WorldWideScience

Sample records for bevatron

  1. The Bevatron liquid nitrogen circulation system

    International Nuclear Information System (INIS)

    A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented

  2. Early work at the Bevatron: a personal account

    International Nuclear Information System (INIS)

    Personal reminiscences of the author's work at the Bevatron in the 1950's are given. Setting up photographic emulsions and startup of the Bevatron are recalled. A brief account is given of the physics prior to the Bevatron, followed by the development of the machine and its use to study K mesons, theta and tau particles. The search for the antiproton is remembered. 16 refs., 6 figs

  3. BERKELEY: Farewell to the Bevatron/Bevalac

    International Nuclear Information System (INIS)

    Full text: Nearly a hundred current and former Lawrence Berkeley Laboratory employees gathered at the Bevatron accelerator on 21 February to watch Ed Lofgren turn off the beam for the last time. Lofgren, in charge of the venerable machine from its completion in 1954 until his retirement in 1979, pushed a button that someone long ago labeled ''atom smasher offer'', bringing to an end four decades of accomplishment in high energy and heavy ion physics. Owen Chamberlain, who shared the 1959 physics Nobel with Emilio Segré for the discovery of the antiproton at the Bevatron, was among those present at the closing ceremony. The shutdown came 39 years to the week after Bevatron beam first circulated, and a touching moment came just after Lofgren shut the machine down when the poignant strains of the ''Taps'' salute wafted out over the PA system. The Bevatron - or Bevalac, as it was called after being linked to the Super HILAC linear accelerator in the 1970s - made major contributions in four distinct areas of research: high energy physics, heavy ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space. As well as the discovery of the antiproton, the early years of the Bevatron saw classic studies of the kaon, leading to a deeper understanding of both strong and weak interaction physics. With Luis Alvarez' development of Donald Glaser's original bubble chamber idea into a prolific physics technique, the Bevatron was a major focus of the heady days of resonance hunting in the late 1950s and early 1960s. Most recently the Bevalac (Bevatron-SuperHILAC combination) pioneered relativistic heavy ion physics. The central focus of this research programme was the production and study of extreme conditions in nuclear matter. Highlights include the first definitive evidence of collective flow of nuclear matter at high temperatures and densities, studies of the nuclear

  4. Improving the Bevatron vacuum to 10-10 torr

    International Nuclear Information System (INIS)

    Pressure of approx. 10-10 torr is needed in the Bevatron to accelerate partially-stripped very-heavy ions (e.g. U69+) in the Bevatron without significant loss due to interactions with the residual gas. This ultra-high vacuum will be achieved by installing (summer and fall 1981) a cryogenic liner, mostly 120K, surrounding the Bevatron circulating beam. The novel construction features are presented along with results from successful tests of prototype sections. This is believed to be the largest application of cryogenic pumping to particle accelerators yet undertaken

  5. Bevatron/Bevalac user's handbook: biology and medicine. Revision

    International Nuclear Information System (INIS)

    The Bevalac Biomedical Facility develops a source of near-relativistic heavy ions for applications to radiation biology, radiation therapy and diagnostic radiology. Pulsed beams of high LET heavy ions with variable pulse width, frequency, intensity and energy are produced and delivered to the Biomedical Facility by the Bevatron/Bevalac accelerator complex. Dosimetry equipment under computer control provides accurate determinations of absorbed doses in all regions of the Bragg curve. Depth-dose modifying devices and precise specimen positioning equipment are available. Animal housing and tissue culture facilities are convenient to the experimenter. This handbook is designed to provide the user with the relevant information for planning, proposing and executing an experiment

  6. Physics and medicine: the Bevatron/Bevalac experience, 1979-1980

    International Nuclear Information System (INIS)

    Heavy ion radiobiology has been integrated successfully into the research program at the Bevatron/Bevalac for the past several years. During the 1979 to 1980 year radiotherapy trials have been conducted side-by-side with the demanding program of heavy ion nuclear science research at this national facility. Careful attention is given to the scheduling of research on the SuperHILAC and Bevatron/Bevalac so that the nuclear science and biomedical programs at the Bevatron/Bevalac and the program at the SuperHILAC are served to maximum effect. Efforts to maximize the researchers' time have resulted in hardware, software, and operating improvements that offer a total machine availability of about 90% and a user availability of about 80%. Fast beam switching and beam sharing permit virtually simultaneous use of the Bevatron/Bevalac by two or more users. Current beam delivery systems will be augmented in FY 1981 to provide two ion energies per Bevatron/Bevalac pulse

  7. Bevatron/Bevalac user's handbook: biology and medicine. Revision

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    The Bevalac Biomedical Facility develops a source of near-relativistic heavy ions for applications to radiation biology, radiation therapy and diagnostic radiology. Pulsed beams of high LET heavy ions with variable pulse width, frequency, intensity and energy are produced and delivered to the Biomedical Facility by the Bevatron/Bevalac accelerator complex. Dosimetry equipment under computer control provides accurate determinations of absorbed doses in all regions of the Bragg curve. Depth-dose modifying devices and precise specimen positioning equipment are available. Animal housing and tissue culture facilities are convenient to the experimenter. This handbook is designed to provide the user with the relevant information for planning, proposing and executing an experiment.

  8. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    International Nuclear Information System (INIS)

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different

  9. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  10. I. THE THEORY OF ABERRATIONS OF QUADRUPOLE FOCUSING ARRAYS. II. ION OPTICAL DESIGN OF HIGH QUALITY EXTRACTED SYNCHROTRON BEAMS WITH APPLICATION TO THE BEVATRON

    Energy Technology Data Exchange (ETDEWEB)

    Meads Jr., Philip Francis

    1963-05-15

    In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.

  11. High intensity uranium beams from the superHILAC and the bevatron: final report

    International Nuclear Information System (INIS)

    The two injectors formerly used at the SuperHILAC were a 750-kV air-insulated Cockcroft-Walton (EVE) and a 2.5-MV pressurized HV multiplier (ADAM). The EVE injector can deliver adequate intensities of ions up to mass 40 (argon). The ADAM injector can accelerate ions with lower charge-to-mass ratios, and they can produce beams of heavier ions. The intensity of these beams decreases as the mass number increases, with the lowest practical intensity being achieved with lead beams. Experience with the two existing injectors provided substantial help in defining the general requirements for a new injector which would provide ample beams above mass 40. The requirements for acceptance by the first tank of the SuperHILAC are a particle velocity #betta# = 0.0154 (corresponding to an energy of 113 keV/amu) and a charge-to-mass ratio of 0.046 or larger. Present ion source performance dictates an air-insulated Cockcroft-Walton as a pre-accelerator because of its easy accessibility and its good overall reliability. The low charge state ions then receive further acceleration and, if necessary, subsequent stripping to the required charge state before injection into the SuperHILAC. A low-beta linac of the Widereoe type has been built to perform this acceleration. The injector system described consists of a Cockcroft-Walton pre-injector, injection beam lines and isotope analysis, a low-velocity linear accelerator, and SuperHILAC control center modifications

  12. Ripple reduction activities in the MG room at the Bevatron, August 1991 to August 1992

    International Nuclear Information System (INIS)

    This report discusses the following topics: magnet - voltage dividers temperature ampersand voltage influence error calculation; magnet filters summarized data table; magnet transfer function measurement setup and connection diagrams; response of existing magnet system including ripple reduction filters - Dec 1991; magnet filters - mutual inductance problem; and damping the magnet filters

  13. Accelerator Division annual report, January 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Accelerator operations of the Bevatron/Bevalac, the SuperHILAC, and the 184-Inch Synchrocyclotron are described. The PEP storage ring is described. The superconducting accelerator (ESCAR) construction is reported, and experiments in heavy ion fusion are described. (GHT)

  14. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  15. Results obtained with position sensitive multiwire proportional chambers with helium, carbon, and oxygen nuclei

    Science.gov (United States)

    Emming, J. G.; Gilland, J. R.; Godden, G. D.; Smith, L. H.; Zardiackas, F.

    1974-01-01

    Spatial resolution performance results obtained at the Lawrence Radiation Laboratory Bevatron with prototype multiwire proportional chamber spatial detectors with integral delay line readout are presented. The effects due to incident nuclei charge, chamber operating parameters, chamber design, electronics, gas mixtures, and magnetic field presence have been investigated and are discussed.

  16. Bevalac operations update. No. 3

    International Nuclear Information System (INIS)

    Activities are reported in these areas: Bevatron operations (including a list of major experimental runs), user support at the Bevalac, modifications to the local injector, accelerator improvements at the Super HILAC, and general Bevalac upgrading. Modifications are reported for six individual beam lines

  17. A plea for unity, by Leon Lederman

    International Nuclear Information System (INIS)

    Last November saw the 30th anniversary of the discovery of the antiproton using the Bevatron at the University of California's Lawrence Berkeley Laboratory (then called the Radiation Laboratory). Fermilab Director Leon Lederman was in sparkling form at the banquet, where in his inimitable way he made an impassioned plea for scientific unity in these difficult times

  18. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  19. Radiological physics of heavy charged-particle beams used for therapy

    International Nuclear Information System (INIS)

    The beams available for biological investigations at the Bevatron or at the Bevalac range from helium to iron ions. However, only carbon, neon, and argon beams have been used for therapy. The treatment techniques are arbitrarily divided into two categories: small field and large field irradiation. Examples of the small field treatments are pituitary irradiation, which generaly utilizes the plateau portion of the helium depth-dose curve, and treatment of ocular melanoma, which uses a modified Bragg peak of the helium beam. Large field treatments for cancer therapy generally requires a beam that has a large uniform transverse profile and a modified Bragg peak. Procedures and instrumentation for patient irradiations at the Bevatron/Bevalac have been based on the prior experience obtained at the 184-inch Synchrocyclotron, and for that reason both facilities are discussed

  20. Progress Report No. 69. Dec. 15, 1948 to Jan. 15, 1949

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1949-01-30

    This is the progress report for the University of California, Radiation Laboratory for December 15, 1948-January 15, 1949. It discusses the following: (1) Bevatron; (2) 184-inch Cyclotron Program; (3) 60-inch Cyclotron Program; (4) Synchrotron Operation; (5) Linear Accelerator and Van de Graaff Operation; (6) Experimental Physics; (7) Theoretical Physics, (8) Isotope Separation; (9) Chemistry Departments; (10) Medical Physics; and (11) Health Physics and Chemistry.

  1. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  2. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  3. Antiproton Star Observed in Emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, Owen; Chupp, Warren W.; Goldhaber, Gerson; Segre,Emilio; Wiegand, Clyde; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.

    1955-12-01

    In connection with the antiproton investigation at the Bevatron we planned and carried out a photographic-emulsion exposure in a magnetically selected beam of negative particles. The magnetic system was identical to the first half (one deflecting magnet and one magnetic lens) of the system used in the antiproton experiment of Chamberlain, Segre, Wiegand, and Ypsilantis. The selected particles left the copper target in the forward direction with momentum 1.09 Bev/c.

  4. Wideroe pre-accelerator for the SuperHILAC

    International Nuclear Information System (INIS)

    In 1971 the Bevatron successfully accelerated low-intensity heavy ion beams up to neon to energies of 2.1 GeV/amu. More recently, beams up to argon have been accelerated using the SuperHILAC as an injector to the Bevatron--the Bevalac concept. With increasing scientific interest in high-energy high-intensity beams of heavier ions, plans to upgrade both the Bevatron vacuum system and the SuperHILAC ion sources and injectors have been formulated. A proposed new pre-accelerator based on an air-insulated Cockcroft-Walton and a Wideroe linac is presented. The Wideroe linac uses the design concepts established at UNILAC, modified for frequency and energy requirements. U7+ from the ion source is accelerated from 12 keV/amu to 113 keV/amu and stripped to a mean charge state acceptable to the first tank of the SuperHILAC. The expected intensity improvement over the present pressurized injector is a factor of 100 at the highest masses. The physical modeling of the Wideroe linac structure will be kept to a minimum. Computer models predicting the characteristics of the structure have improved to the point where the probability of satisfactory performance is high

  5. Human radiation studies: Remembering the early years. Oral history of biophysicist Cornelius A. Tobias, Ph.D., January 16, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Dr. Cornelius A. Tobias was interviewed by representatives of US DOE Office of Human Radiation Experiments (OHRE). He was chosen for this interview because of his extensive biophysics and medical physics research activities while he was employed by the University of California, Berkeley and San Francisco and at the Donner Laboratory. He discusses his involvement in wartime studies of effects of high altitude on aviators, carbon monoxide with radioactive tracers, blood studies with radioactive iron, human use committees, heavy-ion research with the Bevatron, boron isotope research, classified research involving human subjects, heavy-particle radiography, heavy- particle beams and medical research, and pituitary irradiation studies,.

  6. Human radiation studies: Remembering the early years. Oral history of biophysicist Cornelius A. Tobias, Ph.D., January 16, 1995

    International Nuclear Information System (INIS)

    Dr. Cornelius A. Tobias was interviewed by representatives of US DOE Office of Human Radiation Experiments (OHRE). He was chosen for this interview because of his extensive biophysics and medical physics research activities while he was employed by the University of California, Berkeley and San Francisco and at the Donner Laboratory. He discusses his involvement in wartime studies of effects of high altitude on aviators, carbon monoxide with radioactive tracers, blood studies with radioactive iron, human use committees, heavy-ion research with the Bevatron, boron isotope research, classified research involving human subjects, heavy-particle radiography, heavy- particle beams and medical research, and pituitary irradiation studies,

  7. Fragmentation cross-section of relativistic oxygen ions and determination of overlap parameter

    Science.gov (United States)

    Verma, S. D.

    1977-01-01

    Results are presented for measurements of total fragmentation cross sections of relativistic O-16 ions in CsI crystals, which were performed using a monochromatic bevatron ion beam at energies of 0.5 and 2.1 GeV/nucleon. The total fragmentation cross section at each energy is determined on the basis of detected changes in the charge of the incident ions, and the values obtained at both energies are found to be the same to within the experimental errors. Values of the O-16 nucleon radius and overlap parameter are derived simultaneously from the measured cross sections.

  8. Production cross sections from the bombardment of natural Mo with 1.85-GeV protons

    International Nuclear Information System (INIS)

    91Nb has been recently suggested as a candidate for a cosmic-ray chronometer. To use 91Nb as such, the relative production cross sections of 91Nb and 91Nb in the cosmic rays must be known. These isotopes are produced in the cosmic rays by spallation reactions of Mo and heavier elements on interstellar hydrogen. We have bombarded a natural Mo target with 1.85-GeV protons from the LBL Bevatron. The cross sections for the production of 91,92Nb and 29 other isotopes with 75 ≤ A ≤ 97, 35 ≤ Z ≤ 42 will be presented and compared with theoretical calculations

  9. The postwar political economy of high-energy physics

    International Nuclear Information System (INIS)

    This paper looks at the interfaces of politics, economics and particle physics in the period after the second world war. Particle accelerators were expensive to build, so politicians, before voting money to the Atomic Energy Commission, needed reassurance that personnel and the accelerators themselves could be put to immediate military use in the event of war. The creation of CERN in Geneva, a European project using big machines, gave impetus to American proposals for accelerators such as the Cosmotron, Bevatron and alternating-gradient synchrotron. (UK)

  10. Light-ion therapy in the U.S.: From the Bevalac to ??

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.; Castro, Joseph R.

    2002-09-24

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.

  11. Lead-ion collisions: the LHC achieves a new energy record

    CERN Multimedia

    John Jowett

    2015-01-01

    After the Bevatron (Berkeley, 1954) – which broke the energy barrier of billions of electronvolts – and the Tevatron (Fermilab, 1987) – which reached a trillion electronvolts – the LHC is now reaching the peta- (quadrillion) electronvolt level with its heavy-ion collisions (see here). However, one should remember that the average energy per colliding nucleon pair, within the 1 PeV “fireball”, is 5 TeV (compared to 13 TeV in the recent proton-proton collisions).   Heavy-ion collision events from the ALICE, ATLAS, CMS and LHCb experiments. Two of the great particle accelerators of the past were named after the symbolic energy barrier that they broke. The Bevatron (for "billions of electronvolts synchrotron"), at Berkeley in 1954, was the first to break the barrier of a billion electronvolts or BeV (now known as a gigaelectronvolt or GeV) in the centre-of-mass, by a large enough margin to create the laboratory’s ...

  12. Light-ion therapy in the US: From the Bevalac to ??

    International Nuclear Information System (INIS)

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room

  13. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975

    International Nuclear Information System (INIS)

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures

  14. Beam-viewing camera using rapid-development film

    Energy Technology Data Exchange (ETDEWEB)

    Sard, R. D.

    1960-09-01

    To facilitate the adjustment of external beams, a beamprofile camera has been made using Polaroid Land rapiddevelopment film. The camera contains a 5-in.- diameter, 0.88-in.-thick Nal(Tl) scintillator, a 45-deg first-surface aluminized mirror, a Nikkor N-C 50-mm f/1.1 lens, used at 4.4: 1 reduction, and a Polaroid roll-film holder. With Type 47 film it is found that the minimum detectable exposure corresponds to about 2 x 10/sup 5/ pions of 180 Mev/c ( BETA = 0.785) per cm/sup 2/ of scintillator, in fair agreement with an estimate using sensitometric data provided by the manufacturer. This sensitivity is sufficient to make the camera useful (exposure times in the range 1 to 1O minutes) for adjusting typical external meson beams at the l84inch synchrocyclotron and the Bevatron. Design considerations for luminescent-beam viewing are presented. (auth)

  15. ON THE ANALYSIS OF BUBBLE CHAMBER TRACKS

    International Nuclear Information System (INIS)

    Since its invention by Glaser in 1953, the bubble chamber has become a most valuable tool in high-energy physics. It combines a number of advantages of various older methods of particle detection: it offers high spatial resolution, rapid accumulation of data, some time resolution, and some choice of the nucleus whose interaction one wants to study (bubble chambers have been made to operate with a large number of different liquids, including H2, D2, He, Xe, and several hydrocarbons). In order to exploit the advantages of spatial resolution and rapid data accumulation, high-speed high-precision analysis procedures must be developed. In this article they discuss some of the problems posed by such analysis. The discussion is based largely on experience gained in performing hydrogen bubble chamber experiments with the University of California's Bevatron (6-Bev proton synchrotron)

  16. Example of an Antiproton-Nucleon Annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, O.; Chupp, W.W.; Ekspong, A.G.; Goldhaber, G.; Goldhaber, S.; Lofgren, E.J.; Segre, E.; Wiegand, C.; Amaldi, E.; Baroni,G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.

    1956-02-27

    The existence of antiprotons has recently been demonstrated at the Berkeley Bevatron by a counter experiment. The antiprotons were found among the momentum-analyzed (1190 Mev/c) negative particles emitted by a copper target bombarded by 6.2-Bev protons. Concurrently with the counter experiment, stacks of nuclear emulsions were exposed in the beam adjusted to 1090 Mev/c negative particles in an experiment designed to observe the properties of antiprotons when coming to rest. This required a 132 g/cm2 copper absorber to slow down the antiprotons sufficiently to stop them in the emulsion stack. Only one antiproton was found in stacks in which seven were expected, assuming a geometric interaction cross section for antiprotons in copper. It has now been found that the cross section in copper is about twice geometric, which explains this low yield.

  17. Milla Baldo Ceolin (1924-2011)

    CERN Multimedia

    2012-01-01

    At the end of November the particle physics community lost one of its most inquisitive, enthusiastic and active members when Milla Baldo Ceolin, emeritus professor at the University of Padua, passed away after several months of disabling illness.   After graduating from Padua in 1952, Milla began her scientific career in research with balloon-borne nuclear emulsions exposed to cosmic rays in the high atmosphere. Using a pion beam from the Bevatron at Berkeley, in 1958 Milla and D J Prowse discovered the first antihyperon: the antilambda. At the beginning of the 1960s she decided to change detection technique and began experiments with bubble chambers at Argonne, CERN and the Institute for Theoretcial and Experimental Physics (ITEP) in Moscow to investigate selection rules and conservation laws in the kaon system with higher statistics. In the meantime, her group in Padua grew steadily, working in international collaborations. The main field of her investigations changed to neutrino physics ...

  18. Physics, Computer Science and Mathematics Division annual report, 1 January--31 December 1975. [LBL

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.L. (ed.)

    1975-01-01

    This annual report describes the scientific research and other work carried out during the calendar year 1975. The report is nontechnical in nature, with almost no data. A 17-page bibliography lists the technical papers which detail the work. The contents of the report include the following: experimental physics (high-energy physics--SPEAR, PEP, SLAC, FNAL, BNL, Bevatron; particle data group; medium-energy physics; astrophysics, astronomy, and cosmic rays; instrumentation development), theoretical physics (particle theory and accelerator theory and design), computer science and applied mathematics (data management systems, socio-economic environment demographic information system, computer graphics, computer networks, management information systems, computational physics and data analysis, mathematical modeling, programing languages, applied mathematics research), real-time systems (ModComp and PDP networks), and computer center activities (systems programing, user services, hardware development, computer operations). A glossary of computer science and mathematics terms is also included. 32 figures. (RWR)

  19. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  20. Massimiliano Ferro-Luzzi (1932 - 2013)

    CERN Multimedia

    2013-01-01

    Massimiliano (Max) Ferro-Luzzi, a well-known CERN physicist, passed away on 18 March. He grew up in Asmara (Eritrea) and studied at Rome University, where he joined the nuclear emulsion group of Edoardo Amaldi and graduated in 1955. His research work was an investigation of antiproton reactions in emulsions exposed at Berkeley's Bevatron. Right from the start, as would be typical throughout his career, he combined careful analysis of data with special attention to technical improvements (the automation of track measurement in this case) and better instruments.   Starting in 1960 Max spent three years at Berkeley in Alvarez's legendary group, where he focussed on the role of kaons in strong interactions. In 1963 he moved to CERN, where he spent the rest of his working life, with the exception of a sabbatical year at SLAC in 1976. As one of the leaders in the Track Chamber division, his most important contribution, using data from bubble chambers, was the discovery and study of ...

  1. Long-lived products of the spallation of nat Te and nat Mo by protons

    International Nuclear Information System (INIS)

    We have performed experiments of spallation of natural Te targets by 5.0- and 1.85-GeV protons and of a natural Mo target with 1.85-GeV protons at the LBNL Bevatron. In order to determine those cross sections associated to long-lived products, we have brought the targets of the 1.85-GeV proton experiment to the Laboratorio do Acelerador Linear from the IFUSP, to gamma-count them. The Te data revealed the presence of trace amounts of 60 Co (half-life 5.3 yr) and of 22 Na (half-life 2.6 yr) and measurable amounts of 102 Rhm (half-life 2.9 yr) and 125 Sb (half-life 2.7 yr). The Mo target showed the presence of a trace amount of 22 Ma and a measurable amount of 65 Zn (half-life 0.7 yr). Our results for the cross sections on Te are 4.0(2) mb for producing 102 Rhm and 29(1) mb for 125 Sb. We are presently working on the determination of the spallation cross sections on Mo and on upper limits for the trace amounts mentioned. (author)

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, L.D. (ed.)

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  3. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  4. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e+e- colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  5. Funduscopic alterations in the rhesus monkey induced by exposure to heavy ions /0+8/ 250 MeV/nucleon

    Science.gov (United States)

    Beckman, F. N.; Bonney, C. H.; Hunter, D. M.

    1974-01-01

    A heavy-ion, high-energy beam has been extracted from the Lawrence Radiation Laboratory Bevatron, making controlled exposure of biological systems feasible, and a series of experiments have been undertaken to determine the possible deleterious effects of such irradiation upon the primate retina. The left eyes of 54 rhesus monkeys have been exposed to accelerated 0+8 (250 MeV/nucleon). Beam flux ranged from 1.3 x 10 to the 7th particles/ sq cm (171 rads) to 5.9 x 10 to the 8th particles/sq cm (7740 rads). Fundus photography was performed immediately prior to and immediately following exposure, at 24 to 48 hours postexposure and at 1, 2, and 5 weeks postexposure. Punctate hemorrhages of the retina were visible at 1.3 x 10 to the 7th particles/sq cm (171 rads), the lowest exposure level utilized in this study. Acute radiation retinopathy, consisting of geographic retinal hemorrhage and ischemic necrosis of the retina, was not seen until total flux reached 7.7 x 10 to the 7th particles/sq cm (1000 rads).

  6. Κ-meson decays and parity violation

    International Nuclear Information System (INIS)

    Between 1948 and 1954 many Κ-meson decay modes were observed, including the tau, pion and xi positives, in emulsion experiments all with masses around 500 MeV. An attempt was made to rationalize the various names for the new particles being discovered. A period of experimental consolidation followed. An attempt was then made to determine the spin parity of the three-pion system from tau plus decay using matrix calculations. New stripped emulsion techniques now permitted a secondary-particle track to be followed to its endpoint. Stacked emulsions were flown in balloons to study Κ mesons and hyperons using cosmic radiation. Later similar work used the new particle accelerators, the Cosmotron and the Bevatron as sources. The author showed that the tau plus and theta plus were competing decay modes of the same Κ+ meson, but this meant that parity conservation was violated. Later theoreticians T D Lee and C N Yang provided evidence for this surprising idea from their work on semileptonic weak interactions. (UK)

  7. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  8. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report

  9. Embryonic effects transmitted by male mice irradiated with 512 MeV/u 56Fe nuclei

    International Nuclear Information System (INIS)

    High-energy, high-charge nuclei may contribute substantially to the yearly equivalent dose in space flight from galactic cosmic radiation (GCR) at solar minimum. The largest single heavy-ion component is 56Fe. We used the mouse embryo chimera assay to test 512 MeV/u 56Fe nuclei for effects on the rate of proliferation of embryonic cells transmitted by sperm from irradiated mice. Male CD1 mice were acutely irradiated with 0.01, 0.05, or 0.1 Gy (LET, 184 keV/μm; fluence, 3.5 x 104-3.3 x 105 nuclei/cm2; average dose rate, 0.02 Gy/min) at the Lawrence Berkeley Laboratory BEVATRON/BEVALAC Facility in Berkeley, CA. Irradiated males were bred weekly for 7 weeks to nonirradiated females and their four-cell embryos were paired with control embryos, forming aggregation chimeras. After 30-35 h of culture, chimeras were dissociated to obtain open-quotes proliferation ratiosclose quotes (number of cells contributed by the embryo from the irradiated male/total number of cells in the chimera). Significant dose-dependent decreases in proliferation ratios were obtained across all three dose groups for postirradiation week 2 (P 56Fe nuclei. However, up to 47% of sperm during postirradiation weeks 1 and 2 transmitted proliferation ratios that were at or below one standard deviation from control mean proliferation ratios. 26 refs., 4 figs., 10 tabs

  10. Radioisotope yields from 1.85-GeV protons on Mo and 1.85- and 5.0-GeV protons on Te

    International Nuclear Information System (INIS)

    Radioisotope yields from 1.85-GeV proton interactions in a natural isotopic composition Mo target and those from 1.85- and 5.0-GeV protons in natural Te targets were measured at Lawrence Berkeley National Laboratory close-quote s Bevatron. The radioisotope yields were determined by γ-counting the targets using 100-cm3 coaxial Ge detectors following the irradiations. Cross sections were determined for the production of 36 radioactive nuclides, ranging from Z=35, A=74 to Z=43, A=97, from the Mo target and for 43 radioactive nuclides, ranging from Z=35, A=75 to Z=53, A=130 from the Te targets. The average deviations of the experimental cross sections from those predicted by the semiempirical isotopic cross sections of Silberberg and Tsao were 53% for p+Mo at 1.85 GeV, 66% for p+Te at 1.85 GeV, and 35% for p+Te at 5.0 GeV. These deviations are higher than those found previously for medium and heavy targets and for elemental cross sections. The minimum production cross section of 91Nb, which may be of interest as a cosmic-ray chronometer, was found to be 18±3 mb for the p+Mo reaction. copyright 1997 The American Physical Society

  11. The luminescent chamber and its use in high-energy physics experiments

    International Nuclear Information System (INIS)

    A luminescent chamber has been employed for the first time in experiments in high-energy particle physics. At the Bevatron of the Lawrence Radiation Laboratory, particle tracks in activated sodium-iodide crystals were photographed using a cascade system of three-image intensifier tubes. In one experiment, elastic pion-proton scattering was studied using two arrays of scintillator, each 20 cm long, one to observe the scattered pion and the other the recoil proton from a liquid hydrogen target. Scintillation counters selected only nearly-coplanar events to be recorded; however the final criteria for elastic scattering were the kinematics of the recorded tracks. About 1000 elastic events were photographed at each of three incident pion moments up to 2.5 MeV/c. In a second experiment a single-scintillator array 10 x 10 x 20 cm3 was used to observe stopping recoil protons from inelastic pion scattering (single pion production) at three incident pion momenta. Again several thousand events were recorded. The range and angle of the recoil proton uniquely determined the momentum transfer and the centre-of-mass energy of the di-pion system which were the relevant kinematical parameters in this problem. In these experiments post-event triggering and five-microsecond time-resolution were achieved by gating the second image tube on a signal from the scintillation-counter electronics. The design and successful execution of these experiments are discussed in this paper, with particular reference to the relevant details of the image tubes, the scintillation counters and the electronic systems. Experience has also been gained in the analysis of the track photographs, particularly regarding the accuracy obtainable and reliability of the physics thus obtained. In conclusion, the future evolution of the luminescent chamber is explored, considering the image intensifier tubes and scintillators under current development. The role of the luminescent chamber in future highenergy

  12. Study of Σ(1670) resonance production K-p interactions

    International Nuclear Information System (INIS)

    Production of the Σ(1670) resonance in the reactions K-p → Λπ+π-, K-p → Σ0+π+0π-, K-p → Σ-π+π0, and K-p → Σ+-π- + π+π- for K- beam momenta around 2.1 and 2.6 GeV/c in data from the Bevatron 72-inch hydrogen bubble chamber is analyzed. Large variations in the ratio of the cross section for the reaction K-p → Σ+(1670)π- → Λ(1405)π+π- → Σ+-π+π- to the cross section for the reaction K- → Σ+ 670)π- → (Σπ)+π- as a function of the Σ(1670) production angle. This variation is interpreted as strong evidence that more than one resonance contributes to the Σ(1670) enhancement. Analysis of the production angular distributions of the three Σ(1670) decay modes Λpi' Σπ, and Λ(1405)π shows that the results are consistent with the existence of a Σ(1670) resonance that decays mainly into Λ(1405)π and another that decays mainly into Λπ and Σπ. Other production experiments are seen to be consistent with these results. The Λπ/Σπ branching ratio is estimated to be 0.8 +- 0.1. The data are also consisent with the existence of two interfering Σ(1670) resonances with approximately equal masses and widths. (U.S.)

  13. Accelerator and Fusion Research Division: 1984 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  14. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report

  15. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  16. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  17. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  18. Overview of Light-Ion Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2006-03-16

    treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers

  19. Overview of Light-Ion Beam Therapy

    International Nuclear Information System (INIS)

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  20. The big and little of fifty years of Moessbauer spectroscopy at Argonne

    International Nuclear Information System (INIS)

    the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history of high energy physics. My aim here is to provide an additional corrective to such views as well as further information about the web of connections that allows

  1. Pions to Quarks

    Science.gov (United States)

    Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian

    2009-01-01

    Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the

  2. Obituary: Gerson Goldhaber (1924-2011)

    Science.gov (United States)

    Pennypacker, Carl

    2011-12-01

    entire size of the visible Universe - ~ 1029 cm. Goldhaber was also widely regarded as one of the kindest, most open, and friendly physicists at Lawrence Berkeley Laboratory, and his collegiality and attempts to build group esprit-de-corp were a large part of the group's success, when financial and other issues were always on the verge of ending the work. Indeed, Goldhaber led considerable weight to the effort. Goldhaber was born in Chemnitz, Germany, Feb. 20, 1924, and moved with his family to Cairo, Egypt, in 1933 to escape Nazi persecution. He earned his Master's of Science degree in physics at Hebrew University, Jerusalem, in 1947 and his Ph.D. in 1950 from the University of Wisconsin. He became a naturalized United States citizen in 1953 while working as an instructor at Columbia University. Later that same year, he joined the UC Berkeley Physics Department and the research staff at its Radiation Laboratory, which would later morph into Berkeley Lab, a U.S. Department of Energy national laboratory. Goldhaber first rose to major scientific prominence with his contributions to the discovery of the antiproton. In collaboration with his first wife, nuclear chemist/physicist Sulamith Löw, Goldhaber led a group that used a photographic emulsion detector technique he developed to confirm the discovery of the antiproton at Berkeley Lab's Bevatron accelerator by the research group of Emilio Segrè and Owen Chamberlain. Segrè and Chamberlain received the Nobel Prize in 1959 for this discovery. In 1960, Goldhaber and physicist George Trilling formed the Trilling-Goldhaber experimental particle-physics group, which included his wife, Sulamith. In 1963, the group discovered the A meson, a subatomic particle Goldhaber named after his son, Amos Nathaniel. "The wisest professional decision I ever made was to join Gerson in a collaboration whose success resulted almost entirely from his extraordinary insight into where to find new and important science," said Trilling. "He was a

  3. The big and little of fifty years of Moessbauer spectroscopy at Argonne.

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, C.

    2005-09-20

    equipment that cost $100,000 by the 1970s alongside work at the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history

  4. Obituary: Gerson Goldhaber (1924-2011)

    Science.gov (United States)

    Pennypacker, Carl

    2011-12-01

    entire size of the visible Universe - ~ 1029 cm. Goldhaber was also widely regarded as one of the kindest, most open, and friendly physicists at Lawrence Berkeley Laboratory, and his collegiality and attempts to build group esprit-de-corp were a large part of the group's success, when financial and other issues were always on the verge of ending the work. Indeed, Goldhaber led considerable weight to the effort. Goldhaber was born in Chemnitz, Germany, Feb. 20, 1924, and moved with his family to Cairo, Egypt, in 1933 to escape Nazi persecution. He earned his Master's of Science degree in physics at Hebrew University, Jerusalem, in 1947 and his Ph.D. in 1950 from the University of Wisconsin. He became a naturalized United States citizen in 1953 while working as an instructor at Columbia University. Later that same year, he joined the UC Berkeley Physics Department and the research staff at its Radiation Laboratory, which would later morph into Berkeley Lab, a U.S. Department of Energy national laboratory. Goldhaber first rose to major scientific prominence with his contributions to the discovery of the antiproton. In collaboration with his first wife, nuclear chemist/physicist Sulamith Löw, Goldhaber led a group that used a photographic emulsion detector technique he developed to confirm the discovery of the antiproton at Berkeley Lab's Bevatron accelerator by the research group of Emilio Segrè and Owen Chamberlain. Segrè and Chamberlain received the Nobel Prize in 1959 for this discovery. In 1960, Goldhaber and physicist George Trilling formed the Trilling-Goldhaber experimental particle-physics group, which included his wife, Sulamith. In 1963, the group discovered the A meson, a subatomic particle Goldhaber named after his son, Amos Nathaniel. "The wisest professional decision I ever made was to join Gerson in a collaboration whose success resulted almost entirely from his extraordinary insight into where to find new and important science," said Trilling. "He was a