early ages. The replacement of slag with 5% MgO550 increased one day compressive strength by ~26 % while MgO1250 had little effect. A significant increase in strength was observed after 7 days in case of replacement of slag with 5 % MgO1250. The MgO reacts with slag to form hydrotalcite likephases (Ht as detected by XRD, FTIR spectroscopy, TGA/DTG analysis and SEM.